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Abstract

This study compares the performance of Prospect Theory versus Stochastic Expected Utility

Theory at fitting data on decision making under risk. Both theories incorporate well-known devi-

ations from Expected Utility Maximization such as the Allais paradox or the fourfold pattern of

risk attitudes. Stochastic Expected Utility Theory parsimoniously extends the standard microe-

conomic model, whereas Prospect Theory, the benchmark for aggregate choice so far, is based

on psychological findings. First, the two theories’ fit to representative choice is assessed for two

experimental data sets, one Swiss and one Chinese. In a second step, finite mixture regressions

reveal a consistent mix of two different behavioral types suggesting that researchers may take

individual heterogeneity into account in order to avoid aggregation bias.
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1 Introduction

Many economic decisions, especially the most important ones, such as choosing the optimal career,

asset allocation, or partner, involve risky consequences. Even though a sound understanding of

how individuals deal with uncertain outcomes is crucial for characterizing various markets’ outcomes

there is, so far, no single best model for individual decision making under risk. To explain the

St. Petersburg Paradox, Daniel Bernoulli hypothesized in 1738 that individuals maximize their

expected utility, which is computed as the sum of utilities of a lottery’s outcomes weighted by their

corresponding probabilities of realization (Bernoulli, 1954). Expected utility became a cornerstone of

standard microeconomic theory as it applies to any regular preference relation defined over a finite

number of states (von Neumann and Morgenstern, 1947). However, there is abundant empirical

evidence indicating that expected utility theory in its standard form is violated (Starmer, 2000).

For example, individuals tend to be risk seeking for small-probability gains and large-probability

losses, whereas they are risk averse for large-probability gains and small-probability losses. This

fourfold pattern of risk attitudes (Tversky and Kahneman, 1992), where individuals switch between

risk averse and risk seeking behavior depending on the outcomes’ probabilities, is incompatible with

expected utility maximization. In light of these descriptive shortcomings of expected utility theory

a plethora of alternative decision models have been developed (Starmer, 2000).

The most prominent alternative is Prospect Theory (PT) (Kahneman and Tversky, 1979), which

offers a psychologically plausible account of expected utility theory violations, based on the notion

of diminishing sensitivity. In PT individuals evaluate prospects with respect to a specific reference

point which defines monetary outcomes as gains or as losses. The value functions over gains and

over losses are both characterized by declining rates of marginal value and, thus, result in a typical

S-shaped curve. As certainty and impossibility constitute obvious reference points as well, any

deviations from probabilities of either zero or one are perceived at a diminishing rate of sensitivity,

which leads to characteristically inversely S-shaped probability weighting functions. Such a tendency

to overweight small and underweight large probabilities, in conjunction with the sign-dependent

valuation of monetary outcomes, directly implies a fourfold pattern of risk attitudes. Consequently,

PT and its rank-dependent extension to Cumulative Prospect Theory (Tversky and Kahneman, 1992)

turn out as some of the best fitting models for aggregate choices (Hey and Orme, 1994; Camerer

and Ho, 1994). Besides its descriptive qualities, recent studies in neuroeconomics and evolutionary

psychology indicate that PT even seems to have a neuronal representation in the frontal regions of
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the brain (Trepel et al., 2005; Camerer et al., 2005), the origins of which may be explained by optimal

foraging theory (McDermott et al., 2008). To achieve a good fit, however, parametric models based

on PT tend to require rather complex specifications and large data sets, which makes estimation at

the individual level often difficult. Moreover, PT is silent on the determinants of the reference point

for evaluating monetary outcomes.

Another problem common to all deterministic decision models, such as expected utility theory

and PT, is their inability to describe preference instability. Various studies report subjects to reverse

their preferences in roughly 25%-45% of the cases when facing the same decisions for a second time

(Camerer, 1989; Starmer and Sudgen, 1989; Wu, 1994; Hey and Orme, 1994). Since such a behavior

contradicts deterministic choice, researchers often introduce some kind of ad-hoc stochastic error to

make their models operational. Blavatskyy (2007), on the other hand, develops a more elaborate

structure for the error term which constitutes Stochastic Expected Utility Theory’s (SEUT) key

feature.

In SEUT, individuals behave as expected utility maximizers but make errors when computing

a lottery’s expected utility. By assumption, the value attributed to any given lottery can never

exceed the value of its highest payoff, nor can it fall below the value of its lowest payoff. Since

a lottery’s most extreme payoffs represent obvious bounds for its valuation, such an assumption

not only seems plausible but also is supported by findings of Gneezy et al. (2006) who attribute

observed certainty equivalents lying outside the lottery’s range solely to errors individuals make when

converting payoffs from one denomination to another. Consequently, SEUT implies a truncated

error term with a support confined to the lottery’s range. Such a truncated error distribution,

which is generally asymmetric, directly incorporates the fourfold pattern of risk attitudes, as a

lottery’s expected utility is likely to get overvalued (undervalued) when it is close to the utility of

the lowest (highest) outcome. Since the fourfold pattern in risk taking behavior results from the

error structure, SEUT is only a descriptive model and does not explain why empirical violations

of expected utility theory come about. Nevertheless, the model remains fairly parsimonious and,

as a moderate extension of expected utility theory, fits well into standard microeconomic theory.

When comparing SEUT and PT in various well-known data sets, Blavatskyy (2007) attests SEUT

a superior performance at describing representative choices. However, these comparisons ignore

potential individual heterogeneity and are based on fairly homogeneous subject pools which all stem

from developed Western countries.

Furthermore, there is vast heterogeneity in individual risk taking behavior (Hey and Orme, 1994)
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rendering purely representative agent approaches questionable, especially when markets are imperfect

and there is risk of aggregation bias (Fehr and Tyran, 2005). With the advent of finite mixture models

in the field (Stahl and Wilson, 1995; El-Gamal and Grether, 1995; Houser et al., 2004), experimental

economists are now equipped with a convenient econometric tool to deal with latent individual

heterogeneity in a parsimonious way. These models allow identifying and characterizing different

behavioral types in the population and provide an endogenous individual classification into these

types. Independent studies by Conte et al. (2007) and Bruhin et al. (2007) apply finite mixture

specifications to a total of four different experimental data sets on risk taking behavior and find

roughly 20% of the participants to behave essentially risk neutrally, whereas the majority of about

80% of the participants clearly exhibit the fourfold pattern of risk attitudes.

For two quite diverse populations, this study first examines PT’s and SEUT’s performance in

fitting aggregate choices. It uses data from two different experiments which were conducted in Zurich,

Switzerland as well as in Beijing, People’s Republic of China. In both experiments, which have the

same basic design in common, the certainty equivalents of a large number of binary lotteries, framed

either as gains or losses, are elicited for a total of 271 participants. In contrast to Blavatskyy (2007),

the results on the aggregate level are mixed since, depending on the data set, either PT or SEUT

superiorly describe a representative agent’s choices. In fact, an inspection of the individual mean

squared errors reveals that SEUT provides a superior fit compared to PT for only roughly one third

of the participants in both data sets. Such stable shares call representative agent approaches into

question and suggest a mix of theories, as applied in the second part of the analysis.

To control for individual heterogeneity, a finite mixture model estimates the behavioral param-

eters of two types, one PT the other SEUT, while it endogenously determines which one of the

two theories best describes a specific subject’s choices. In both data sets the resulting individual

classifications are remarkably clean and robust: With low measures of entropy, about 25% of the

subjects are assigned to the SEUT group whereas PT delivers a superior fit for about 75% of the

subjects. Moreover, the subjects identified as SEUT types value outcomes linearly and, with only a

few exceptions, coincide with the subjects reported to behave risk neutrally by Bruhin et al. (2007),

i.e. subjects identified as expected utility types. The participants assigned to the other group seem

to distort probabilities by a pattern which is best explained by PT, rather than SEUT.

Thus, previous results on individual heterogeneity that, on average, about one forth of the pop-

ulation seems to behave almost risk neutrally, whereas the majority shows a pronounced fourfold

pattern in risk taking behavior are confirmed. Furthermore, even when SEUT fits into general mi-
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croeconomic theory and describes aggregate choices quite well but not without exceptions, the rigid

patterns it imposes on deviations from expected utility seems to prevent it from outperforming PT

in a finite mixture context. Consequently, as soon as individual heterogeneity is taken into account,

SEUT neither outperforms PT nor does it deliver any additional qualitative insights.

The paper is structured as follows: Section 2 discusses the experimental setup and the procedure

applied to elicit the certainty equivalents. Section 3 explains the two theories’ formulations as

econometric models for representative choice before it introduces the finite mixture specification.

Some estimation issues typical to finite mixture models are also briefly addressed in this part. In

section 4 the results of the representative choice models as well as the finite mixture model are

interpreted. Finally, 5 sums up and concludes.

2 Experimental Design

The study uses experimental data from Bruhin et al. (2007). The experiments were conducted in

Zurich 2006 and in Beijing 2005. The participants for the Zurich experiment were randomly selected

from the subject pool of the Institute for Empirical Research in Economics consisting of students

from various fields of the University of Zurich and the Swiss Federal Institute of Technology Zurich.

The Chinese subjects were recruited by flier among the students of Peking University and Tsinhua

University. As both experiments have the same basic design in common, this section presents the

Zurich experiment in detail and discusses in which respects the experimental design in Beijing 2005

deviates. Table 1 summarizes the most important differences between the two experiments.

Table 1: Differences in Experimental Design

Zurich 06 Beijing 05

Number of:

Subjects 118 153

Lotteries 40 28

Observations 4,669 4,281

Procedure computerized paper and pencil

The experiments both aimed at eliciting participants’ certainty equivalents for 28 to 40 two-

outcome lotteries. One half of the lotteries were framed as choices between risky and certain gains

4



(“gain domain”), the other half as options between risky and certain losses (“loss domain”). For

each lottery in the loss domain the participants received an initial monetary endowment to cover

their potential losses.

The certainty equivalents were elicited by applying the following choice menu (Kahneman et al.,

1991): For any given lottery under consideration the decision sheet contained two options, the

lottery and a certain outcome which varied in 20 equal steps from the lottery’s maximum payoff to

the lottery’s minimum payoff, as shown in Figure 1. For each row the subjects had to reveal whether

they prefer the lottery or the actual certain payoff. The certainty equivalent was calculated as the

arithmetic mean between the smallest certain amount preferred to the lottery and the subsequent

certain amount, were the lottery was first chosen. In the example depicted in Figure 1 the subject’s

choices are indicated by the small circles implying a certainty equivalent of 13.5 Swiss Francs.1

The experiment conducted in Zurich used a computerized procedure programmed in the software

z-Tree (Fischbacher, 2007) whereas in Beijing the decision sheets were printed out on paper. In both

experiments the lotteries appeared in random order.

Figure 1: Design of the Decision Sheet

Decision situation:
22

Guaranteed payoff amounting to:
1 A o B
2 A o B
3 A o B
4 A o B
5 A o B
6 A o B
7 A o B
8 A o B
9 A o B

10 A o B
11 A o B
12 A o B
13 A o B
14 A o B
15 A o B
16 A o B
17 A o B
18 A o B
19 A o B
20 A o B 1

15
14
13
12

OK

20
19

Option B

7
6
5
4
3
2

Option A Your Choice:

A profit of CHF 20 with 

probability 75%             

and a profit of CHF 0 with 

probability 25% 

11
10
9
8

18
17
16

28

1One Swiss Franc equals about one U.S. dollars.
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Table 2: Gain Lotteries (x1, p;x2)

Zurich 06 Beijing 05

p x1 x2 p x1 x2 p x1 x2 p x1 x2

0.05 40 0 0.50 20 0 0.05 15 4 0.75 20 7

0.05 40 10 0.50 20 10 0.05 20 7 0.90 7 4

0.05 50 20 0.50 40 10 0.05 55 20 0.95 15 4

0.05 150 50 0.50 50 20 0.10 7 4 0.95 20 7

0.10 20 10 0.75 40 10 0.25 15 4

0.10 150 0 0.75 50 20 0.25 20 7

0.25 40 0 0.90 20 10 0.50 7 4

0.25 40 10 0.95 40 10 0.50 15 4

0.25 50 20 0.95 50 0 0.50 20 7

0.50 10 0 0.95 50 20 0.75 15 4

Outcomes are denominated in Swiss Francs (Zurich 2006) and Chinese Yuan
(Beijing 2005), respectively.

Payoffs per subject averaged out at approximately 31 Swiss Francs and 20 Chinese Yuan, con-

siderably more than a local student assistant’s hourly compensation, plus a show up fee of 10 Swiss

Francs and 20 Chinese Yuan, respectively, thus generating salient incentives2. In Zurich the lotter-

ies’ outcomes, x1 and x2, varied between zero to 150 Swiss francs. The payoffs in the Beijing 2005

experiment were comparable in terms of typical local stundent’s compensation and ranged from zero

to 55 Chinese Yuan. Probabilities p of the lotteries’ higher gain or loss x1 varied between 5% and

95%. Table 2 shows the two experiments’ lotteries in the gain domain.

After reading the instructions, the subjects had to correctly calculate the payoffs for two hypo-

thetical choices before they were permitted to start working on the experimental decisions.3 In the

computerized experiments, there were two trial rounds to familiarize the subjects with the procedure.

At the end of the experiment, one row number of one decision sheet was randomly selected for each

subject, and the subject’s choice in that row determined her payment. The subjects were paid in

private afterward. They could work at their own speed, the vast majority of them needed less than

an hour to complete the experiment.
2One Chinese Yuan equals about 0.14 U.S. dollars.
3The instructions are available on request.
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3 Econometric Models

This section covers the econometric models’ formulation and some associated estimation issues. The

first two models for fitting aggregate choices are based on a single decision model, SEUT or PT,

respectively. The third specification, a finite mixture model, combines these two approaches by

simultaneously estimating the behavioral parameters of a group of SEUT as well as PT types. As

such a model endogenously determines which of the two decision models best describes a specific

subject’s choices, it provides an estimate of their respective shares among the population. This

procedure yields a basis for deciding whether to take potential heterogeneity into account or to

assume a representative decision maker.

3.1 Prospect Theory for Representative Choice

In PT a subject i ∈ {1, . . . , N} values any given lottery Gg = (x1g, pg;x2g), g ∈ {1, . . . , G}, where

|x1g| > |x2g|, by

v (Gg) = v (x1g)w (pg) + v (x2g) (1− w (pg)) . (1)

The sign-dependent function v(x) denotes how monetary outcomes, x, are valued, whereas w(p)

assigns a subjective weight to every outcome probability, p. The gambles certainty equivalent ĉeg

can be written as

ĉeg = v−1 [v (x1g)w (pg) + v (x2g) (1− w (pg))] . (2)

To make the model operational both the value function, v(x), and the probability weights, w(p),

need to be specified by assuming a functional form. A natural candidate for v(x) is a sign-dependent

power function

v(x) =

 xα if x ≥ 0

−(−x)β otherwise,
(3)

which has a convenient interpretation and turned out to be the best compromise between parsimony

and goodness of fit in the context of PT (Stott, 2006). The probability weighting curve, w(p), is

modeled as two-parameter function as proposed by Goldstein and Einhorn (1987) and Lattimore

et al. (1992):

w(p) =
δpγ

δpγ + (1− p)γ
, δ ≥ 0, γ ≥ 0. (4)
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This specification has not only proven to account well for individual heterogeneity (Wu et al., 2004)

but also its parameters have a neat interpretation: The parameter γ largely governs the slope of the

curve, whereas the parameter δ largely governs its elevation. The smaller the value of γ, the more

strongly the probability weighting function deviates from linear weighting. The larger the value of

δ, the more elevated the curve, ceteris paribus. Linear weighting is characterized by γ = δ = 1. In a

sign-dependent model, the parameters may take on different values for gains and for losses.

As PT explains deterministic choice a stochastic error term needs to be assumed in order to

estimate the model’s parameters based on the elicited certainty equivalents, ceig. There could be

many different sources of error, such as carelessness, hurry or inattentiveness, resulting in wrong

answers. Thus, as suggested by Hey and Orme (1994), the model assumes an additive Fechner-type

error εig, such that ceig = ĉeg+εig. The Central Limit Theorem indicates that the errors are normally

distributed and simply add white noise. Furthermore, the model has to account for heteroskedasticity

in the error variance. For each lottery the subjects have to consider 20 certain outcomes, which are

equally spaced throughout the lottery’s range |x1g − x2g|. Since the observed certainty equivalents

ceig are calculated as the arithmetic mean of the smallest certain amount preferred to the lottery

and the subsequent certain amount the measurement error in the model’s dependent variable is

proportional to the lottery range. This yields the form σg = σ|x1g − x2g| for the standard deviation

of the error term distribution, where σ denotes an additional parameter to be estimated.

Given these assumptions on the distribution of the error term, the individual contribution to the

model’s likelihood can be expressed as

f (cei,G; θ) =
G∏
g=1

1
σg
φ

(
ceig − ĉeg

σg

)
, (5)

where φ denotes the density of the standard normal distribution. The vector of parameters, θ =

(α, β, γ′, δ′, σ)′ is estimated by maximizing the model’s likelihood given by the product of (5) over

all individuals.

3.2 Stochastic Expected Utility Theory for Representative Choice

In the standard microeconomic model with deterministic preferences a given lottery Gg is valued by

its expected utility, which implies the following certainty equivalent

ĉeg = u−1 [u (x1g) pg + u (x2g) (1− pg)] , (6)
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where u(x) represents a subjective utility function. A convenient parametric specification in terms

of interpretability and parsimony is, again, a power function, u(x) = |x|η, where η measures u(x)’s

curvature.

Figure 2: Distribution of ceig under SEUT (pg = 0.2, ξ = 0.4|x1g − x2g|, η = 1)

Loss Domain

ceig

D
en

si
ty

 o
f 

ce
ig

x1g E(ceig) cêg x2g

Gain Domain

ceig

D
en

si
ty

 o
f 

ce
ig

x2g cêg E(ceig) x1g

As a purely descriptive theory, SEUT does not aim at explaining the fundamentals underlying

such robust phenomena as the fourfold pattern. Hence, subjects do not explicitly distort probabilities,

but they are allowed to make random errors when computing the expected utility of a risky lottery.

However, as the lottery’s most extreme payoffs represent obvious bounds, SEUT assumes that a

lottery’s value cannot exceed the value of its highest outcome nor can it fall below the value of

its lowest outcome. Thus, instead of applying the standard Fechner model with symmetric and

unbounded errors, Blavatskyy (2007) suggests truncating the error term, ωig, at x1g − ĉeg and at

x2g − ĉeg, so that the certainty equivalent ceig = ĉeg +ωig is limited to lie within the lottery’s range,

x1g and x2g. As Figure 2 illustrates, ceig can only be symmetrically distributed if p = 0.5, and is the

more asymmetrically distributed the more p differs from 0.5. Consequently, for p 6= 0.5, the expected

error E(ωig) 6= 0, and ceig deviates from ĉeg with a higher probability towards the lottery’s center

than towards its bounds. So in the gain (loss) domain for p < 0.5, the realized certainty equivalent,

ceig, tends to be larger (smaller) than the value predicted by expected utility theory, ĉeg. A decision

maker behaving according to SEUT, therefore, still exhibits a specific fourfold pattern in her choices

which is driven by stochastic errors, even if she weights probabilities completely linearly.

Analogous to the assumed structure in the PT model, ωig has a (truncated) normal distribution
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and is affected by the same source of heteroskedasticity, i.e., its standard deviation is denoted by ξg =

ξ |x1g − x2g|, with an unknown parameter ξ. Under these assumptions, the individual contribution

to the model’s likelihood can be written as

h (cei,G;ψ) =
G∏
g=1

1
ξg
φ
(
ceig−ĉeg

ξg

)
∣∣∣Φ(x1−ĉeg

ξg

)
− Φ

(
x2−ĉeg

ξg

)∣∣∣ , (7)

where Φ denotes the standard normal’s cumulative distribution function. Taking the product over all

individuals and maximizing the resulting likelihood function yields the maximum likelihood estimates

of the model’s parameters ψ = (η, ξ)′.

3.3 Finite Mixture Model to Control for Heterogeneity

Since there is evidence for individual heterogeneity in risk taking behavior (Hey and Orme, 1994),

aggregating the data and estimating one single decision model veils potentially important behav-

ioral differences and may deliver misleading results. However, estimating all decision models under

consideration for each participant separately is highly inefficient and is often rendered impossible by

the limited amount of data available per individual. Furthermore, to draw meaningful conclusions,

the subjects would still need to be classified by some method into different groups, based on their

estimated behavioral parameters.

Thus, instead of operating at the individual level, the finite mixture model proposed here relaxes

the assumption of one single representative decision maker by introducing two behavioral types,

one PT the other SEUT. A priori an individual i’s group membership is unknown. Hence, her

contribution to the model’s likelihood consists of the two decision models’ individual likelihoods, (5)

and (7), weighted by the probability that she belongs to the respective type:

` (Ψ; cei,G) = πSEUT h (cei,G;ψ) + (1− πSEUT ) f (cei,G; θ) , (8)

where the vector Ψ = (η, α, β, γ′, δ′, ξ, σ, πSEUT )′ contains all the model’s parameters. Note that the

probability of being drawn from the SEUT group, πSEUT , equals the fraction of SEUT types among

the population and needs to be estimated too. After taking logs, the product over all individuals of

(8) represents the finite mixture model’s log likelihood

lnL (Ψ; ce,G) =
N∑
i=1

ln [πSEUT h (cei,G;ψ) + (1− πSEUT ) f (cei,G; θ)] . (9)

As any finite mixture model’s likelihood, (9) is highly nonlinear even after taking logs and the log

likelihood still contains products, πSEUT , cannot be estimated separately from the two types’ average
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parameters, ψ and θ, respectively. Moreover, (9) may be multimodal and unbounded (for more details

see McLachlan and Peel (2000) and Render and Walker (1984)), which renders direct maximum

likelihood estimation difficult. In order to cope with these problems effectively, the estimation routine,

programmed in the R environment (R Development Core Team, 2006), first applies the Expectation

Maximization (EM) algorithm (Dempster et al., 1977) before it switches to the much faster BFGS

algorithm.4 The EM algorithm iteratively proceeds in two steps, E and M. During the E-step, an

individual a posteriori probability of belonging to the SEUT-group, τi,SEUT , is computed given the

actual fit of the data, Ψ̂:

τi,SEUT =
h
(
cei,G; ψ̂

)
π̂SEUT h

(
cei,G; ψ̂

)
+ (1− π̂SEUT ) f

(
cei,G; θ̂

) (10)

In the following M-step, the model’s so called complete data log likelihood is maximized, where

τi,SEUT replaces unobserved individual group membership. This yields an analytical expression for

the relative group size’s update, π̂SEUT = 1/N
∑N

i=1 τi,SEUT , which is computed separately from

the model’s remaining parameter updates: θ̂ and ψ̂. Furthermore, after convergence is achieved, the

individual probabilities, τi,SEUT , obtained at the maximum likelihood estimate, not only provide a

way of endogenously assigning the subjects to either of the two types, but also, they allow to assess

how well the two groups are segregated. A clean segregation reflects good performance at capturing

individual heterogeneity, whereas relatively high levels of ambiguity in individual group assignment

may indicate overfitting, lack of identification, or misspecification.

4 Results

The first part of this section discusses the fourfold pattern in risk taking behavior which is found in

both data sets. As both theories, PT and SEUT, are able to describe this pattern their goodness of fit

for aggregate choices is assessed in a second part. The last part accounts for potential heterogeneity

and interprets the finite mixture regressions by inspecting the two type’s relative sizes and behavioral

parameters, as well as by assesssing the ambiguity in individual group assignment.

The data of both experiments clearly exhibit the fourfold pattern of risk attitudes, which violates

expected utility theory. In Figure 3, the bars represent the median value of the observed relative
4The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a Quasi-Newton method which allows solving uncon-

strained non-linear optimization problems (see for example Broyden (1970)). It is one of the standard hill-climbing

optimization routines implemented in the R environment as well as other statistical packages such as STATA.
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Figure 3: Observed Median Relative Risk Premia by p
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risk premia, RRP = (ev − ce)/|ev|, where ev denotes the lottery’s expected value, sorted by the

probability p that the most extreme payoff is realized. Thus, people are risk averse (RRP > 0) for

small-probability losses and large-probability gains, whereas they are risk seeking (RRP < 0) for

large-probability losses and small-probability gains.

4.1 Representative Choice

For both data sets, Tables 3 and 4 show the maximum likelihood estimates of the representative PT

and SEUT models, respectively. The standard errors, in parentheses, are based on the bootstrap

method with 2,000 replications (Efron and Tibshirani, 1993).

Table 3: Cumulative Prospect Theory Regressions

Parameter Estimates Zurich 06 Beijing 05

Gain Domain

α 0.910 0.451
(0.025) (0.115)

γ 0.455 0.293
(0.010) (0.009)

δ 0.867 1.316
(0.022) (0.083)

Loss Domain

β 1.123 1.202
(0.045) (0.127)

γ 0.490 0.352
(0.010) (0.009)

δ 1.040 0.887
(0.037) (0.163)

σ 0.146 0.163
(0.002) (0.002)

lnL 10,089 9,149

BIC -20,119 -18,239

Standard errors (in parentheses) are based on the bootstrap
method with 2,000 replications.
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In the case of PT, as depicted in Table 3, the estimated α and β are both close to unity for

the Swiss subjects indicating an almost linear value function. Hence, for gains as well as for losses,

the Swiss participants’ observed risk attitudes are mostly driven by nonlinear probability weighting:

With γ smaller than one and δ close to unity, the estimated probability weighting curve is inversely S-

shaped as typically found in other studies (Stott, 2006; Wu et al., 2004). The Chinese people, on the

other hand, value monetary gains at a declining rate of marginal utility (α = 0.451), while they weight

probabilities much more optimistically than their Swiss colleagues. The smaller value of γ = 0.293

makes them less sensitive to changes in probabilities, whereas the larger δ = 1.316 corresponds to a

generally more elevated probability weighting function. For losses, however, there is no substantial

cultural difference, as in both data sets the participants’ value functions are only slightly curved and

the probability weights are clearly inversely S-shaped. The estimates of σ correspond to an average

standard deviation of the error term lying between 14.6% and 16.3% of the lotteries’ ranges.

Table 4: Stochastic Expected Utility Regressions

Parameter Estimate Zurich 06 Beijing 05

η 0.952 0.947
(0.016) (0.059)

ξ 0.211 0.283
(0.004) (0.004)

lnL 10,094 8,796

BIC -20,171 -17,576

Standard errors (in parentheses) are based on the bootstrap
method with 2,000 replications.

The results for SEUT, on the other hand, are depicted in Table 4. The model’s only behavioral

parameter, η, is estimated to lie in the vicinity of one which implies an almost linear utility function

for the Swiss as well as the Chinese subjects. In SEUT, deviations from expected utility theory

are directly related to the model’s asymmetric error structure. So, the pronounced fourfold pattern

observed in the data immediately translates into relatively high estimates for the error’s standard

deviation, ξ.

Regardless of its more rigid specification, which requires five parameters fewer than PT, SEUT

achieves a better fit to the Zurich data even in terms of log likelihood. This is in line with recent
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findings by Blavatskyy (2007) who reports a good fit of SEUT to several data sets on aggregate choices

from different Western countries. In the Beijing data set, however, PT performs better, even when

being judged by the Bayesian Information Criterion (BIC), which penalizes its less parsimonious

specification (BICPT = −18, 239 vs. BICSEUT = −17, 576). As mentioned before and indicated

by the estimates in Table 3, the Chinese subjects judge risky prospects asymmetrically between the

gain and loss domain, which cannot be fitted by the model based on SEUT. This may be a reason

for SEUT’s inferior performance.

Moreover, since these mixed results on the aggregate level may reflect individual heterogeneity,

I assess the models’ goodness of fit based on the individual mean squared errors in relative risk

premia over all lotteries, MSEi = 1/G
∑G

g=1

(
R̂RP g −RRPig

)2
, which increases in the differences

between the predicted R̂RP g and the observed RRPig relative risk premia. Comparing the MSEi

between PT and SEUT indeed reveals some individual heterogeneity in the data: In Zurich and

Beijing the share of participants for which SEUT performs better, i.e. delivers smaller MSEi than

PT, amounts to 38% and 36%, respectively. Even though the relative overall performance of SEUT

seems to be superior for the Swiss and inferior for the Chinese data, the fraction of people for which

it leads to smaller MSEi is robust. By requiring only two parameters to be estimated SEUT is very

parsimonious, but the other side of the coin is that the pattern of deviations from expected utility

theory is rigidly determined by the shape of the truncated normal distribution and its standard

deviation (see Figure 2 for an illustration). So, its overall performance may react quite sensitively

to outliers, domain-specific behavioral asymmetry and the overall composition of the data sets.

4.2 Finite Mixture Model

The fact that in both data sets PT and SEUT seem to superiorly fit the subjects’ choices by a

ratio of about 6:4, suggests using a mix of both theories rather than estimating just one single

decision model. Indeed, the BIC reported in Table 5 consistently attributes a better performance

to the finite mixture regressions than to either of the two representative choice models. Examining

the posterior probabilities of individual group membership, τi,SEUT , allows to assess how well the

individual heterogeneity is captured by the assumption of two behavioral types. If the subjects are

cleanly segregated all the τi,SEUT are either close to zero, indicating members of the PT group,

or are close to one, indicating members of the SEUT group. The histograms in Figure 4 show

the distribution of these probabilities of individual group membership for the two estimated finite

mixture regressions. By exhibiting only two prominent spikes, one close to τi,SEUT = 0 the other
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Table 5: Finite Mixture Regressions

Parameter Estimates Zurich 06 Beijing 05

Share of SEUT Types: πSEUT 0.288 0.223
(0.096) (0.030)

η 0.974 0.974
(0.018) (0.056)

ξ 0.112 0.127
(0.059) (0.070)

Share of PT Types: 1− πSEUT 0.712 0.777
(0.096) (0.030)

Gain Domain

α 0.902 0.377
(0.035) (0.132)

γ 0.372 0.212
(0.027) (0.013)

δ 0.843 1.371
(0.033) (0.099)

Loss Domain

β 1.167 1.197
(0.075) (0.147)

γ 0.398 0.272
(0.028) (0.013)

δ 1.029 0.885
(0.059) (0.070)

σ 0.151 0.160
(0.033) (0.099)

lnL 10,603 9,636

BIC -21,122 -19,188

ANE 0.048 0.007

Number of Observations 4,669 4,281

Standard errors (in parentheses) are based on the bootstrap
method with 2,000 replications.
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close to τi,SEUT = 1, the histograms reveal graphically that individual group assignment is very clean

in both data sets. Another way of assessing the quality of individual group assignment is to look at

some measure of entropy which maps the ambiguity in τi,SEUT into a single number. For example,

the Average Normalized Entropy (El-Gamal and Grether, 1995) defined as

ANE = −1/N
N∑
i=1

τi,SEUT log2 (τi,SEUT ) + (1− τi,SEUT ) log2 (1− τi,SEUT ) (11)

is normalized to lie within [0, 1]. In the case of perfect individual group assignment all τi,SEUT equal

zero or one, implying ANE = 0. ANE = 1, on the other hand, reflects complete ambiguity, i.e. all

the τi,SEUT = 0.5, and a failure of classification. Table 5 reveals that the ANE only amounts to

0.7% and 4.8% of its maximum value, respectively. These low numbers of entropy, again, reflect the

remarkably good performance of the finite mixture model in dealing with individual heterogeneity by

cleanly classifying each subject either as a SEUT or a PT type. So, while staying fairly parsimonious

the finite mixture model consistently achieves a lower BIC and maps individual heterogeneity very

well. Hence for purely statistical reasons, it may be preferred over a representative agent approach.

Figure 4: Probability Distribution of Individual Group Membership

0.0 0.5 1.0

0.
0

0.
5

1.
0

Zurich 2006

τi,SEUT

R
el

at
iv

e 
Fr

eq
ue

nc
ie

s

0.0 0.5 1.0

0.
0

0.
5

1.
0

Beijing 2005

τi,SEUT

R
el

at
iv

e 
Fr

eq
ue

nc
ie

s

Whether the individual classification into a SEUT and PT group also bears economic meaning

can be assessed on the basis of the corresponding behavioral parameters, ψ and θ, and the mixing

proportion, πSEUT . And indeed, by looking at the estimates shown in Table 5, a consistent picture

emerges:

The SEUT types are estimated to constitute 28.8% and 22.3% of the population, respectively.
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Figure 5: Observed Median Relative Risk Premia by p and Type (Zurich 2006)
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Figure 6: Observed Median Relative Risk Premia by p and Type (Beijing 2005)
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Their underlying utility function u(x) is, on average, almost linear with an estimated η = 0.974. In

contrast to the SEUT model for representative choice, the estimates of the error’s standard deviation,

ξ, amount to only 11.2% and 12.7% of the lotteries’ ranges. The deviations from standard expected

utility theory are therefore much less pronounced than in the aggregate model. In conjunction with

the nearly linear utility function, this implies a behavior much closer to risk neutrality than predicted

by the previously discussed SEUT model for representative choice.

To separate the two groups, each subject i in the sample is labeled either as PT type (τi,SEUT <

0.5) or as SEUT type (τi,SEUT ≥ 0.5) after the estimation of the finite mixture model. After such a

separation by type, Figure 5 and 6 show the median observed relative risk premia sorted by p for the

Swiss and Chinese data, respectively. The observed relative risk premia of the participants classified

as SEUT types are indeed close to zero over p’s entire range, which reflects an almost risk neutral

behavior, as illustrated in the lower panels of Figure 5 and 6. Furthermore, according to Bruhin et al.

(2007), the shares of nearly risk neutral participants amount to 22.4% in Zurich 2006 and 20.1% in

Beijing 2005 when a mixture model of two different PT types is estimated, instead of assuming one

SEUT and one PT type. With the exception of only 8 and 3 subjects, respectively, the individual

classifications found here coincide with the ones reported by Bruhin et al. (2007). So, assuming two

behavioral types, one SEUT and the other PT, reproduces previous findings by Conte et al. (2007)

and Bruhin et al. (2007) that about one fourth of the individuals can, on average, essentially be

characterized as expected value maximizers.

Given the observed relative risk premia as shown in Figure 3, it comes at no surprise that

the majority of participants, labeled as PT types, exhibit a pronounced fourfold pattern of risk

attitudes, as depicted in the upper panels in Figures 5 and 6. In Zurich as well as Beijing the PT

types are estimated to consitute 77.7% and 71.2% of the population, respectively. Their behavioral

parameters are qualitatively equivalent to the ones estimated in the PT model for representative

choice: The Swiss value functions are only slightly curved (α = 0.902, β = 1.167) whereas, at least

for gains, Chinese marginal valuation changes at a steeper rate (α = 0.377). Analogous to the case

of representative choice, the estimates of γ and δ translate into a probability weighting function

exhibiting the characteristic inverse S-shape. And again, when considering small-probability gains,

the Chinese participants seem to be more optimistic, as their probability weights are more elevated

(δ = 1.316) and less sensitive to changes in p (γ = 0.293).

Thus, estimating a finite mixture model to account for individual heterogeneity instead of model-

ing representative choice does not only lead to a better fit to the data but also consistently identifies
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two distinct behavioral types with a neat economic interpretation: A minority of about 25% behave

in an almost risk neutral way, and a majority of about 75% exhibit strong probability distortions best

described by a sign-dependent model such as PT. Even though being well suited for describing rep-

resentative choice, in a finite mixture context SEUT does neither deliver any additional insights nor

does it simplify the model’s interpretation. In spite of the mixed results for aggregate choice, SEUT

is a tempting option if the researcher wants to mildly extend standard microeconomic theory and to

parsimoniously model a representative agent’s choices. But if markets are imperfect, she wants to

avoid aggregation bias and take individual heterogeneity into account (Fehr and Tyran, 2005) and,

therefore, may opt for a finite mixture specification where SEUT offers barely any advantages over

PT.

5 Conclusion

This study compared PT’s and SEUT’s performance at describing individual decision making under

risk in two experimental data sets, one Swiss the other Chinese. On the aggregate level the results

are mixed: In conformity with the findings reported by Blavatskyy (2007) for various data sets from

other Western countries SEUT clearly outperforms PT in the Swiss data set. In China, however,

subjects weight probabilities for gains on average more optimistically and exhibit stronger curvature

in their value function. Since SEUT imposes a rigid pattern for deviations from expected utility

maximization and cannot cope with behavioral asymmetries between gains and losses, it fits the

Chinese data inferiorly when being compared to a more flexible sign-dependent specification such as

PT. Furthermore, the finding that both PT and SEUT superiorly describe the choices of a consistent

fraction of subjects each calls a representative agent approach into question.

Indeed, the finite mixture regressions, which control for individual heterogeneity by assuming a

mix of PT and SEUT types, reveal a coherent picture: In both data sets the mixture model cleanly

segregates the subjects into an SEUT and a PT group. Roughly 25% of the individuals are identified

as SEUT types and behave essentially risk neutrally, whereas the choices of the remaining 75% are

best described by PT. Recent studies estimating finite mixture models based on PT and expected

utility theory only report a segregation into two behaviorally similar types (Conte et al., 2007; Bruhin

et al., 2007). Moreover, the individual classification found in this study by and large coincides with

the one reported in Bruhin et al. (2007). This supports the notion that about one fourth of the

subjects can be characterized basically as expected value maximizers.
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Despite its parsimony SEUT shows good descriptive power when fitting aggregate choices and,

as a modest extension to expected utility theory, molds well into standard microeconomic theory.

However, as soon as the often unrealistic assumption of one single representative agent is relaxed, its

rigidity causes SEUT to fall short of PT’s performance in describing decision making under risk for

the majority group of subjects violating expected utility theory. Consequently, its parsimony may

make SEUT an elegant option to model aggregate outcomes on perfect markets, but when individual

heterogeneity has to be taken into account a flexible sign-dependent specification based on PT is the

superior choice.
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