
More hedging instruments may destabilize markets

William Brocka, Cars Hommesb∗ and Florian Wagenerb

April 2008

Abstract

This paper formalizes the idea that more hedging instruments may destabilize markets when

traders have heterogeneous expectations and adapt their behavior according to experience

based reinforcement learning. In a simple asset pricing model with heterogeneous beliefs the

introduction of additional Arrow securities may destabilize markets, and thus increase price

volatility, and at the same time decrease average welfare. We also investigate whether a fully

rational agent can employ additional hedging instruments to stabilize markets. It turns out

that the answer depends on the composition of the population of non-rational traders and the

information gathering costs for rationality.
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“Our fundamental risks will thus be insured against, hedged, diversified, making for a safer world. By

lightening the burden of risk, a new democratic finance will encourage all of us to be more venturesome,

more inspired in our activities.”, Robert J. Shiller, The New Financial Order: Risk in the 21st Century,

Princeton University Press, 2003.

1 Introduction

Robert J. Shiller advocates an expansion of the number of appropriately designed risk

hedging instruments. Many writers, e.g., Rajan (2005), have recently raised concerns

about the impact on market stability due to the explosive growth of innovations like

”financial engineering” that has essentially amounted to a rapid growth in the number

of risk hedging instruments. We agree with a commonly held view that increases

in appropriately designed risk hedging instruments can increase welfare; but we are

also concerned about the impact of addition of extra risk hedging instruments on the

process of achieving (or not achieving) equilibrium.

This paper formalizes the idea that more hedging instruments or derivative securities

may destabilize a market when traders are heterogeneous and learn from experience

based on realized returns. Here is a sketch of the idea. Consider a heterogeneous agent

intertemporal asset market where risk averse agents are learning the structure of asset

prices in the economy by using, for example, different prediction strategies of future

asset prices under some kind of reinforcement or evolutionary learning, for instance as

in Brock and Hommes (1997). Let there be S states of the world and a finite number

n of contingent claims or risk hedging instruments available. If n < S − 1 the market

is incomplete. We model the risk hedging instruments as “Arrow” securities for state

s, 1 ≤ s ≤ n < S − 1, each paying 1 if state s occurs and 0 otherwise. Elementary

Arrow securities are used here as a convenient analytical device, and a suitable combi-

nation of Arrow securities may serve as a proxy of more realistic financial instruments

such as futures, derivatives or recently introduced collateralized debt obligations. Now
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suppose that n < S − 2 and that a new risk hedging instrument, that is, a new Arrow

security, is added for state n + 1 < S − 1. Then, since agents are risk averse, and

since they can use the new Arrow security to hedge out “extra” risk, they will now

tend to place bigger positions on the market. Thus if an agent’s forecasting tool turns

out to be on the “right side” of the market, it will return a larger profit (because a larger

position has been placed on the market), and therefore it will receive a stronger rein-

forcement and more individuals will switch to using that particular forecasting tool.

This, in turn, implies that the learning system is now more likely to “overshoot”, i.e.

to become unstable, and consequently market volatility increases. This intuitive idea

will be formalized in a stylized model.

On the other hand it has been argued that an increasing multitude of derivative secu-

rities has made it possible for rational speculators to help stabilize markets since they

can take bets on market imperfections and hedge their risk. A second contribution of

our paper is to investigate the potential stabilizing role of rational traders in a mar-

ket with co-existing non fully rational traders. Can a perfectly rational trader employ

a growing number of hedging instruments to stabilize the market? It turns out that,

when the information gathering costs for full rational expectations are large, ratio-

nal traders can not prevent destabilization. However, we will also present conditions

(depending on the composition of the co-existing population of non-rational traders)

under which, as the number of hedging instruments increases, the benefits of “thinking

hard” outweigh its costs, and as the market approaches completeness, rational agents

may outperform non-rational traders, stabilize the market and limit welfare losses.

To formalize these ideas in the simplest setting we use the asset pricing model with

heterogeneous beliefs of Brock and Hommes (1998), but the analysis can be gener-

alized, for instance to a general equilibrium overlapping generations framework. We

show that adding more Arrow securities may destabilize market dynamics and thus in-

crease market volatility. In particular, we show that the primary bifurcation parameter,

marking the onset of instability, occurs “earlier” when there are more Arrow securities.
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Comparing our approach to the existing literature, it is probably fair to say that most

research in finance leans towards the standard financial economics view that adding

derivatives or futures markets increases welfare, reduces volatility and improves infor-

mation revelation. The “General Equilibrium with Incomplete markets” (GEI) liter-

ature nevertheless contains a number of theoretical papers showing that introduction

of new securities may decrease equilibrium welfare (e.g. Hart 1975, Elul 1995, Cass

and Citanna 1998), or may increase price volatility (e.g. Citanna and Schmedders,

2005, Bhamra and Uppal, 2006; see the comprehensive survey by Mayhew (2000)1).

An important difference with our approach is that these papers investigate finite pe-

riod, static GEI equilibrium models under rational expectations, while we attempt to

model how learning dynamics and heterogeneous expectations affects the attainment

of equilibrium; see Farmer and Geanakoplos (2008) for a recent discussion. An im-

portant contribution of our paper is that reinforcement learning dynamics of non-fully

rational agents is a potentially amplifying force to price instability when the number

of hedging instruments increases.

There is empirical evidence that experience based reinforcement learning, a key fea-

ture in our modeling framework, also plays an important role in investment decisions

in real markets. For example, Ippolito (1992), Chevalier and Ellison (1997), Sirri and

Tufano (1998), Rockinger (1996) and Karceski (2002) show for mutual funds data that

money flows into past good performers, while flowing out of past poor performers,

and that performance persists on a short term basis. Pension funds are less extreme in

picking good performance but are tougher on bad performers (Del Guerico and Tkac,

2002). Recently, Benartzi and Thaler (2007) have shown that heuristics and biases

1Mayhew (2000) also surveys empirical work on how futures and derivatives affect price volatility of the under-

lying. The empirical results on the introduction of futures are ambiguous, some authors finding a decrease, while

others finding an increase in volatility. Gerlach et al. (2006) investigate the behavior of volatility of returns in bond

and stock markets for a sample of eight countries using 150 years of data. Unsurprisingly, volatility has been high

during episodes of economic and political turbulence. Interestingly, volatility has been high since the seventies, a time

featuring an explosive growth of financial futures.
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play a significant role in retirement savings decisions. For example, using data from

Vanguard they show that the equity allocation of new participants rose from 58% in

1992 to 74% in 2000, following a strong rise in stock prices in the late 1990s, but

dropped, back to 54% in 2002, following the strong fall in stock prices.

The asset pricing model with heterogeneous belief that we employ as our stylized

framework is closely related to work in behavioral finance, evolutionary finance and

adaptive learning. The reader is referred to a number of recent surveys: Barberis

and Thaler (2003) give an extensive overview of behavioral finance (e.g. including

the work on noise trader models as in DeLong et al., 1990). More general surveys

on learning and bounded rationality and their role in enforcing convergence to ratio-

nal expectations or creating excess volatility include Evans and Honkapohja (2001),

Grandmont (1998) and Sargent (1993). Hens and Schenk-Hoppé (2008) provide stim-

ulating and comprehensive survey chapters in evolutionary finance.

The paper is organized as follows. Section 2 extends the asset pricing model with

heterogeneous beliefs to include Arrow securities. The main result here is that, when

there are more Arrow securities, the primary bifurcation towards instability occurs ear-

lier. Section 3 investigates the potential stabilizing role of rational traders. Conditions

(depending on the composition of non-rational traders) under which rational agents

can employ the Arrow securities to stabilize the market are given. Section 4 provides

an example where financial innovation leads to an increase of market volatility as well

as a decrease in welfare. The example also shows that rational traders can not always

stabilize prices, when the market approaches completeness. Section 5 concludes. The

paper closes with a summary, conclusions, a brief discussion of hedging strategies in

real markets and suggestions for future research. An Appendix provides proofs of the

results.
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2 An asset pricing model

In this section we extend the asset pricing model with heterogeneous beliefs of Brock

and Hommes (1997, 1998) by adding contingent claims or Arrow securities and in-

vestigate how these hedging instruments affect market stability. For any time period t,

there are S possible states s of the world in period t+1, occurring with probabilities αs

that are independent of time and common knowledge. Agents can buy risk free bonds

and two types of risky assets, stocks and Arrow securities. Bonds are bought at a fixed

price 1 and pay R > 1 in the next period. Stocks are bought at a market price p0
t in

period t and next period in state of the world s they pay an amount

qs
t+1 = p0

t+1 + ys,

that is the new market price p0
t+1 plus a dividend ys depending on s. Finally Arrow se-

curities for state i are bought at pi
t and pay δs

i in state s, which is 1 if s = i and 0 other-

wise. Markets are incomplete: Arrow securities are only available for states 1, · · · , n,

where n < S − 1.

Let z0
t and zi

t denote the demand of an agent for respectively the stock and the i’th

Arrow security. Introduce vector notation by setting z̃t = (z1
t , · · · , zn

t ) and zt =

(z0
t , z̃t); p̃t = (p1

t , · · · , pn
t ) and pt = (p0

t , p̃t); δ = (δ1, · · · , δn) and α = (α1, · · · , αn).

Introduce moreover σ2 = Var qt+1; ηi = Cov(qt+1, δi) and η = (η1, · · · , ηn), and

Σ = Cov(δ). Finally, let a > 0 be the coefficient of risk aversion and let Vn denote

the symmetric (n+ 1)× (n+ 1) variance-covariance matrix

Vn = aCov((qt+1, δ)) = a

 σ2 ηT

η Σ

 . (1)

Note that Vn is the variance-covariance matrix of the uncertain payments of the stock

and the n Arrow securities multiplied by the coefficient of risk aversion a. The matrix

is singular if and only if a riskless portfolio can be constructed out of stock and Arrow

securities; this would for instance be possible if there were n = S−1 Arrow securities
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available. The elements of Vn can be computed. They read as

σ2 =
∑

(ys − ȳ)2αs, ηi = αi(y
i − ȳ),

Σij =

 αi(1− αi) if i = j,

−αiαj if i 6= j.

The inner product of two vectors v and w is denoted by 〈v, w〉. If Wt is the current

wealth of an agent, his wealth next period in state s is

W s
t+1 = R

(
Wt − p0

t z
0
t − 〈p̃t, z̃t〉

)
+ qs

t+1z
0
t + zs

t .

The excess profit in state s from trading the risky assets equals πs
t+1 = W s

t+1 − RWt.

Utility is assumed to be of mean–variance type:

Ut = Et πt+1 −
a

2
Var tπt+1 =

〈 −Rp0
t + Etqt+1

−Rp̃t + Etδ

 , zt

〉
− 1

2
〈zt, Vnzt〉. (2)

The optimal demand vector is given by

zt = V −1
n

 −Rp0
t + Etqt+1

−Rp̃t + Etδ

 . (3)

2.1 Rational benchmark The case of all traders having rational expectations is

the fundamental benchmark of the system. Arrow securities are endogenous to the

system and therefore their total supply is zero. The total supply of the stock is ζ0.

Denote expected dividends by ȳ =
∑
ysαs. If all markets clear, then we obtain under

rational expectations, using equations (1) and (3), the price dynamics

−Rp0
t + Etp

0
t+1 + ȳ = aσ2ζ0,

−Rp̃t + α = aηζ0.

Imposing the transversality condition that prices remain bounded, these equations are

solved by constant fundamental prices pt = p∗ = (p0
∗, p̃∗), given as

p0
∗ =

ȳ − aσ2ζ0

R− 1
, p̃∗ =

1

R

(
α− aηζ0

)
. (4)
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The terms involving ζ0 can be interpreted as the risk premium required by the investors

to hold the risky assets.

2.2 Heterogeneous expectations. Consider now the case that agents are hetero-

geneous in their expectations or beliefs about next period’s price of the stock, but

homogeneous with respect to everything else.2

Demand of type h, 1 ≤ h ≤ H , is given by equation (3), reading as

zht = V −1
n

 −Rp0
t + Ehtqt+1

−Rp̃t + Etδ

 = V −1
n Bht. (5)

Here Bht is the belief vector of type h about the excess return of stock and Arrow

securities; this belief vector determines the investment strategy through (5). We will

refer to type h as a belief type or a prediction strategy. Since probabilities of states of

the world are assumed to be common knowledge, the expectation Etδ is the same for

all types. Note that agents differ in their assessment of Ehtqt+1, but agree on Vn. This

simplifying assumption is made for analytical tractability of the heterogeneous agent

case, but it is supported by the observation that there may be more agreement about

the variance than about the mean3.

It will be convenient to work with price deviations xt = pt − p∗ from the fundamental

2Heterogeneous expectations play an increasingly important role in economics and finance. LeBaron (2006) and

Hommes (2006) are up to date reviews, with each more than 100 references. Heterogeneity in forecasting future asset

prices is supported by evidence from survey data, as discussed e.g. in Vissing-Jorgensen (2003) and Shiller (2000).

Branch (2004) estimates a model with heterogeneous beliefs and time varying fractions, using survey data on inflation

expectations, while Boswijk et al. (2007) estimate a simple two type asset pricing model with heterogeneous beliefs,

fundamentalists versus trend extrapolators, on yearly S&P 500 data, 1871-2003.
3The observation that estimation of the variance or covariance from observed financial returns series will be much

more accurate than estimation of the mean dates back to Merton (1980, especially Appendix A). The ARCH/GARCH

literature has shown that, under regularity conditions, conditional variance is easier to estimate than conditional mean,

see e.g. Bollerslev, Engle, and Nelson (1994, especially section 4).
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benchmark prices p∗ We assume price expectations to be of the form

Ehtp
0
t+1 = p0

∗ + fht = p0
∗ + fh(x

0
t−1, · · · , x0

t−L).

The “technical trading rule” fh models how type h believes that the future price p0
t+1

will deviate from the fundamental, given past prices.

2.2.1 Market clearing. Let the market share (or fraction) of type h agents in pe-

riod t be denoted by nht. As before, Arrow securities are endogenous to the system,

and their total supply is zero. Market clearing for stock and Arrow securities implies∑
h

nhtz
0
ht = ζ0,

∑
h

nhtz̃ht = 0. (6)

In deviations from the fundamental, the demand vector reads as

zht =

 ζ0

0

+ V −1
n

 −Rx0
t + fht

−Rx̃t

 . (7)

Adding these equations, weighted by fractions, and using equation (6) yields

Rx0
t =

∑
h

nhtfht, x̃t = 0. (8)

We make a couple of observations. First, according to (8), the price deviations of

the Arrow securities are zero, implying that the Arrow securities are correctly priced.

Secondly, if fht happens to be equal for all types h, beliefs are homogeneous, and

there is no demand for Arrow securities. Only when beliefs are truly heterogeneous

the demand for Arrow securities will be non-zero, as different types hedge their risk

differently. Finally, under heterogeneous beliefs the market price of the stock will

in general deviate from its fundamental benchmark. In fact, the expression Rx0
t =∑

h nhtfht in (8) is the same as in the asset pricing model without Arrow securities in

Brock and Hommes (1998). However, as we will see below, the existence of Arrow

securities will affect the magnitude of the fractions nht through reinforcement learning.
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2.2.2 Fitness. In order to close the model, the evolution of the market shares nht

has to be specified. We assume that these shares are determined by the fitness uht−1 of

type h; the subscript t− 1 indicates that fitness depends only on past observed prices.

The fraction of agents using strategy type h will thus be driven by “experience” or

“regret” through reinforcement learning. Given fitnesses uht−1, the fraction of agents

using strategy type h is determined by a multinomial logit model:4

nht =
eβuht−1

Zt

, Zt =
∑

h

eβuht−1 , (9)

These fractions can be derived from a random utility model (Manski and McFadden

(1981)). Note that as the fitness uht−1 increases relative to the other type’s fitnesses,

more agents will select trading strategy h. The intensity of choice parameter β > 0

in (9) measures how sensitive agents are to selecting the optimal prediction strategy.

This parameter is inversely related to the variance of the noise in the observation of

random utility. If β = 0, agents are insensitive to past performance and pick a strategy

at random: all fractions will then be equal to 1/H . In the other extreme case β →∞,

all agents choose the forecast which performed best in the last period. An increase in

the intensity of choice β can therefore be seen as to represent an increase in the degree

of rationality with respect to evolutionary selection of strategies.

As fitness measure we use average risk-adjusted profit, that is, average profits corrected

for the risk taken when buying risky assets:

uht =

〈 −Rp0
t−1 + p0

t + ȳ

−Rp̃t−1 + α

 , zht−1

〉
− 1

2
〈zht−1, Vnzht−1〉.

Notice that this measure is consistent with the utility (2) of the agents5. Using (5), the

4The results discussed below do not depend on the details of the specification of the updating rule (9). The

exponential function may for instance be replaced by another increasing function. What is key in (9) is that, as the

intensity of choice β moves from one extreme 0 to the other extreme +∞, the distribution of types moves from

uniform to a delta function with its peak at the best strategy.
5Another fitness measure that may be of interest is (non-risk adjusted) realized profits. The results for this alterna-

tive fitness measure are very similar to those presented below.
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realized excess return vector

Bt−1 =

 −Rp0
t−1 + p0

t + ȳ

−Rp̃t−1 + α

, (10)

and recalling that zht = V −1
n Bht, we rewrite risk–adjusted realized profits as

uht = 〈Bt−1, V
−1
n Bh,t−1〉 − 1

2
〈Bh,t−1, V

−1
n Bh,t−1〉.

In the special case where type h has rational expectations or perfect foresight, i.e.

Bh,t−1 = Bt−1, this expression simplifies to uR
t = 1

2
〈Bt−1, V

−1
n Bt−1〉. Now look at

the difference between risk–adjusted profits of type h and fully rational agents, i.e.

uht − uR
t = −1

2

〈
Bt−1 −Bh,t−1), V

−1
n (Bt−1 −Bh,t−1)

〉
= −1

2

〈
(x0

t − fh,t−1)e0, V
−1
n (x0

t − fh,t−1)e0
〉

= −1

2
(V −1

n )00(x
0
t − fh,t−1)

2; (11)

here e0 = (1, 0, · · · , 0). Since uR
t is independent of h and the fractions in the multi-

nomial logit model are independent of the fitness level we conclude that risk–adjusted

profits are equivalent, up to a constant factor, to (minus) squared prediction errors. In

the case when there are no Arrow securities we have (V −1
n )00 = 1/(aσ2).

2.3 Adding Arrow securities. We can now address our main question: what hap-

pens to the price dynamics when Arrow securities are added?

2.3.1 General mechanism The previous subsection has shown that, when we add

an extra Arrow security to the system, the dynamical behavior only changes through

the term (V −1
n )00 in the fitness measure (11). Moreover, using (7) and (8) we get

zht = ζ0 + (fht −Rx0
t )V

−1
n e0.

Let r = Cov(δn+1, (q
0
t , δ1, · · · , δn)). We call the n + 1-th Arrow security relevant to

the portfolio zht if 〈r, V −1
n e0〉 6= 0. Note that for Lebesgue almost all configurations

of the y0
s and αs, all Arrow securities are relevant. The following lemma is key.
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LEMMA 1. If the n+ 1-th Arrow security is relevant, the matrix Vn in (1) satisfies:

(V −1
n+1)00 > (V −1

n )00. (12)

Appendix A.1 contains the proof of the lemma. Instead of working with (V −1
n )00 it

may be more intuitive to use

σ2
n =

1

a(V −1
n )00

, 0 ≤ n < S − 1. (13)

The quantity σ2
n may be viewed as a measure of risk when there are nArrow securities.

The inequalities (12) are then equivalent to

σ2
0 > σ2

1 > · · · > σ2
S−2 > σ2

S−1 = 0, (14)

implying that the risk measure decreases when more Arrow securities are added to the

market, as more risk can be hedged.

We are now ready to formulate our main result. A typical feature in reinforcement

or evolutionary learning systems as in Brock and Hommes (1997,1998) is that the

fundamental equilibrium may destabilize when the intensity of choice β to switch

strategies increases. We claim that adding Arrow securities leads to earlier primary

bifurcations:6

THEOREM 2.1. Consider the asset price dynamics with reinforcement learning in

(8–9) and fitness measure given by average risk-adjusted profits in (11). If β∗0 is the

critical parameter value for which the steady state becomes unstable if there are no

Arrow securities, then for almost all dividends ys and probabilities αs the primary

bifurcation value β∗n for the system with n Arrow securities and incomplete markets

(i.e. n < S − 1) satisfies

β∗n+1 < β∗n < β∗0 , 1 ≤ n < S − 2. (15)

This theorem implies that in the presence of more Arrow securities, the fundamental

equilibrium destabilizes earlier. There is a simple economic intuition behind the the-

orem. When there are more Arrow securities, agents will use them to hedge out more
6The same type of results hold more generally for n assets that are linear combinations of Arrow securities.
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risk and take bigger positions in the risky assets. The more Arrow securities there are,

the higher will be the rewards for trading strategies that turn out to be on the right side

of the market and, under reinforcement learning, successful strategies will attract even

more followers. To see this, consider the demand of type h for the risky asset

z0
ht = ζ0 + (V −1

n )00(fht −Rx0
t ) = ζ0 +

(fht −Rx0
t )

aσ2
n

. (16)

A straightforward computation gives the demand of the j-th Arrow security as

zj
ht = V −1

j0 (fht −Rx0
t )

= −C
(
(1−

∑n
k=1 αk) (yj − ȳ) +

∑n
k=1 αk(yk − ȳ)

)
(fht −Rx0

t ),
(17)

where C = α1 · · ·αn/ detVn > 0 does not depend on j.

When the number of Arrow securities increases, the risk measure σ2
n decreases. Hence,

it is clear from (16) that the introduction of additional Arrow securities forces opti-

mistic (pessimistic) agents, with the same risk aversion coefficient a, to hold bigger

long (short) positions in the stock. For example, optimistic traders who predict next

period’s asset price deviation fht from the fundamental price to grow faster than R

times the current positive deviation, that is, for whom fht − Rx0
t > 0, will take larger

positions when there are more Arrow securities. Moreover, from (17) (note the minus

sign) we see that these optimistic traders take short positions in Arrows correspond-

ing to above average dividends and long position in Arrows corresponding to below

average dividends. Traders thus use the Arrow securities to hedge their risk and invest

more in the stock if they expect its price to rise. This is a leverage effect. More-

over, strategies that forecasted the price movement better will attract more followers

according to the risk-adjusted fitness measure (11) and inequality (12). Stated differ-

ently, using hedging portfolios strategies that turned out to be “right” will be rewarded

more and attract more followers, while strategies that turned out be be “wrong” will

lose more.

A major implication of theorem 2.1 is that, if all other parameters including the in-

tensity of choice are fixed, adding Arrow securities may destabilize the market. For
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when there are n Arrow securities, the fitness given by average risk-adjusted profits

in (11), is proportional to (V −1
n )00 or, equivalently, inversely proportional to the risk

measure σ2
n in (13). In the presence of n Arrow securities, the effective intensity of

choice of strategy selection in (9) is thus given by β0/σ
2
n, where β0 is the intensity of

choice without Arrow securities. Figure 1(c) plots the effective intensity of choice as

the number of Arrow securities increases for a given dividend and probability struc-

ture. The effective intensity of choice increases past a critical value as the market

approaches completeness, thus creating instability under reinforcement learning.

3 The role of rational agents

In this section, we investigate the consequences of adding a fully rational agent to the

ecology of traders, that is, a trader that forecasts future prices perfectly.

3.1 Dynamics with rational agents. To add a perfect foresight rule to the market,

we have to be precise about the timing. At time period t−1, the rational type has made

a prediction x0
t about the price deviation of the risky asset that has to hold in period t.

At the beginning of period t, we assume that all other trader types submit their demand

functions first. The rational type, indexed by h = 0, then chooses its demand exactly

such that the corresponding equilibrium price of the risky asset coincides with his

prediction x0
t . But this demand fixes, through equation (7) with f0t = x0

t+1, a rational

prediction for next period’s price x0
t+1, after which the process repeats. Notice that the

rational type is free to choose his first price prediction, or equivalently his first demand,

as at that moment he is not bound by a previous prediction. The first prediction will

be chosen as to avoid a rational bubble solution.

The rational trader is characterized by its forecast rule f0t and its fitness u0t given by

f0t = x0
t+1, u0t = −C − 1

2aσ2
n

(
x0

t − f0t−1

)2
= −C.
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where C represents the cost of obtaining the perfect forecast. Adding a rational trader

type to the market thus gives the evolution equation

Rxt
0 = n0tx

0
t+1 +

∑
h

nhtfht.

We rewrite this equation, using nht = eβuht−1/Zt and Zt =
∑

h eβuht−1 , into the form

e−βCx0
t+1 = Rx0

t

(
e−βC +

H∑
h=1

eβuht−1

)
−

H∑
h=1

eβuht−1fht. (18)

Note that in the limit C → ∞, the fraction of perfectly foresighted agents tends to 0

and we recover the case without fully rational agents.

It is now convenient to introduce the parameter ε = e−βC ; then ε → 0 as C → ∞.

The evolution equation (18) is a singularly perturbed nonlinear difference equation

εx0
t+1 = ϕ(x0

t , · · · , x0
t−L) = Rx0

t

(
ε+

H∑
h=1

eβuht−1

)
−

H∑
h=1

eβuht−1fht. (19)

Denote the eigenvalues of the fundamental equilibrium by λj(ε), j = 0, · · · , L + 2.

By standard arguments it is shown that one eigenvalue, say λ0(ε), tends to infinity

as 1/ε as ε → 0, while the other eigenvalues tend to the eigenvalues of the system

without rational agents. The solutions that diverge from x = 0 at the rate λt
0 are local

rational bubbles. The following theorem shows that it is possible to exclude these by

a judicious choice of the initial prediction x0
0 of the rational type.

THEOREM 3.1. Let λ1 be eigenvalue with the largest absolute value m1 = |λ1| at

the fundamental steady state of system (8) without rational agents. There is a small

neighborhood U of the fundamental equilibrium x = 0, and a cost level C0 > 0,

such that for all initial conditions x−`, ` = 1, · · · , L in U , for any δ > 0, and for

any C > C0, the following holds.

There is an initial prediction x0
1 = ψe(x0

−1, · · · , x0
−L) of the rational type, and an

implied initial market clearing price x0
0 = ψ(x0

−1, · · · , x0
−L) such that for all t the

dynamics

x0
t = ψ(x0

t−1, · · · , x0
t−L) (20)
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is well defined, Ck, and restricted to an invariant hypersurface of (18). For all x0
t ∈ U

the dynamics on the invariant manifold satisfies

|x0
t | ≤ |x0

0|(m1 + δ)t.

Moreover, as C → ∞, the linearization of the evolution (20) at x = 0 tends to the

linearization of the system (8) without rational agents.

Theorem 3.1 implies that rational agents can choose their initial forecast x0
1 in such

a way that the dynamics in (18) is restricted to an invariant manifold, so that rapidly

exploding rational bubbles are avoided. The theorem thus implies that in a hetero-

geneous agents setting, a “transversality condition” avoiding bubble solutions can be

imposed. If the costs for perfect foresight are high, so that the fraction of rational

agents is small, the dynamics on the invariant manifold is similar to the dynamics

without rational agents in (8). In particular, the local stability of the fundamental

steady state is described by a characteristic equation QC which tends to the character-

istic equation Q in the case without rational agents, when C →∞. This implies that,

when the information gathering costs for perfect foresight are high, the first bifurca-

tion to local instability in the presence of a small fraction of rational agents is close

to the first bifurcation in the case without rational agents. But more can be said. The

invariant manifold persists after the first bifurcation so that additional steady states

and/or cycles created immediately after a first bifurcation also persist. This implies,

for example, that if the system without rational agents exhibits a generic saddle-node,

a period doubling or a Hopf bifurcation, the system with a sufficiently small fraction

of rational traders exhibits the same bifurcation at almost the same critical value.

3.2 Can rational agents employ more hedging instruments to stabilize markets?

In Section 2 we have seen that in a heterogeneous world with only boundedly rational

agents, destabilization comes earlier if more Arrow securities are added to the system.

We are now ready to explore what happens in the presence of rational agents.
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3.2.1 A small fraction of rational traders cannot prevent destabilization. Let

x̄n(C) be a steady state of the system (18) with a (small) fraction of rational agents,

with n Arrow securities and costs C for perfect foresight, such that the limit

x̄∞n = lim
C→∞

x̄n(C)

exists. Let β = β∞n be the bifurcation value at which the steady state x̄∞n of the

system (8) without rational agents and with n Arrow securities first loses stability.

According to our earlier Theorem 2.1, in a world with only boundedly rational traders

β∞n+1 < β∞n , that is, the primary bifurcation to instability occurs earlier when there are

more Arrow securities. The following result extends this result to the case with a small

fraction of rational agents:

THEOREM 3.2. Assume that the stability losing bifurcation β∞n in the case without

rational agents and n Arrow securities is of co-dimension one (e.g. a generic Hopf,

period doubling or saddle-node bifurcation). There is a constant C0 such that for C >

C0, the system (18) in the presence of a rational type and with n Arrow securities first

loses stability at β = βn(C), and

βn+1(C) < βn(C),

for n = 1, · · · , S − 2.

The heuristic content of this result is that when perfect foresight is costly, rational

traders cannot prevent destabilization. When the costs for perfect rationality are high,

so that the fraction of rational agents remains small, the first bifurcation still comes

earlier when there are more Arrow securities.

3.2.2 Rational traders may eventually stabilize markets. Theorem 3.2 implies

that, as long as the fraction of rational agents remains small, the market may destabilize

when the number of Arrow securities increases. But what happens if the number

of Arrow securities keeps increasing and the market approaches completeness? Will
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perfectly rational agents be able to use a sufficiently large set of Arrow securities to

hedge out their risk, outperform the other strategies, grow in number and eventually

stabilize the market? Stated differently, will the benefits of an almost complete market

for perfectly rational traders outweigh the costs of “thinking hard”?

The answer to this question depends on the composition of the population of hetero-

geneous, boundedly rational agents. There are two alternatives. The first occurs if

all boundedly rational types are biased at the fundamental steady state. As the risk

measure σ2
n decreases towards zero, rational agents will drive out all biased types, sta-

bilizing the market and forcing prices to converge to fundamental value. This is the

content of theorem 3.3 below.

We obtain the second alternative, if there are boundedly rational types who at the

fundamental steady state predict that the price remains at steady state. Rational traders

are unable to drive out these unbiased boundedly rational types and the market may

remain unstable, even when approaching market completeness. An example of this

phenomenon is given in section 4.

THEOREM 3.3. Assume that all boundedly rational types are biased in the funda-

mental steady state xt = 0, that is, assume that

f 0
ht(0, · · · , 0) 6= 0, h = 1, · · · , H.

Then for every C > 0 and every 0 ≤ n < S − 1, there is a σ̄2 > 0 such that if the risk

measure satisfies 0 < σ2
n < σ̄2, then the system (18) with a fraction of rational agents

has a locally attracting stable steady state.

The proof of this result is given in A.5. The idea of the proof is simple: the prediction

errors of the boundedly rational traders lead to huge positions, and consequently huge

losses, if the risk measure σ2
n is very small. If the losses are much bigger than the

costs C of acquiring a perfect forecast, the rational type dominates the market and

(locally) stabilizes the fundamental price.
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3.3 Welfare. So far we have focussed on its potential (de)stabilizing effect, but

now consider how the introduction of additional hedging instruments affects welfare.

Welfare at time t averaged over the population of trader types is given by

Wt =
H∑

h=0

nh,t−1uht. (21)

Notice the timing here: welfare is averaged over the fractions nh,t−1 of type h whose

realized utility is uht. Using (11) and uR
t = 1

2
〈Bt−1, V

−1Bt−1〉, with the realized return

vector Bt−1 as in (10), we can rewrite welfare as

Wt =
∑H

h=0 nh,t−1uht =
∑H

h=0 nh,t−1(uht − uR
t ) + uR

t

= − 1
2aσ2

n

∑H
h=1 nh,t−1(x

0
t − fh,t−1)

2 − n0,t−1C

+ 1
2aσ2

n
(x0

t −Rx0
t−1)

2 + (x0
t −Rx0

t−1)aζ
0 + 1

2
(aζ0)2σ2.

(22)

The first term represents (minus) the squared forecasting errors averaged over the pop-

ulation of non-rational agents. Substituting Rx0
t−1 =

∑H
h=0 nh,t−1fh,t−1 into the third

term, and merging it with the first term into a “variance”, average welfare simplifies to

Wt = 1
2
(aζ0)2σ2 − n0,t−1C + (x0

t −Rx0
t−1)aζ

0 − 1
2aσ2

n
σ2

εht
, (23)

where σ2
εht

is the “variance” of the forecasting errors εht = x0
t − fh,t−1 of non-rational

types, with “mean” µεht
= x0

t −
∑H

h=0 nh,t−1fh,t−1. The first term reflects the “risk

premium” for the population of traders to hold the risky assets, and the second term

the costs of rational agents. If rational agents drive out all non-rational types and force

prices to their fundamental benchmark (i.e. xt ≡ 0), welfare becomes 1
2
(aζ0)2σ2 −C,

the risk premium net of the costs of rationality. The third term in (23) reflects a

(temporary) “irrationality bias” in population averaged welfare, which e.g. is posi-

tive (negative) if a positive deviation from fundamental price grows faster (slower)

than a rational bubble (i.e. if x0
t − Rx0

t−1 > 0 (< 0)). If prices fluctuate around its

fundamental value, the time average of this “irrationality bias” will be close to 0. The

last term, −σ2
εht
/(2aσ2

n), captures the effect of the spread of the forecasting errors of

non-rational agents. Since the risk measure σ2
n decreases with the number of Arrow

19



securities, non-zero forecasting errors of non-rational types will blow up when the

number of hedging instruments increases. In fact, when non-rational agents and their

forecasting errors persist, average welfare may blow up to minus infinity as the market

approaches completeness (see Figure 1d). On the other hand, if rational agents can

use the hedging instruments to drive out non-rational agents and stabilize the market,

welfare losses will be limited to the costs of “thinking hard”.

4 Example

This subsection presents a simple example illustrating that adding Arrow securities

destabilizes the system and may lead to cycles and even chaos, that average welfare

decreases, and that rational agents can not drive out unbiased traders when the market

approaches completeness. There are three types of traders with forecasting rules (in

deviations from the fundamental benchmark):

f0t = x0
t+1, f1t = 1, f2t = xt−1 + g(xt−1 − xt−2). (24)

Rational traders (type 0) have perfect foresight. Type 1 agents use information about

economic fundamentals and predict that the price of the risky asset will be equal to its

fundamental value, but they make an (small) error (normalized to 1). Type 2 are trend

followers who do not use fundamental information, but extrapolate the latest observed

price change by an extrapolation factor g. Note that this is an unbiased forecasting rule

at the fundamental steady state. Taking aσ2 = 1, the fitnesses of the strategies read as

u0t = −C, u1t = −(xt−1 − 1)2, u2t = −(xt−1 − (1 + g)xt−3 + xt−4)
2.

(25)

4.1 Dynamics without rational traders. First consider the case that C = ∞, so

that the fully rational traders are absent from the market ecology.
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Figure 1: Bifurcation diagrams and average welfare in the 2-type example with biased traders versus

trend extrapolators (R = 1.1, g = 1.101). Panel 1(a): bifurcations of steady states. The curve shown is

the locus of the steady state equilibria x∗. Two saddle node (SN) bifurcations and one Hopf bifurcation

occur, and x∗ → 0, the true fundamental, as β → ∞. Panel 1(b): largest Lyapunov exponent. As

the intensity of choice β increases the system loses stability in a Hopf bifurcation, after which cycles

and chaos (with positive largest Lyapunov exponent) arises. Panel 1(c): effective intensity of choice

βn = β/(aσ2
n) as a function of the number n of Arrow securities. Panel 1(d): welfare averaged over

the population and over time, as a function of the effective intensity of choice. Dotted curves correspond

to unstable steady states. The lower branch of the solid curve corresponds to the “biased” steady state

(the upper branch in panel 1(a)), while the upper branch (between SN1 and Hopf) corresponds to the

stable near fundamental steady state (the lower branch in Panel 1(a)) and, after the Hopf bifurcation,

to the quasi-periodic or chaotic attractor.
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The following bifurcation scenario occurs7. For β = 0, the steady state x∗ = 1/(2R−

1) = 1/(1+2r) ≈ 1 (recall that r = R−1). This steady state is close to 1, the predicted

steady state of type 1. As β increases, the steady state x∗(β) moves along the upper

part of the curve in Figure 1a, and this steady state is stable. For β = βSN1 ≈ 5.5 two

additional steady states are created in a saddle-node bifurcation, one stable (the lower

one) and one unstable (the middle one)8. These two steady states are closer to the

fundamental value x ≡ 0. As β increases, the steady state closest to the fundamental

value loses stability through a Hopf bifurcation at βHopf ≈ 7.0. At βSN2 ≈ 13.6

a second saddle-node bifurcation occurs, and the two upper steady states disappear.

For βHopf < β < βSN2 a stable steady states co-exists with an attractor around the

fundamental steady state. Figure 1c shows a Lyapunov exponent plot, illustrating

the dynamical behavior after the Hopf bifurcation. After the Hopf bifurcation quasi-

periodic behavior occurs with a Lyapunov exponent close to 0. For large values of

β the dynamics becomes chaotic, with positive Lyapunov exponent. Introduction of

additional Arrow securities has the same effect as increasing the parameter β. For

example, with S = 40 states of the world with probabilities αs = 1/S and dividends

ys = s− 1, fixing β = 1 yields the following dynamics depending upon the number n

of Arrow securities (see Figure 1c): (i) unique stable steady state for n = 0 and n = 1;

(ii) co-existence of two stable steady states for 2 ≤ n ≤ 9; (iii) co-existence of stable

steady state and (quasi-)periodic attractor for n = 10 and n = 11; (iv) (quasi-)periodic

attractor, for 12 ≤ n ≤ 32, and (v) chaotic behavior, for 33 ≤ n < S = 39.

Figure 1(d) plots average welfare, averaged over the population and over time, as a

function of the effective intensity of choice β/σ2
n, in the case without rational traders.

Welfare decreases when the number of Arrow securities increases. Only between the

first saddle-node bifurcation SN1 and the Hopf bifurcation, when a stable near funda-

mental steady state exists, welfare increases, but it decreases again after the Hopf bi-

7See for mathematical treatments of bifurcation theory e.g. Kuznetsov (1995).
8Hens and Pilgrim (2003) show that new financial securities may change the number of equilibria in a perfect

foresight model.
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furcation (averaged over the quasi-periodic or chaotic attractor). In particular, welfare

explodes (to minus infinity) as the market approaches completeness. In this ecology of

traders, rational agents can not stabilize welfare, because they can not drive out trend

following strategies.

4.2 Rational traders can not always eventually stabilize. We now add rational

traders to the system with biased traders and trend extrapolators, that is, we take 0 ≤

C < ∞. Our objective is to show that, in contrast to Theorem 3.3, in the presence of

(unbiased) trend extrapolators rational traders cannot stabilize the fundamental equi-

librium, even locally. System (19) has a steady state equilibrium x∗ ∈ R if x = x∗

satisfies the equation

F (x) = εx−
(
ε+ e−η(x−1)2 + 1

)
Rx+ e−η(x−1)2 + x = 0.

Note that this steady state equation is independent of the trend extrapolation factor g.

From this equation, the value η can be solved as a function of x, yielding

η = η∗(x) =
1

(x− 1)2
log

1−Rx

(1 + ε)(R− 1)x
.

Note that η →∞ as x→ 0; that is, for large values of η, there is a single equilibrium

that tends to the fundamental equilibrium (see Figure 1(a)). We are interested in the

stability of this near-fundamental steady state when the market approaches complete-

ness, that is, when η = β/σ2
n →∞. The next result, which is proved by linearization

around the near-fundamental steady state, gives conditions when rational agents can

stabilize the market when the number of Arrow securities is large:

THEOREM 4.1. Let x∗ be the near-steady state equilibrium of (19) with specifica-

tions (24) and (25). Let η = β/σ2
n. If η is sufficiently large and

1. if 0 < g < R, then x∗ is locally stable;

2. if g > 2R− 1, then x∗ is locally unstable;
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3. if R < g < 2R − 1, and C is sufficiently small (close to 0), then x∗ is locally

stable;

The stability in the limiting case of a complete market depends on the magnitude of

the trend extrapolation factor g. When the trend parameter is small (0 < g < R) the

market will always be stable. For intermediate parameter values (R < g < 2R− 1), if

the costs for rationality are small and the number of Arrow securities is large, rational

agents can still stabilize the market. However, when the trend extrapolation factor is

large (g > 2R− 1 = 1 + 2r ≈ 1), the price dynamics will remain unstable even if the

market approaches completeness9.

5 Concluding Remarks

In the last decade we have seen an explosive growth of risk hedging instruments in fi-

nancial markets. There is also empirical evidence that investment decisions are (partly)

driven by relative performance. It has been argued recently, e.g., by Rajan (2005), that

under such conditions markets may be exposed to more financial-sector turmoil than

in the past. We have formalized this idea in a stylized asset pricing model with het-

erogeneous beliefs. Hedging instruments are represented by Arrow securities, which

may be viewed as proxies for more complicated financial instruments. When agents

adapt their behavior based upon reinforcement learning, a general mechanism for po-

tential instability applies. Adding Arrow securities to the market may destabilize price

dynamics, and thus increase volatility, and at the same time decrease average welfare.

We have also investigated whether the benefits of “thinking hard” can outweigh its

costs: can fully rational traders use the extra hedging instruments to drive out non-

rational agents, stabilize the market and limit welfare losses? As long as their fraction

9Hommes et al. (2005) estimated trend extrapolation factors in learning to forecast experiments with human

subjects in the same asset pricing setting (without Arrow securities). Many individuals used trend following forecasting

rules, with estimated trend parameters ranging from 0.4 ≤ g ≤ 1.3, covering all three cases of Theorem 4.1.
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is small, e.g. due to high information gathering costs, rational traders can not prevent

destabilization when more Arrow securities are introduced. However, under some con-

ditions rational agents can stabilize prices. For example, when all non-rational trader

types are biased (i.e. make a small error) at the fundamental steady state, then ratio-

nal agents eventually stabilize prices and limit welfare losses to the costs of “thinking

hard” as the market approaches completeness. As more and more hedging instruments

are introduced, rational agents take bigger positions in their hedging portfolio and their

benefits outweigh the information gathering costs for rationality. On the other hand, if

one of the non-rational strategies uses an unbiased strategy such as a simple trend ex-

trapolating forecast rule, and trend extrapolation is sufficiently strong, rational agents

are unable to stabilize prices even when the market approaches completeness and there

are no costs for rationality.

Our model is very stylized and much too simple to capture all aspects of financial com-

plexity in real markets. But it is tempting to compare our main results to some stylized

features of speculative trading, e.g. due to large hedge funds, in real markets. For ex-

ample, Prabhu (2001) describes the LTCM “convergence trade” investment strategy to

take a leveraged position to profit from an expected narrowing of the spread between

the yields of “on the run” and “off the run” bonds as follows:

“For example, in August 1993, before Long-Term entered the market, 30-year bonds

yielded 7.24%, while 29 1/2 year bonds yielded 7.36%. This 12 basis point spread

would not allow it to earn the type of returns that its investors expected, so the traders

at LTCM needed to leverage their trade in order to magnify this return. On this par-

ticular trade, such magnification was very easy. LTCM received cash when it shorted

the on-the-run bond, and it could then use that cash to buy the off-the- run. This meant

that it needed to put up very little cash in order to finance this pair of transactions,

and could easily leverage the tiny arbitrage profit into large gains. This type of trade

was reportedly often leveraged thirty to forty times in order to generate high returns

on equity.”
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The hedging portfolio computed in (16) and (17) has similar features. It contains

both long and short positions, similar to many actual hedge fund strategies like the

130/30 type positions discussed in Lo and Patel (2007) on the new ”Long-Only”.

When traders think that the stock is underpriced, they approximate it with the Ar-

row securities available as well as they can, go short in the approximate portfolio, and

use the money to buy the stock. As the stock and its approximation have almost the

same dividend structure, the traders have almost no dividend risk: the dividends they

have to pay on the Arrow security portfolio, they pay out of the dividend revenues

from the stock. However, they bet on making a gain out of the price movement. In

toto, they ”put very little cash in order to finance this pair of transactions”.

How general are these results? Clearly, they will not always hold. We have derived

them in a simple asset pricing model with heterogeneous beliefs, but the results can be

generalized, for example, to a general equilibrium overlapping generations setting10.

One could also think of a more general model, for example by including stabilizing

forces such as an increase of the time horizons of agents (e.g Levine and Zame, 2002)

or a decrease of the rates at which agents discount the future (e.g. Blume and Easley,

2006). What would happen in a more general model taking these stabilizing forces

into account as well as the potentially destabilizing effect of learning? Which force

will “win”? The search for an answer in more elaborate models will be an exciting

area for future research.
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A Proofs

A.1 Proof of lemma 1. We first state and prove a more general matrix lemma:

LEMMA 2. LetQn be a symmetric (n, n)-matrix andQn+1 a symmetric (n+1, n+1)-

matrix of the form

 Qn r

rT s

, where r is an n-vector and s a scalar, and let w̃ =

(w,w0), with w an n-vector and w0 a scalar. Then

〈
w̃, Q−1

n+1w̃
〉

=
〈
w,Q−1

n w
〉

+
(w0 − 〈r,Q−1

n w〉)2

s− 〈r,Q−1
n r〉

.

The proof of the first part of this lemma can be established by a variation on the use

of the formula for the inverse of a partitioned matrix which uses the notion of Schur

complement of a submatrix of a matrix (Skogestad and Postlethwaite (1996, p. 499).

The second part can be established using Schur’s formula for the determinant of a

partitioned matrix (Skogestad and Postlethwaite (1996, p. 500)).

A.2 Proof of Theorem 2.1. The proof follows immediately from inequality (12)

or equivalently, the inequalities (14). The fitness given by average risk-adjusted profits

(11) is proportional to (V −1
n )00 or, equivalently, inversely proportional to σ2

n. Let β∗0

be the first bifurcation value when there are no Arrow securities. Then the system with

n Arrow securities will undergo its first bifurcation if

β

σ2
n

=
β∗0
σ2

0

, that is, if β = β∗0
σ2

n

σ2
0

def
= β∗n.
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From (14) we infer that β∗0 > β∗1 > · · · > β∗S−2. Consequently, with more Arrow

securities the primary bifurcation comes earlier.

A.3 Proof of Theorem 3.1 Choose C0 so large that for C > C0 and ε = e−βC <

e−βC0 the “rational” eigenvalue λ0 satisfies λ0(ε) > |λ1(ε)|k +δ. Then it follows from

a straightforward application of the theorem on pseudo-hyperbolic maps of Hirsch,

Pugh and Shub (1977) that all orbits of (19) diverging from the origin at a speed at

most (m1+δ)
t form a k-times continuously differentiable hypersurface in phase space,

tangent to the corresponding eigenspace. The map ψ parameterizes this surface.

A.4 Proof of Theorem 3.2 We are interested in bifurcations of system (18), as the

parameter β is varied, for large values of C. The most direct approach is to introduce

a new parameter ε = e−βC , and to study the resulting equation for small values of ε.

However, as ε not only depends on C, but also on the bifurcation parameter β, this

leads to certain technical problems.

We therefore take an idea from singularity theory and study an unfolding of equa-

tion (18), where ε is now a second free bifurcation parameter:

εx0
t+1 = Rx0

t

(
ε+

H∑
h=1

eβuht−1

)
−

H∑
h=1

eβuht−1fht.

The original system (18) is the subfamily of the new system that is obtained by re-

stricting to the curve γC(β) = (β, e−βC) in parameter space.

The assumption that β∞n is the destabilizing bifurcation value of β, and that the bifur-

cation is a codimension one bifurcation of (8), implies that there is a curve of bifurca-

tion points hn(ε) = (β̃n(ε), ε) that intersects the curve ε = 0 transversally at (β∞n , 0).

Since β∞n+1 < β∞n , there are constants ε0 > 0 and bn > 0 such that

0 < b0 < · · · < bn−1 < βn+1(ε) < bn < βn(ε) < · · · .

for all 0 ≤ ε ≤ ε0. Let C0 > 0 such that 0 < e−βC < ε0 if C > C0 and β > b0. As

the first destabilizing bifurcation value β = βC
n+1 of (18) in the presence of n Arrow
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securities is first coordinate of the intersection point of γC with hn, it follows that

βC
n+1 < bn < βC

n , as claimed.

A.5 Proof of Theorem 3.3 Recall that

uht−1 = − 1

σ2
n

(xt−1 − fht−2)
2

Introducing η = β/σ2
n and ε = e−βC , the evolution equation reads, after division by ε,

as

x0
t+1 = Rx0

t

(
1 +

1

ε

H∑
h=1

e−η(xt−1−fht−2)2

)
− 1

ε

H∑
h=1

e−η(xt−1−fht−2)2fht.

Expanding this equation around the steady state xt = 0 yields an expression of the

form

x0
t+1 = Rx0

t + δ

(
Rx0

t + a0 +
∑

`

a`xt−`

)
+ O(2), (26)

where δ = ε−1
∑H

h=1 e−η(f0
h)2 and where O(2) collects the terms of higher than first

order in the xt.

It follows from the implicit function theorem that there is a unique steady state x∗(δ),

depending smoothly on δ ∈ [0, δ0], such that x∗(0) = 0. The characteristic polynomial

of (26) has for δ = 0 one root λ = R and L+2 roots 0. If necessary by decreasing δ0 >

0, we have that for all 0 ≤ δ ≤ δ0, one characteristic root is outside the unit circle,

while the others are within.

As all f 0
h at x = 0 are bounded away from zero, the condition δ < δ0 can be satisfied

if η is sufficiently large, or, equivalently, σ2
n sufficiently small.

As before, by choosing the initial price appropriately, the dynamics are restricted to

the center-stable manifold of the steady state, which here is a purely stable manifold.

But on the stable manifold, the steady state is locally asymptotically stable.
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