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ABSTRACT 
 

In the literature on optimal indemnity schedules, indemnities are usually restricted to be 
non-negative. Gollier (1987) shows that this constraint might well bind: insured could get 
higher expected utility if insurance contracts would allow payments from the insured to 
the insurer at some losses. However, due to the insurers’ cost function Gollier supposes, 
the optimal insurance contract he derives underestimates the relevance of the non-
negativity constraint on indemnities. This paper extends Gollier’s findings by allowing 
for negative indemnity payments for a broader class of insurers’ cost functions. 
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1. Introduction 

In insurance economics there is a vast literature on optimal indemnity schedules.1 

A common exercise in this literature is to restrict feasible indemnity schedules in 

several ways. First, premiums are supposed to recover at least expected indemnity 

payments. This restriction is sensible since it guarantees non-negative profits of 

insurers. It can be interpreted as the participation constraint of the insurer. Sec-

ond, indemnity payments must not exceed losses, or (with some loss of generality) 

marginal indemnities must be smaller than 1. While this restriction is most rele-

vant in practice, where insurers have to be concerned about moral hazard, it is not 

clear why it is also imposed in simpler models that abstract from moral hazard.2 

Third, and finally, indemnities have to be non-negative. This assumption looks 

most sensible, since it prevents risk averse insured to become insurers themselves. 

However, as Gollier (1987) points out, this restriction can be binding for some 

loss distributions. In other words, under certain circumstances, the insured can get 

higher expected utility if they are allowed to sign contracts that provide for pay-

ments from the insured to the (risk neutral!) insurer for some losses. 

Specifically, Gollier obtains the following results for insurance contracts that do 

not impose a non-negativity constraint on indemnities: 

1. As in insurance contracts of the usual deductible type (Arrow, 1971), op-

timal contracts show a (non-negative) loss  that acts as a deductible. For 

all losses above the deductible marginal indemnity is 1 and  indemnity 

amounts to for .  

+x

+−= xxxI )( +> xx

2. Optimal contracts might contain a (non-negative) loss  with . 

For all losses between zero and  indemnity is negative and marginal in-

demnity equals 1. Consequently, indemnity payments are given by 

 for . 

−x +− ≤ xx

−x

−−= xxxI )( −< xx

                                                 
1  See for example Mossin (1968); Gould (1969); Arrow (1971); Moffet (1977); Raviv (1979); Drèze (1981); 

Schlesinger (1981); Gollier and Schlesinger (1996); Spaeter and Roger (1997). Many more contributions 
deal with the consequences of asymmetric information on optimal indemnity schedules.  
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3. For all losses between  and  indemnities are zero −x +x

4. For the lower bound it is true that )21(Fx ≤− , with  representing 

the cumulative distribution function of losses 

)(xF

x . The practical conse-

quence of this result is that the non-negativity constraint is never binding 

if the probability of suffering a loss is less than 21 , which is obviously 

the case for many insured incidents. 

The aim of this paper is to show that Gollier’s results partly depend on the special 

form of a restriction he imposes on the insurer’s cost function and that the non-

negativity constraint is more likely to bind if we allow for more general cost func-

tions. Gollier assumes costs C depending on the expected value of absolute in-

demnities )(xI  transferred between insurer and insured ( )( )))(( xIEC . This cost 

structure reflects the assumption that the insurer has to bear fixed costs only (e.g. 

for hiring staff and renting offices before knowing the actual value of the indem-

nities). However, it is more plausible to assume that costs also depend on indem-

nities actually transferred. This calls for a more flexible cost function which will 

turn out to change some of Gollier’s results considerably.  

2. The model 

While Gollier gets his results by applying calculus of variation, this paper will (in 

line with Raviv (1979)) employ optimal control theory.  

2.1 Assumptions 

Let risk averse individuals have utility function U , )(A 0)( >′ AU , , 

with  representing their net wealth. The risk neutral insurer is supposed to re-

cover cost but to make zero expected profit. Premiums 

0)( <′′ AU

A

( )P  therefore are equal to 

indemnities paid plus administrative costs that also emerge when indemnities are 

negative: 

                                                                                                                                      
2  See Huberman, Mayers and Smith (1983), who derive an optimal indemnity schedule for a concave cost 

function containing a vanishing deductible and a marginal indemnity greater than 1. 
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 (1) ( )( )∫ +=
L

dxxfxICxIP
0

)()()( , 

with  representing the density function of losses. We impose a maximal loss 

of . In order to allow for increasing marginal costs 

)(xf

L ( ) 0)( ≥′ xIC  and 

( )( ≥x ) 0′′C I .  

In contrast, Gollier assumes costs to amount to ( )))(( xIEC . Consequently, in his 

model the premium reads as 

(2) 







+= ∫∫

LL

Gol dxxfxICdxxfxIP
00

)()()()( . 

Observe that (1) is compatible with Gollier’s premium function (2) if marginal 

costs are constant ( 0)=′′C . Therefore (1) is indeed a generalization of (2). 

Let  denote individuals’ exogenous wealth. Insured’s expected utility w

(3)  ( )∫ +−−
L

dxxfxIxPwU
0

)()(

is to maximize subject to (1). The constraint xxI ≤)(  is disregarded for two rea-

sons: First, as pointed out before, this constraint does not make much sense in a 

model which does not allow for informational asymmetries, specifically moral 

hazard. Second, it will turn out that this restriction is not binding anyway if costs 

are convex.    

2.2 The optimal indemnity schedule 

In order to solve this problem using optimal control, we introduce the following 

state variable:3 

(4) ( )( )∫ +−=Γ
x

dxxfxICxIx
ˆ

0

)()()()ˆ( . 

                                                 
3  For mathematical reference see Chiang (1992, chapter 10). 
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The initial condition is that . The terminal condition reads as 0)0( =Γ PL −=Γ )( , 

which corresponds to a zero-profit constraint for the insurer. The corresponding 

Hamiltonian reads as 

 (5) ( ) ( )( ) )()()()()()( xfxICxIxxfxIxPwUH +−+−−= λ . 

Since the Hamiltonian does not depend on the state variable 0)( =
Γ∂

∂
−=′ Hxλ , i.e. 

λ  is a constant. To find the optimal indemnity schedule, the Hamiltonian is dif-

ferentiated w.r.t. . After rearranging terms, one has: )(xI

(6) ( ) ( )( )))(()(1)( xIsignxICxIxPwU ⋅′+=+−−′ λ . 

For negative (positive) indemnities, this can be simplified to 

 (7) ( ) ( )( ))(1)( xICxIxPwU −′−=+−−′ λ   and 

(8) ( ) ( )( ))(1)( xICxIxPwU ′+=+−−′ λ ,  

respectively. Eliminating λ  and combining (7) and (8) yields 

(9) ( )
( )( )

( )
( )( ) 0)(0)( )(1

)(
)(1

)(

><
′+

+−−′
=

−′−
+−−′

xIxI xIC
xIxPwU

xIC
xIxPwU . 

As can be seen from (9), negative indemnities are restricted: The marginal costs 

they induce must be lower than 1. At 0)( =xI , (9) might be rewritten as 

(10) ( )
( )( )

( )
( )( )0101 C

xPwU
C

xPwU
′+

−−′
=

′−
−−′ +− . 

According to (10) +− = xx  for ( ) 00 =′C . However, for positive marginal costs 

, the denominator on the rhs of (10) is greater than the denominator on 

the lhs. To compensate for this difference, 

( )( 00 >′C )
( )+−−′ xPw

) 1≥

U  must be greater than 

. Under the assumption of decreasing marginal utility, this can only 

be the case if  . As negative indemnities are restricted, no positive lower 

bound  can be determined if 

( −−′ PwU

−x

)−x

+x− <x

( 0( )−′ I

( ))0(I

C . Therefore, in this paper it is as-

sumed that marginal costs  are strictly smaller than 1. C −′

From (9) and (10) follows: 
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• The optimal indemnity schedule contains a lower bound  and an upper 

bound (i.e. a deductible) . For losses lower than  indemnities are 

negative (the insured pays the insurer); for losses exceeding  indemni-

ties are positive.  

−x

+x −x

+x

• For losses between  and  no transfer between insurer and insured 

takes place.  

−x +x

• The distance between  and  depends on marginal costs at  

and the insured’s risk aversion. The more risk averse insured, the smaller 

the range of losses they have to bear completely.   

−x +x 0)( =xI

For increasing marginal costs full marginal indemnity is not generally optimal. 

Instead, 1)(
≤

∂
∂

x
xI . This can be shown by differentiating (6) w.r.t. x : 

(11) 
( )

( ) 







∂
∂

⋅′′

=







∂
∂

+−⋅+−−′′

x
xIxIC

x
xIxIxPwU

)()(

)(1)(

λ
. 

Solving for 
x
xI

∂
∂ )(  and substituting for λ  from (6) gives the marginal indemnity 

(12) 
( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ))()()(1
)()(1)(

xICAUAUxIsignxIC
AUxIsignxIC

x
xI

′′⋅′−′′⋅⋅′+

′′⋅⋅′+
=

∂
∂ , 

with . )(xIxPwA +−−=

 Finally, using the definition of absolute risk aversion ( ) ( )
( )AU
AUARa

′
′′

−=  results in: 

(13) ( )

( ) ( )
( ) ( ))()(1

)(
)(

xIsignxIC
xIC

ARa

ARa
x
xI

⋅′+
′′

+
=

∂
∂ . 

Remember from (9) that . Therefore, ( ) 1)( ≤−′ xIC 1)(
≤0

∂
∂

≤
x
xI . Specifically: 
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• Marginal indemnity increases with insured’s risk aversion. As risk aver-

sion approaches infinity, full marginal reimbursement becomes optimal. 

• Constant marginal costs turn out to be special case of (13) with , 

giving rise to full marginal reimbursement. 

0=′′C

However, in general optimal indemnity schedules will call for less than full mar-

ginal indemnity. Instead, the optimal indemnity schedule will look somewhat like 

shown in figure 1: 

Figure 1: Optimal indemnity with increasing marginal costs 

 

x

I(x) 

x~x- x+

Figure 1 illustrates the results obtained so far. From (10) it is known that  and 

 coincide for infinitely risk adverse individuals. In figure 1 this point is labelled 

. It will be determined in more detail in the next section. However, for not infi-

nitely risk averse individuals the two limits  and  are on the left hand side 

and the right hand side of  

−x

+x

x̂

−x +x

x~ , respectively. For losses −< xx  indemnity is paid 

from the insured to the insurer (indemnities are negative). For losses   in-

demnities are paid from the insurer to the insured (indemnities are positive). 

Losses between  and  are borne by the insured alone. Marginal indemnity is 

+x>x

−x +x

1)( ≤∂∂ xxI0 ≤  for all losses: For losses lower than  insured can partly reduce 

their payments to the insurer but not for the full amount of the loss; a marginal 

−x
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increase of the loss will only entitle insured to reduce their payments by less than 

the marginal increase of the loss.  For losses greater than  the insured are enti-

tled to receive positive indemnity payments from the insurer. However, marginal 

indemnity will again be lower than 1 so that insured still have to bear a marginal 

loss partly.  

+x

(( I

3. More detailed characterization of the optimal contract 

Having derived the main properties of an insurance contract without the non-

negativity constraint on indemnities, it is useful to further explore the terms of the 

optimal insurance contract. In particular, since +− ≤ xx

−x

 the upper bound for  

and the lower bound for   are of interest. Since  and  coincide for infi-

nitely risk adverse insured, both bounds have the same value labelled  in figure 

1.    

−x

+x +x

x̂

To determine x~  remember that premiums depend on the actuarially fair value of 

expected (net-)indemnity payments plus administrative cost, which rise as trans-

fers between insurer and insured rise. The former do not change insured’s ex-

pected wealth. In contrast, insured’s losses due to administrative costs are lower if 

transactions between insurer and insured are reduced. While individuals’ risk 

aversion determines the distance between  and  as well as the slope of the 

indemnity function, the critical value 

−x +x

x~  depends on the administrative cost func-

tion alone. Expected transaction costs are minimized for any indemnity schedule 

by a loss x~  that minimizes 

(14)   ( )( ) dxxfxxIC
L

)(~
0
∫ − . 

If no transfer between insurer and insured takes place, ) ) 00 =C . Differentiat-

ing (14) w.r.t. x~  yields the necessary condition 

(15) ( )( ) ( ) 0)()~(~~
0

=−⋅−′⋅−′−∫ dxxfxxsignxxIxxIC
L

, 

which is more readable if written as 
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(16) ( )( ) ( ) ( )( ) ( ) 0)(~'~)(~'~
~

~

0

=−⋅−′−−⋅−′ ∫∫ dxxfxxIxxICdxxfxxIxxIC
L

x

x

. 

If marginal costs are constant, marginal indemnity equals 1 (see equation (13)) 

and x~  always coincides with the median of the loss distribution.4 Consequently, 

in this case the non-negativity constraint is never binding if the probability of loss 

is lower than 21 .  

However, according to (16) in general x~  will deviate from the median. For 

asymmetric distributions with more mass on low losses, x~  will be on the right 

hand side of the median for the following reasons: 

• High losses can deviate more from x~  than low losses, causing higher ab-

solute indemnities than low losses do. 

• Higher indemnities go along with higher marginal costs. 

• From (9), marginal indemnities for low losses are restricted. 

All this will cause the weight of the second term in (16) to get higher than it 

would be under constant marginal indemnities and constant marginal costs. To 

balance out both terms, x~  has to move to the right of the median. Consequently, 

for convex costs it is not true in general that the non-negativity constraint is not 

binding if the probability of loss is lower than 21 . For sharply increasing mar-

ginal costs, x~  may deviate from the median considerably. An imposed non-

negativity constraint therefore will be binding more often than Gollier suggests. 

The effect of a non-negativity constraint to the insured is that they are urged to 

accept higher marginal costs to reduce the variance of their final wealth. This ef-

fect becomes most obvious for insured with risk aversion approaching infinity, 

inducing full marginal indemnity5. In order to stabilize their final income they can 

                                                 
4 If marginal indemnity is 1 and ,  the term xxx ~== +− ( )( )xxI ~−′C  simplifies to ( )xx ~−′C  This allows 

to rewrite (16) as ( ) ( ) ( ) 01)~(2~(~
~

=−⋅−′=







⋅−′ ∫ xFxxCfxx

x

x

)()
~

−∫ dxxfdxx
L

x

C  , which is zero if x~ takes the value 

of the median or if marginal costs are zero.  

5  This result is due to (13). See also table 1. 
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only reduce their final losses to zero and have to bear the high marginal costs of 

the high indemnity payments from the insurer. 

Table 1 summarizes the range of optimal indemnity schedules for different de-

grees of risk aversion and different cost functions by highlighting some extreme 

cases for an asymmetric loss distribution with more mass on low losses. If mar-

ginal costs are zero (cases (a) and (b)) the insured will insure their full wealth or 

buy no insurance at all (if confronted with high fixed costs of the insurance con-

tract, e.g. provision for the agent). If marginal costs are positive but constant 

(cases (c) and (d)), the insured will always opt for full marginal indemnity. As 

risk aversion approaches infinity,  and   will tend towards the median of the 

loss distribution as in case (d).  Case (e) represents the standard indemnity sched-

ule for non-constant but finite marginal costs and finite risk aversion. Note that 

−x +x

x~  

is right off the median. Consequently, the optimal indemnity schedule for infi-

nitely risk averse individuals cuts the abscissa at x~  rather than at (case (f)).   medx
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Table 1: Optimal indemnity schedules without the non-negativity constraint  

               on indemnities 

 ∞<< )(1 ARa  ∞→)(ARa  

 

 

0=′C  

(a) (b) 

 

 

0>′C  

0=′′C  

(c) (d) 

 

 

0>′C  

0>′′C  

(e) (f) 

 

4. Conclusion 

The non-negativity constraint on indemnities is common in insurance economics. 

Gollier (1987) was the first to show that this constraint may be binding under a 

certain cost function. By deriving the properties of an optimal insurance contract 

xx~  +x
−x

xx~

x
medxx

medx  +x
−x

x
medxx

medx  

)(xI
 

)(xI
 

)(xI
 

)(xI
 

)(xI
 

)(xI
 



 
  

for a broader class of convex cost functions, this paper shows that relaxing the 

non-negativity constraint affects the optimal insurance contract in ways that have 

not been recognized before. It has been shown that optimal marginal indemnity 

will be smaller or equal 1. Negative indemnities might be restricted. Furthermore, 

the optimal contract might contain negative indemnity payments even if probabil-

ity of loss is less than 21 .  

These results prove that our analysis is more than an academic exercise. They 

make insurance contracts allowing for negative indemnities interesting for a 

broader class of insured incidents. For these incidents, individuals could get in-

surance coverage by accepting some loss around a critical value at any state of the 

world at considerably lower costs than a contract would cause that does not allow 

for negative indemnities.  
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