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Abstract

This paper demonstrates how both quantitative and qualitative results of a general,
analytically tractable asset-pricing model in which heterogeneous agents behave consis-
tently with a constant relative risk aversion assumption can be applied to the special
cases of optimizing behavior.

The analysis of the asymptotic properties of the market is performed using a ge-
ometric approach which allows the visualization of all possible equilibria by means of
a simple one-dimensional Equilibrium Market Curve. The case of linear (particularly,
mean-variance) investment functions is thoroughly analyzed. This analysis highlights
the features which are specific to the linear investment functions. As a consequence,
some previous contributions of the agent-based literature are generalized.
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1 Introduction

In recent years a number of theoretical models exploring the consequences of heterogeneity of
traders for the aggregate price dynamics of a speculative financial market have been developed.
Among many examples, let us mention the models of Day and Huang (1990), DeLong, Shleifer,
Summers, and Waldmann (1991), Chiarella (1992), Lux (1995), Brock and Hommes (1998)
and Chiarella and He (2001). These and other “Heterogeneous Agent Models” (HAMs) have
been recently reviewed in Hommes (2006). Within the “agent-based” literature, HAMs can
be seen as an important branch of studies supplementary to the numerous simulation models.
Indeed, one of the problems with the simulation approach is that the systematic analysis of
such models is made practically impossible by the enormous number of degrees of freedom. It
is usually not clear which assumptions are responsible for generated patterns and, as a result,
robustness of the models is difficult to investigate. HAMs have appeared as a response to this
problem and, consequently, are built in such a way to make analytic investigation possible.
It is not surprising, therefore, that heterogeneous agent models usually incorporate only few
types of agents which differ in the ways they predict the future price but are homogeneous in
all other respects, i.e. in the functional form of demand, available information, etc.

Even if the analytic models have already answered a lot of theoretical questions concerning
the consequences of behavioral heterogeneity for market dynamics, they suffer some important
drawbacks. First, most of the contributions are built inside the constant absolute risk aver-
sion (CARA) framework, that is under the assumption that demand is independent of wealth.
This leads to simplification in the analysis, because otherwise the wealth of each individual
portfolio along the evolution of the economy would have to be taken into account. However,
this assumption is rather unrealistic if compared with other possible behavioral specification,
e.g. with constant relative risk aversion (CRRA), see Levy, Levy, and Solomon (2000) or
Campbell and Viceira (2002) for a discussion. Second, the majority of the models consider
only few types (or classes) of behavior, thus substantially reducing the realistic level of het-
erogeneity!. Third, the tests for the robustness of the results with respect to the change of
simple behavioral assumptions are very difficult to perform inside such models. For example,
in order to understand the consequences of the entry of an agent with a new type of behavior
in the market, one has to analyze a completely new model from scratch. Summarizing, one
can say that at this moment HAMs lack a general framework, flexible enough to incorporate
different realistic agents’ specifications.

An important step in the direction of a general framework has been made in Anufriev,
Bottazzi, and Pancotto (2006) and Anufriev and Bottazzi (2006), where some analytic results
are obtained for a market populated by an arbitrarily large number of technical traders whose
possible demand functions belong to a relatively large set. The only imposed restriction
on the individual demand functions is that they have to be proportional to current wealth.
This requirement is consistent with the constant relative risk aversion (CRRA) framework.
Consequently, the price and agents’ wealth are determined at the same time and both price
and wealth dynamics are intertwined. To model the agents’ behavior, Anufriev and Bottazzi
(2006) introduce deterministic investment functions which map the past history of returns
into the fraction of wealth which is invested in the risky security. These investment functions

!For instance, DeLong, Shleifer, Summers, and Waldmann (1991) consider two types of investors, the model
of Day and Huang (1990) is populated by three types of traders, while Brock and Hommes (1998) provide
a number of examples with two, three and four different types. One recent exception from this rule is the
model of Brock, Hommes, and Wagener (2005) where the low-dimensional Large Type Limit with the number
of types converging to infinity is introduced.



are left unspecified, so that the obtained results are very general.

The purpose of the current paper is to provide an illustration of how this general, analyti-
cally tractable agent-based model can be applied to important particular classes of investment
behavior. Our main interest is focused on the functions which can be derived from the opti-
mization principle and, therefore, can be considered as “rational”. According to conventional
economic wisdom such optimizing behavior is a characteristic of the majority of the agents in
financial markets, and therefore corresponding investment functions deserve a special analysis.
We consider the investment functions derived from two types of rational choice procedures,
expected utility (EU) maximization and mean-variance utility (MVU) maximization.

It is a well-known problem of the EU maximization framework with CRRA-traders that
the resulting demand functions cannot be computed explicitly. In order to overcome this
obstacle a geometric tool called “Equilibrium Market Curve” will be used. It allows one to
characterize both the location of all possible equilibria and (partially) the conditions of their
stability independent of the specification of the traders’ demands. In this way we obtain some
predictions of equilibrium dynamics with EU maximizers even without explicit knowledge
about their investment functions.

In contrast to the EU framework, the solution of the MVU optimization problem can be
derived explicitly. The resulting demand depends on the agent’s expectations about mean
and variance of the return for the next period. It turns out that for some large class of these
expectations, the investment functions become “linear” in the sense which will be clarified
later. Since different types of expectations can still lead to different investment functions, we
keep the discussion as general as possible and investigate the dynamics in the market with
“linear” investment functions. In particular, we demonstrate that the phenomenon of multiple
stable equilibria cannot emerge in such market. This can be a limitation of the “rational”
framework with respect to the general case.

The analysis of the linear investment functions brings us to another goal of this paper.
We show that one of the first analytical models developed in CRRA framework, namely the
model of Chiarella and He (2001), can be easily understood and generalized, when considered
inside the general framework of Anufriev and Bottazzi (2006). As a direct consequence, we can
discuss the validity and limits of the “quasi-optimal selection principle” originally formulated
by Chiarella and He. We show that this principle is a consequence of particular market
behaviors and it does not hold in general.

The rest of the paper is organized as follows. In the next Section a stochastic model of a
speculative market is introduced. In Section 3 the steady states of its deterministic part are
derived and characterized geometrically. The immediate applications for two special cases of
investment behavior are discussed. In Section 4 the question of stability of the steady states is
addressed with discussion of consequences for two special cases. The model of Chiarella and
He is reconsidered in Section 5 and some final remarks are given in Section 6.

2 A dynamic model for asset price and agents’ wealth

In this Section we present the general analytic model of a market in which the individual
demand functions for the risky asset are proportional to the agents’ wealth.



2.1 (General setup

Consider a simple pure exchange economy, populated by a fixed number N of traders, where
trading activities take place in discrete time. The economy is composed of a riskless asset
yielding in each period a constant interest rate ry > 0 and a risky asset paying a random
dividend D, at the beginning of each period ¢. The riskless asset is considered to be the
numéraire of the economy and its price is fixed to 1. The ex-dividend price P; of the risky
asset is determined at each period through a market-clearing condition, where the outside
supply of the asset is constant and normalized to 1.

Let x,, stand for the fraction of the wealth W}, which, at time ¢, agent n (n € {1,..., N})
invests in the risky asset. The evolution of the economy is described by the system containing
the individual wealth dynamics and the market-clearing condition:
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Assume that the individual demand for the risky asset is proportional to the current wealth,
so that z;, is independent of W;,. Price and wealth are determined simultaneously in this
case. Hence, one has to solve the system (2.1) in order to obtain the evolution of P, and W;,,
in explicit form.

Introduce the price return ry 1 = Py /P — 1, the dividend yield y41 = Dyy1/P;, and
the wealth share of agent n in the total wealth ¢, = Wy ,,/ > W, . With a bit of algebra
one can show that under suitable conditions? the implicit dynamics (2.1) is equivalent to the
following system of the return and wealth shares
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Notice that the dynamics in (2.2) and (2.3) do not depend on the price level directly, but,
instead, are defined in terms of price return and dividend yield. In compliance with intuition,
in the CRRA framework, where agents’ demands are growing with their wealth, the equilibria
can be identified as states of steady expansion (or contraction) of the economy.

Concerning the stochastic (due to random dividend payment D;) yield process {y:} we
make the following

Assumption 1. The dividend yields y; are i.i.d. random variables obtained from a com-
mon distribution with positive support and mean value 3 € (0, 1).

This assumption is common to a number of studies in the literature, see e.g. Chiarella
and He (2001, 2002); Anufriev, Bottazzi, and Pancotto (2006), and also roughly consistent
with the real data. We assume that the structure of the yield process is known to everybody.
Consequently, the information set available to traders at round ¢ reduces to the sequence of
past realized returns J,_y = {ry_1,7_2,... }.

2These are the conditions to guarantee that price is positive. See Anufriev, Bottazzi, and Pancotto (2006).



2.2 Behavior of traders
To close the dynamical system (2.2) and (2.3) we only need to specify the set of investment

shares {z;,}. Let us, first, discuss a number of possibilities how to do it.

Maximization of Mean-Variance Utility. One way to derive the investment choice from
the standard economic framework is to consider the mean-variance (MV) problem
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The wealth evolution of an agent is given by Wiy = (1 4+ rp)Wy + 2, W, (req + Y1 — 75)
and depends on the unknown at time ¢ total return r;11 + y;+1. Thus, an agent has to form
expectations E;_1[W;11] and V;_1[W; ] about the first two moments of his future wealth on
the basis of the information set J;_; available before period ¢.

In contrast to the standard MV framework, the coefficient measuring the sensitivity of the
agent’s utility to the risk decreases with wealth in (2.4). Therefore, the risk aversion is not
constant but decreasing function of wealth. This is consistent with experimental studies, see
e.g. Kroll, Levy, and Rapoport (1988).

A simple computation shows that the solution of (2.4) is given by

_ 1 Ei1[res1 + Y1 — 1y]
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and does not depend on the current wealth. E,_q[ri 1+ y1 —7rf| and Vi_q[riyq + yeya] stand
for the agent’s expectations about the excess return and variance, respectively.

Alternatively, one can get (2.5) as a solution of the MV problem written in terms of the
agents’ return ppq = 15 + 2 (res1 + Y1 — ry). Maximization of E,_[pii1] — B Vi1[pi11]/2
instead of (2.4) stresses another empirical finding that agents are concerned about the relative
change of wealth and not about the level of their final wealth (see Kahneman and Tversky
(1979)).

Maximization of Expected Utility. More sophisticated way to derive the demand is to
maximize an expected utility (EU). Consider the power utility function of wealth

Wi —1

UW;y) = T

, where v > 0. (2.6)
It is straight-forward to see that the solution x; = argmax E[U(W,41;7)] is independent of the
agent’s wealth ;. On the other hand, this solution depends on the agent’s perception of the
distribution of the total return r.11 + y;11. Unfortunately, an explicit functional form of this
solution cannot be derived for all reasonable distributions.

Another possibility is to consider the EU maximization problem with exponential utility
function U(py41; 8) = — exp(—/Fpiy1/2) of the agents’ return p;1 1. One can show that if agents
perceive normal distribution of the total asset return with expected value E;_1[r; 1+ y:11] and

variance Vy_1[ry11 + v141], then the solution of the corresponding EU maximization coincides
with (2.5).



Generalization: Investment Function. Let us compare these examples of the agents’
behavior. In all the cases discussed above the optimal share of the wealth invested in the risky
asset is independent of the contemporaneous variables, current wealth and current price.

In some cases this share x; is given explicitly by (2.5) and depends on the agent’s beliefs
about expected excess return and its variance. These beliefs, in turn, are based either upon
the commonly available distribution of the dividend yield, or upon the previous return history,
or both. Essentially, the share z; is evolving as a function of previous information.

For the EU maximization with power utility the optimal share zj is unknown in explicit
form. But if the agent perceives some distribution (e.g. log-normal) for the return r41 + yei1,
he will have to update the parameters of this distribution on the basis of past information.
Ultimately, the optimal share is again some function of the information set.

This similarity between different examples suggests the following assumption.

Assumption 2. For each agent n there exists a finite memory time span L (which, with-
out loss of generality, can be assumed to be the same for all the agents), and differentiable
wnvestment function f, which maps the present information set consisting of the past L avail-
able returns into his investment share:

T = fn(rtfla SR 7701‘/7[/) . (27)

The function f,, on the right-hand side of (2.7) gives a complete description of the in-
vestment decision of agent n. The knowledge about the fundamental dividend process is not
included into the information set but is embedded in the function f,, itself.

Assumption 1 and equations (2.2), (2.3) and (2.7) define a stochastic dynamical system.
To get insight into the dynamics of the system we will follow the strategy common in this type
of literature (see e.g. Brock and Hommes (1998); Chiarella and He (2001); Chiarella, Dieci,
and Gardini (2006)) and substitute the realization of the yield process by its mean value 3.
The corresponding deterministic system reads
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Before proceeding further let us establish the relation of the model presented so far with some
previous contributions. Assumption 2 makes our framework relatively rich in terms of possible
agents’ behaviors. It includes the entire model of Chiarella and He (2001), where the agents’
investment shares are given by (2.5). As another special case the model includes the behaviors
considered in the simulation models of Levy, Persky, and Solomon (1996) and Zschischang and
Lux (2001), where agents maximize the expected power utility. The model also generalizes
the contribution of Anufriev, Bottazzi, and Pancotto (2006), where the agents’ demands are
given as arbitrary functions of the exponentially weighted moving averages of past returns.

At the same time, some standard approaches to the modeling of the agents’ behaviors are
not consistent with Assumption 2. For instance, in the models of Brock and Hommes (1998),
LeBaron, Arthur, and Palmer (1999) and Brock, Hommes, and Wagener (2005) the agents have
constant absolute risk aversion demand functions, where z;,, depends on the contemporaneous
wealth W, ,,.



3 Equilibria in the deterministic skeleton

Below we characterize the fixed points of system (2.8), first, for the general investment func-
tions and then for the special cases. The next Section is devoted to the stability analysis of
the steady-states. These steps allow us to get insight in the long-run behavior of system (2.8).

3.1 General result and the Equilibrium Market Curve

A fixed point of the skeleton is composed of the price return r*, the equilibrium investment
shares of all the agents x7, and the relative wealth shares of the agents ¢}. The agents with
! # 0 are called survivors.

Two observations help to characterize the fixed points of the multi-dimensional system
(2.8). First, the last equation in (2.8) gives the evolution of the agent’s relative wealth. Similar
to the replicator dynamics known from the evolutionary biology, it provides the selection
mechanism. If an agent gets return higher (lower) than the average return, his relative wealth
grows (declines). Due to such selection, in the fixed-point all survivors must have the same
return. The return of agent n is equal to ry + « (7" + § — 1), so the investment shares of
all survivors must be also the same. The only exceptions are the equilibria with r* + 4 = ry
where both assets are equivalent in terms of return, and all the agents earn the same return
independent of their investment shares. In such equilibria the wealth shares of all the agents
are constant over time.

Second, the equilibrium return and investment shares are interrelated through the first
two equations of (2.8). These equations provide, in a sense, consistency conditions between
the agents’ behavior and the aggregate dynamics. They are considerably simplified in the
fixed point due to the constant return history and consequences of the wealth evolution as
discussed in the previous paragraph. Going through some simple algebra one obtains the
following result.

Proposition 3.1. Let x* be a fized point of the system (2.8). Then
= falr*, ... ,r") Vne{l,...,N}, (3.1)
and the following two cases are possible:
(i) Equity premium (EP) equilibria. In x* there are k survivors (1 < k < N ) investing

the same share x7,,. The wealth shares of survivors are arbitrary numbers summing to
1, while the remaining agents have zero wealth shares.

The equilibrium return r* satisfies

T* — Tf + g ajlok ] (32)

(i1) No equity premium (NEP) equilibria. In x* the equilibrium return r* =ry — 7.
The investment and wealth shares of the agents satisfy

N N
Z z, or =0 and Z oy =1. (3.3)
n=1 n=1



Proposition 3.1 shows that two types of equilibria are possible. If two assets give the same
return, there is no equity premium of the risky asset. The selection mechanism does not
work, but the consistency conditions imply the constraint (3.3). In all other equilibria there
is an equity premium, positive or negative. Our main focus will be on such “equity premium”
equilibria. To give them a geometric representation we introduce a special geometric locus.?

Definition 1. The Equilibrium Market Curve (EMC) is the function [(r) defined as

r—r
/ for r>—1.

l(r) =

_7“+:lj—7“f’

Equation (3.2) can now be written as zj,, = [(r*). Combined with (3.1) it means that
the equilibrium return, r*, and the equilibrium investment share of survivors, z7,, are simul-
taneously determined in an intersection point of two curves. One curve is the EMC [(r) and
the second curve is f(r,...,r), i.e. the restriction of the investment function on the diagonal
hyperplane r,_1; = - -+ = r;_;. With some abuse of language we will call such restriction simply
“investment function”. The restriction r > —1 in Definition 1 is necessary to guarantee the
positiveness of price. In the latter case we call the equilibrium feasible.

In Fig. 1 the hyperbolic EMC is shown together with 3 investment functions* marked as
I, IT and III. All four intersections with the EMC represent the equilibria in such market
with 3 agents. Consider, first, point Us. The agent II with the linear investment function
is the only survivor. The abscissa of U, gives the equilibrium return, the ordinate gives the
investment share of the survivor. The investment shares of two other agents are the values
of their investment functions for the equilibrium return (see the arrows and equation (3.1)).
Analogously, in equilibrium U; agent I is the only survivor and equilibrium return is the
highest possible for such market. In Sy agent II is the survivor and the return is the smallest
possible. Finally, consider equilibrium S;. Since two investment functions intersect the EMC
at the same point, there are two survivors here. Agent II, who does not survive, has ¢} = 0.
But the only restriction on the two other wealth shares is ¢} + ¢35 = 1. Therefore, a single
point Sy represents, strictly speaking, infinitely many equilibria of the system (2.8).

A reader may suspect that the latter situation with coexistence of different agents in
the EP equilibrium is exceptional, since the only way for this to occur is that two or more
investment functions intersect the EMC at the same point. Remember, however, that functions
which we see on the plot are the one-dimensional symmetrizations of the investment functions.
Imagine a situation where the agents have the same demand function which depends on the
expected return. Agents take an average of past L returns as predictor and have different
memory spans. Since in the equilibrium the span does not matter, the investment functions
of different agents will have the same symmetrization. In the plot with the EMC they will
be indistinguishable and any intersection with the EMC will define infinitely many equilibria
with arbitrary division of wealth between agents. On the other hand, these equilibria generate
the same price dynamics since the return is the same in all of them.

To summarize, we investigated the questions of existence and location for the fixed points
of deterministic system (2.8). It is no surprise that with general specification of the invest-
ment function we do not get a definite answer. However, we showed that all possible fixed

3Introduced in Anufriev, Bottazzi, and Pancotto (2006) in a slightly different notation, this curve was first
called the “Equilibrium Market Line”.

4The illustration corresponds to the case when rp < g. This is consistent with the real data collected by
Robert Shiller and available on http://www.econ.yale.edu/ shiller/data.htm. For the period from 1871
till 2005 the average real one-year interest rate was 0.029 and the average dividend yield was 0.044.
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Figure 1: The intersections of the EMC and different investment functions illustrate the equilibria
of system (2.8). Each of points S, U; and Us define one equilibrium with one survivor. Point Sy,
instead, defines infinitely many equilibria with two survivors.

points belong to the one-dimensional Equilibrium Market Curve whose shape is completely
determined by the exogenous parameters of the system. Now we restrict the generality of
investment functions and use the EMC for such special cases.

3.2 Equilibria for linear investment functions

Assume that the restriction of the investment function f to the subspace r,_1 = --- = ry_
is linear function. The corresponding symmetrization will be simply called “linear invest-
ment function”. The linear function is special but not peculiar case. Consider, for instance,
investment share (2.5) derived from the MV optimization. An agent knows that mean and
variance of the yield are constant. If he estimates the first two moments of the return as sam-
ple moments on the basis of the past L observations, his investment function will obviously
be linear.

Let us now apply the equilibrium analysis of Section 3.1 for such linear functions. We
consider only the equilibria with equity premium. In this case from Proposition 3.1 it is clear
that the properties of all multi-agent equilibria can be easily understood by studying the single
agent case. The geometric plot of the EMC clearly suggests that there can exist at most two
equilibria for any linear investment function.

To formalize this, introduce the following parameterization of the investment function:

f(r,...,r):(A+1)+B(T+?j—rf), (3.4)

where B is the slope of the function, and A + 1 is an intersection with the vertical asymptote
of the EMC. This parameterization is illustrated in the left panel of Fig. 2.
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Figure 2: Left Panel: Examples of the linear investment functions (3.4) for different parameter
pairs (A, B). Right Panel: Equilibria for constant investment functions.

The following statement describes all the equilibrium possibilities for the market with one
linear investment function.

Proposition 3.2. Consider equilibria of the market with single agent possessing the invest-
ment function with linear symmetrization (3.4). Then the following two cases are possible:

(i) Constant function: B = 0. For A =0 there are no equilibria. If A # 0 there exists
one equilibrium with return

rt=rp—

-7, (3.5)

o[

which is feasible, i.e. generates positive price, when A < 0 and when A > Ap = 1++;717

(ii)) Non-constant function: B # 0.

Consider D = A? — 4By. Then if D < 0, then there are no equilibria. Otherwise, when
D >0, there are two equilibria (coinciding when D = 0) with the following returns:

—A—\/A2—4Bg__ —AJH/A2—4113§_37 (3.6)
2B '

2B y?

=T+ ry =Tp+

The equilibrium is feasible if the return exceeds —1.

Proof. See appendix A. n

This Proposition provides all possible equilibrium values of the return for different linear
investment functions (3.4). When B = 0 the agent’s investment does not depend on the
past information and his function represents the horizontal line as shown in the right panel
of Fig. 2. For A positive the unique equilibrium belongs to the left branch of the EMC and
generates negative equity premium. This equilibrium is feasible only if A > Ap, otherwise the
prices are negative. For A negative the equilibrium belongs to the right branch of the EMC,
so that there is a positive equity premium.

When B # 0 one can distinguish between two cases (see the left panel of Fig. 2). If
the investment function is decreasing, so that B < 0, it is always the case that D > 0

10
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Figure 3: Equilibria r] and r3 computed in Proposition 3.2 as functions of the slope B of the linear
investment function for A = —0.6 (left panel), and their movement as a result of the rotation of the
investment function on the EMC plot (right panel).

and, therefore, two equilibria exist. From (3.6) it follows that equilibrium r] belongs to the
left branch of the EMC, while equilibrium 73 belongs to the right branch of the EMC. In the
opposite case, when B > 0, the investment function increases and can have 0, 1 or 2 equilibria.
In the latter situation, r{ < 75 and both equilibria belong to the left (right) branch of the
EMC when A >0 (A < 0).

Notice how easily one can make comparative statics exercises with the aid of such plots.
For example, let us fix A and change the slope B of the investment function. In the left panel
of Fig. 3 we draw the equilibria derived in Proposition 3.2 for A = —0.6 as functions of B.
But these plots are obvious even without computations if one uses the EMC! Indeed, look at
the right panel of the same figure. Start with vertical investment function and rotate it in the
counter clockwise direction, so that B increases from —oo. First, there exist two equilibria
with returns close to 7y — 7. In one of them the equity premium is positive and the return
increases. In the second equilibrium the equity premium is negative, the return decreases and
becomes equal to —1 at some value B = Bp. This equilibrium is not feasible for B > Bp.
Increase B further until zero value. Now the investment function is horizontal with unique
equilibrium. Further rotation leads to the emergence of the second equilibrium in the right
branch of the EMC. The return in this equilibrium decreases. Finally, at some value B = By
the investment function is tangent to the EMC and two equilibria coincide. For larger B there
are no equilibria.

In Fig. 4 the stratification of the parameter space (A, B) according to the number of
different equilibria is shown. For the parameter pairs from the white area there are no feasible
equilibria, for those pairs which belong to the light grey area only one such equilibrium exist,
and, finally, if parameters belong to the dark grey area there exist two different equilibria.
Three loci are important for the stratification of the parameter space. They are shown by the
thick curves and divide the space on seven different regions marked by the Roman numerals.
The first locus is a horizontal straight line corresponding to B = 0. In this case the investment
function is horizontal and there exist one equilibrium. Any change of B leads to the appearance
of the second equilibrium which can be with negative prices (unfeasible), though. The curve
with parabolic shape contains the points with A% = 4B7, i.e. those parameters for which the
equilibrium is unique due to the tangency between the EMC and the investment function

11
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Figure 4: Stratification of the parameter space (A4, B) according to the number of feasible equilibria.
The dark grey (light grey, white) area represents the parameters for which there are two (one, zero)
equilibria. See the text for the explanation of the regions marked by Roman numerals. Two specific
examples illustrated in Fig. 3 and Fig. 5 correspond to the movement along the directions shown by
the arrows.

(3.4), like in Fig. 3 for B = By. Thus, this parabola separates the parameters for which there
are no equilibria (region V) from those for which two equilibria exist. This locus is called
“tangency curve”. Finally, the third locus corresponds to the parameter pairs for which linear
investment function passes through point F' of the upper-left branch of the EMC, like in Fig. 3
for B = Bp. These pairs lie on the increasing line A = g/(1+ry —y) — B(1 +ry — y). With
the crossing of this locus, which we call “feasibility curve”, one feasible equilibrium is lost.? If
B < 0, the equilibrium on the upper-left branch of the EMC disappears with decrease of A,
so that two regions I and II are determined. If B > 0 and A < 0 then, as we mentioned above,
both equilibria (if exist) belong to the lower-right branch of the EMC and both are feasible,
so that area VII is determined. Finally, if both A and B are positive, let us denote as (A*, B*)
the parameter pair defining the investment function which passes through F' and, at the same
time, is tangent to the EMC. In region III only the equilibrium with the smallest return 7 is
feasible. When A decreases there are two possible options: either r} also becomes infeasible
or ry becomes feasible. From the EMC plot it is easy to see that the first case happens for
B < B*, i.e. when at point F' the investment function is flatter than the tangency line. In
this case from region III we move to region VI. The second case happens when B > B* and
we move from region III to IV.

An example of linear investment function. Following Chiarella and He (2001), let us
consider an agent with constant relative risk aversion (§ whose investment share is given by

5At this point the reader is highly encouraged to follow the discussion drawing the different possible mutual
locations of the linear investment function and the EMC.
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(2.5). Assume that his expectations are as follows
Et—l[rt—i-l + yt—i—l] =Ty + ) + dmt s (37)
Vioi[rem + v = o’ (1 +o(1—(1+ Ut)_g)) ) (3.8)

where m,; and v; denote the sample estimates of the average return and its variance computed
as equally weighted averages of the previous L observations

L
1
L2 ("ot + Ye—r) and v=7 ;(Tt—k; + Y — my)?

Mh

The expression for the variance is justified in Franke and Sethi (1998), however, this choice
and, in particular, positive parameters b and & turn out to be irrelevant for the equilibrium
analysis. The specification of the expected conditional return (3.7) is important, however.
It is defined as the risk-free rate ry plus the excess return. The latter is composed of a
constant component representing a risk premium, ¢ > 0, and a variable component, d m;. The
parameter d represents the way in which agents react to variations in the history of realized
returns and can be used to distinguish between different classes of investors. A trader with
d = 0 will ignore past realized returns and, consequently, can be thought as a fundamentalist.
If d > 0 the agent can be considered a trend follower, if d < 0 he can be considered a contrarian.
Direct substitutions of (3.7) and (3.8) into (2.5) gives the investment function
0 +dm , with 6 =—— 0 , d= d (3.9)
L+b(1—(1+v)7%) Go? Bo?
In the equilibrium of the deterministic skeleton m; = ¢y + r* and v; = 0. Therefore, we are
dealing with linear symmetrization

f () =8+d(y+r). (3.10)

fCH (Tt—h S 77”t—L) =

Let us fix the risk premium ¢ together with the risk-free rate r; and analyse the equilib-
ria for d varying. The cumbersome computations result in Proposition 3.1 and Figure 1 in
Chiarella and He (2001). One can immediately reproduce these results looking at the EMC
plot. Indeed, the linear function (3.10) in this case passes through the point M = (—g,0),
which does not depend on d. The slope of this function is d and so the change of the ex-
trapolation parameter translates to the rotation of the line around point M. Three typical
situations are presented in the right panel of Fig. 5. The horizontal investment function corre-
sponds to d = 0, i.e. to the fundamentalist type of behavior. Analogously, any trend-follower
possesses an increasing investment function, while the chartist’s function is decreasing. The
rotation argument immediately explains the left panel of Fig. 5 which is essentially Figure
1 from Chiarella and He (2001). The meaning of points dg, d;, and dy becomes clear. The
former point corresponds to the investment function of contrarian passing through point F' of
the EMC, while two latter points correspond to the tangency between the investment function
and the EMC.

It is also useful to represent the family of functions (3.9) on the stratification diagram.
Since function (3.10) in representation (3.4) has coefficients A = §+dr; —1 and BYH = d,
all couples (A BEH) lie on the straight line with positive slope marked by the corresponding
arrow in Fig. 4. The movement along the line corresponds to the change in the extrapolation
parameter d. Notice that the line intersects regions I, II, VII, V and (ultimately) IV, which is
consistent with Fig. 5.
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Figure 5: Example of linear investment functions: the case of homogeneous agents in the model of
Chiarella and He (2001). Left panel: Equilibria as function of extrapolation parameter d. (Cf. Fig-
ure 1 from the original paper.) Right panel: Investment functions for the contrarian, fundamentalist
and trend-follower.

3.3 Equilibria for the EU maximizers

In the previous Section the EMC plot was effectively used to study the effects of change of
different parameters of the demand functions. The real advantage of our geometric approach,
however, can be seen in the situations when the demand function is not known explicitly. One
such case arises when agents perceive any non-trivial distribution of the future wealth and
maximize the EU with power function (2.6).

The way to resolve the problem is to derive some approximation of the solution. There
are some issues with this approach. First, different approximations are possible. For instance,
Chiarella and He (2001) use the continuous-time approximation and get the mean-variance
share (2.5) with the risk aversion coefficient y. Campbell and Viceira (2002) derive another
continuous-time approximation (formula (2.25) on p. 29) which differs from (2.5) on the con-
stant term. Second, even if an approximation is precise in the limit when the time unit
converges to zero, the error of the approximation for actual time scale can be large. Usually
no estimation of the error incurred due to approximation is provided, and so the reliability
of such an approach is under the question. Third, it may happen that the additional specific
assumptions imposed on the return distribution (necessary to derive the approximation) are
in contradiction with the realized dynamics. In this case the approximation is not justified
anymore.

To overcome the problems with approximation let us, first, derive some properties of the
actual solution. The EU maximization problem with power utility (2.6) leads to an investment
function which depends on the risk aversion coefficient v and on the agent’s belief about the
distribution of future excess return ziy1 = 741 + Y141 — ry. Let us denote this perceived
distribution as ¢(z), the expected value of the excess return as z, and the corresponding
investment function as f#F (v, g(z)). Then the following applies

Proposition 3.3. Let ffp stand for the partial derivative of the investment function fEF
with respect to the risk aversion coefficient .

>
If z=0, then fEPEO and ffpéo.

Proof. See appendix B. Il
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This Proposition together with the general results of Section 3.1 allows us to discuss some
of the equilibrium properties of the market with the EU maximizers even without complete
knowledge of their investment functions. For instance, it is immediately clear that such market
cannot be in equilibrium with r* + ¢ < ry. Such equilibria lie in the left branch of the EMC
where the agents have positive investment shares. Therefore, they have to expect positive
excess return which is inconsistent with the realized return.

Furthermore, Proposition 3.3 implies that, independently of the agent’s perceived distri-
bution of the return, an increase in the risk aversion will result in a downward movement of
those parts of the investment functions which lie above the horizontal axes and in an upward
movement of those parts which are below the axes. It opens the way for the comparative
statics. Assume that the market populated by the EU maximizers is in equilibrium. As it
was shown above these equilibria lie in the right branch of the EMC. If the agents expect
positive (negative) excess return z, then according to Proposition 3.3 they have to have a pos-
itive (negative) investment share and an increase in their risk aversion leads to some shift of
the investment function down (up). Looking at the EMC one concludes that the equilibrium
return r* will decrease (increase).

4 Stability analysis

The EMC can help with the comparative statics analysis. However, such analysis is not very
informative if the equilibria under consideration are not stable. In this Section the stability
analysis of the equilibria will be performed. It is organized much in the same way as Section 3;
after the presentation of the general results the applications for the special cases are discussed.

4.1 Stability of general system

The local stability conditions are derived from the analysis of the roots of the characteristic
polynomial associated with the Jacobian of the corresponding system computed at an equilib-
rium. The complete stability analysis for all equilibria of (2.8) is performed in Anufriev and
Bottazzi (2006). Here we only reproduce some relevant parts of that analysis and proceed in
two steps.

4.1.1 Evolutionary selection of agents

The following statement provides the first set of the stability conditions.

Proposition 4.1. Let * be an EP equilibrium of system (2.8), found in Proposition 3.1(i),
where the first k agents survive. The fized point * is (locally) stable if the two conditions are
met:

1) the equilibrium investment shares of the non-surviving agents satisfy the relations

—2—rp—rr<a(rr+y—ry) <r*—ryg, for k<n<N. (4.1)

2) after the elimination of the non-surviving agents, the same equilibrium is locally stable
for the corresponding reduced system.

Proof. See appendix F in Anufriev and Bottazzi (2006). O
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Figure 6: Stability for the multi agent system. Left panel: Region where investment shares
of the non-surviving agents satisfy to the stability conditions (4.1) is shown in grey. Right panel:
Equilibrium stability region (grey) and the bifurcation types for the single agent case with L =1 in
coordinates r* and f'(r*)/l'(r*).

To understand this result notice that condition 2) is independent of the behavior of the
non-survivors. It says that the stable equilibria are “self-consistent”, i.e. they remain stable
after all non-surviving agents are removed from the economy. We investigate this condition
below. Now turn to the condition 1) and specifically to the rightmost inequality in (4.1).
Remember that the survivor’s investment share zj,, = (r* —r)/(r* + 4y — ry). Thus, in
the equilibria on the right branch of the EMC (with positive equity premium) this inequality
reduces to z < x},,, while on the left branch of the EMC (with negative equity premium) it
becomes z; > x7,,. In words, the survivors must be the most aggressive investors in equilibria
where the risky asset is more attractive among the two, otherwise they have to be the least
aggressive investors. This result is a direct consequence of the replicator dynamics governing
the evolution of the wealth shares (cf. the last equation in (2.8)) and provides the condition
for evolutionary stability against the invasion of the market by another agent. An incumbent
would start to lose his wealth if an infinitesimally small initial wealth is assigned to an agent
with higher share to invest in the most attractive asset among the two.

In the left panel of Fig. 6 we report in grey those regions where inequalities (4.1) hold. For
the same market as in Fig. 1 equilibrium S, turns out to be unstable, since the investment
function of the non-surviving agents there has greater value and does not belong to the grey
area. Analogously U; is unstable since agent II is more aggressive in this equilibrium. On the
other hand, in U, and in all the equilibria in S; the condition 1) of Proposition 4.1 is satisfied.

4.1.2 Stability of equilibria without non-survivors

Consider now the second condition of Proposition 4.1. When all the non-survivors are elim-
inated, the reduced system has still the same form (2.8). When is the equilibrium of this
system stable? Let us, first, discuss the simplest case and then generalize.

Case of one survivor with L = 1. The wealth dynamics is irrelevant in the reduced system
with a single survivor. If the memory span L = 1, the system becomes two dimensional, and
one gets
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Proposition 4.2. The fized point of system (2.8) with a single investment function
i1 = f(ry) is (locally) asymptotically stable if

POk ) FE) 2
Uir=) r—ry I'(r*) U(r=) r—ry

1. (4.2)

where f'(r*) and l'(r*) stand for the first derivative of the investment function f(r) and of the
EMC I(r) computed in equilibrium, respectively.

The equilibrium is unstable if at least one of the inequalities in (4.2) holds with the opposite
(strict) sign. The stability is lost through a Neimark-Sacker, fold or flip bifurcation if the first,
the second or the third inequality, respectively, is violated.

Proof. See appendix C. n

The region where conditions (4.2) are satisfied is shown in the right panel of Fig. 1 in
coordinates r* and f’(r*)/l'(r*). The second coordinate is the relative slope of the investment
function at equilibrium with respect to the slope of the EMC. If the slope of f at the equilibrium
increases, the system tends to lose its stability. In particular, in the stable equilibrium the
slope of investment function is smaller than the slope of the EMC. Once again let us consider
the market in the left panel of Fig. 1 and suppose for the moment that these are the functions
of the agents with memory span 1. We immediately see that equilibria U; and U, are unstable,
due to the violation of the second inequality in (4.2).

General case. In general, the stability depends on the behavior of the individual investment

functions in an infinitesimal neighborhood of the equilibrium x*. In contrast to the single

survivor case the investment functions of all survivors are important for stability, and in

contrast to the case with L = 1 the derivatives with respect to different variables matter.
Introduce the stability polynomial of the investment function f in x* as

O O of of

Py(p) = + ot + , 43
f<'u) ori—1 Ory o Ori_r1 a ory_r, (4.3)
where all the derivatives of f are computed in point (r*, ... r*). The general stability condi-

tions can be formulated as follows

Proposition 4.3. Let «* be a fized point of system (2.8), where all k agents survive. Let
Py, (1) be the stability polynomial of investment function f,. The equilibrium x* is (locally)
stable if all the roots of polynomial

oo AEm)p =0 +ry) : «
Quatp) = ! - LI 57 () (4.0

n=1
lie inside the unit circle.
Proof. See appendix F in Anufriev and Bottazzi (2006). O

The analysis of the roots of Q1.x(1t) can be used to reveal the role of the different param-
eters in stabilizing or destabilizing a given equilibrium. Such analysis is quite complicated
and almost no general conclusions can be obtained. Notice, however, that if the survivors’ in-
vestment function are horizontal in the equilibrium, all the roots of polynomial ()1, are zeros
and x* is stable. Since the roots of polynomial are continuous functions of its coefficients, we
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Figure 7: Left panel: In the market with single agent multiple stable equilibria can be generated
by non-linear investment function. Right panel: Equilibria in the market with the EU maximizing
fundamentalists.

conclude that equilibria with flat enough investment functions are stable, similar to the case
L = 1. Furthermore, since the stability polynomials of the investment functions are weighted
in (4.4), the equilibria can be stabilized if the survivors with the steep investment functions
have small enough relative wealth.

4.1.3 Optimal selection in the equilibrium

Before applying the stability results to the special cases, let us have another look at Proposi-
tion 4.1. The total wealth in economy asymptotically coincides with the wealth accumulated
by the survivors. Therefore, the inequality in the right hand-side of (4.1) can also be inter-
preted as follows. The economy never ends up in a situation where its growth rate is lower
than it would be if the survivors were substituted by some other agents. This result can be
called an optimal selection principle since it suggests that the market endogenously selects the
best aggregate outcome.

It is important to keep in mind two limitations of this principle. First, condition 2) of
Proposition 4.1 indicates that the principle does not apply to the whole set of equilibria.
Namely, the reduced system should satisfy the conditions of Proposition 4.3. For instance,
the market in the left panel of Fig. 1 will never end up in U, even if these are the equilibria
with the highest returns. Second, there are single investment functions generating multiple
stable equilibria, as an example in the left panel of Fig. 7 demonstrates. Equilibria Sy and
Sy are stable, as the investment function is (almost) horizontal in these two points. Thus,
the optimal selection principle has only a local character: the economy does not necessarily
converge to the stable equilibrium with the highest possible return.

4.2 Stability for a single linear investment function

In Section 3.2 we characterized possible equilibria in the market where a single agent has
investment functions with linear restriction on r,_; = -+ = r,_;. Can we tell something
about their stability” One problem here is that the assumption of linearity of this restriction
does not provide any information about L partial derivatives of function f in equilibrium,
which appear in the stability polynomial (4.3). However, if L. = 1, then Proposition 4.2
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Figure 8: Stratification of the parameter space (A4, B) according to the stability of equilibria. Left
panel: stability of the first root r]. Right panels: stability of the second root r3. Corresponding
root is stable if parameters belong to the grey area.

gives stability conditions explicitly. Therefore, we strengthen here the assumption about the
linear form (3.4) for the “symmetrization” of the investment function and assume that the
investment function itself is linear:

f(r):(A+1)—|—B(r+g]—rf). (4.5)

Linear investment choice based on a naive forecast of the future return represents a possible
interpretation of such behavior. From (4.2) we obtain the following conditions sufficient for
stability:
B 1+r B 2+r*
Ty , <1 and R > —
U(r+) r* —ry I'(r*) U(rs) r*—ry

1. (4.6)

where r* stands for the equilibrium return. Corresponding values of the return were computed
in Proposition 3.2. Plugging them in (4.6), one can express stability conditions and bifurcation
loci through parameters A and B. The resulting expressions are quite cumbersome, so we
provide only their geometric illustration.

In Fig. 8 we consider the parametric space (A, B) and produce its stratification according
to the validity of the stability conditions for both equilibria found in Proposition 3.2. In each
point of the space we compute the corresponding equilibrium (if it exists) and check whether
each of the three inequalities (4.6) holds. In the grey regions the corresponding equilibrium
exists, it is feasible and stable. Otherwise, the parameter couple belongs to the white region.
Apart from the “tangency” and “feasibility” curves (thick lines) which we used to get Fig. 4,
we show as dotted thick lines different bifurcation loci. They correspond to the points where
one of the inequalities (4.6) changes its sign. For example, the convex parabola corresponds to
those points where the first inequality changes its sign. In these points the system exhibits the
Neimark-Sacker bifurcation. Analogously, the concave parabola in the left panel and another
concave parabola in the right panel represent points of the flip bifurcations, where the third
inequality (4.6) changes the sign.

Fig. 8 suggests that even if two feasible equilibria can coexist for linear investment func-
tions, at least one of them will be unstable. We prove it in the following

Proposition 4.4. There is at most one feasible stable equilibrium in the market with single
linear investment function (4.5).

19



Proof. See appendix D. n

This Proposition shows that the restriction of the analysis on the market populated by the
agents with linear investment functions (in particular, those who derive their demand through
the MV optimization) leads to the impossibility to have the phenomenon of multiple stable
equilibria in the single agent case. If non-linear investment functions were allowed, many
stable equilibria could co-exist. As a consequence of this limitation, the range of possible
market dynamics can be oversimplified if only “linear” behaviors are considered.

4.3 Stability for the EU maximizers on the EMC

In Section 3.3 it was shown that even if the investment functions are not given explicitly, the
EMC can help in the comparative statics analysis. The stability results, especially Proposi-
tion 4.1, enrich this analysis even further. Let us consider the population of the fundamen-
talists, i.e. EU maximizers with homogeneous expectations which do not depend on the past
returns. This assumption implies that the investment functions are horizontal. Depending on
the sign of the expectations for the excess return, r, + vy — 7, two cases are possible.

If expectations are positive, then the investment functions are positive (Proposition 3.3).
Now, from the general stability analysis it follows that if the investment shares of all the
agents are less than 1, then the only stable equilibrium is generated by the most aggressive
agent. Using once again Proposition 3.3 we conclude that only the agent with the smallest risk
aversion survive in the stable equilibrium S,, see the right panel of Fig. 7. Notice, however,
that if such market has an agent with so low risk aversion that he is willing to go short in the
riskless asset, the situation without stable equilibrium can arise.

Analogously, if fundamentalists believe that the excess return will be negative, their in-
vestment functions lie below 0 and now the agent with the highest risk aversion coefficient will
survive in the stable equilibrium. Notice, however, that in this equilibrium the realized excess
return is positive, which is inconsistent with the expectations.

5 Equilibria with multiple Mean-Variance investors

Let us start with a brief review. In Section 2.2 it was shown that the mean-variance op-
timization leads to the demand function consistent with the constant relative risk aversion
framework. In Section 3.2 the special property of the corresponding investment functions,
namely linearity, was identified and the consequences for the location of equilibria were in-
vestigated. Finally, in Section 4.2 it was proven that the market with such single function
cannot have multiple stable equilibria. The last step consists in the analysis of the market
with heterogeneous MV optimizers. Such analysis has been performed in Chiarella and He
(2001), henceforth CH. In this Section we reconsider it using the geometric tool of the EMC.

5.1 Model of Chiarella and He: review of the results

CH consider agents with investment function f% given in (3.9). All these agents have the
same risk aversion coefficient v = 1. First, the model with homogeneous expectations is
analyzed. The risk premium 0 of identical demand functions of agents is fixed and the ex-
trapolation parameter d is changing, so that the situations of fundamental, trend-following or
contrarian behavior as described in Section 3.2 are possible. Stability analysis is performed
for the case d = 0, when the unique equilibrium is asymptotically stable and for the case when
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d # 0 and L = 1 when the sufficient conditions for stability are derived (Corollary 3.3). For
larger memory span L the numerical approach is exploited which shows that the stability can
be brought to the system through increase of the memory span. The qualitative aspects of
the equilibrium and stability analysis of the single-agent case are summarized in Figure 1 of
that paper.

Second, the market with two investors is analyzed and four different scenarios are consid-
ered. In the first scenario there are two fundamentalists with different risk premium. The
equilibrium analysis shows that there are two equilibria in such market (Proposition 4.2), but
only one of them is stable (Corollary 4.3). It leads to “optimal selection principle” for this
scenario, which states that the investor with the higher risk premium will survive.

The second scenario corresponds to the market with one fundamentalist and one contrar-
ian. There exist three steady-states for such market, but the price return is positive in only
two of them (Proposition 4.4). Fundamentalist dominates the market in one of these two
steady-states and contrarian dominates the market in another one. The stability analysis can
be performed analytically only for the former steady-state (Corollary 4.5). As a result of
numerical analysis of the stability of the latter steady-state, CH conclude that the long-run
return dynamics depends on the relative levels of the returns in these two steady-states and
follows a similar optimal selection principle. Namely, the steady-state is stable if it generates
the highest return.

In the third example of heterogeneous market fundamentalist meets trend-follower. Such
market has one equilibrium where fundamentalist survives. It also can have zero, one or two
equilibria with surviving trend-follower (Proposition 4.6). Similar to the previous example,
the stability conditions for the latter equilibria are obtained through the numerical investiga-
tion. It is found that for small extrapolation rates (i.e. for relatively small value of d of the
trend-follower) there exist two equilibria where trend-follower survives. The highest return is
generated in one of these equilibria which is, however, unstable. Between the two remaining
equilibria “the stability switching follows a (quasi-)optimal selection principle”, depending
where the return is higher.

Finally, in their last example CH consider the market with two chartists. In this case
there exist multiple steady states. If traders extrapolate strongly one of the steady-states
is stable. For weak extrapolators, “the stability of the system follows the (quasi-)optimal
selection principle — the steady-state having relatively higher return tends to dominate the
market in the long run”.

To summarize, Chiarella and He have found quasi-optimal selection principle which allows
the prediction a long-run market dynamics in the case, when there are multiple equilibria.
There is an important difference between it and the optimal selection principle which we
formulated in Section 4.1.3.

The principle in CH has a global character. When the ecology of the traders is fixed, it can
be applied to the market, so that unique possible outcome is predicted. Our optimal selection
principle has a local character, instead. For a given traders’ ecology there can be different
possibilities of the market long-run behavior, i.e. multiple equilibria. The final outcome de-
pends on the initial conditions and, in the stochastic case, on the yield dynamics, and cannot
be predicted a priori. However, independently of the realized equilibria, the survivors will be
chosen in “optimal” way: to allow the highest possible growth rate of the economy in this
point. In some sense, our principle selects among investment functions, while principle in CH
chooses among equilibria.
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5.2 Model of Chiarella and He: geometric approach

We have already seen that analytic results of equilibrium analysis of CH model for the single
agent case become more clear if one uses the geometric tools. Stability analysis for the case
L = 1 can also be illustrated in the stratification diagram in Fig. 8. In particular, any
horizontal (fundamental) investment function is stable, and such equilibrium remains to be
stable for d close to 0. Moreover, equilibrium 7} is stable for very small negative d, while
equilibrium 7} is stable for very large positive d.

Now we turn to the two-agent case and illustrate four scenarios in Fig. 9 with EMC plot.
Consider, first, the case of two fundamentalists with different risk premium §; > J, (the
left panel, first row). These traders have horizontal investment functions passing through
the points M; = (—7,01) and My = (—%,d,). From the assumption on the risk premium it
follows that M; is above M,. There are two equilibria in such market: S and U. Each of
these equilibria would be stable if the corresponding agent would operate alone. When two
agents operate together, then equilibrium S with the highest risk premium is stable, while U
is unstable. Notice that this result can be immediately generalize for the arbitrary number of
fundamentalists.

Let us now suppose that fundamentalist with risk premium J; encounters in the market
contrarian with risk premium d,, so that horizontal and decreasing investment functions are
competing. CH distinguish between two cases depending on which of these risk premium is
higher. Geometrically, it corresponds to the location of points M; and M,. We start with
the case in which §; > 0, i.e. when point M is above M, (the right panel, first row). With
respect to the previous case we have made a rotation of the lower investment function around
point Ms. It is obvious that equilibrium Sy is always stable in this case, while equilibrium S,
cannot be stable. Thus, the left plot in Figure 3 of CH illustrating the qualitative features of
this situation is obtained®. In the second case, when &; < s, there are different possibilities.
If contrarian extrapolates not very strongly, so that an absolute value of d5 is small enough
(left panel, second row), then Sy is, certainly, unstable equilibrium. Therefore S. remains to
be the only candidate for the stable equilibrium in this market. It will be stable only when it
is stable in the single agent case, which happens for relatively small dy (see the left panel in
Fig. 8). Otherwise, there is no stable equilibria in the market. If, on the other hand, contrarian
extrapolates strongly (the right panel, second row), then S is the only stable equilibrium.
Comparing this analysis with the second graph in Figure 3 in CH, we can see that the situation
of possible absence of any stable equilibrium in the market has been overlooked.

In the third example we consider the case when fundamentalist with the risk premium
8, competes with the trend-follower with the risk premium J,. In this example, we again
distinguish between two cases depending on which of the risk premium is greater. Let us,
first, assume that 6; > d5. There are two possibilities. If the trend follower extrapolates
not too strong, equilibrium S; is not stable (the left panel, third row). Equilibrium S is
stable in this case. If the trend follower extrapolates stronger, his investment function rotates
and equilibrium S looses its stability. S; remains to be the only candidate for the stable
equilibrium. If it exist and stable in the market with trend-follower alone, it is also stable in

6All plots in Chiarella and He (2001) which we mention here and below are just sketches obtained from
the mixture of the analytic and numerical analysis. The advantage of our approach is that these qualitative
sketches can be obtained from the EMC plot. Thus, on the one hand, they all become justified on the analytic
basis. On the other hand, they also become more clear and, thus, can be easily generalized for the situations
of three and more agents, and also corrected. For example, notice that in this case the return in equilibrium
S¢ does not approach the return in equilibrium Sy when dy — 0.
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Figure 9: Equilibria in the model of Chiarella and He with two agents. See text for explanation.
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the two-agents situations (the right panel, third row). Otherwise, there are no stable equilibria
in the market with two agents. It is the case for dy > ds > d, since in this situation there
is no equilibrium in the market with surviving trend-follower. But it also happens for some
ds lower than d. Finally, for very strong extrapolation, when dy > dy the market may have
a stable equilibrium, if it exists for trend-follower. In the case when §; < & (the left panel,
fourth row) it is obvious that equilibrium Sy cannot be stable, therefore market will have a
stable equilibrium S; whenever it is stable for trend-follower, that is for small enough d.

Finally, in the right panel of the fourth row of Fig. 9 we consider an example when two
technical traders coexist in the market. We draw the situation when both of them are trend-
followers and have the same risk premium, so that their investment functions pass through
the same point M. It is clear, that the agent with the lowest extrapolation rate will generate
equilibrium Sy which will always be unstable. Instead, equilibrium S; generated by the second
agent will be stable if and only if it is stable in the single agent market. Comparing it with the
panel (b) in Figure 5 in CH, we notice that with further increase ds the stable equilibrium (with
growing return) becomes unstable and, eventually, disappears. So that for higher extrapolation
rates market does not have any equilibrium.

6 Conclusion

In this paper we have applied the general model of Anufriev and Bottazzi (2006) to the
special class of agents’ behavior. For the application we have chosen the most common class
in economics, namely the class of optimizing behavior, and demonstrated that the model has
implications for a very large subset of this class.

The generality of the Anufriev and Bottazzi framework together with the geometric rep-
resentation of their results allowed us to overcome well-known technical difficulties in the ex-
pected utility maximization setting. We have shown, for instance, that investment functions
derived in this setting, which are only implicitly defined, shift downward with risk aversion.
This immediately implies, given the geometric nature of the locus of all possible equilibria (the
Equilibrium Market Curve), that the price return will decrease when the risk aversion coeffi-
cient of the agents increases. This result is not new in the economic literature: if the agents
are willing to take a small amount of risk, they will also get a smaller return. What is new,
however, is that we have rigorously obtained this result from the framework with endogenous
price setting.

We have also analyzed the setting where the agents have mean-variance demand. In
this case we have demonstrated that the qualitative results about market dynamics can be
obtained using the EMC plot. As an application, we have shown that the analytic model
with heterogeneous agents presented in Chiarella and He (2001) can be easily understood and
generalized in many directions. Namely, the analysis can be extended for an arbitrarily large
number of agents with arbitrary risk aversion and expectation rules. Probably, the easiest
way to illustrate the advantages of the general approach is to have a look at the stratification
diagrams at Fig. 4 and 8, drawn for a special, “linear” case of the agent’s behavior. Even
in this particular case, the scope of the model of Chiarella and He is represented by a one-
dimensional straight line. Moreover, only a small interval of this line is analyzed in that model,
since risk premium is assumed to be bound inside an interval (0, 1).

In our view, the most interesting implication of this paper is that some features of the
long-run market dynamics, like multiple equilibria, cannot occur in a market with this specific
population ecology. The global, quasi-optimal selection principle of Chiarella and He may
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hold when all demand functions are derived from the mean-variance optimization, but it does
not hold in general. In this respect, it seems promising, for the further research, to apply
the general framework from Anufriev and Bottazzi (2006) to other, non-rational, types of
behavior, e.g. those advocated by prospect theory or the behaviors based on threshold levels.

APPENDIX: Proofs of Propositions

A Proof of Proposition 3.2

In the case B = 0 condition I(r*) = f(r*,...,r*) implies that A + 1 = [(r), which is a linear equation with
respect to 7. We get (3.5) as soon as A # 0. If, instead, B # 0, then from definition of the EMC we get the
following quadratic equation with respect to r +¢§ — 7

B(r+g—r)*+Alr+g-rs)+5=0. (A1)
The discriminant of this equation D = A? — 4Bj. Solving (A.1) in the case when D > 0 one gets (3.6).

B Proof of Proposition 3.3

Let us introduce the following function

B y) = / (1420 2) " g(z) dz,

where g(z) is the perceived distribution of the next period excess return z. This distribution, in general,
depends on the return history. The value of the investment function fF¥, or in other words, the investment
share z* of the agent who solves the EU maximization problem with power utility function (2.6) is the solution
of the first-order condition (f.o.c.) h(z,7y) = 0.

Let us, first, assume that * > 0. Then, for both positive and negative z we have z > z (1 + z* 2z)77.
Multiplying both parts of this inequality on the function g, integrating with respect to z, and applying the
f.o.c., we get Z > 0. Analogously, if z* < 0, then z < z(1 + 2% 2)77 for any z # 0, and, therefore, z < 0.
Finally, when z* = 0 f.o.c. implies that Z = 0. This proves the first part of the statement.

The f.o.c. actually defines z* as an implicit function of the risk-aversion coefficient . Applying the implicit
function theorem we get that

P 1 [zlog(l+a*2) (1+a"2) 7 g(2)dz

L B e T L
Denominator of the last expression is always positive, while numerator is positive when z* > 0 and negative,
otherwise. This proves the second part of the statement.

C Proof of Proposition 4.2

We are dealing with a special case in which the system (2.8) has a form:

L1 = f(re)
(L +7p) (@41 — T4) + JTeTe 41
(1 — @i41) '
The Jacobian matrix J of this system at a fixed point reads
0 i
—(Ltrp)/(z* 1 =2%)  (A+r%) f'/(a*(1 —a"))
It is well-known that system is asymptotically stable if the following three conditions are satisfied: d < 1,

t <1+4+dandt > —1—d, where ¢t and d stand for the trace and determinant of matrix J, respectively.
Inequalities (4.2) are obtained by direct substitution taking into account that I'(r*) = 2*(1 — «*)/(r* — ry).

i1 =1f+

J=
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D Proof of Proposition 4.4

The constant investment function has either one or zero equilibria. For the increasing function consider the
second inequality in (4.6). Substitution of the EMC’s slope in equilibrium leads to

B@+r —r)?-5<0 PN ~A@G+r—r;)—25<0,

where we used the relation (A.1). Plugging corresponding equilibrium values from (3.6) one can simplify the
resulting inequality using B > 0 in order to get

VA2 —4Bj+ A <0 in r] and VA2 —4Bj—A <0 in rj.

When A > 0, the left inequality is violated and therefore r} is unstable. Otherwise, 73 is unstable.
Consider now the case of decreasing investment function B < 0. From (3.6) it follows that the equilibria
are such that rj <r; — g < r}. If the equilibrium return is negative, the first inequality in (4.6) leads to

B(l—l—rf)(ﬂ—l—r*—rf)Q—(r*—rf)gj>O & —A(l+rp)(g+r*—ry) —y(l+1r")>0.

When A <0, it, obviously, always holds with the opposite sign in feasible r3, i.e. 3 is always unstable in this
case. Analogously, when r} is negative it will be unstable when A > 0.
The final case to consider is when both A and r} are positive. The third inequality in (4.6) leads to

B@2+r*+rp) (g+r —rp)?+ (" —rp)g >0 & —AQ+r"+rp)(g+r —ry)—2g(1+7rs) >0,

which is always violated. Thus, in all the cases when two feasible equilibria exist one of them is unstable.
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