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Health Care Reform and the Number of
Doctor Visits - An Econometric Analysis

Rainer Winkelmann∗

University of Zurich

revised, September 2002

Abstract

The paper evaluates the German health care reform of 1997, using the individual num-
ber of doctor visits as outcome measure and data from the German Socio- Economic
Panel for the years 1995-1999. A number of modified count data models allow to esti-
mate the effect of the reform in different parts of the distribution. The overall effect of
the reform was a 10 percent reduction in the number of doctor visits. The effect was
much larger in the lower part of the distribution than in the upper part.
JEL Classification: I11, I18, C25
Keywords: co-payment, moral hazard, count data, probit-Poisson-log-normal model

1 Introduction

Expenditures for health services make up a substantial portion of total GDP in all OECD

countries. For most countries, health expenditures as a share of total GDP have trended

upward over the last years and decades. In Germany, for example, the share increased from

8.4 percent in 1980 to 10.5 percent in 1996 (Breyer and Zweifel, 1999). The most commonly

cited reasons for this increase are the expanding technological possibilities in the health

service sector as well as the ageing of the population, coupled in many countries with a
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IZA-CEPR European Summer Symposium in Labor Economics 2001, and two anonymous referees for helpful
comments.
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large public health sector where the incentive structures may not promote efficient use of

resources.

One such country with a large publicly funded health sector is Germany. There have

been regular attempts to reform the health care system in order to reduce cost. The purpose

of this paper is to evaluate the success of a major reform that took place in 1997. In that

reform, the co-payments for prescription drugs were raised by up to 200 percent. In addition,

a modified budget system imposed upper limits for reimbursements of physicians by the state

insurance.

The contribution of this paper is twofold. First, it provides an answer to the substantive

question whether or not the health care reform of 1997 has been a success, using as outcome

measure the individual number of visits to a doctor. Second, it makes the case that in

situations such as the evaluation of health care reform, it is very important to entertain the

possibility that the reform effect may differ in different parts of the distribution. Crucial

information may thus get lost in single index models such as the Poisson or negative binomial

models. This limits their usefulness. Instead, hurdle models, among them a newly developed

probit-Poisson log-normal model, and finite mixture models offer additional flexibility. The

overall effect turns out to be quite substantial, a 10 percent reduction in the number of

doctor visits. The effect is much larger in the lower part of the distribution (for the choice

between having no visit or at least one visit) than in the upper part of the distribution (the

number of visits given at least one visit).

2 The German Health Care Reform of 1997

More than 90 percent of the German population obtains health insurance through the federal

social insurance system, a system financed mostly through mandatory payroll deductions.

For employees, the premium is proportional to earnings (up to a contribution ceiling), and

coverage automatically extends to (non-working) spouse and dependent children. Special

membership arrangements exist for other groups, such as the unemployed or students. The

insurance coverage is the same for all persons in the system. In particular, the cost of doctor
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visits, hospital stays, and prescription drugs are not reimbursed in full but normally require

a co-payment by the user.

The focus of this paper is on co-payments for prescription drugs. Such co-payments were

increased substantially on July 1, 1997, by a fixed amount of DM 6 relative to a year earlier.

Since the absolute amount of the co-payment is a function of the package size, after the

reform DM 9 for small, DM 11 for medium and DM 13 for large sizes, the relative effect of

the 1997 reform was largest for small sizes, where it amounted to a 200 percent increase.

Social considerations resulted in a number of exemptions (co-insured children, low-income

households with family gross income under DM 1700/DM2350, maximum cumulative annual

co-payments limited to 2 percent of annual gross income; 1 percent for the chronically sick).

The change in co-payments was the most radical element of the 1997 reform. It was

reinforced by a number of additional measures that extended previously existing regulations

such as an exclusion list (Negativliste) defining drugs not covered at all by social insurance,

price ceilings related to the availability of generics, as well as a binding overall annual budget

for drugs. A further cost saving element of the 1997 reform targeted directly the provision

of physicians’ services. A quarterly budget was introduced for each doctor’s office. It was

calculated as the product of average treatment cost per patient and quarter times the number

of patients with at least one visit during the quarter. Therefore, the budget was unaffected

by the actual health condition of a patient although allowances were made for emergency

treatment.

The budget was fully transferable among patients, in recognition of the fact that the

treatment costs would average out at the level of the individual physician. Foreshadowing a

later discussion of this point, one might expect that such a budget, while possibly reducing

the intensity of treatment chosen by the doctor, might also increase the number of proposed

re-appointments. This is so because a re-appointment (for a below average cost treatment)

scheduled for a later quarter will actually increase the overall budget and allow for cross-

subsidization of above average treatment cost for other patients.

The combination of these different measures, it was hoped, would contain health care
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expenditures, or at least, its rate of increase. By definition, an increased co-payment has

a direct fiscal effect, reducing the share of the cost covered by the insurer. For instance,

the patient pays the full amount for all drugs with prices below the co-payment. Equally

important, though, it was hoped that the increased out-of-pocket expenses would raise the

awareness of the “customer” and lead to a change in attitude, reducing what has been

perceived as a partially avoidable and excessive use of prescription drugs. Co-payments

should increase the incentive to act responsibly and thereby reduce the moral hazard problem.

The following empirical analysis deals with the second aspect. It does so by focusing on

the effect of the reform on the number of doctor visits by a person during a given period of

time. This approach is chosen partly because direct information on the use of prescription

drugs is not available. In addition, there are good reasons why the increased co-payments

could have changed the demand for doctors visits (in addition to other effects of the newly

introduced quarterly budget, if any). The demand for prescription drugs and the demand

for doctor visits are closely related, and they might be complements indeed.

The 1997 reform increased the out-of-pocket expenses for prescription drugs. To obtain

a prescription, one has to see a doctor, the doctor has to fill out a prescription, and one

has to go to the pharmacy. Several responses to the price increase are possible, including

influencing the doctor to prescribe a larger package size, or not seeing a doctor at all. Both

behavioral changes would reduce the number of visits to a doctor. Alternatively, one might

still see a doctor in order to seek advice on non-prescription or self-treatment, or one might

see a doctor but decide not to buy the drug. In either case, the number of visits would tend

to be unaffected by the increased co-payment. If there is a combination of the two effects,

the number of visits will go down, and it is an empirical question to quantify the magnitude

of the overall effect.

Finally, it is worth noting that the 1997 reform enjoyed only a short lifespan. A new

coalition government led by the social democrats emerged from general elections held in

1998. The partial repeal of the 1997 reform was one of the first items on the political

agenda, and a new law lowered the co-payments by between DM 1 and DM 3, effective
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January 1, 1999. From an econometric point of view, this second reform is a fortuitous

occurrence, as it introduces an additional source of variation in the health environment that

can be used to identify individual responses.

3 A previous study

The consequences of the German health care reform of 1997 on the demand for health services

were previously assessed by Lauterbach, Gandjour and Schnell (2000). The study was based

on data collected in October - December 1998 in Cologne among visitors to pharmacies. In

order to be included in the sample, one had to be covered by the social insurance, be aged 18

or older, suffer from an acute or chronic illness, and not be exempted from the co-payment.

10,000 questionnaires were distributed and 695 returned.

The Cologne study included a number of different outcome measures. I concentrate here

on the number of visits to a doctor. Those who responded to the survey reported on average

9.2 doctor visits over the previous 12 months. 80.2 percent of all respondents said that the

health care reform had no effect on the number of visits. 8.6 percent reported that they had

“given up” one visit, while 11.2 percent said that they had “given up” more than one visit in

response to the reform. Based on this information, Lauterbach et al. estimate a reduction of

consultations by 4.5 percent. Thus, the effect of the policy change is economically substantial.

But how robust is this result? The study has a number of shortcomings that may affect

the conclusions. The sample size is small and the response rate is very low, raising the issue

of response bias. More importantly, the sampling design induces an overrepresentation of

heavy users. This is an example for so-called “on-site”, or endogenous, sampling (see Santos

Silva, 1997, for a clear discussion of this issue). Presence at a pharmacy is highly correlated

with a previous doctor visit. Hence, the inclusion in the sample depends on the outcome of

the dependent variable, and the results cannot be representative for the population at large.

Occasional users of health care services are underrepresented, and non-users are excluded

a-priori.

There are two possible responses to this problem. The first would consist of using appro-
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priate econometric techniques to correct for the endogenous sampling, effectively inferring

from the distributional form of observations conditional on visits the probability of being

included in the sample. Of course, this approach requires that the same model applies to

those observed in the sample and those not observed (the “users” and the “non-users”),

an assumption that can be questioned in the present context. Therefore, if one wants to

estimate the effect of the reform in the overall population, one needs a random sample of

the entire population, such as is provided for instance by the German Socio-Economic Panel

(GSOEP).

Details of this annual household survey are given in the next section. It offers a number

of advantages in addition to the representativeness of the sample. In particular, it gives

independent measurements of the number of doctor visits before and after reform, from

where the change can be computed. This is likely to yield a more accurate estimate than

a retrospective self-assessment of the direction of response to reform as considered in the

above study. Finally, the GSOEP contains a rich set of other socioeconomic characteristics

that can be used as control variables, and the individual number of doctor visits over time

can be modeled directly using count data models.

4 Data

The GSOEP is an ongoing annual household survey that was started in 1984 (SOEP Group

2001). For the purpose of this study, I select a period of five years centered around the year

of the reform, i.e., 1995 - 1999. The GSOEP has a few variables relating to the usage of

health service. One of them is the number of visits to a doctor during the previous 3 months.

In some earlier years, this question was asked separately for visits to a general practitioner

and visits to a specialist, separately by field. However, only the aggregate count is available

in the 1995-1999 waves. Visits to a dentist are included in the definition.

The basic empirical strategy, as detailed in the next section, is to pool the data over

the five years and estimate the effects of the reforms by comparing the expected number of

visits in 1998 and 1996 ceteris paribus, i.e., for an individual with given characteristics. The

6



years 1998 and 1996 are chosen since the reform took place in mid-1997. Thus, depending on

the interview month, some 1997 observations fell before the reform and some after. Another

argument for using the longer time span is a reduced risk of bias due to timing considerations.

For instance, people might have developed an “extra-demand” for doctor visits just prior to

the reform in anticipation of the upcoming changes.

The models that will be estimated in the following sections all include a systematic

component (linear predictor) of the type

x′itβ = β0 +β1ageit +β2age2
it +β3years of educationit +β4marriedit +β5household sizeit +

β6active sportit+β7good healthit+β8bad healthit+β9self employedit+β10full-time employedit+

β11part-time employedit + β12unemployedit + β13equivalent incomeit + β96(year = 1996)it +

β97(year = 1997)it + β98(year = 1998)it + β99(year = 1999)it

The reference year is 1995. In addition, there are three dummies for the quarter in

which the interview took place (winter, fall, spring). The linear predictor will be embedded

in various alternative count data models, starting with the Poisson model. It is assumed

that the reform effect is the same for all groups of the population or, alternatively, that

the interest lies in the average response. One could allow for heterogeneous responses by

estimating the model for subgroups, or including interaction terms.

There are three general channels through which these variables can affect the demand for

doctor visits. The first is the underlying health status, the second the budget constraint, and

the third the preference formation. The health status is poorly measured in the GSOEP. In

particular, no details of current medical conditions are known. A time-consistent measure of

health over 1995-1999 is provided by a subjective self-assessment in response to the question:

“How good do you perceive your own health at current?”, with responses “very good”,

“good”, “fair”, “poor”, and “very poor”. The two best responses are classified as “good

health”, the two worst responses as “bad health”, with fair health being the reference group.

Another proxy for health is the age polynomial. Finally, engaging in “active sports” (defined

as a weekly or higher frequency) acts as a further proxy for good health, although it might
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have an additional direct effect on the demand for health services as well. Clearly, these

are only crude measures of health, and one may want to account for the possibility of

additional unobserved heterogeneity to capture any remaining health aspects, as well as

other unobserved influences.

The budget constraint is determined by income and prices. The main price variables are

the opportunity costs of a visit to a doctor which, in turn depend on education level and

employment status. The influence of insurance status cannot be modeled in any meaningful

way. The number of uninsured persons in Germany is too small to be empirically relevant,

and privately insured persons are excluded from the analysis, mainly because no systematic

information on the nature of the insurance contract is available.

Several of the variables affect more than one aspect at a time. Age, for instance, matters

for health, opportunity cost (through the effect of experience on earnings) as well as poten-

tially preferences. Similarly, education is an important factor in determining the optimal

investment in health capital (Grossman, 1972). It is not the goal of this paper to disentangle

these various transmission channels. Rather, the focus lies on the year dummies, whereas

the other right hand side variables serve as controls for any effects these variables might have

on the changes in visits over time.

5 Econometric models

5.1 Poisson model

The standard probability distribution for count data is the Poisson distribution:

P (yi|λi) =
exp(−λi)λ

yi
i

yi!
(1)

where

E(yi|λi) = Var(yi|λi) = λi

In a regression model, we assume that the population is heterogeneous with covariates xi,

and λi is specified as λi = exp(x′iβ) where i = 1, . . . , N indexes observations in the sample.

8



Let y = (y1, . . . , yN)′ and x = (x1, . . . , xN)′. Under random sampling

P (y|x) = exp

[
−

N∑
i=1

exp(x′iβ)

]
N∏

i=1

[exp(x′iβ)]yi

yi!
(2)

and estimation of the parameters by maximum likelihood is straightforward.

Furthermore, the reform effect, typically defined as the relative change in expected doctor

visits, can be computed as follows:

∆%(98,96) =

[
E(yi,98|x)

E(yi,96|x)
− 1

]
× 100

= [exp(β98 − β96)− 1]× 100 (3)

In principle, other effects of the reform could be studied as well, such as the change in

the predicted probabilities of various counts.

Clearly, the simple Poisson model can be criticized on a number of grounds. To begin

with, it does not allow for unobserved heterogeneity. Alternative models, such as the negative

binomial model or the Poisson-log-normal model provide potentially more efficient estimators

(see e.g., Winkelmann, 2000). Secondly, it ignores the panel structure of the data. There are

up to five observations for a given person. The presence of an individual specific heterogeneity

term will invalidate the assumption of independent sampling. One can incorporate this into

estimation by using a random effects panel model. Depending on the assumptions, such

models again can be of a negative binomial or a Poisson-log-normal variety. Alternatively,

one could suspect dependence between the individual effects and covariates. In this case,

a fixed effects Poisson model is available. We will see in the application that the pooled

Poisson model and the panel Poisson models provide quite similar effect estimates. Finally,

the single index structure of the Poisson regression model (and its generalizations above)

implies that once the mean is given all other aspects of the distribution are determined

as well. In particular, the reform cannot have different effects in different parts of the

distribution (relative to the Poisson probability function).
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5.2 Structural models

Historically, the most important generalization of the single index structure is the hurdle

model (Mullahy, 1986). The hurdle model combines a binary model for the decision of use

with a truncated-at-one count data model for the extent of use given use. Define di = 1 if

a person does not see a doctor in a given period, i.e., di = 1 − min(1, y). The probability

function is then given by

f(yi) = fdi
1i [(1− f1i)fT (yi|yi > 0)]1−di (4)

where f1i = P (di = 1), fT (yi|yi > 0) = f2(yi)/[1− f2i(0)], and independence between hurdle

and positive part is assumed. Estimation is simple, since the log-likelihood factors into two

parts

ln L =
∑

i

di ln f1i + (1− di) ln(1− f1i) +
∑
di=0

ln f2(yi)− ln(1− f2i(0))

To close the model, one needs to specify f1 and f2. Choices for the hurdle function f1 include:

• exp(− exp(x′iγ)) (Poisson)

• [1 + θ]− exp(x′
iγ)/θ (negative binomial, type 1)

• [α/(exp(x′iγ) + α)]α (negative binomial, type 2)

• exp(x′iγ)/(1 + exp(x′iγ)) (logit)

• Φ(x′iγ) (probit)

Choices for f2 include:

• Poisson

• negative binomial

• Poisson log-normal
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The first four hurdle expressions for f1 possess the advantage that, if combined with

the appropriate distribution for f2, the hurdle model nests the base model. The probit

assumption for the hurdle has the advantage that it can be easily generalized to a model

with correlated hurdle, as shown below.

The hurdle model has been popular in the health literature, partially because it can be

given a structural interpretation that seems to agree well with the intuition of a dual decision

structure of the demand process. The first contact decision is made independently by the

patient, whereas the treatment and referral decision is influenced by the physician. Right-

fully, Deb and Trivedi (2002, p.602) note that “in modeling the usage of medical services, the

two-part model ( i.e. hurdle model, my insertion) has served as a methodological cornerstone

of empirical analysis.”

Deb and Trivedi then point out a potential incongruence between model assumptions and

data situation: medical consultations are measured per period and not per illness episode.

Moreover, healthy individuals consult physicians as well. As an alternative to the hurdle

model, Deb and Trivedi advocate a finite mixture model in order to discriminate between

frequent and less frequent users. Such a model can, for instance, capture unobserved dif-

ferences with respect to the long-run state of health that affect constant as well as slope

coefficients of the index function. For instance, let

f(yi|θ) =
s∑

j=1

πjfj(yi|θj) (5)

where fj is a Poisson- or negative binomial distribution, π1 + . . . , πs = 1, and 0 < πj < 1.

For s = 2, the model has the same number of parameters as the hurdle model, and the two

can be compared directly. Deb and Trivedi (2002, p. 601) find in a study based on data from

the RAND Health Insurance Experiment “strong evidence in favor of a latent class model.”

Santos Silva and Windmeijer (2001) by contrast propose a model of the form

Y = R1 + R2 + . . . + RS =
S∑

i=j

Rj

where Y is the total number of visits, R is the number of contacts per episode, and S is the

number of episodes. This model thus accommodates a situation where more than one illness
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episode is possible within the observation period, and the number of visits per episode is a

random variable with support 1, 2, 3, . . ..

If S = 0, 1, 2, . . . is Poisson distributed with mean E(Si|xi) = exp(x′iβ), and Rj = 1, 2, . . .

are identically and independently logarithmic distributed with mean

E(Rij|xi) =
exp(x′iγ)

ln[1 + exp(x′iγ)]

then one can show that Y is negative binomial distributed with

f(yi|xi) =
Γ
(
yi +

exp(x′
iβ+x′

iγ)

ln[1+exp(x′
iγ)]

)
exp(− exp(x′iβ))

Γ(yi + 1)Γ
(

exp(x′
iβ+x′

iγ)

ln[1+exp(x′
iγ)]

)
(1 + exp(−x′iγ))yi

(6)

and

E(Yi|xi) =
exp(x′iβ + x′iγ)

ln[1 + exp(x′iγ)]
.

5.3 An alternative hurdle model

It can be argued that the recent debate on the relative merits of two-part, mixture and mul-

tiple spell models takes too narrow a view by concentrating on modified negative binomial

models. The negative binomial model has the attractive feature of a closed form probability

function. And yet, it is frequently found that the Poisson-log normal model (which can be

derived assuming a Poisson model with unobserved heterogeneity in the linear predictor that

has a normal distribution, whereas the negative binomial model assumes a log gamma dis-

tribution) provides a better fit, although the computation of probabilities requires numerical

quadrature.

With ever decreasing computational costs, the lack of a closed form probability function

becomes less of a problem, and it may be worthwhile to explore a hurdle model based on

the Poisson-log normal model. Thus, I propose to combine a probit model for the hurdle

with a truncated Poisson-log-normal model for strictly positive outcomes. Let zi be a latent

indicator variable such that

zi = x′iγ + εi
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and

yi = 0 iff zi ≥ 0 .

Moreover, for the positive part of the distribution

yi|yi > 0 ∼ truncated Poisson(λi)

where

λi = exp(x′iβ + ui)

The model is completed by assuming that εi and ui are independently normally distributed

with variance 1 and σ2, respectively. Thus, the individual likelihood contribution of the

probit-Poisson-log-normal model is

f(yi) = Φ(x′iγ)di ×
[
(1− Φ(x′iγ))

∫ ∞

−∞

exp(−λi(ui))(λi(ui))
yi

[1− exp(−λi(ui))]yi!
g(ui)dui

]1−di

(7)

where g(ui) is the standard normal density and di = 1−min(1, y) as before. The likelihood

can be evaluated using Gauss-Hermite integration.

One could take things one step further and let εi and ui be bivariate normal distributed

with covariance ρσ to obtain a model that might be referred to as a probit-Poisson-log-normal

model with correlated errors. This is an appealing possibility, since it relaxes the assumption

of conditional independence between the hurdle step and the distribution model for strictly

positive outcomes. This assumption is violated if common unobservables affect both parts

of the model. Moreover, this generalization is easily integrated within the current modeling

framework. In particular, εi|ui ∼ N(ρui/σ, 1− ρ2) and

P (yi = 0|ui) = P (εi ≥ −x′iγ|ui) = Φ

(
x′iγ + ρui/σ√

1− ρ2

)
= Φ∗

i (ui)

Thus one obtains

f(yi|ui) = Φ∗
i (ui)

di ×
[
(1− Φ∗

i (ui))
exp(−λi(ui))(λi(ui))

yi

[1− exp(−λi(ui))]yi!

]1−di

(8)

and

f(yi) =
∫ ∞

−∞
f(yi|ui)g(ui)dui (9)
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The correlation should be negative (due to the likely presence of common unobserved factors).

To give an example, for individuals with a (latent) dislike of physicians, P (no use) is high

while E(y|use) is low.

While this model is relatively easy to implement, there are a number of problems that

may limit its usefulness in practice. One problem is identification. Although the parameter

is formally identified, results of Smith and Moffatt (1999) suggest that it may not be possible

to identify the correlation parameter with enough precision in practice. Hence, this model is

not necessarily an improvement on a model that assumes independence. In fact, I found in

the following application that the correlation coefficient was insignificant despite the large

sample size.

A second issue concerns the interpretation of the results. Selection models of this sort

are interesting, because they can identify the parameters of a latent demand function, in the

present context the latent demand for doctor visits for those who do not visit the doctor at

all. The meaning of such a demand is difficult to define which renders this latent demand

of limited interest. As a consequence, I decided to report estimates from the restricted

probit-Poisson-log-normal model without correlated errors only.

5.4 Reform effect in the different models

The ultimate goal of this paper is the evaluation of the reform effect, namely the ceteris

paribus change in the distribution of doctor visits between 1996 and 1998. The appropriate

formula for the Poisson model was already given in (3). Identical computations apply for

the negative binomial and Poisson-log-normal models. In all cases, the reform effect can be

summarized by the ceteris paribus change in the conditional expectation function. Moreover,

due to the log-linear conditional expectation the proportional effect is independent of the

values taken by other independent variables. Since the employed models are fully parametric,

other aspects of the distribution can be studied as well, such as the effect of the reform on

single probabilities. This effect in general will depend on values taken by other regressors.

For the structural models, the reform effect is more complex. Even if one considers mean
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responses only, these can now be decomposed into distinct sources. In the hurdle model for

instance, the overall effect can be decomposed into an effect for the hurdle and an effect

for positive counts. These two effects can complement or counteract each other. Similarly,

in the finite mixture model the reform may impact differently on the two groups. Finally,

in the multi-episode model, separate effects are identified for the number of spells and the

number of referrals.

Formally, the computations of the reform effect in the three models are as follows:

1. Hurdle model

E(y98)

E(y96)
− 1 =

P (y98 > 0)

P (y96 > 0)

E(y98|y98 > 0)

E(y96|y96 > 0)
− 1

= (1 + ∆P (Y >0))(1 + ∆E(Y |Y >0))− 1

2. Finite mixture model

E(y98|group = j)

E(y96|group = j)
− 1 = exp(βj

98 − βj
96)− 1 , j = 1, 2

3. Multi-episode model

E(y98)

E(y96)
− 1 =

E(S98)

E(S96)

E(R98)

E(R96)
− 1

= (1 + ∆E(S))(1 + ∆E(R))− 1

Except for the finite mixture model, the estimated effects will depend on the realized

values of the other independent variables. The computations in the following section evaluate

these effects at the sample means of the variables.

6 Results

Table 1 gives summary statistics for the variables involved in the analysis. The average

number of doctor visits per quarter declined from 2.66 to 2.35 between 1996 and 1998. This

is more than a 11 percent reduction in the number of quarterly visits. There was a 1 percent
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decline between 1995 and 1996, and a 2 percent increase between 1998 and 1999. Thus,

the large drop in the number of visits clearly coincides with the timing of the reform. Also,

the 1999 “counter” reform went hand in hand with an increased number of visits, again

consistent with the hypothesis of a behavioral effect.

Throughout the sample period, there is a large fraction of non-users. The proportion is

highest in 1998, when it reaches 37 percent of the sample, a 4.4 percentage point increase over

the pre-reform year 1996. A simple Poisson distribution with parameter equal to the sample

mean would predict a much lower proportion of non-users, e.g., 9.5 percent in 1998. Although

this comparison does not take into account the variation generated by the regressors, it

suggests the presence of extra-zeros in the data.

The average age increased by less than a year between 1995 and 1999. This is a reflection

of the fact that the panel is not balanced. One reason for this is that young people enter the

sample and old people leave since the sample is restricted to those aged 20-60 at any point

in time, in addition to attrition and non- response. The unemployment to population ratio

captures the state of the business cycle. Indeed, it closely traces the movement of the official

unemployment rate (see e.g. Sachverständigenrat 2000) that peaked at 11 percent in 1997

for former West Germany.

Finally, Table 1 also informs about the other health related variables used in the anal-

ysis. Interestingly, the statistics indicate a general improvement in the health status of the

population between 1996 and 1998. The proportion of people in active sports increased from

25 to 31 percent, although these averages are very volatile. A steadier trend is observed for

the self-reported health condition. The proportion of people reporting good health increased

from 56 to 60 percent, while the proportion of people reporting poor health decreased from

14 to 13 percent. These trends are important for two reasons. Firstly, improvements in the

perceived health might be able to explain part of the reduction in the number of doctor

visits, and one should control for that in order to isolate the reform effect. Secondly, these

improvements provide some evidence against the possibility that the reforms, while being

successful in containing costs, actually worsened the general health status. Of course, these

16



self-reports are only a very crude measure of health, and more research would be needed to

study the long-term consequences of expenditure reductions in the health sector on public

health. This is beyond the scope of the current analysis.

The estimates for the basic Poisson model, with and without accounting for individual

specific effects, are displayed in Table 2. The first column shows the estimates from a pooled

Poisson model. The second column displays the result from a Poisson model with gamma

distributed random effects (i.e., a panel negative binomial model). The fixed effects Poisson

estimates are given in the third column. In this model, all time invariant regressors have

to be dropped, as well as all observations pertaining to individuals without variation in

the dependent count. Most effects are robust to the particular model specification, and

many of the results are common to those found elsewhere in the literature: men have less

doctor visits than women, and the expected number of doctor visits is u-shaped in age. The

health indicators have the largest effect among all variables although the effect is somewhat

attenuated in the panel models. Most importantly the coefficients on the year dummies

indicate that there was a statistically significant decline in the expected number o doctor

visits between 1996 and 1998 in all three model specifications. Based on the pooled Poisson

model, the expected number of visits fell by 9.9 percent.

Six additional models were estimated using the same data: negative binomial, Poisson-

log-normal, hurdle-negative binomial, finite mixture negative binomial with two components,

multi-episode model, and the probit-Poisson-log-normal model. The following discussion of

the models is guided by the following questions: Is the result found in the base Poisson

model robust with respect to model choice? Can the Deb and Trivedi (2002) conclusion of

the superiority of the finite mixture model over the hurdle model be confirmed? And to

what extent can one uncover asymmetries in the responses to the reform in different parts

of the distribution (i.e., attribute the mean effect to different sources)?

There are several ways to discriminate between the models. Some of the models are

nested (such as the Poisson and the negative binomial model), most of them are not (such

as the finite mixture, the hurdle negative binomial and the multi- episodes models). Table 3
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shows the log-likelihood values of the different models. Likelihood ratio tests clearly reject

the Poisson model against the alternative models with unobserved heterogeneity. To pick

the best model among all seven, a comparison of the simple likelihoods is a first indicator.

One can compute for instance the average probability that the model has generated the data,

denoted here as S.

However, both the log-likelihood and the S statistics do not account for the fact that the

number of parameters differ across the estimated models. Hence, the Schwarz Information

Criterion (SIC) is included as well. The selection result stays the same regardless of what

criterion is chosen. The new model with probit hurdle and log-normal unobserved hetero-

geneity offers a substantial improvement over all other models. One should also point out

that the results corroborate the Deb and Trivedi (2002) conclusion that the finite mixture

negative binomial model outperforms the hurdle negative binomial model. Thus their result

has to be interpreted as evidence against the particular hurdle parameterization, and not

against hurdle models in general.

To analyze the particular relationship between the two hurdle models, the finite mixture

model, and the multi-episode model more formally, one can use Vuong’s (1989) test for model

selection among non-nested models. This test does not require any of the two models to be

correctly specified, but rather picks the model that is closer to the true distribution. The test

is directional and symmetric. Under the null-hypothesis that the two models are equivalent,

the test statistic∑N
i=1 log f(yi|xi)− log g(yi|xi)√∑N
i=1 (log f(yi|xi)− log g(yi|xi))

2

is standard normally distributed. Note that the numerator is nothing else than the log of

the likelihood ratio. To implement the test, one chooses a critical value c from the standard

normal distribution. If the value of the statistic is greater than c, one rejects the null

hypothesis of equivalence against the alternative that model f is better than model g. If the

test statistic is smaller than −c, g is better than f . The test statistic for the probit Poisson

log normal against the finite mixture model is 5.7, against the hurdle negative binomial model
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13.7, and against the multi-episodes model 12.1. Hence, the null hypothesis is rejected in

all three cases in favor of the new model. A comparison of finite mixture and hurdle models

has a test-statistic of 5.7.

Table 4 reports the parameter estimates for the probit Poisson-log-normal model. The

first column gives the coefficients for the hurdle part, the second for the positive part. Due

to the parameterization of the model (the hurdle is parameterized for the event of no visit),

the coefficients should normally be of opposite sign, implying that the effect of a variable

on the probability of use and on the extent of use, given use, go in the same direction. The

sign and magnitude of the effects is determined by the data and not imposed a-priori. The

“sign-test” indeed shows only one deviation, in the case of the variable “education”. For the

variable ”active sport”, the impact on the probability of non-use is statistically significant

but the impact on the positives is insignificant.

The size and composition of the reform effect, measured by the percentage reduction in

the expected number of doctor visits, for each of the models under consideration is listed in

Table 5. The estimates for the base model, with or without unobserved heterogeneity, are

all in the same range, varying between 9.9 to 10.4 percent. These estimates are substantially

above those of the Lauterbach et al. study who reported a decline of 4.5 percent. How can

these two findings be reconciled? It is possible that the differences have to do with the low

response rate in their survey, or the way the question was posed that differs from the GSOEP

approach. The analysis of this paper suggests, however, a more fundamental reason, namely

the fact that the Cologne study sampled individuals on-site and thus overrepresented heavy

users. If it is the case that heavy users have a lower demand elasticity than occasional users,

the two findings can be reconciled.

The structural models estimated above can exactly deal with this question of different

elasticities in different parts of the distribution. Table 5 confirms that such a differential

effect is present indeed. This is most obvious from the probit-Poisson-log-normal estimates.

The reduction is greatest at the left margin of the distribution: the probability of being

a user (at least one visit) decreased by an estimated 6.7 percent between 1996 and 1998,
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whereas the expected number of visits, conditional on use, decreased only by an estimated

2.6 percent. Compare this to the alternative of a single Poisson-log-normal model without

hurdle. In this case, the implied changes are -3.0 percent for P (Y > 0) and -6.1 percent for

E(Y |Y > 0), respectively. Hence, the evidence clearly suggests an excess sensitivity at the

left tail of the distribution.

This important result is confirmed by the other two structural models, although quan-

titative details differ. The finite mixture model separates the population into two groups.

Two-thirds of the population belong to a low user group with a mean number of quarterly

visits of 1.6, and one third belongs to a high user group with a mean number of 3 visits per

quarter. Consistent with the above argument, the low user group shows the larger response

to the reform with a 13 percent reduction. Similarly, in the multi-episode model, the effect

on the number of spells is much greater than the effect on the number of referrals (which

actually are estimated to have slightly increased by 1.3 percent). In each case, the two effects

add up to a combined effect in the neighborhood of a 10 percent reduction in the number of

visits between 1996 and 1998.

7 Discussion

The analysis showed that the German health care reform of 1997 affected the left tail much

more than the positive part of the distribution of the number of doctor visits. To the

extent that the positive part represents the subpopulation of the seriously or chronically

ill, whereas the left end of the distribution represents the healthy, this might have been an

intended consequence of the reforms.

How reasonable is it to interpret the uncovered reform effects as causal? Identification is

achieved by studying variation in the demand for doctor visits over time. Thus, it is assumed

that other things didn’t change concurrently, beyond the individual socioeconomic charac-

teristics controlled for in the regression. It is hard to imagine what these other things should

have been. It is unlikely that the underlying unobserved health status varied substantially

between the two years beyond the controls, or that a health epidemic of major proportion
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hit in 1996 but was absent in 1998.

Even if one accepts the interpretation that the health care reform of 1997 was causally

responsible for reducing the subsequent number of visits, it is still an additional step to

attribute this effect to the increased co-payments. The reforms consisted of several measures,

the demand side policy of increased co-payments being one of them. A 1997 change that

affected the supply side was the introduction of a quarterly budget, which intended to affect

the physician’s treatment choices. While this system did provide incentives for reduced

treatment intensity, it also made it beneficial for a physician to see a patient at least once

each quarter. Thus, supply side arguments are in contradiction with the observed evidence

of a the large increase of the proportion of people with no visit at all, combined with a

relatively small reduction of repeated visits.

Certainly, future work needs to pursue these issues further. Such work can build on the

methodological insights of this paper. When studying the effects of reforms on the demand

for doctor visits, hurdle-, or two-part-models should be given serious consideration. Of

course, these models are only one possible way to generalize the rigid assumptions underlying

single index models such as the standard Poisson or negative binomial regressions. A very

promising alternative, quantile regression models for count data, is currently developed by

Machado and Santos Silva (2002).
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Table 1. Sample means of doctor visits and selected

socio-demographic characteristics, 1995-1999.

Year 1995 1996 1997 1998 1999
Number of doctor visits 2.687 2.657 2.553 2.353 2.391
(relative change in %) (-1.1) (-3.9) (-7.8) (+1.6)
No doctor visits (0/1) 0.348 0.328 0.352 0.372 0.346
Age 38.08 38.20 38.47 38.73 38.92
Unemployed (0/1) 0.085 0.084 0.092 0.085 0.075
Active sport (0/1) 0.295 0.247 0.262 0.307 0.266
Good health (0/1) 0.568 0.562 0.581 0.595 0.580
Bad health (0/1) 0.145 0.138 0.134 0.127 0.129

Observations 6790 6555 6480 6781 6231

Source: German Socio-Economic Panel (GSOEP, N = 32837).
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Table 2. Poisson regression results

pooled random effects fixed effects
Age ×10−1 -0.1057 -0.0927

(0.0660) (0.0575)
Age2 ×10−3 0.1580 0.1885

(0.0801) (0.0700)
Male -0.2085 -0.2948

(0.0209) (0.0203)
Education×10−1 -0.0576 -0.0424

(0.0370) (0.0408)
Married 0.0808 0.0773 0.1036

(0.0223) (0.0181) (0.0251)
Household size -0.0522 -0.0555 -0.0599

(0.0078) (0.0060) (0.0085)
Active sport 0.0466 0.0061 -0.0102

(0.0193) (0.0126) (0.0142)
Good health -0.6109 -0.5014 -0.4300

(0.0190) (0.0118) (0.0128)
Bad health 0.8131 0.6225 0.5661

(0.0225) (0.0122) (0.0129)
Social assistance 0.0861 0.0405 0.0176

(0.0444) (0.0264) (0.0289)
Log(income) 0.0931 0.0174 -0.0166

(0.0229) (0.0160) (0.0192)
Year = 1996 0.0012 -0.0142 -0.0102

(0.0268) (0.0111) (0.0112)
Year = 1997 -0.0302 -0.0503 -0.0403

(0.0269) (0.0114) (0.0115)
Year = 1998 -0.1048 -0.1062 -0.0844

(0.0268) (0.0119) (0.0120)
Year = 1999 -0.0987 -0.1068 -0.0793

(0.0273) (0.0123) (0.0125)

Log likelihood -86566.18 -70176.7 -42738.86
Observations 32837 32837 29084

Source: GSOEP, own calculations. Model in addition includes three quarterly dummies and
indicators of employment status. Standard errors in parentheses (pooled model with robust
standard errors).
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Table 3. Model Selectiona

Log-Likelihood Parameter SICa Sb

Poisson -86,566.18 22 173,361.14 7.16
Unobserved heterogeneity:
Negative binomial -64,611.55 23 129,462.28 13.97
Poisson-Log-Normal -64,202.78 23 128,644.74 14.15
Hurdle models:
Hurdle negative binomialc -64,252.16 46 128,982.68 14.13
Probit-Poisson-log-normal -63,871.90 45 128,211.78 14.30
Finite mixture model:
2-components negative binomial -64,020.05 47 128,528.87 14.23
Multi episodes model:
Poisson-logarithmic -64,246.58 44 128,950.73 14.13

Notes:
a SIC = −2 ln L + K ln N
b S = exp(ln L/N)× 100
c Both hurdle and positive part are specified using the type 2 negative binomial probability
function.
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Table 4. Probit-Poisson-log-normal model

Probit (0/1+) Truncated Poisson-
log-normal (1+)

Age ×10−1 0.2734 -0.1100
(0.0559) (0.0557)

Age2 ×10−3 -0.3538 0.1458
(0.0688) (0.0675)

Male 0.4027 -0.1228
(0.0170) (0.0166)

Education×10−1 -0.1609 -0.1406
(0.0330) (0.0342)

Married -0.1394 0.0555
(0.0188) (0.0185)

Household size 0.0344 -0.0404
(0.0061) (0.0061)

Active sport -0.1429 0.0094
(0.0173) (0.0174)

Good health 0.4586 -0.4750
(0.0174) (0.0176)

Bad health -0.5720 0.6652
(0.0288) (0.0195)

Social assistance -0.0457 0.1279
(0.0413) (0.0413)

Log(income) -0.1293 0.0351
(0.0203) (0.0195)

Year = 1996 -0.0671 -0.0098
(0.0233) (0.0231)

Year = 1997 -0.0017 -0.0191
(0.0233) (0.0228)

Year = 1998 0.0595 -0.0450
(0.0230) (0.0237)

Year = 1999 -0.0092 -0.0746
(0.0236) (0.0229)

σ2 0.8015
(0.0066)

Log-Likelihood -19524.36 -44347.54
Observations 32837 21365

Model in addition includes three quarterly dummies and indicators of employment status.
Standard errors in parentheses
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Table 5. Evaluation of the reform effect

∆%(96,98)
Poisson model -9.9
Negative binomial -8.9
Poisson-log-normal -10.4

Two-components negative binomial
Group 1 (p1 = 0.663, µ1 = 1.59) -12.9
Group 2 (p2 = 0.337, µ2 = 3.01) -4.9
Total -10.2

Probit-Poisson-log-normal
Hurdle P (Y > 0) -6.7
Positives E(Y |Y > 0) -2.6
Total -9.1

Poisson-logarithmic(multi episodes)
Spells -10.2
Referrals +1.3
Total -9.1
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Appendix: The Data Set

The data are extracted from the German Socio-Economic Panel, 1995-1999. I use obser-
vations on men and women aged 20-60 from Sample A, i.e., persons associated with non-
Guestworker households in the original sample for West Germany. Privately insured indi-
viduals (about 6 percent of the sample) are excluded from the analysis. Accounting for
observations with missing values on any of the dependent or independent variables, the final
sample comprises 32837 observations.

Definition of Variables

Doctor consultations is the self-reported number of visits to a doctor during the three months
prior to the interview.

Male is an indicator variable taking the value of one if the individual is male.

Education is educational levels, measured in years of schooling.

Married is an indicator variable taking the value of one if the individual is married.

Householdsize is the number of persons living in the household.

Active sport is an indicator variable taking the value of one if the individual participates in
sports at least once a week.

Good health is an indicator variable taking the value of one if the individual classifies its own
health as either “very good” or “good”.

Bad health is an indicator variable taking the value of one if the individual classifies its own
health as either “very bad” or “bad” (“fair” is the omitted reference category).

Fulltime employed is an indicator variable taking the value of one if the individual is in
fulltime employment at the time of the interview.

Parttime employed is an indicator variable taking the value of one if the individual is in
parttime employment at the time of the interview.

Unemployed is an indicator variable taking the value of one if the individual is in unemployed
at the time of the interview.

Log(income) is the logarithmic household equivalent income, where the OECD scale has
been applied (weight of one for the first person, 0.7 for the second person, and 0.5 for each
additional person). Income is expressed in 1995 values using the CPI deflator published by
the Sachverständigenrat (2000).
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