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Abstract
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cretisation of continuous economic processes with steady-state solutions. In addition,
the proposed procedure provides testable restrictions on the coefficients of the dynamic
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Introduction

Since the publication of Davidson, Hendry, Srba and Yeo (1978), equilibrium correction

mechanisms (ECMs) such as
Ay =a(y — br — ¢)i_1 + pAyi_1 + Az + uy (1)

have been used successfully to model dynamic economic relationships. The rationale for
such econometric specifications has been derived either from economic theory, as in Nickell
(1985), or from the properties of time series models, as in the seminal work on cointegration
by Engle and Granger (1987). Hendry (1995, pp. 286-294) provides an introduction to and

overview of these motivations, while Alogoskoufis and Smith (1991) give an extensive list.

In contrast, we point out that a dynamic ECM follows naturally from the discretisation of
a differential equation with a steady-state solution. In addition, the linear case provides

testable restrictions on the coefficients of the ECM formulation.

Backward-difference schemes

Let ty, to, -+, t, --- be a sequence of times spaced h apart and let vy, yo, -+, Y, --- be
the values of a continuous real variable y(t) at these times. The backward-difference operator
A is defined by the rule

Ayi =Yk — Y1 k>1. (2)

By observing that y, = (1—A)%y, and yx_1 = (1 —A)! g, the value of y at the intermediate
point t =t — sh (0 < s < 1) may be estimated by the interpolation formula

Y(ty — sh) =yp—s = (1 = Ay, s €[0,1] . (3)

When s is not an integer, (1 — A)® should be interpreted as the power series in the backward-
difference operator obtained from the binomial expansion of (1—xz)®. This is an infinite series

of differences. Specifically

1— 1—9)(2—
A=Ay —1—sn— 2 = pr_ & 3;( s (4)
With this preliminary background, the differential equation
d
—=fe),  w=al), (5)

may be integrated over the time interval [tg, ;1] to obtain

Y(tee) — y(te) = Dypss = / )2 0) dt (6)

tk
in which the integral on the right hand side of this equation is to be estimated by using the

backward-difference interpolation formula given in equation (4). The substitution ¢ = ¢, + sh
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is now used to change the variable of this integral from ¢ € [ty, tx11] to s € [0,1]. The details
of this change of variable are

l/””f@@xx@»dv:[:f@uk+wmx@k+sm>md@=43£ fes ds

tg

where fris = f(y(tx + sh),z(tx, + sh)). The value of this latter integral is now computed

using the interpolation formula based on (4). Thus

/fk+sd5 = /(I—A)_sfkds
0 0
1
= / <fk+sAfk+Mka+5<”3>(2“)A3fk+'“) s
0

21 3!
1 5) 3
_ At AL D ABf
fk+2 fk+12 fk+8 fr+

The final form for the backward-difference approximation to the solution of this differential

equation is therefore

h 5h 3h
Aylﬁ-l:hfk+§Afk+EA2fk+§A3fk+“' . (7)

Model specification

The backward-difference scheme (7) is valid for all suitably differentiable functions f(y,x).
For ease of exposition, consider the simplest case in which a constant input x = X induces
y(t) to approach asymptotically a constant state Y as t — oo. Clearly X and Y satisfy
f(Y,; X) = 0. The usual procedure is to expand the differential equation about this steady-
state solution (see Gandolfo, 1997, p260). Employing this procedure yields

af(Y, X) Lo X)

f(@/,fﬁ):f(KX)+a—y(y—Y) T(QT—X)JFR (8)
where
R o (P00 - xp 2 S ED xy -y + ELE D vy

and (&, 7n) is a point such that ¢ lies between y and Y while 7 lies between z and X. Since
Y and X are the steady-state values for y and x respectively, then the expression for f(y, )

takes the simplified form
flyz)=aly-Y)+0@—-X)+R (9)

where a = 0f (Y, X)/0y and 8 = 0f (Y, X)/0z are constants.

If f is a linear function of y and = then R = 0 and so

f(x,y):a<y—Y+§(a:—X)):a(y—bx—c), (10)
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in which b = —f/a and ¢ = Y + (8/a)X. This expression for f, when applied to the
backward-difference scheme (7), gives the ECM representation (with k =¢—1 and h = 1)

1
Ay = a(ly—br—c)1+ 3 a(Ayi1 —bAxi 1) + g, (11)
5
U = E a(A2yt_1 - bA2flft_1) +--- . (12)

Equation (11), expressed in reduced form, is identical to the ECM equation (1). In particular,
if f is a linear function then theory predicts that p = a/2 and g = ab/2. These restrictions
should, in principle, be testable.

On the other hand, if f is a nonlinear function of y and z, the backward-difference analysis

is still valid but now the appropriate scheme is

1 1
ANy, = aly—br—c)y1+ Re1+ 3 a(ANys_1 —bAxyq) + 5 AR, +uy
5 5
U = 5 a(ANyy — b ANry ) + I NRy g+

It can now be expected that the presence of non-negligible contributions from R contaminates

p and ¢ so that the linear restrictions derived previously are no longer applicable.

Conclusion

This note shows that the ECM representation popular in the dynamic econometric literature
follows from the discretisation of a continuous process with a steady-state solution. This
recognition should prompt further research—perhaps the most immediate relates to the

practical feasibility of testing the linear restrictions identified previously.
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