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1 Introduction

Since Hamilton’s (1989) seminal paper, models of Markovian regime

switching have been widely applied in modeling all sorts of data. The

classical estimation method originally proposed by Hamilton involves a

two-step procedure in which model parameters are estimated first (usu-

ally by maximum likelihood), and inference on hidden states is subse-

quently drawn holding these parameter estimates fixed.

Advances in computational capacity have more recently spurred a

number of papers employing alternative, Bayesian estimation methods

based on Monte-Carlo techniques.1 In contrast to classical methods,

these methods permit simultaneous inference on both the model param-

eters and hidden states.

To our knowledge, despite the rising popularity of these newer tech-

niques, little attempt has been made thus far to explicitly pinpoint their

advantage over classical methods to an applied audience. In this note,

we provide a very simple example to demonstrate the intuitive appeal of

using the Bayesian approach.

2 A Brief Sketch of the Abstract Issue

The general problem considered has the following structure: We are con-

cerned with a series of observations YT = (y1, . . . , yT ), drawn from a

distribution p(YT |θ,ST ), where θ denotes a vector of unknown model

parameters, and ST = (S1, . . . , ST ) denotes a sequence of unobserved

states. Ultimately, given a realization of YT , we are interested in infer-

ring θ and ST .

The classical approach to this involves a two-step procedure: In a

first step, we obtain a point estimate θ̂ of θ (typically the maximum-

likelihood estimate). Then, in a second step, we conduct inference on the

state sequence given the data and the parameter estimate by calculating

p(ST |YT , θ̂).

The Bayesian approach, on the other hand, treats θ and ST as

random variables and relies on calculating their posterior distribution

p(ST ,θ|YT ). State inference is subsequently drawn based on the margi-

nal posterior distribution of states, p(ST |YT ).

1See Kim and Nelson (1999b) for an introduction to these techniques; recent ap-
plications of these techniques include, for instance, Kim and Nelson (1999a), Kim and
Nelson (2001), Gärtner and Halbheer (2005), Smith and Summers (2005).
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In a Bayesian framework, the measures resulting from the two ap-

proaches can be related by

p(ST |YT ) =
∫

θ
p(ST |YT ,θ)p(θ|YT )dθ, (1)

where p(θ|YT ) denotes the posterior distribution of θ. Thus, differences

in the two measures will ensue whenever (i) the researcher deems param-

eter constellations other than the point estimate θ̂ likely, and (ii) such

alternative parameter constellations are associated with a different evo-

lution of the state sequence.

Obviously, correctly interpreted, neither approach is ‘wrong’. How-

ever, the point to be made by the example below is that the classical

approach is much less amenable to a meaningful inference on states be-

cause any such inference is conditional on the parameter estimate θ.

As a case in point, Markovian regime switching models have been

used extensively to detect booms and recessions in macroeconomic series

(cf. Kim and Nelson, 1999a). In such a context, one is eventually inter-

ested in knowing the state the economy was in at a certain point in time,

or whether the economy moved from one state to another. Conditioning

such inference on the parameter estimates is then economically mean-

ingful only to the extent that the researcher is very confident of these

estimates.

In the next section, we illustrate this point by means of a highly styl-

ized example which permits an intuitive grasp of the difference between

conditional and unconditional state inference. In Section 4, we highlight

the practical relevance of this point by showing that, also in less con-

trived examples, the conditional and unconditional measures can differ

substantially.

3 A Simple Example

Consider a series of three observations, YT = (y1, y2, y3), with

y1 = 10, y2 = 15, and y3 = 20. (2)

Assume that the observations represent independent draws from a mix-

ture of two normal distributions: Each yt is drawn independently from

either N(µ1, σ) or from N(µ2, σ), where µ2 > µ1. Which of these two

distributions each observation t is drawn from is determined by the un-

observed state St ∈ {1, 2}, so yt ∼ N(µSt , σ). We will assume that this

state sequence ST = (S1, S2, S3) itself represents an independent draw

3



9
10

11
12

13
mu_1

17

18

19

20

2

mu_
10

11
12mu_1

0
0.25

0.5

µ1

9
10

11
12

13
14

µ2

21
20
19
18

17
16

9
10

11
12

13
mu_1

17

18

19

20

2

mu_

0

10
11

12mu_1

0
0.5

1

µ1

9
10

11
12

13
14

µ2

21
20
19
18

17
16

(a) Likelihood Function
over µ (Normalized).

(b) Pr(S2 = 1|YT ,µ).

Figure 1: The Likelihood Function and Parameter-Contingent State
Inference in the Example.

from {1, 2}, each with equal probability. Moreover, to keep things sim-

ple, we shall assume it known that σ = 0.5.

By simple intuition, there are essentially two combinations of param-

eters and states by which this model may have produced the observations

in (2):

Scenario A: St = {1, 2, 2}, µ1 ≈ 10, µ2 ≈ 17.5;

Scenario B: St = {1, 1, 2}, µ1 ≈ 12.5, µ2 ≈ 20.

That is, it is rather clear that the lowest observation y1 was drawn in

state 1, whereas the highest observation y3 was drawn in state 2.2 What

is unclear is how y2 was produced: it may have been drawn from the

same distribution as either y1 or y3, leading to different ‘best guesses’ of

µ1 and µ2. Moreover, given that y2 lies exactly half-way in between the

other two observations, either scenario appears equally likely. Intuitively,

therefore, inference should put equal probability on y2 having been drawn

from either distribution. That is, one would not expect the data to lead

to any conclusion regarding the state in period two.

This intuition is confirmed by the likelihood function produced by

the data over µ = (µ1, µ2), which is shown in Figure 1(a) (normalized

to integrate to 1). It displays two pronounced humps, one peaking at

(10, 17.5), the other at (12.5, 20). Moreover, the parameter-contingent

2This insight makes use of the standard deviation σ being known and ‘rather low’.
More precisely, the lower σ, the more likely it is that the data were produced by the
described two parameter and state constellations rather than any other.

4



Bayesian Classical

t Pr(St = 2|YT ) Pr(St = 2|YT ,µML)

1 0.0 0.0
2 0.5 1.0
3 1.0 1.0

Table 1: State Inference in the Bayesian and in the Classical Setting.

state probabilities depicted in panel (b) for t = 2 show that the first

of these humps is associated with a very high likelihood of S2 = 1, the

second with a very high likelihood of S2 = 2 (the corresponding plots of

Pr(St = 1|YT ,µ) for t = 1 and t = 3 are essentially level at 1.0 and 0.0,

respectively, over the depicted parameter range).3 Thus, the humps in

the likelihood function correspond to our two ‘scenarios’ above.

Next, let us see how classical and Bayesian estimation methods meet

up with the above intuition. Under the Bayesian approach, the data YT

are combined with a prior p(µ,ST ) to produce the joint posterior distri-

bution p(µ,ST |YT ). Using an uninformative prior, the marginal poste-

rior density for the parameters, p(µ|YT ), is proportional to the likelihood

surface shown in Figure 1. Moreover, Bayesian inference produces the

marginal probabilities on states, Pr(St|YT ), shown in the center column

of Table 1. Note that these figures are perfectly in line with our above

intuition.4

Next, consider the classical approach. As illustrated in Figure 1, the

likelihood surface displays two peaks at equal height, either of which

presents a valid maximum-likelihood parameter estimate. For specificity,

let us use µML = (µML
1 , µML

2 ) = (10, 17.5) as the ML-estimate. State

inference in the classical setting is then based upon the probability of a

certain state given both the data and µML, Pr(St = 2|YT ,µML). These

figures are reported in the rightmost column of Table 1. For t = 2, they

differ markedly from both our above intuition and the figures obtained

from the Bayesian analysis.

3Letting fN(µ,σ)(x) denote the density function of a N(µ, σ)-distribution, the like-
lihood function in the example is simply L(µ,YT ) = Π3

t=1

[
1
2 · fN(µ1,σ)(yt) + 1

2 ·
fN(µ2,σ)(yt)

]
,whereas parameter-contingent state inference is obtained as Pr(St =

i|YT ,µ) = fN(µi,σ)(yt)
/ ∑2

j=1 fN(µj ,σ)(yt).
4The derivation of Pr(St = 2|YT ) can be illustrated graphically in Figure 1: By

equation (1), Pr(St = 2|YT ) is obtained by integrating up Pr(St = 2|YT ,µ), shown
in Figure 1(b), over the parameter space, with weights given by the (normalized)
likelihood function shown in Figure 1(b).
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Figure 2: State Inference on US Log Merger Series 1973:I–1995:III under
the Classical and the Bayesian Approach.

To appreciate this difference, note that the precise message of the

conditional probability obtained from the classical analysis is the follow-

ing: “Given that we believe µML to be the true parameter values, the

state in period 2 is almost certain to have been 2.” The example shows,

however, that such a conditioning on parameter estimates can produce

misleading conclusions regarding state inference: While the conditional

probabilities obtained from the classical method suggest the clear iden-

tification of a state switch between observation 1 and 2, both intuition

and the unconditional Bayesian estimates suggest that such a switch is

equally likely not to have occurred.5

5In fact, the classical method would clearly negate a state-switch between the first
two observations had we picked the other possible ML-parameter-estimate, (15, 17.5).
The fundamental difficulty in interpreting the results from the classical method, how-
ever, is not immediately connected to the ambiguity in the ML-estimate: If observa-
tion y2 were higher by an arbitrarily small amount, the ambiguity in the ML-estimate
would disappear, whereas the interpretational caveat concerning conditional inference
would obviously remain.

6



4 Conditional and Unconditional State In-

ference in Practice

To make the difference between the Bayesian and the classical approach

particularly transparent, the above example was constructed so as to

make it particularly easy to single out two relevant scenarios (i.e., likely

combinations of states and parameter values). However, also in less con-

trived situations, the two measures of state inference above can differ

substantially.

To illustrate this point, Figure 2 reports results from Gärtner and

Halbheer (2005), where a (more elaborate) two-state Markov model is

used to model the quarterly series of US mergers and acquisitions—the

aim being the detection of periods of high merger activity (i.e., ‘merger

waves’).

Results of both the Bayesian and the classical state inference are dis-

played in panel (b), showing a significant impact of conditioning state

inference on the ML-parameter estimate θML. Intuitively, the difference

again stems from uncertainty concerning the parameters: Conditioning

state inference on the point-estimate θML neglects other likely parameter

constellations which, apparently, are associated with alternate assess-

ments of the state sequence. Given the richer data and parameter space,

however, these alternative ‘scenarios’ (more technically: points of high

density in the joint distribution of parameters and states) are of course

no longer as easily identifiable.

5 Conclusion

By means of a simple example, we have illustrated the appeal of using

Bayesian methods for inference on hidden states in models of Markovian

state switching. By conditioning on a particular parameter estimate,

state-probabilities obtained from classical methods can be misleading

as regards inference on hidden states. The example illustrates that for

these purposes, it is much more natural to employ the unconditional state

probabilities which obtain from Bayesian methods.

7



References
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