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Abstract

Recent advances in the econometric modelling of count data have often been based on the

generalized method of moments (GMM). However, the two-step GMM procedure may perform

poorly in small samples, and several empirical likelihood-based estimators have been suggested

alternatively. In this paper I discuss empirical likelihood (EL) estimation for count data models

with endogenous regressors. I carefully distinguish between parametric and semi-parametric

methods and analyze the properties of the EL estimator by means of a Monte Carlo experiment.

I apply the proposed method to estimate the effect of women’s schooling on fertility.
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1 Introduction

Count data models arise in many economic fields including health economics, demographic studies,

labor economics, or industrial organization. Models for count data incorporate the special feature of

the dependent variable being a nonnegative integer, or count. Examples are the number of doctor

visits (Pohlmeier and Ulrich, 1995), the number of children born to women (Winkelmann and

Zimmermann, 1995), the number of days a worker is absent from his job (Delgado and Kniesner,

1997), or the number of patents (Hausman, Hall and Griliches, 1984).

A serious problem occurring frequently in microeconomic applications is that of endogenous ex-

planatory variables. This can be due to omitted variables, errors-in-variables, or more generally

due to simultaneity, leading to inconsistency of parameter estimates obtained by standard methods.

Within count data models endogeneity can be captured by additive or multiplicative errors in the

mean function. Grogger (1990), Mullahy (1997), and Windmeijer and Santos Silva (1997)

discussed nonlinear instrumental variables, or generalized method of moments (GMM) to estimate

regression parameters consistently.

Recent work concerning the properties of GMM in small samples or with increasing degree of

over-identification emphasizes the poor performance of the two step GMM procedure. Several alter-

native estimators were proposed, for example the continuous updating estimator (CUE) of Hansen,

Heaton and Yaron (1996), the empirical likelihood (EL) estimator of Owen (1988), Qin and

Lawless (1994) and Imbens (1997), and the exponential tilting (ET) estimator of Kitamura and

Stutzer (1997) and Imbens, Spady and Johnson (1998). All of these estimators can be subsumed

in the class of generalized empirical likelihood (GEL) estimators (Smith, 1997) and asymptotic

equality of GEL and GMM was shown. Further studies of Newey and Smith (2000, 2004) and

Imbens and Spady (2001) examined the higher order properties of GEL and GMM estimators and

evidenced the relative advantage of EL compared to GMM and other GEL estimators in terms of

smaller bias and higher order efficiency.

In this paper I discuss empirical likelihood estimation for count data models with endogenous

regressors. I choose the empirical likelihood estimator due to its preferable properties and derive

its first order conditions. I carefully distinguish between parametric and semi-parametric methods

and analyze the properties of the estimator by means of a Monte Carlo experiment. As an empirical

illustration of the proposed estimator I re-evaluate a study of Sander (1992) who analyzes the

effect of women’s schooling on fertility in the United States. Fertility is measured by the number of

children ever born to a woman, thus the dependent variable is a count. Women’s schooling might be
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endogenously determined because of non-zero correlation with unobservable traits. Sander (1992)

applies instrumental variables in a linear model, whereas Wooldridge (1997) tests in a Poisson

model. In addition to that I estimate the model with GMM and EL, and compare the different

methods.

The outline of the paper is as follows. Preliminaries are laid out in Section 2. Section 3 considers

empirical likelihood estimation. Section 4 compares EL with GMM and maximum likelihood. Section

5 gives results of a Monte Carlo study and Section 6 applies EL to estimate the effect of women’s

schooling on fertility. Section 7 concludes.

2 Preliminaries

Econometric Modeling of Count Data

Let yi, i = 1, . . . , n denote an independently distributed, nonnegative integer-valued variable with

conditional mean specified as

E[yi|xi] = µi(β) = exp(xi
′β), (1)

where xi is a k-dimensional vector of explanatory variables and β is a k-vector of unknown pa-

rameters.1 A fully parametric assumption like the conditional distribution yi|xi ∼ Poisson(µi(β))

allows for straightforward application of maximum likelihood methods. In the particular example of

a Poisson process the maximum likelihood (ML) estimator of β, namely β̂ML, solves the first order

condition
∑

i xi(yi − µi(β)) = 0. From standard maximum likelihood theory it follows that β̂ML is

consistent and
√

n(β̂ML − β) converges in distribution to a normal with mean zero and estimated

variance n{
∑

i µi(β̂ML) xixi
′}−1, where µi(β̂ML) = exp(xi

′β̂ML).

The standard Poisson model can be misspecified for several reasons. For example the assumption

of equidispersion – the equality of mean and variance – is frequently violated in applied work and

more general distributions are developed to cover features like over- or underdispersion.2 However,

Gourieroux, Monfort and Trognon (1984) showed that Poisson estimates are still consistent

as long as the conditional mean is properly specified. Correct standard errors can be obtained by

the estimated variance of the pseudo maximum likelihood (PML) estimator β̂PML (= β̂ML), which
1For a discussion of count data models in respect of theory and practical applications see Winkelmann (2003).
2Examples are the negative binomial (negbin) and the logarithmic distribution, or mixture distributions, again see

Winkelmann (2003) for further details.
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can be calculated by V̂ (β̂PML) =(
n∑

i=1

µi(β̂PML) xixi
′

)−1( n∑
i=1

(
yi − µi(β̂PML)

)2
xixi

′

)(
n∑

i=1

µi(β̂PML) xixi
′

)−1

, (2)

where µi(β̂PML) = exp(xi
′β̂PML) = exp(xi

′β̂ML).

Generalized Method of Moments

Since the seminal article of Hansen (1982) generalized method of moments (GMM) has become

a well-established estimation technique in applied and theoretical econometrics. GMM provides a

general framework for dealing with moment conditions avoiding strong distributional assumptions.

The specification of a conditional mean in (1) defines implicitly a conditional moment restriction

E[ui|xi] = 0, where ui is a regression error with ui = yi − µi(β). The law of iterated expectations

proves that k unconditional moment restrictions can be constructed as

E[xi(yi − µi(β))] = 0. (3)

The GMM estimator β̂GMM minimizes the weighted squared distance of sample and population

moments, algebraically

β̂GMM = arg min
β

(
1
n

n∑
i=1

xi(yi − µi(β))

)′

W

(
1
n

n∑
i=1

xi(yi − µi(β))

)
, (4)

where W is weighting matrix. Since (3) is an exactly determined equation system, the GMM first

order conditions are unaffected by the choice of W and identical to the ML first order conditions,

hence β̂GMM = β̂ML. Under mild regularity conditions one can show the consistency and asymptotic

normality of the GMM estimator.3 The efficient GMM estimator can be obtained for the appropriate

choice of weights which is W = V [
∑

i xi(yi − µi(β))]. If the weighting matrix W is estimated by

n{
∑

i(yi − µi(β̂GMM ))2xixi
′}−1, the variance of β̂GMM is equal to that of β̂PML.

Endogenous Regressors

As mentioned above the consistency of ML and PML estimation crucially depends on the as-

sumption of valid moment conditions, i.e. E[yi|xi] = µi(β) holds. In other words, a misspecified

mean function leads to inconsistency of β̂ML and β̂PML. The problem of endogeneity can be seen

as one example in which the moment condition fails. Recent contributions on endogenous regressors
3For details see Gourieroux and Monfort (1995: Ch. 9.5).
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within count data models (Windmeijer and Santos Silva, 1997; Mullahy, 1997) consider two

alternative approaches: (1) endogeneity with additive errors and (2) endogeneity with multiplicative

errors.

The case of additive errors leads to a conditional mean function of the form

E[yi|xi, ξi] = exp(xi
′β) + ξi, (5)

where endogeneity is present if E[ξi|xi] 6= 0 and I assume the existence of a q-dimensional vector of

instruments zi (q ≥ k) such that E[ξi|zi] = 0. Again by the law of iterated expectations unconditional

moment restrictions are

E[zi(yi − µi(β))] = 0, (6)

which can be estimated by GMM replacing the moment functions xi(yi−µi(β)) in (4) by the functions

zi(yi−µi(β)).4 A more intuitive approach to deal with endogenous regressors is to treat unobservable

factors εi and regressors xi symmetrically and to specify a mean function with multiplicative errors

as

E[yi|xi, εi] = exp(xi
′β + εi) = µi(β) νi, (7)

where νi = exp(εi). The conditional expectation with respect to xi is E[yi|xi] = µi(β)E[νi|xi] and

endogeneity is present if E[νi|xi] 6= 1. In this case I assume that instruments zi are available such

that E[νi|zi] = 1 and conditional moment restrictions are given by E[νi − 1|zi] = 0. The law of

iterated expectations shows that

E

[
zi

(
yi − µi(β)

µi(β)

)]
= E[zi(exp(−xi

′β)yi − 1)] = E [zi(νi − 1)] = 0. (8)

Windmeijer and Santos Silva (1997) emphasized that a set of instruments zi cannot be orthogonal

to ξi (the additive case) and νi − 1 (the multiplicative case) at the same time since yi − µi(β) and

µi(β) are correlated. In this paper I concentrate on endogeneity with multiplicative errors, although

all results are easily extended to the additive case.

The moment conditions in (8) can be estimated by GMM as presented in the preceding paragraph.

An interesting case arises when the number of instruments q exceeds the number of regressors k (the

over-determined case), and one can apply a two step GMM procedure to estimate the parameters β

in (8). The efficient estimator β̂GMM2 is the argument β that minimizes the objective function(
1
n

n∑
i=1

zi

(
yi − µi(β)

µi(β)

))′

Ṽ −1

(
1
n

n∑
i=1

zi

(
yi − µi(β)

µi(β)

))
, (9)

4Nonlinear instrumental variable (NLIV) estimation in count data models is discussed in Grogger (1990).
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where Ṽ −1 = n−1
∑

i{(yi − µi(β̃))/µi(β̃)}2zizi
′ are the optimal weights with µi(β̃) = exp(xi

′β̃), and

β̃ is a first step GMM estimator using any weighting matrix W , e.g. the q-dimensional identity

matrix. Under mild regularity conditions β̂GMM2 is consistent and the stabilizing transformation
√

n(β̂GMM2 − β) is asymptotically normal with mean zero and estimated variance
(

1
n

n∑
i=1

zi yi xi
′

µi(β̂GMM2)

)′
 1

n

n∑
i=1

(
yi − µi(β̂GMM2)

µi(β̂GMM2)

)2

zizi
′

−1(
1
n

n∑
i=1

zi yi xi
′

µi(β̂GMM2)

)
−1

, (10)

where µi(β̂GMM2) = exp(xi
′β̂GMM2).

3 Empirical Likelihood Estimation

Based upon the work of Owen (1988, 1991, 2001) and Qin and Lawless (1994, 1995) I now develop

the empirical likelihood (EL) estimator of β for the conditional mean specification (1) taking into

account that xi may be endogenous in a multiplicative sense, thus considering unconditional moment

restrictions (8).

Let pi denote the unknown probability assigned to the sample outcome (yi, xi, zi) of one observa-

tion i with 0 ≤ pi ≤ 1 ∀i and impose a normalization
∑

i pi = 1. Furthermore, let p = (p1, . . . , pn)′

denote the n-dimensional vector of probabilities. Then a nonparametric likelihood estimator of p is

obtained from maximizing a nonparametric log-likelihood function,

max
p

n−1
n∑

i=1

ln pi s.t.
n∑

i=1

pi = 1. (11)

Without further restrictions optimal probability weights in (11) are given by pi = n−1, the empirical

density function. To incorporate special features of the data generating process impose empirical

moments as additional restrictions. From (8), a q-dimensional vector of empirical moment conditions

can be specified as
n∑

i=1

pizi

(
yi − µi(β)

µi(β)

)
= 0. (12)

Note the difference between sample moments, where each observation is weighted by n−1, and the

empirical moments in (12), where each observation is weighted by pi. The optimization problem in

(11) using the additional restrictions in (12) can be rewritten as

max
p

n−1
n∑

i=1

ln pi s.t.
n∑

i=1

pizi

(
yi − µi(β)

µi(β)

)
= 0,

n∑
i=1

pi = 1, (13)
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which implies the optimality conditions

pi(β) =
1

n
[
1− λ(β)′zi

(
yi−µi(β)

µi(β)

)] and (14)

λ(β) = argλ

 n∑
i=1

 zi

(
yi−µi(β)

µi(β)

)
n
[
1− λ(β)′zi

(
yi−µi(β)

µi(β)

)]
 = 0

 , (15)

where λ(β) is a q-dimensional vector of Lagrangean multipliers with respect to the empirical moment

restrictions. Plugging (14) and (15) into the objective function in (13) yields an empirical log-

likelihood function,

lnLEL(β) = − ln(n)− n−1
n∑

i=1

ln
[
1− λ(β)′zi

(
yi − µi(β)

µi(β)

)]
. (16)

The maximum of (16) is the value of β, namely the empirical likelihood estimator β̂EL, that simul-

taneously solves

n∑
i=1

 −xi
yi zi

′λ(β̂EL)

µi(β̂EL)

n
[
1− λ(β̂EL)

′
zi

(
yi−µi(β̂EL)

µi(β̂EL)

)]
 = 0 (17)

n∑
i=1

 zi

(
yi−µi(β̂EL)

µi(β̂EL)

)
n
[
1− λ(β̂EL)′zi

(
yi−µi(β̂EL)

µi(β̂EL)

)]
 = 0, (18)

where (18) follows directly from the optimality condition (15). Since (17) and (18) build up a highly

non-linear equation system, numerical methods have to be applied to obtain the value of β̂EL.

Under similar regularity conditions as in the GMM framework Qin and Lawless (1994) showed

the consistency of the empirical likelihood estimator and proved the asymptotic normality of the

stabilizing transformation
√

n(β̂EL − β) with mean zero and estimated variance{(
n∑

i=1

pi(β̂EL)
zi yi xi

′

µi(β̂EL)

)′

×

 n∑
i=1

pi(β̂EL)

(
yi − µi(β̂EL)

µi(β̂EL)

)2

zizi
′

−1(
n∑

i=1

pi(β̂EL)
zi yi xi

′

µi(β̂EL)

)}−1

, (19)

where pi(β̂EL) is given by (14) evaluated at β̂EL. Note that the terms in (19) are estimated by

probability weights obtained from an empirical likelihood optimization whereas the terms in (10) are

estimated by probability weights n−1. One important feature of EL and efficient GMM is, relating to

the work of Chamberlain (1987), that both estimators reach the semiparametric efficiency bound.
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4 Interpretation of Empirical Likelihood Estimates

Comparing the First Order Conditions of GMM and EL

In the spirit of Newey and Smith (2004) and to get a deeper understanding of generalized

method of moments and empirical likelihood estimation in the count data framework, I compare the

first order conditions of both estimators. The optimization in (9) gives the first order conditions of

the two step GMM estimator, algebraically(
n∑

i=1

1
n

zi yi xi
′

µi(β̂GMM2)

)′
 n∑

i=1

1
n

(
yi − µi(β̃)

µi(β̃)

)2

zizi
′

−1(
1
n

n∑
i=1

zi

(
yi − µi(β̂GMM2)

µi(β̂GMM2)

))
= 0, (20)

where β̃ is the first round estimator. In the context of empirical likelihood estimation one can show

that conditions (17) and (18) imply first order conditions5(
n∑

i=1

pi(β̂EL)
zi yi xi

′

µi(β̂EL)

)′

×

 n∑
i=1

pi(β̂EL)

(
yi − µi(β̂EL)

µi(β̂EL)

)2

zizi
′

−1(
1
n

n∑
i=1

zi

(
yi − µi(β̂EL)

µi(β̂EL)

))
= 0. (21)

Equations (20) and (21) show the main difference between GMM and EL. Each estimator sets

a linear combination of sample moments equal to zero, where the sample moments are given by

the right brackets in both equations. GMM and EL differ in the way of calculating these linear

combinations. GMM uses sample moments for the Jacobian matrix (left brackets) and the matrix

of second moments (middle brackets). Furthermore, the weighting matrix depends on a first step

(inefficient) estimator. In contrast to that EL uses empirical moments for the Jacobian term and

the matrix of second moments, whereby the probability weights pi are chosen efficiently.

Relationship to Maximum Likelihood Estimation

In a standard Poisson model the conditional probability function f(yi|xi;β) is given by

f(yi|xi;β) =
exp(− exp(x′iβ)) exp(yix

′
iβ)

yi!
, (22)

which follows directly from the conditional mean specification (1) and the distributional assumption

yi|xi ∼ Poisson(µi(β)). The (parametric) sample likelihood function can be written as L(β; y, x) =∏n
i=1 f(yi|xi;β) and the maximum likelihood estimator chooses the value of β such that the observed

sample is most likely. Once estimates of β are obtained, the parametric specification allows for a
5For a general derivation and interpretation see Newey and Smith (2004).
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discussion of marginal probability effects, i.e. the effect of a small ceteris paribus increase in one

regressor on the probability of observing a certain outcome of y. Furthermore, one can calculate

probabilities of outcomes that are not observed in the sample.

Within empirical likelihood estimation parameters pi of a joint probability mass function
∏n

i=1 pi

are defined, and this function is maximized with respect to constraints defined in terms of empirical

moment conditions. The probability mass function can be interpreted as a multinomial distribution

with n parameters pi, one parameter for each data outcome (yi, xi, zi). Moreover, one can think of

constrained maximum likelihood estimation of p with constraints represented by empirical moments

and a natural normalization for probability functions,
∑

i pi = 1. As noted in the previous section

probability weights n−1 are optimal if empirical moments are absent or moment restrictions (8) dis-

play an exactly determined equation system. The latter follows since optimal Lagrangean multipliers

are zero in this case. If the number of instruments is larger than the number of parameters (the

over-determined case), λ(β̂EL) differs from zero and pi(β̂EL) differs from n−1. Information theoretic

approaches show that pi(β̂EL) is chosen as close as possible to n−1 taking into account that the

empirical moments have to be fulfilled (see Kitamura and Stutzer (1997) and Imbens, Spady

and Johnson (1998)).

Two important conclusions can be drawn from the preceding discussion. First, we cannot compare

probabilities pi with a parametrically specified conditional probability function like the Poisson, or

any other count data distribution. A conditional probability function f(yi|xi;β) gives the probability

of observing one of the values yi = 0, 1, 2, . . . given a vector of explanatory variables xi, whereas pi

gives the sample probability of one observation. Second, empirical likelihood estimates of pi do not

allow for calculation of marginal probability effects or prediction of probabilities of outcomes that

are not observed in the sample.

5 Monte Carlo Evidence

In this section I illustrate the theoretical advantage of empirical likelihood estimation by means

of a Monte Carlo experiment. I choose different sample sizes (n = 100, 500, and 1000), and for

each sample size 1000 vectors of y are drawn from a Poisson distribution with parameter µi =

exp(0.5−x1i−0.5 x̃2i+εi), hence the true parameter vector is β0 = (0.5 −1 −0.5)′. The regressors x1i

and x̃2i are independently and uniformly distributed on the interval [0, 1], the unobservable factors εi

are independent drawings from a normal distribution with mean zero and variance 0.7. I assume that
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x̃2i cannot be observed but x2i = x̃2i + vi, where vi is a classical measurement error independently

and normally distributed with mean zero and variance equal to one. To complete the story I generate

different instruments zi with properties corr(zi, x2i) = ρ and corr(zi, εi) = 0 which allows us to vary

the number and quality of instruments by choosing different values of ρ.

There is a large number of possible combinations of instruments and sample sizes and there-

fore I picked out just a few. Precisely, for each sample size I define weakly identified setups (3

instruments with ρ = 0.1, 0.1, 0.5), partial identified setups (3 instruments with ρ = 0.5, 0.5, 0.5 or

ρ = 0.1, 0.5, 0.9), and strong identified setups (3 instruments with ρ = 0.9, 0.9, 0.9). For n = 500

observations and partial identification I increase the number of instruments to five and ten (all in-

struments with ρ = 0.5 or evenly distributed between 0.1 and 0.9). All setups are estimated by

GMM and EL, and for the sake of completeness the PML estimator is calculated for all sample

sizes. As mentioned above numerical methods have to be applied to obtain the EL estimator. I use

the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm as it is implemented in the constrained

optmum procedure of Gauss6 and maximize the empirical likelihood function in (16) with respect

to β and λ, and subject to the constraint in (15). PML and GMM estimators are calculated by the

same algorithm, maximizing the parametric likelihood function of a Poisson model and minimizing

the GMM objective function in (4) respectively. The results are reported in Tables 1 to 4.

— Table 1 about here —

Table 1 gives the results for a sample size of n = 100 observations. For each estimator I calculate

the mean and standard deviation of the beta’s (standard deviation in parentheses). As we would

expect, the PML estimate of β1 is unaffected by the measurement error, but the estimate of β2 is

biased and inconsistent. As in the linear model with classical errors-in-variables we have a regression

to the mean, i.e. the parameter estimate is biased towards zero. GMM and EL estimates of β1 do

not differ considerably from PML estimates, but estimates of β2 are closer to the true value of −0.5.

Moreover, GMM and EL estimates are substantially different. The bias of EL is less than the bias

of GMM, particularly in the case of weakly correlated instruments, and standard deviations are

smaller.

— Tables 2 and 3 about here —
6Aptech Systems, Inc., http://www.aptech.com .
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Tables 2 and 3 give the results for the same set of instruments but two different sample sizes,

n = 500 and n = 1000. EL as well as GMM estimates of β2 get closer to the true value and standard

deviations of all estimates decrease. Only in the case of 500 observations and weak identification EL

is notably closer to −0.5 than GMM. With 1000 observations differences between both estimators

disappear independently of varying the quality of instruments. I emphasize that both estimators

perform much better in the case of strong identification, or in other words the presence of weak

instruments causes both estimators to be more biased. Another important result is that throughout

different setups EL has smaller standard deviations than GMM.

— Table 4 about here —

Table 4 shows the results for partial identification with five or ten instruments and a sample

size of 500 observations (only 500 replications are calculated). Five instruments with ρ = 0.5 cause

the GMM estimator to be more biased compared to the case of three instruments, whereas the EL

estimator performs approximately the same. With correlations between 0.1 and 0.9 discrepancies

between EL and GMM disappear. Ten instruments with ρ = 0.5 again cause the GMM estimate of

β2 to be more biased than EL. Parameter estimates are similar to the case of five instruments, but

standard deviations are larger. Evenly distributed correlations between 0.1 and 0.9 show approxi-

mately the same estimates as with five instruments, but standard deviations of the GMM estimator

increase substantially. These results support theoretical findings of Newey and Smith (2004) and

Imbens and Spady (2001) that with increasing number of instruments and decreasing number of

observations GMM may be more biased than EL.

So far, I have only considered the standard deviation of the beta’s and not the mean of the

estimated standard errors based on the asymptotic distribution. Hence, I distinguish between robust

point estimates and inference. In fact I calculated both values, and with a sample size of 1000

observations they are approximately the same. But with sample sizes of 100 or 500 observations

the two values differ substantially, in particular in the case of weak identification. Therefore, the

classical normal asymptotic approximations to the finite-sample distributions are very poor. This

result is not surprising since recent work concerning the properties of GMM and EL estimators under

weak identification shows nonstandard distributions (see e.g. Stock, Wright and Yogo, 2002,

and Guggenberger and Smith, 2003). Inference can be improved by using bootstrapped standard

errors or by applying methods proposed in the above-quoted literature, such as tests based on the

objective function (16).
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6 An Empirical Example

As an illustration of empirical likelihood estimation in count data models with endogeneity, I consider

a data set similar to that used by Sander (1992) and Wooldridge (1997) taken from the National

Opinion Research Center’s General Social Survey. I used the same independent and pooled cross-

sections across even years from 1972 to 1984 as in Wooldridge (1997) with the number of siblings

(sibs) as additional variable.7 The variables of interest are the number of children ever born to women

(childs) as dependent count variable, and years of schooling (schooling) as explanatory variable to

determine the effect of women’s schooling on fertility. Additional controls are quadratic age (age,

agesq), a dummy for race (black), region at age sixteen (relative to south), type of residence at age

sixteen (relative to big cities), and time dummies for the even years from 1974 to 1984. As discussed

in Sander (1992) schooling might be endogenous in the fertility regression, e.g. due to unobservable

traits correlated with schooling.

In the sample of 992 women between the ages of 35 and 54 the average number of children is

2.7 (standard deviation 1.6) and on average a woman attends 12.9 (2.6) years of schooling. First

of all assuming schooling is exogenous I estimate a linear model and a Poisson model with robust

standard errors. The results are reported in Table 5, columns OLS and PML. The coefficient on

schooling in the linear model is -0.11 with a t-statistic of -5.70, thus the estimate is highly significant.

Economically, given one more year of schooling the expected reduction in the number of children

is 0.11. In other words, attending a university for 5 years reduces the expected number of children

about a half compared to a woman who does not attend a university. Note that interpretation in

the linear model is somewhat misleading because negative predicted outcomes for the dependent

count variable are possible. In the Poisson model the estimated coefficient on schooling is -0.0428

with a standard error of 0.0086 which implies that the coefficient is statistically significant and

each additional year of schooling reduces the number of children about 4.3 percent. Multiplying

the coefficient on schooling in the Poisson model by the average number of children shows that the

implied marginal effect at the sample means is about the same as in the linear model.

— Table 5 about here —
7Sander (1992) uses data from 1985 to 1991. The data set is available from the data archive of Wooldridge’s

(2003) textbook for even years 1972 to 1984 (without sibs). The whole data set collected for almost all years between

1972 and 1994 is freely available online at http://www.soc.qc.edu/QC Software/GSS.html. Comprehensive information

on the General Social Survey including the data set for almost all years between 1972 and 2002 can be found online at

http://www.norc.uchicago.edu/projects/gensoc.asp and http://www.icpsr.umich.edu:8090/GSS/homepage.htm.
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For possibly endogenous schooling I use father’s and mother’s schooling, and the number of siblings

as instruments. A simple OLS regression of schooling on the instruments controlling for the other

variables shows highly significant instruments. Wooldridge (1997) tests for endogeneity by adding

the residuals from this regression to his original Poisson model and computing the corresponding

t-statistic. Within a linear model Sander (1992) tests for endogeneity with a simple Hausman test.

I replicate these tests and conclude that schooling is not highly endogenous in the fertility equation,

a result similar to those of Sander (1992) and Wooldridge (1997).

Nevertheless, I apply instrumental variable estimation of the fertility equation using two stage

least squares (2SLS), GMM, and EL. The results are reported also in Table 5. Estimating the linear

model with 2SLS yields a highly significant coefficient on schooling of -0.1661 (0.0400). Thus the

effect of schooling is more negative compared to OLS meaning that schooling and unobservable

traits are positively correlated. The GMM estimate of the effect of schooling is -0.0669 (0.0168), the

EL estimate is -0.0740 (0.0166). Both are significant on the one percent level, EL implying a 7.40

percent decrease in the number of children given one more year of schooling (GMM: 6.69 percent). Of

particular interest in the context of instrumental variable estimation and over-determined restrictions

is the validity of moments. In the GMM framework this can be tested based on the value of the

objective function (9) evaluated at the GMM estimator (the J-Test). Within empirical likelihood

estimation a test can be based on a likelihood ratio statistic, namely the scaled by 2n difference of the

log-likelihood function (16) evaluated at pi = n−1 and pi(β̂EL) respectively. Both test statistics are

asymptotically chi-squared distributed under the null hypothesis of valid moment equations, with a

critical value of χ2
(2),0.95 = 5.99 at 5 percent level of significance. The values of the over-identifying

test statistics are reported in Table 5 (GMM: 0.39, EL: 0.67), thus both tests cannot reject the null

of valid moment restrictions.

7 Conclusions

In this paper I developed the empirical likelihood estimator for a count data model with standard

mean specification taking into account that regressors might be endogenously determined. I consid-

ered the case of multiplicative errors in the mean and derived the first order conditions for the EL

estimator. Based on Monte Carlo simulations I showed that empirical likelihood can improve upon

GMM, particularly in situations when samples are small and instruments are weak. In such cases

the use of EL is therefore strongly recommended.
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Empirical likelihood as applied here estimates a count data model without assuming a conditional

distribution function, and only specifying the mean function. These weak assumptions allow for

robust estimation of the parameters of interest and results of the Monte Carlo experiment support

this argument. On the other hand, we forego the possibility of predicting (out of sample) probabilities

and calculating marginal probability effects.

In an empirical application, the EL method was used to estimate the effect of women’s schooling

on fertility based on 992 pooled cross sectional observations of the General Social Survey for even

years from 1972 to 1984. To account for potential endogeneity of schooling, parent’s schooling and

the number of siblings were used as instruments. The EL point estimate of the schooling effect was

substantially below the standard Poisson estimate. However, the null hypothesis of no endogeneity

could not be rejected.
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Table 1: Monte Carlo results part 1 (n = 100, 3 instruments for x2)

PML GMM EL

ρ = 0.5, 0.5, 0.5

β0 0.5964 (0.2830) 0.8614 (0.7278) 0.8526 (0.4237)

β1 -0.9820 (0.5083) -0.9845 (0.7684) -0.9690 (0.5512)

β2 -0.0406 (0.1353) -0.1960 (0.7319) -0.3235 (0.4947)

ρ = 0.1, 0.5, 0.9

β0 0.9868 (1.2391) 0.7908 (0.2675)

β1 -1.0510 (1.0880) -0.9507 (0.3710)

β2 -0.2790 (0.7600) -0.3409 (0.2937)

ρ = 0.9, 0.9, 0.9

β0 0.8972 (0.7687) 0.8502 (0.3793)

β1 -1.0616 (0.7844) -0.9965 (0.4797)

β2 -0.2584 (0.6170) -0.3312 (0.3986)

ρ = 0.1, 0.1, 0.5

β0 0.8850 (0.8265) 0.7700 (0.2171)

β1 -1.0337 (1.0563) -0.9797 (0.3080)

β2 -0.1050 (0.6959) -0.2860 (0.2976)

first value: mean of β’s, second value (in parentheses): standard deviation of β’s; 1000 replications

true model: E[yi|xi] = exp(0.5− x1i − 0.5 x̃2i + εi), εi ∼ N(0, 0.7)
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Table 2: Monte Carlo results part 2 (n = 500, 3 instruments for x2)

PML GMM EL

ρ = 0.5, 0.5, 0.5

β0 0.6235 (0.1260) 0.9405 (0.3473) 0.9198 (0.2095)

β1 -1.0021 (0.2216) -1.0086 (0.2713) -0.9878 (0.2317)

β2 -0.0403 (0.0628) -0.4389 (0.2826) -0.4438 (0.2106)

ρ = 0.1, 0.5, 0.9

β0 0.9186 (0.4016) 0.8893 (0.2046)

β1 -1.0285 (0.2713) -1.0064 (0.2260)

β2 -0.3817 (0.3454) -0.3928 (0.2344)

ρ = 0.9, 0.9, 0.9

β0 0.9500 (0.3413) 0.9077 (0.1863)

β1 -0.9967 (0.3215) -0.9787 (0.2347)

β2 -0.4561 (0.2884) -0.4409 (0.1837)

ρ = 0.1, 0.1, 0.5

β0 0.8938 (0.4709) 0.8361 (0.2231)

β1 -1.0004 (0.2915) -0.9616 (0.2650)

β2 -0.3106 (0.4290) -0.3834 (0.2498)

first value: mean of β’s, second value (in parentheses): standard deviation of β’s; 1000 replications

true model: E[yi|xi] = exp(0.5− x1i − 0.5 x̃2i + εi), εi ∼ N(0, 0.7)
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Table 3: Monte Carlo results part 3 (n = 1000, 3 instruments for x2)

PML GMM EL

ρ = 0.5, 0.5, 0.5

β0 0.6239 (0.0899) 0.9473 (0.3278) 0.9021 (0.1546)

β1 -0.9963 (0.1620) -0.9959 (0.2045) -0.9791 (0.1749)

β2 -0.0376 (0.0432) -0.4450 (0.2703) -0.4359 (0.1736)

ρ = 0.1, 0.5, 0.9

β0 0.9524 (0.2543) 0.8753 (0.1398)

β1 -1.0004 (0.1833) -0.9739 (0.1727)

β2 -0.4616 (0.2062) -0.4285 (0.1475)

ρ = 0.9, 0.9, 0.9

β0 0.9656 (0.2448) 0.9239 (0.1399)

β1 -1.0038 (0.1867) -0.9808 (0.1587)

β2 -0.4799 (0.2002) -0.4563 (0.1354)

ρ = 0.1, 0.1, 0.5

β0 0.9174 (0.3330) 0.8517 (0.1557)

β1 -0.9985 (0.2050) -0.9649 (0.1885)

β2 -0.3807 (0.3377) -0.3975 (0.1806)

first value: mean of β’s, second value (in parentheses): standard deviation of β’s; 1000 replications

true model: E[yi|xi] = exp(0.5− x1i − 0.5 x̃2i + εi), εi ∼ N(0, 0.7)
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Table 4: Monte Carlo results part 4 (n = 500, 5 and 10 instruments for x2)

PML GMM EL

n = 500 ρ = 0.5, 0.5, 0.5, 0.5, 0.5

β0 0.6235 (0.1260) 1.0647 (0.2933) 0.8685 (0.1781)

β1 -1.0021 (0.2216) -0.8783 (0.2055) -0.9897 (0.2106)

β2 -0.0403 (0.0628) -0.2947 (0.2259) -0.4627 (0.1864)

ρ = 0.1, 0.3, 0.5, 0.7, 0.9

β0 0.7703 (0.1397) 0.8506 (0.1086)

β1 -1.0261 (0.5246) -0.9551 (0.1481)

β2 -0.4067 (0.1648) -0.4065 (0.1224)

ρ = 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

β0 0.7599 (0.1524) 0.8395 (0.1785)

β1 -1.0219 (0.3242) -0.9944 (0.2084)

β2 -0.2794 (0.4579) -0.4262 (0.2947)

ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9

β0 0.9349 (0.3076) 0.8305 (0.1209)

β1 -0.9975 (0.4601) -0.9662 (0.1527)

β2 -0.4219 (0.3042) -0.3902 (0.1420)

first value: mean of β’s, second value (in parentheses): standard deviation of β’s; 500 replications

true model: E[yi|xi] = exp(0.5− x1i − 0.5 x̃2i + εi), εi ∼ N(0, 0.7)
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Table 5: Estimates of children ever born to women age 35 to 54

3 instruments within 2SLS, GMM, and EL (standard errors in parentheses)

OLS 2SLS PML GMM EL

schooling -0.1133 ∗∗∗ -0.1661 ∗∗∗ -0.0428 ∗∗∗ -0.0669 ∗∗∗ -0.0740 ∗∗∗

(0.0199) (0.0400) (0.0086) (0.0168) (0.0166)

age 0.5592 ∗∗∗ 0.5391 ∗∗∗ 0.2180 ∗∗∗ 0.2465 ∗∗∗ 0.2300 ∗∗∗

(0.1469) (0.1480) (0.0567) (0.0592) (0.0579)

age2 -0.0061 ∗∗∗ -0.0059 ∗∗∗ -0.0024 ∗∗∗ -0.0027 ∗∗∗ -0.0024 ∗∗∗

(0.0017) (0.0017) (0.0006) (0.0007) (0.0007)

black 0.9450 ∗∗∗ 0.9334 ∗∗∗ 0.3147 ∗∗∗ 0.3029 ∗∗∗ 0.3012 ∗∗∗

(0.1985) (0.1994) (0.0678) (0.0726) (0.0712)

west -0.1095 -0.1047 -0.0373 -0.0325 -0.0320
(0.2033) (0.2041) (0.0719) (0.0770) (0.0755)

north central 0.1132 0.1171 0.0461 0.0599 0.0581
(0.1584) (0.1590) (0.0548) (0.0580) (0.0568)

east -0.2846 ∗∗ -0.2863 ∗∗ -0.1048 ∗∗ -0.0841 ∗ -0.0766 ∗

(0.1543) (0.1549) (0.0539) (0.0576) (0.0568)

farm -0.2156 ∗ -0.2667 ∗∗ -0.078 ∗ -0.1167 ∗∗ -0.1135 ∗∗

(0.1550) (0.1592) (0.0581) (0.0636) (0.0622)

other rural -0.0157 -0.0897 -0.0021 0.0010 -0.0004
(0.1885) (0.1953) (0.0694) (0.0738) (0.0738)

town 0.0792 0.0650 0.0288 0.0270 0.0239
(0.1277) (0.1285) (0.0496) (0.0516) (0.0507)

smallcity 0.2411 ∗ 0.2386 ∗ 0.0898 ∗ 0.0909 ∗ 0.0781
(0.1653) (0.1659) (0.0583) (0.0633) (0.0626)

intercept -8.2404 ∗∗∗ -7.0952 ∗∗ -3.3272 ∗∗∗ -3.7096 ∗∗∗ -3.3308 ∗∗∗

(3.2394) (3.3369) (1.2573) (1.3234) (1.2960)

time dummies: yes

number of observations: 992

instruments for schooling: father’s schooling, mother’s schooling, siblings

over-identifying test statistic: 0.3860 0.6717

significance levels : ∗ 10% ∗∗ 5% ∗∗∗ 1%
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