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1 Introduction

Copulas have become an important tool for modeling multivariate distributions, with ap-

plications in economics and particularly finance expanding rapidly, see Cherubini et al.

(2004) and Patton (2008) for recent surveys. The main attractive property of copulas

is that they allow for modeling the marginal distributions and the dependence structure

between the variables of interest separately. Many parametric copula families are avail-

able, which share the advantage of having only a low-dimensional parameter vector, so

that generally the copula estimation problem is essentially low-dimensional. On the other

hand, popular parametric copulas such as the Gaussian, Student’s t, Clayton, and Gumbel

copulas have rather different dependence properties. An important issue in empirical ap-

plications therefore is the choice of an appropriate copula specification. Not surprisingly

then, considerable interest in goodness-of-fit testing for copulas has arisen recently. Sev-

eral different types of copula specification tests have been put forward. The alternatives

that appear most promising have in common that they reduce the evaluation of the mul-

tivariate copula to a univariate problem, and then apply some univariate test. Examples

include goodness-of-fit tests based on the probability integral transform (PIT) of Rosen-

blatt (1952) by Breymann et al. (2003), Malevergne and Sornette (2003), Fermanian

(2005), and Berg and Bakken (2007); based on the empirical copula (DeHeuvels, 1979)

and the copula distribution function by Genest and Rémillard (in press) and Genest et al.

(in press); based on the empirical copula and the CDF of the copula function by Genest

et al. (2006); and based on non-parametric distance measures by Panchenko (2005). We

refer the interested reader to Berg (2007) for a detailed review of these approaches and a

power comparison based on extensive simulation experiments.

The related problem of selecting a copula specification from two or more parametric

families has mostly been approached in an indirect way. Typically, several goodness-of-

fit tests are applied to the competing specifications, and the copula that performs best on

these statistics is selected; see Kole et al. (2007) for an empirical example. A direct

comparison of two alternative copulas has only been considered by Chen and Fan (2006)

and Patton (2006), adopting the approach based on pseudo likelihood ratio (PLR) tests
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for model selection originally developed by Vuong (1989) and Rivers and Vuong (2002).

These tests compare the candidate copula specifications in terms of their Kullback-Leibler

Information Criterion (KLIC), which measures the distance from the true (but unknown)

copula. Similar to the goodness-of-fit tests, these PLR tests are based on the in-sample fit

of competing copulas.

In this paper we approach the copula selection problem from an out-of-sample fore-

casting perspective. In particular, we extend the PLR testing approach of Chen and Fan

(2006) and Patton (2006) to compare the predictive accuracy of alternative copula speci-

fications. We adopt the framework of semiparametric copula-based multivariate dynamic

(SCOMDY) models developed in Chen and Fan (2005, 2006), which has parametric speci-

fications for the conditional mean and conditional variance together with a semiparametric

specification for the distribution of the (standardized) innovations, consisting of a (time-

invariant) parametric copula with nonparametric univariate marginal distributions.1 The

crucial difference with Chen and Fan (2006) is that our test is based on out-of-sample log-

likelihood scores obtained using copula density forecasts rather than in-sample scores.

An important motivation for considering the (relative) predictive accuracy of copulas is

that multivariate density forecasting is one of the main purposes of copula applications in

economics and finance, in particular in risk management.

Comparison of KLIC for assessing relative predictive accuracy has recently become

popular for evaluation of univariate density forecasts, see Mitchell and Hall (2005), Amisano

and Giacomini (2007) and Bao et al. (2007). Amisano and Giacomini (2007) provide an

interesting interpretation of the KLIC-based comparison in terms of scoring rules, which

are loss functions depending on the density forecast and the actually observed data. In

particular, it is shown that the difference between the log-likelihood scoring rule for two

competing density forecasts corresponds exactly to their relative KLIC values. The same

interpretation continues to hold for multivariate density forecasts as considered in this

paper.

1The set-up in Patton (2006) is similar, except that the marginal distributions need to be specified para-
metrically, while the copula can be time-varying. Our test of equal predictive accuracy of alternative copulas
can be readily extended to this context of conditional copulas.
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Our test of equal predictive accuracy is valid under general conditions, which is achieved

by adopting the framework of Giacomini and White (2006). This assumes that the un-

known model parameters are estimated on the basis of a moving window of fixed size.

The finite estimation window essentially allows us to treat competing density forecasts

based on different copula specifications, including the time-varying estimated model pa-

rameters, as two competing forecast methods. Comparing scores for forecast methods

rather than for models simplifies the resulting test procedures considerably, the reason be-

ing that parameter estimation uncertainty does not play any role as it is considered to be

part of the respective competing forecasting methods. In addition, the asymptotic distri-

bution of our test statistic in this case does not depend on whether or not the competing

copulas are nested.

We examine the size and power properties of our copula predictive accuracy test in

small samples via Monte Carlo simulations. One aspect that is of particular interest is that

we aim to compare copulas using the log-likelihood score, without assuming that the (con-

ditional) marginals are known. As a result, the copula vector cannot be observed directly,

and therefore in practice is replaced by the empirical copula. Especially for small estima-

tion windows this might affect the actual size (and power) of our test. Reassuringly, our

simulation results show that this aspect does not greatly affect the size and power prop-

erties of the copula predictive accuracy test, which generally are satisfactory in realistic

sample sizes.

We consider an empirical application to daily exchange rate returns of the Canadian

dollar, Swiss franc, Euro, British pound, and Japanese yen against the US dollar over the

period January 1980 - July 2008. Based on the relative predictive accuracy of one-step

ahead density forecasts we find that the Student’s t copula is favored over Gaussian, Gum-

bel and Clayton copulas. This suggests that these exchange rate returns are characterized

by symmetric tail dependence.

The paper is organized as follows. In Section 2 we briefly review the class of SCOMDY

models introduced by Chen and Fan (2006). We develop our predictive accuracy test for

copulas based on out-of-sample log-likelihood scores in Section 3. In Section 4 we in-

vestigate its size and power properties by means of Monte Carlo simulations. In section 5
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we illustrate our test with an application to daily exchange rate returns for several major

currencies. We summarize and conclude in Section 6.

2 SCOMDY models

We briefly review the class of SCOMDY models introduced by Chen and Fan (2006). Let

{(Y ′
t, X

′
t)} denote a vector stochastic process, in which Y t represents a d-dimensional

vector, and X t is a vector of exogenous or pre-determined variables. Furthermore, let

Ft−1 denote the sigma-field generated by {Y t−1, Y t−2, . . . ; X t, X t−1, . . .}. The class of

SCOMDY models is then specified as

Y t = µt(θ1) +
√

H t(θ)εt, (1)

where

µt(θ1) = (µ1,t(θ1), . . . , µd,t(θ1))
′ = E [Y t|Ft−1]

is a specification of the conditional mean, parameterized by a finite dimensional vector of

parameters θ1, and

H t(θ) = diag(h1,t(θ), . . . , hd,t(θ)),

where

hj,t(θ) = hj,t(θ1, θ2) = E
[
(Yj,t − µj,t(θ1))

2|Ft−1

]
, j = 1, . . . , d,

is the conditional variance of Yj,t given Ft−1, parameterized by a finite dimensional vector

of parameters θ2, where θ1 and θ2 do not have common elements. The innovations εt =

(ε1,t, . . . , εd,t)
′ are independent of Ft−1 and independent and identically distributed (i.i.d.)

with E(εj,t) = 0 and E(ε2
j,t) = 1 for j = 1, . . . , d. The joint distribution function of εt

is denoted as F (ε). We define the copula vector associated with εt as the vector whose

elements are equal to the respective marginal probability integral transforms (PITs) of εt,

that is

U t = (U1,t, . . . , Ud,t)
′ = (F1(ε1,t), . . . , Fd(εd,t))

′ ,

where Fj(·) is the marginal distribution function of εj,t, j = 1, . . . , d, which is assumed to

be continuous. It then follows from Sklar’s (1959) theorem that the distribution function
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F (ε) can be written as

F (ε) = C(F (ε1), . . . , F (εd); α) ≡ C(u1, . . . , ud; α), (2)

where C(u1, . . . , ud; α): [0, 1]d → [0, 1] is a member of a parametric family of copula

functions with finite dimensional parameter vector α. Popular copula families are the

normal or Gaussian copula, the Student’s t copula, the Gumbel copula and the Clayton

copula, see Joe (1997) and Nelsen (2006) for overviews.

Although many other examples of SCOMDY models can be given by considering

different specifications of the conditional means µj,t(θ1) and conditional variances hj,t(θ),

the following two specific cases are popular in financial applications.

Model Type 1 Multivariate i.i.d. time series with parametric copula

In the simplest case the conditional means and variances are constant over time, and we

have

Yj,t = δj + σjεj,t, for j = 1, . . . , d. (3)

In terms of the general SCOMDY specification in (1), this corresponds to µj,t(θ1) = δj

and hj,t(θ) = σ2
j , j = 1, . . . , d. The parameter vectors θ1 and θ2 in this case equal

θ1 = (δ1, . . . , δd)
′ and θ2 = (σ1, . . . , σd)

′. Note that {Y t} is an i.i.d. sequence of random

vectors, each of whose d elements can have any continuous marginal distribution function.

Moreover, if we require, without loss of generality, that σj > 0, j = 1, . . . , d, it can be

shown that the copula of Y t is the same as that of εt, that is

FY t(y1, . . . , yd) = C(FY1,t(y1), . . . , FYd,t
(yd); α).

2

Model Type 2 GARCH(1,1) model with parametric copula

It is straightforward to extend the previous example with a time-varying conditional mean

and a GARCH(1,1) structure for the conditional variance, to obtain

Yj,t = X ′
j,tδj +

√
hj,tεj,t

hj,t = κj + γj(Yj,t−1 −X ′
j,t−1δj)

2 + βjhj,t−1,
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where κj > 0, βj ≥ 0, γj > 0 and βj + γj < 1, for j = 1, . . . , d. This case corresponds

to θ1 = (δ′1, . . . , δ
′
d)
′, θ2 = (κ1, . . . , κd; β1, . . . , βd; γ1, . . . , γd)

′. 2

An important characteristic of SCOMDY models is that the univariate marginal den-

sities Fj(·), j = 1, . . . , d are not specified parametrically (up to an unknown parameter

vector) but are estimated nonparametrically. Chen and Fan (2005, 2006) suggest the fol-

lowing three-stage procedure to estimate the parameters in the SCOMDY model, based

on a sample of observations {(Y ′
t, X

′
t)}T

t=1. First, estimate the parameters θ1 and θ2 in

the conditional mean and conditional variance specifications using quasi-maximum likeli-

hood (QMLE), that is, under the assumptions of normality of the standardized innovations

εj,t. Second, estimate the marginal distributions Fj(·) by means of the empirical CDF

transformation

uj,t =
rank of ε̂j,t among the residuals ε̂j,1, . . . , ε̂j,T

T + 1
for j = 1, . . . , d.

Finally, estimate the parameters α of a given copula specification by maximizing the cor-

responding copula log-likelihood function. (Chen and Fan, 2006) study the large sample

properties of the resulting parameter estimates. The parameters θ in the conditional mean

and variance specifications as well as the marginal distributions are estimated consistently

at root-T , with T being the sample size. The estimator of the copula parameters α con-

verges to the pseudo-true value that minimizes the KLIC between the candidate copula

and the true unknown copula. The limiting distribution of this estimator is not affected by

the estimation of the parameters θ, but it does depend on the estimation of the unknown

marginal distributions Fj(·).

3 Equal predictive accuracy test for copulas

As mentioned in the introduction, the Kullback-Leibler information criterion (KLIC),

measuring the divergence between the true probability density and a candidate density,

has become a popular measure for evaluating the (relative) predictive performance of uni-

variate density forecasts. In this section we extend the KLIC-based tests of equal predic-

tive accuracy to the context of multivariate density forecasts based on SCOMDY models

with alternative parametric copulas. Recall that the (pseudo-) likelihood ratio test of Chen
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and Fan (2006) can be interpreted as a copula selection procedure based on in-sample

KLICs. As will become clear below, our test statistic is the out-of-sample analogue of

their approach.

In order to develop our test, we first make precise what we mean by copula KLIC.

Given any copula density cA(·), the copula KLIC is defined as

KLIC(cA) =

∫
[0,1]d

c(u) log

(
cA(u)

c(u)

)
du = E(log c(U t)− log cA(U t)), (4)

where c(·) denotes the true copula density corresponding with the copula defined in (2),

and the dependence of c(·) and cA(·) on parameters α and αA is suppressed for notational

convenience. In words, the copula KLIC measures the distance between a given copula

density cA(·) and the true copula density c(·). Copulas which achieve a smaller KLIC

value are preferred. In fact, a crucial observation is that by taking the difference of the

KLICs of two competing copula densities, cA and cB, say, the term E(log c(U t)) in (4)

drops out. This means that it is not necessary to know the true copula c(·) in order to test

whether two competing copulas have significantly different KLIC values.

For a given copula density cA(·), we define the copula score based on a copula vector

U t as the part of the SCOMDY log-likelihood associated with the copula specification,

that is

ScA
t = log cA(U t).

The difference between KLIC(cA) and KLIC(cB) for two competing copula densities then

is identical to the difference between their expected copula scores E(ScA
t ) and E(ScB

t ).

The preferred copula with the smallest KLIC value has the highest expected copula score.

In order to implement the KLIC-based comparison of two different parametric copu-

las cA and cB in the SCOMDY model (1), Chen and Fan (2006) obtain estimates ĉA and

ĉB based on observations {(Y ′
t, X

′
t)}T

t=1, which are used to compute a PLR test statistic

based on in-sample scores {S ĉA
t , S ĉB

t }T
t=1. Here we consider an alternative testing proce-

dure based on out-of-sample scores, constructed as follows.

Consider the case of a SCOMDY Model Type 2 specified above. Suppose, moreover,

that there are two competing parametric copula densities cA and cB, say, available. Let

ĉ0
A and ĉ0

B denote the corresponding copula pseudo parameters. The null hypothesis of
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interest is that the average copula score for one-step-ahead density forecasts based on the

two copula specifictions are the same, that is2

H0 : E(S
ĉ0A
t+1) ≡ E(log ĉ0

A(U t+1)) = E(S
ĉ0B
t+1) ≡ E(log c0

B(U t+1)).

Note that in practice neither the pseudo-parameters ĉ0
A and ĉ0

B are known exactly, nor

the actual innovations εj,t+1 and their marginals Fj , so that also U t is not known exactly.

We deal with this by estimating the pseudo parameters as well as the copula vectors in

a moving window framework for the SCOMDY model, as follows. Fix the length of the

in-sample period at R observations, and at time t use the observations Y t−R+1, . . . ,Y t

to estimate the unknown parameters. Recall that these consist of the finite dimensional

parameters θ1 and θ2 for the conditional mean and variance specifications, the nonpara-

metric (infinite dimensional) innovation marginals, and the finite dimensional copula pa-

rameters αA and αB. Let us denote the estimated copulas at time t from copula families

A and B by ĉA,t and ĉB,t, respectively, where the dependence on the size of the mov-

ing window, R, is suppressed for notational convenience. Given a point estimate θ̂t of

the parameter vector, we compute the sequence of in-sample residuals {ε̂s}t
s=t−R+1 as

ε̂j,s = (Yj,s − µj,s(θ̂1,t))/
√

hj,s(θ̂t). In addition, we obtain the one-step ahead forecast

error

ε̂j,t+1|t =
Yj,t+1 − µj,t+1(θ̂1,t)√

hj,t+1(θ̂t)
.

We define the empirical copula vector Û t+1 associated with the forecast errors ε̂t+1|t as

Û t+1 = (Û1,t+1, . . . , Ûd,t+1)
′ where

Ûj,t+1 =
rank of ε̂j,t+1|t among {ε̂j,t−R+1, . . . , ε̂j,t}

R + 1
. (5)

Let dt+1 = log ĉA,t(Ût+1)− log ĉB,t(Ût+1) denote the difference in log scores for the two

competing copulas, and assume that P observations are available for t = R, . . . , T =

2Chen and Fan (2005, 2006) test the null hypothesis that scores for a given copula are at least as high
as for a competing copula. Although it is possible to consider this hypothesis also within our framework,
we focus on the null of equal average copula scores, because this appears relevant to a symmetric treat-
ment of the competing copula families (i.e. appropriate if no benchmark model is available) and has the
additional advantage that the asymptotic distribution of the resulting test is free from nuisance parameters.
(Specifically, the null distribution is asymptotically standard normal, regardless of the actual processes and
competing copula families satisfying the null.)
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R + P . The test for equal log scores is then obtained as

QR,P =
√

P
d̄R,P

σ̂R,P

,

where d̄R,P = 1
P

∑T−1
t=R dt+1 is the sample mean of the log score difference, and σ̂R,P

is an autocovariance and heteroskedasticity consistent (HAC) estimate of the asymptotic

standard deviation of
√

P d̄R,P . The HAC-estimator used for the asymptotic variance of
√

P d̄R,P is σ̂2 = γ̂0 + 2
∑K−1

k=1 akγ̂k, where γ̂k denotes the lag-k sample covariance of the

sequence {dt+1}T−1
t=R and ak are the Bartlett weights ak = 1− k/K with K = bP−1/4c.

Taken together, although the null hypothesis H0 specified above is of our main interest,

the actual null hypothesis that we test in practice using QR,P is given by

H ′
0 : E(S

ĉA,t

t+1 ) ≡ E(log ĉA,t(Û t+1)) = E(S
ĉB,t

t+1 ) ≡ E(log ĉB,t(Û t+1)).

We have the following results for the QR,P test statistic.

Theorem 1 Under H ′
0, for an in-sample estimation window of fixed length R, suppose

(i) the score difference sequence {dt+1} = {S ĉA,t

t+1 − S
ĉB,t

t+1 } is strictly stationary and φ-

mixing with index −r/(2r − 1), r ≥ 1, or α-mixing with index −r/(r − 1), r > 1, and

(ii) E|dt+1|2(r+δ) for some r, δ > 0. Then, QR,P is asymptotically standard normally

distributed.

PROOF: This is an intermediate result in the proof of Giacomini and White’s (2006) The-

orem 1. The same mixing- and moment conditions apply. 2

This theorem demonstrates the asymptotic behaviour of the QR,P statistic. Neverthe-

less, the scores used in practice are an approximation to the true scores involving the null

hypothesis H0, which is of main interest, which may affect the small sample properties of

the test statistic. For that reason we investigate the effect of replacing the copula scores by

the empirical copula scores numerically, in the next section, by Monte Carlo simulation.

4 Monte Carlo simulation

In this section we examine the behavior of our copula predictive accuracy test in small

samples. We conduct our simulation experiments in the context of the SCOMDY model
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(1), for the bivariate case with d = 2. For brevity, we only report results for data generating

processes (DGPs) of Model Type 1 as given in Section 2, where the conditional means

and conditional variances are constant. Throughout (but without loss of generality) we set

δj = 0 and σj = 1 for j = 1, 2 in (3). The correct specifications of the conditional means

and variances are assumed to be known. Both marginal distributions of εj,t are specified

as i.i.d. standard normal.3

In the size and power experiments reported below, we limit ourselves to two popular

copulas: the Gaussian copula and the Student’s t copula. Both copulas can be obtained

using the so-called inversion method, that is

C(u1, u2, . . . , ud) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)), (6)

where F is the joint CDF and F−1
i (u) = min{x|u ≤ Fi(x)} is the (quasi)-inverse of the

corresponding marginal CDF Fi.

The Gaussian copula is obtained from (6) by taking F to be a multivariate normal

distribution with mean zero, unit variances, and correlations ρij , i, j = 1, . . . , d, and

standard normal marginals Fi. The corresponding copula density is given by

c(u;Σ) = |Σ|−1/2 exp

(
−1

2
(Φ−1(u))

′
(Σ−1 − Id)Φ

−1(u)

)
, (7)

where Id is the d-dimensional identity matrix, Σ is the correlation matrix, and Φ−1(u) =

(Φ−1(u1), . . . , Φ
−1(ud))

′ with Φ−1(·) the inverse of the standard normal CDF. In the bi-

variate case d = 2, the correlation coefficient ρ ≡ ρ12 is the only parameter of the Gaus-

sian copula.

The Student’s t copula is obtained similarly, but using a t distribution instead of the

Gaussian. The t copula density is given by

c(u;Σ, ν) = |Σ|−1/2 Γ([ν + d]/2)Γd−1(ν/2)

Γd((ν + 1)/2)

(
1 +

T−1
ν (u)′Σ−1T−1

ν (u)
ν

)−(ν+d)/2

∏d
i=1

(
1 +

(T−1
ν (ui))

2

ν

)−(ν+1)/2
, (8)

3We repeat all experiments reported in this section for DGPs involving time-varying structures in the
specification of the conditional means and variances. Specifically, we use Model Type 2 as given in Section
2 with an AR(1) model for the conditional mean and a GARCH(1,1) model for the conditional variance.
The results of these experiments are qualitatively and quantitatively similar to results reported here for the
case of constant conditional means and variances. Further details are available upon request.

10



where T−1
ν (u) = (T−1

ν (u1), . . . , T
−1
ν (ud))

′, and Tν(·) is the inverse of univariate Stu-

dent’s t CDF, Σ is the correlation matrix and ν is the number of degrees of freedom. In

the bivariate case the Student’s t copula has two parameters, the degrees of freedom ν and

the correlation coefficient ρ ≡ ρ12. Note that the Student’s t copula nests the Gaussian

copula when ν = ∞.

The major difference between the Gaussian copula and the Student’s t copula is their

ability to capture tail dependence, which may be important for financial applications. For

two random variables X and Y with CDFs FX and FY , respectively, the coefficients of

lower and upper tail dependence are given by

λl = lim
α→0

P (X ≤ F−1
X (α)|Y ≤ F−1

Y (α)) and λu = lim
α→1

P (X ≥ F−1
X (α)|Y ≥ F−1

Y (α)).

For the Gaussian copula both tail dependence coefficients are equal to zero, while for the

Student’s t copula the tail dependence is symmetric4 and positive. Specifically, the tail

dependence coefficients are given by

λl = λu = 2Tν+1

(
−
√

(ν + 1)(1− ρ)/(1 + ρ)
)

,

which is increasing in the correlation coefficient ρ and decreasing in the degrees of free-

dom ν.

We evaluate the properties of the copula predictive accuracy test for different combina-

tions of the length of the moving in-sample window R ∈ {100, 1000}, and the number of

out-of-sample evaluations P ∈ {100, 1000, 5000}. For a given window ending at time t,

the three-stage estimation procedure outlined in Section 2 is used to estimate the model pa-

rameters. That is, having estimated the parameters θ1 and θ2 using QMLE, the in-sample

copula vectors ûs, s = t − R + 1, . . . , t are obtained from the empirical CDF transfor-

mation uj,s =
Rj,s

R+1
where Rj,s is the rank of ε̂j,s among the residuals ε̂j,t−R+1, . . . , ε̂j,t, for

j = 1, . . . , d. The parameters of both the Gaussian copula and t copula then are estimated

using maximum likelihood. Finally, the empirical copula vector Û t+1 corresponding to

the one-step ahead forecast errors ε̂j,t+1|t is obtained from (5). The number of replications

in each experiment is set equal to 1000.

4In Section 5 we consider two other copulas that have asymmetric tail dependence, that is, the Clayton
copula with only lower tail dependence and the Gumbel copula with only upper tail dependence.

11



-0.04

-0.02

 0

 0.02

 0.04

 0  0.05  0.1  0.15  0.2

ac
tu

al
 s

iz
e 

- 
no

m
in

al
 s

iz
e

nominal size

P=5000,R=1000
P=1000,R=1000
P=1000,R=100
P=100,R=100

-0.04

-0.02

 0

 0.02

 0.04

 0  0.05  0.1  0.15  0.2

ac
tu

al
 s

iz
e 

- 
no

m
in

al
 s

iz
e

nominal size

P=5000,R=1000
P=1000,R=1000
P=1000,R=100
P=100,R=100

Figure 1: Size-discrepancy plots. The figure displays size-discrepancy curves, showing the dif-
ference between the actual two-sided rejection rate and the nominal size (on the vertical axis) for
varying nominal significance levels (on the horizontal axis). The thin lines indicate 95% (point-
wise) confidence bounds based on 1000 replications. The DGP is the SCOMDY model (3) with
standard normal marginal distributions and a bivariate product (independence) copula. The test of
equal predictive accuracy compares a t copula with ρ = 0.3 against a t copula with ρ = −0.3,
where ν is fixed at 5 for both copulas in the left panel and ν is estimated for both copulas in the
right panel. R denotes the number of observations R in the moving in-sample window and P
denotes the number of out-of-sample evaluations.

4.1 Size

In order to assess the size properties of the test a case is required with two competing

copulas that are both ‘equally (in)correct’. We achieve this in two different ways, which

we call ‘non-nested null’ and ‘nested null’. Under the ‘non-nested null’ the copula in the

DGP is specified as the product (or independence) copula. We then test the null hypothesis

of equal predictive accuracy of two Student’s t copulas with the correlation parameter

fixed at either ρ = 0.3 or ρ = −0.3. We consider two possibilities for the degrees of

freedom parameter: (i) ν is also fixed for both copulas and set equal to 5, and (ii) ν is

estimated at each point in time based on a moving window of length R. In either case the

two copulas considered in the test are equally distant from the true copula. By considering

these two cases we aim to investigate the effect of copula parameter estimation uncertainty

on the performance of the QR,P test statistic.

The discrepancy between the actual size (or observed rejection rate) and the nominal
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size of the test is shown on Figure 1, where the null hypothesis is tested against the two-

sided alternative that the averages scores of the two copulas are not equal. The left panel

corresponds to case (i) where the degrees of freedom parameter ν is fixed at 5, while the

right panel corresponds to case (ii) with ν being estimated. In the absence of any esti-

mation uncertainty in the copula parameters, we observe that the empirical rejection rate

is close to the nominal significance level when both the length of the moving in-sample

window and the number of out-of-sample evaluations are relatively large, that is, when

R = 1000 and P = 1000, 5000. The test is somewhat liberal and rejects the correct null

hypothesis too frequently when R = 100 and P = 100 or 1000. This dependence of the

size properties on the length of the moving in-sample window R may appear surprising at

first sight, but recall that the empirical CDF transformation is used to obtain the empirical

copula vectors, which still entails some estimation uncertainty. Adding parameter uncer-

tainty due to the estimation of the copula parameter ν results in larger deviations from the

nominal size, as shown by the right panel.

Next, we investigate the performance of the test under the ‘nested null’. The DGP in

this case is taken to be a Gaussian copula with correlation coefficient ρ = 0.7. We test

for equal performance between the Gaussian copula and the Student’s t copula.5 For both

copulas we estimate the correlation parameter ρ, while the degrees of freedom ν in the t

copula is estimated as well. The actual/nominal size discrepancy is shown on Figure 2.

Similar to the previous experiment, when the in-sample window is of reasonable length

(R = 1000), the actual size of the test is within the 95% (pointwise) confidence bounds

of the nominal significance level. For small estimation windows, R = 100, the test is

conservative and under-rejects the null hypothesis.

4.2 Power

We evaluate the power of the test of equal predictive accuracy by performing two simula-

tion experiments where one of the competing copula specifications is correct, in the sense

that it corresponds with the underlying copula DGP. Again we consider the Gaussian cop-

ula and Student’s t copula, hence, we focus on the question whether the QR,P test statistic

5Recall that the Student’s t copula nests the Gaussian copula when ν = ∞.
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Figure 2: Size-discrepancy plots. The figure displays size-discrepancy curves, showing the dif-
ference between the actual two-sided rejection rate and the nominal size (on the vertical axis) for
varying nominal significance levels (on the horizontal axis). The thin lines indicate 95% (point-
wise) confidence bounds based on 1000 replications. The DGP is the SCOMDY model (3) with
standard normal marginal distributions and a bivariate Gaussian copula with ρ = 0.7. The test of
equal predictive accuracy compares a t copula with both parameters ρ estimated, against a Gaus-
sian copula with parameter ρ estimated. R denotes the number of observations R in the moving
in-sample window and P denotes the number of out-of-sample evaluations. The graphs are based
on 1000 replications.

can distinguish between copulas with and without tail dependence.

We start with the DGP specified by a Student’s t copula with correlation coefficient

ρ = 0.7 and consider two different values of the degrees of freedom parameter, ν = 5 and

ν = 10. We test the t copula specification (with both parameters estimated) against the

Gaussian copula specification (with the correlation parameter ρ estimated). Intuitively, as

the t copula approaches the Gaussian copula as ν increases (such that the tail dependence

disappears with the coefficients λl and λu converging to zero), the higher the value of ν in

the DGP, the more difficult it is to distinguish between these two copulas.

The results are shown in Figure 3 in the form of size-power curves, showing the ob-

served rejection rate for different nominal significance levels. The left and right panels

relate to the t copulas with ν = 5 and ν = 10, respectively. Here we consider a one-sided

test, against the correct alternative hypothesis that the true copula has a higher average

score. Note that these graphs also can be used to infer the rejection rates against the incor-
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Figure 3: Size-power curves. The figure displays size-power curves, showing the rejection rate
of a one-sided test against the alternative hypothesis that the true copula has higher average score
(on the vertical axis) for varying nominal significance levels (on the horizontal axis). The DGP
is the SCOMDY model (3) with standard normal marginal distributions and a bivariate Student’s
t copula with ρ = 0.7 and ν = 5 in the left panel and ν = 10 in the right panel. The test of
equal predictive accuracy compares a t copula with both parameters ρ and ν estimated against
a Gaussian copula with parameter ρ estimated. R denotes the number of observations R in the
moving in-sample window and P denotes the number of out-of-sample evaluations. Results are
based on 1000 replications.

rect alternative hypothesis that the other copula has a higher average score. This ‘spurious

power’ at a certain nominal significance level α is equal to one minus the ‘true power’

(i.e. the rejection rate against the correct alternative) at nominal significance level 1− α.

Figure 3 shows that, as expected, the test has higher power when ν = 5, that is, when

the distance between the two copula specifications being compared is larger. The ‘true’

power of the test quickly goes to unity when P = 5000. In case R = 100 and P = 100

the power is relatively low. The size-power curves are completely above the 45 degree

line, showing that ‘spurious’ power of the QR,P test statistic is always below the nominal

significance level.

In our final experiment we consider a DGP without tail dependence by using a Gaus-

sian copula with correlation coefficient ρ = 0.7. We examine whether the test can distin-

guish between the correct Gaussian copula and a Student’s t copula with the degrees of

freedom parameter fixed at ν = 5 or ν = 10, which imposes positive tail dependence. The
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Figure 4: Size-power curves. The figure displays size-power curves, showing the rejection rate
of a one-sided test against the alternative hypothesis that the true copula has higher average score
(on the vertical axis) for varying nominal significance levels (on the horizontal axis). The DGP
is the SCOMDY model (3) with standard normal marginal distributions and a bivariate Gaussian
copula with ρ = 0.7. The test of equal predictive accuracy compares a t copula with parameter
ρ estimated and ν fixed at 5 in the left panel and at 10 in the right panel, against a Gaussian
copula with parameter ρ estimated. R denotes the number of observations R in the moving in-
sample window and P denotes the number of out-of-sample evaluations. Results are based on
1000 replications.

parameter ρ is estimated for both the Gaussian and t copulas. Figure 4 shows size-power

curves for this experiment, with ν = 5 and 10 in the left and right panels, respectively.

We observe that the power of the test is higher when ν = 5, again due to the fact that the

distance of the t copula from the true Gaussian copula is larger in this case. The power

of the test is close to one when P = 5000 even for very low significance levels. Also

for ν = 5 we observe that power is still reasonable when the moving estimation window

is small (R = 100) as long as the number of out-of-sample forecasts is reasonably large

(P = 1000). For P = 100 power declines considerably, although we still do not observe

rejection rates against the incorrect alternative exceeding the nominal significance level.

This is rather different for the comparison of the Gaussian copula with a t copula with

ν = 10 in the right panel of Figure 4. Here for R = 100 we observe substantial ‘spurious’

power, in the sense that the rejection rates against the incorrect alternative are consider-

able. Of course in this case the distance between the true and alternative copulas is not

16



large to begin with, and due to the estimation uncertainty the QR,P test statistic apparently

is misguided to such an extent that it often incorrectly selects the Student’s t copula.

From the above simulation experiments we conclude that the test of equal predictive

accuracy has good finite sample properties when the number of out-of-sample evaluations

is sufficiently large (P = 1000, 5000).

5 Empirical application

We illustrate the use of the predictive accuracy test for comparing alternative copula spec-

ifications with an empirical application. We consider daily returns on US dollar exchange

rates of the Canadian dollar (CAD), Swiss franc (CHF), euro (EUR), British pound (GBP)

and Japanese yen (JPY) over the period from January 1, 1980 until June 25, 2008 (7160

observations). Up to December 31, 1998, the euro series actually concerns the exchange

rate of the German Deutschmark, while the euro is used as of January 1, 1999. The data

are obtained from the Federal Reserve Bank of New York and concerns noon buying rates

in New York. We work with two groups of three exchange rates each, that is, GBP-CHF-

EUR, and CAD-JPY-EUR. The first, inter-European group presumably has a relatively

high level of dependence compared to the second, inter-continental group. This is con-

firmed by the unconditional correlations between the daily returns series (not shown here

to save space).

We use SCOMDY models as discussed in Section 2 to model the exchange rate returns

and their dependence. The conditional means and the conditional variances for the three

series in each group are specified by an AR(5)-GARCH(1,1) model given by

Yj,t = cj +
5∑

l=1

φj,lYj,t−l +
√

hj,tεj,t

hj,t = κj + γj

(
Yj,t−1 − cj −

5∑
l=1

φj,lYj,t−1−l

)2

+ βjhj,t−1,

where κj > 0, βj ≥ 0, γj > 0 and βj + γj < 1, for j = 1, . . . , 3. The marginal

distributions Fj(·) of the standardized innovations εj,t are specified nonparametrically.

The dependence between the marginals is captured by four alternative copula specifi-

cations, which we compare in terms of their relative performance in out-of-sample den-
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sity forecasting. In particular, we consider the Gaussian copula, the Student’s t copula,

the Clayton copula and the Gumbel copula. The Gaussian and Student’s t copula were

introduced earlier in Section 4. The Clayton and Gumbel copulas are from the family of

Archimedean copulas (see Nelsen (2006) for details) and are briefly described below.

The d-dimensional Clayton copula is given by

C(u1, u2, . . . , ud; α) =

(
d∑

i=1

u−α
i − d + 1

)−1/α

, with α > 0.

In contrast to the Gaussian and Student’s t copulas, the Clayton copula is able to capture

asymmetric tail dependence. In fact, it can only exhibit lower tail dependence, while upper

tail dependence is absent. In the bivariate case the lower tail dependence coefficient for

the Clayton copula is λl = 2−1/α, which is increasing in the parameter α. The density

function of the Clayton copula is

c(u, α) =

(
d∏

i=1

(1 + (i− 1)α)

)(
d∏

i=1

u
−(α+1)
i

)(∑
u−α

i − d + 1
)−1/α+d

.

The Gumbel copula is specified as

C(u1, u2, . . . , ud; α) = exp

−[ d∑
i=1

(− ln ui)
a

]1/α
 , with α > 1.

The Gumbel copula also exhibits asymmetric tail dependence, but in contrast to the Clay-

ton copula it only allows upper tail dependence, while lower tail dependence is absent.

In the bivariate case the upper tail dependence coefficient for the Gumbel copula is λu =

2 − 21/α, which is again increasing in the parameter α. The expression for the multivari-

ate Gumbel copula density is rather cumbersome and we do not show it here. Note that

neither the Clayton copula nor the Gumbel copula can capture negative dependence and,

thus, may not always be suitable for modeling.

We compare the one-step ahead density forecasting performance of the four copu-

las using a rolling window scheme. We estimate the SCOMDY model parameters using

the three-stage procedure described in Section 2. The length of the in-sample estima-

tion window is set to R = 2000 observations, which leaves P = 5160 observations for

out-of-sample evaluation, covering the period January 1988 - July 2008. Patton (2006)
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documents a structural break in exchange rate relationships after the introduction of the

euro on January 1, 1999. We therefore partition our evaluation period at this date into two

sub-periods, called pre-euro and post-euro, to explore the implications of the structural

break on the forecasting performance of the copula specifications. The number of obser-

vations differs slightly for the pre- and post-euro periods, being equal to P = 2772 and

P = 2388, respectively.

Table 1 reports the values of the pairwise QR,P test statistic for the full sample, as well

as the pre- and post-euro sub-periods, for the two groups of three exchange rates. In most

cases the test makes a clear judgment about the two copulas being compared, in the sense

that the null of equal predictive accuracy is generally rejected at the 1% significance level

or better. The Clayton copula shows the worst performance in comparison to any other

copula. The Gumbel copula is dominated by the Gaussian copula in all cases except for

the CAD-JPY-EUR group during the post-euro subperiod, where the equal performance

of these two copulas is not rejected at the 10% level. The Gaussian copula is, in turn,

outperformed by the Student’s t copula in all cases except for the GBP-CHF-EUR group

during the post-euro subperiod, where again there is not enough evidence to reject the null

of equal performance of these two copulas. Thus, overall we conclude that the Student’s

t copula performs best in terms of out-of-sample multivariate density forecasts. A similar

conclusion is reached by Chen and Fan (2006) based on the in-sample versions of our

tests.

To provide more insight into these results, in Figure 5 we show the rolling window

parameter estimates of the Student’s t copula for the GBP-CHF-EUR group in the left

panel and for the CAD-JPY-EUR group in the right panel. The dates on the horizontal axis

correspond with the end of the estimation window, that is, the moment these estimates

are used for constructing the density forecast. For presentation purposes the parameter

estimates are reported for every 100th day in the evaluation period. Three aspects are

worth discussing in more detail. First, the estimates of the degrees of freedom parameter

ν exhibit substantial variation over time, ranging between 6 and 18 for the CAD-JPY-EUR

group and between 4 and 10 for the GBP-CHF-EUR group. Recall that lower values of ν

indicate stronger tail dependence; this is found to be the major reason for the rejection of
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Table 1: Pair-wise tests for out-of-sample performance of
copulas

Copula A
Copula B Gumbel Student’s t Gaussian

GBP-CHF-EUR
Full sample

Clayton −8.38∗∗∗ −21.66∗∗∗ −21.50∗∗∗

Gumbel − −19.59∗∗∗ −19.71∗∗∗

Student’s t − − 2.51∗∗

Pre-euro
Clayton −7.72∗∗∗ −15.95∗∗∗ −15.67∗∗∗

Gumbel − −14.42∗∗∗ −13.91∗∗∗

Student’s t − − 3.17∗∗∗

Post-euro
Clayton −3.80∗∗∗ −16.32∗∗∗ −16.06∗∗∗

Gumbel − −14.16∗∗∗ −14.79∗∗∗

Student’s t − − 0.55
CAD-JPY-EUR

Full sample
Clayton −16.90∗∗∗ −19.89∗∗∗ −19.14∗∗∗

Gumbel − −8.11∗∗∗ −6.65∗∗∗

Student’s t − − 4.04∗∗∗

Pre-euro
Clayton −15.88∗∗∗ −18.72∗∗∗ −18.15∗∗∗

Gumbel − −7.61∗∗∗ −6.91∗∗∗

Student’s t − − 1.78∗

Post-euro
Clayton −8.76∗∗∗ −10.35∗∗∗ −9.79∗∗∗

Gumbel − −3.66∗∗∗ −1.57
Student’s t − − 4.54∗∗∗

Note: The table present values of the QR,P test statistic of
the null hypothesis of equal predictive accuracy of two al-
ternative copula specifications. Positive (Negative) values
indicate better performance of copula A (B). The asterisks
∗, ∗∗ and ∗∗∗ indicate significance at (two-sided) 10%, 5%
and 1% levels respectively. The length of the moving in-
sample estimation window is equal to R = 2000 in all
cases. The number of observations in the out-of-sample
period is equal to P = 5160 for the full sample, P = 2772
for the pre-euro period and P = 2388 for the post-euro
period.
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Figure 5: Parameter estimates of the Student’s t copula over time for the two groups of exchange
rates: GBP-CHF-EUR in the left panel and CAD-JPY-EUR in the right panel. The parameter esti-
mates are reported for every 100th day in the evaluation period. Year labels indicate the beginning
of the corresponding year.

the Gaussian copula against the t copula.

Second, the correlation estimates clearly differ among the exchange rate pairs within

each group. This suggests that the one-parameter Clayton and Gumbel copulas are not

suitable as they are not able to reflect these differences. This explains the inferior fore-

casting performance of these two copulas relative to the Gaussian and t specifications.

Third, we observe slowly changing correlations over time. There is some evidence for

a structural break due to the euro introduction on January 1, 1999. The post-euro period is

characterized by slowly increasing increasing correlations for CAD-EUR, CAD-JPY and

JPY-EUR, while they were slowly decreasing before. The same is true for the exchange

rate pairs in the other group, that is the GBP-CHF and GBP-EUR correlations also start

increasing after the introduction of the euro. The CHF-EUR correlations are close to

unity over the whole sample period, with a slight tendency to increase during the post-

euro period. This creates some challenges for the maximization procedure and results in

somewhat unstable estimates around 2006-2008. It is also more difficult to distinguish the

Gaussian copula from the Student’s t copula when the correlation is close to one. In the

limiting case of unit correlation the Gaussian copula also has tail dependence.6 All these

factors contribute to the inability of the test to reject the equal performance between the

6The correlations estimates obtained for the Gaussian copula specifications are very similar to the values
shown in Figure 5 for the Student’s t copula.
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Gaussian copula and the Student’s t during this subperiod.

6 Summary and discussion

In this paper we have introduced a new statistical test for comparing alternative parametric

copula specifications in the context of multivariate density forecasts. The test is based

on the Kullback-Leibler Information Criterion (KLIC), which is a measure of distance

of the candidate copula specifications to the true copula. Although the true copula is

unknown, score differences can be used to compare copula specifications pair-wise; the

copula with the smallest average KLIC is considered to be superior. The main difference

with other tests for competing copula families is that we use an out-of-sample measure

for the suitability of the copulas.

Following Giacomini and White (2006), the potential problem that parameter estima-

tion uncertainty might affect the distribution of test statistics is avoided by considering

this aspect as an integral part of the forecasting method. The resulting test is valid un-

der general conditions, allowing for parameter estimation uncertainty and for comparing

either nested or non-nested copula families.

In practice, the test would be used to compare two competing copula families by test-

ing for equal average scores against the two-sided alternative that one of the families

receives a higher average score. However, to distinguish between true power and spurious

power (rejections of the null hypothesis in favor of the wrong copula family) we presented

Monte Carlo simulation results in the form of one-sided size-power plots. The Monte

Carlo results suggest that the proposed test has satisfactory size and power properties in

finite samples. Spurious power is observed, but only in cases of very small estimation

windows and alternative copula specifications that are not very different from each other

in terms of their dependence properties.

In an application to daily exchange rate returns of several major currencies against the

US dollar we found that the Student’s t copula is clearly favored over Gaussian, Gumbel

and Clayton specifications. This suggests that these exchange rate returns are character-

ized by symmetric tail dependence.
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non paramétrique d’indépendance. Académie Royale de Belgique. Bulletin de la Classe

de Sciences, 5ème Serie 65, 274–292.

Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate

Analysis, 95, 119–152.

Genest, C., Quessy, J.-F. and Rémillard, B. (2006). Goodness-of-fit procedures for cop-

ula models based on the probability integral transformation. Scandinavian Journal of

Statistics, 33, 337–366.

23



Genest, C. and Rémillard, B. (in press). Validity of the parametric bootstrap for goodness-

of-fit testing in semiparametric models. Annales de l´Institut Henri Poincaré - Proba-
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Sklar, A. (1959). Fonction de répartitions à n dimensions et leurs marges. Publications

de l’Institut Statistique de l’Université de Paris, 8, 229–231.
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