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1 Introduction

In all-pay auctions, all players cast bids for a prize which only one player
obtains. Contrary to ordinary auctions, even the losers have to pay their
bids. All-pay auctions have received a lot of attention, as they reflect impor-
tant aspects of the strategic interaction involved in many different economic
activities. For instance, in innovation tournaments, firms’ investments in-
fluence the probability of winning a patent, the value of which accrues to
the winner. In lobbying contests, rival activists can exert effort to achieve
the political outcome that is favorable for them. In promotion tournaments,
the employees’ efforts influence their chances of promotion. Independently
of the precise application, the literature usually assumes that the strategic
interaction relates exclusively to the chances of obtaining the prize rather
than to the ex-post value of the prize, which is assumed to be exogenously
fixed.
However, as Baye and Hoppe (2003) point out, there are many important

examples where players’ activities influence prizes. Specifically, they argue
for investment tournaments that a high effort not only increases the chances
of obtaining the prize, but also its value. Even though the formulation of
their model is general enough to allow for the possibility, these authors do
not mention an additional source of prize endogeneity. The efforts of one
player may have adverse effects on the prize that another player obtains. For
instance, consider a market that is sufficiently competitive that only a firm
that is better than the others can earn positive profits. For a particularly
stark example, consider a homogenous Bertrand market where firms can
invest into cost reduction before product market competition. Then, the
firm with the lowest marginal costs obtains the prize, that is, a positive
product-market profit, but the size of the prize depends on the investments
of the competitors. If the second-best firm has invested almost as much as the
winner, the requirement of limit pricing will lead to very low profits for the
winner.1 Thus, investments involve negative externalities not only because
they reduce their winning chances, but also because they reduce the prize
that the winner will obtain.
For a similar example, suppose the bids in the all-pay auction are specific

investments of job candidates (e.g., preparation for job interviews). Then,

1In the homogeneous Bertrand case, the equilibrium profit margin of the most efficient
firm corresponds to the difference between its costs and those of the second-best firm.
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it is natural to assume that the second-best player’s bid (effort) influences
the outside options of the prospective employer. Therefore, the prize of the
winner, that is, the difference between his wage in the new position and his
outside option is likely to depend on the difference between his bid and the
second-best bid. In particular, this prize is likely to become small as the
second-best bid approaches the winning bid.
This paper therefore analyzes all-pay auctions where the prize (i) is a

weakly decreasing function of the second-highest bid such that (ii) the value
of the prize is zero when the bids are identical. Finally, we also assume that
(iii) the prize is a positive function of the own efforts.
Our first set of contributions is theoretical. We characterize the equi-

librium structure of all-pay auctions with negative prize externalities. First,
contrary to standard fixed-prize auctions, all-pay auctions with bid-dependent
prizes often have pure-strategy equilibria (PSEs) where exactly one player
bids a positive amount. However, as there are as many of these (asymmetric)
equilibria as there are players, their predictive value is limited. Second, like
in the standard case, there are typically symmetric mixed-strategy equilib-
ria (MSEs) where players put weight on all strategies up to a cut-off value.
Third, the natural analogues of the asymmetric MSEs identified by Baye et
al. (1996) for the fixed-prize case do not exist.2 However, there are asym-
metric MSEs where some players mix over all strategies up to a cut-off value
and the others put all weight on zero.
The second contribution of the paper is an experimental analysis of a

specific all-pay auction with negative prize externalities. We consider para-
meterized versions of the auction that is derived from the Bertrand invest-
ment game; with 2 and 4 players. In both games, players choose investments
Yi ∈ {0, 1, ..., 9}. The games have multiple PSEs where one player chooses a
positive investment level of 5 and the other player(s) choose 0. In both games,
the symmetric MSE has all players mixing between 0, 1, 2, 3, 4, and 5. The
experimental analysis shows that the MSE predicts the percentage of zero
investments quite well. However, low, but positive investments are chosen
less than predicted; high investments are chosen more often than predicted,
which results in negative profits. Interestingly, the frequency distribution has
a lot of mass aroung 5, the non-zero bid in the asymmetric PSE.

2In those equilibria, some players behave as in the symmetric MSE; but other players
modify the strategy by not casting any positive, but small bids. Instead, they put all the
weight that these strategies receive in the symmetric MSE onto zero.
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As the standard MSE illustrated above is not a fully convincing predictor,
we also try to explain the investment behavior through modified objective
functions, capturing a “joy of winning” and a “fear of losing”. To this end,
we extend the profit function of the Bertrand investment game by two para-
meters: γ and β. The former takes into account the additional benefit from
investing more than the others, the latter the additional loss from investing
in vain. The MSE obtained in this fashion reflects the investment behavior
better, particularly in the 2-player case, but the fit is still imperfect. Sum-
ming up, the best interpretation of the evidence is that some players play
the symmetric MSE, whereas others speculate that the remaining bidders do
not invest, and respond accordingly (like the active bidder in the asymmetric
PSE).
Auctions have been discussed extensively in the experimental literature.3

Experiments on all-pay auctions are comparatively rare, and exclusively con-
cerned with the fixed-prize case. In spite of the differences in the equilibrium
structure, our experimental observations are similar to those that are familiar
from the fixed-prize case. Most closely related is Gneezy and Smorodinsky
(2006) who consider symmetric all-pay auctions with 4, 8, and 12 players.
Like us, they obtain overbidding that diminishes over time, but remains sub-
stantial even in later periods. Also, as in our case, the percentage of very
low bids is close to the MSE prediction.4 Also, one of the six treatments
analyzed by Davis and Reilly (1998) corresponds to the fixed-prize all-pay
auction.5 In an experiment with 5 players, the authors observe overbidding
that diminishes over time, but does not disappear. Davis and Reilly (1998)
also consider the alternative probabilistic set-up that goes back to Tullock
(1980).6 This variant of the all-pay auction has a symmetric PSE. Davis
and Reilly (1998) show that overbidding also occurs in the probabilistic case.
Earlier experimental evidence on all-pay auctions with fixed prizes is mixed.
Millner and Pratt (1989) also observed overbidding, whereas, in the simpler

3See Kagel (1995) for a survey.
4They also observe positive effects of the number of bidders on revenue and negative

effects on average bids, with the former arising only in first periods and the latter only in
late periods.

5In contrast to Davis and Reilly (1998), the experiment of Gneezy and Smorodinsky
(2006) takes the form of a repeated game, where subjects do not rotate among different
treatments, playing the same all-pay auction.

6In this model, each player wins the prize with probability bi/
X

j
bj , where bi is his

bid.
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setting of Shogren and Baik (1991) the Nash prediction is fairly accurate.
Summing up, even though the equilibrium structure of the all-pay auction
with negative prize externalities differs substantially from the fixed-prize case,
the experimental observations, in particular, the overbidding phenomenon,
are quite similar.
In this paper, we proceed as follows. Section 2 contains the general setting

with the characterization of the MSE. Section 3 introduces the experimental
design, including the analysis of the Bertrand investment game. Section 4
describes the experimental results, comparing the investment observations
in the Bertrand game to the MSE. Section 5 discusses alternative MSEs.
Section 6 concludes.

2 The Model

2.1 Assumptions

We analyze static games of the following type. Players i = 1, ..., I simul-
taneously choose bids bi ∈ S = {0, 1, .., N} ⊂ N+. The cost of submitting
bid bi = n is kn such that k0 = 0 and kn is increasing in n. This includes
the standard case that kn = n, but allows for greater generality.7 Payoffs
are given as follows. Let g(ni, nj) be a function that is non-decreasing in ni,
non-increasing in nj and satisfies g(ni, nj) = 0 whenever ni ≤ nj. Let b(2) be
the second-highest bid. Then the payoff of player i is given by

f
¡
bi, b

(2)
¢
=

½
g(bi, b

(2))− bi if bi > b(2)

−bi if bi ≤ b(2)
. (1)

Thus, as in a standard all-pay auction, only the highest bidder obtains a pos-
itive payoff. However, there is an important twist: The prize for a successful
bidder is not fixed. It depends on the winning bid, and on the second-highest
bid. The higher the winning bid, the higher the prize; the higher the second-
highest bid, the lower the prize. In the limit, as the difference between the
highest and the second-highest bid tends to zero, so does the prize. We
further maintain the following assumption.

Assumption 1 g(ni, nj) is concave in ni for ni > nj, and kn is convex in n.

7For instance, we shall apply our framework below to the case that bi = n is a reduction
of marginal costs by n, and kn is the corresponding strictly convex investment cost.
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Of course, the assumption is consistent with the special case that kn= n.

2.2 Asymmetric PSE

In the following simple characterization of the asymmetric PSEs of the game,
let b∗ = argmaxbi (g(bi, 0)− bi).

Proposition 1 (i) If there exists a PSE of the game such that at least one
player i chooses bi > 0, then bi = b∗, all players j 6= i choose bj = 0, and
there is one such equilibrium for each player.
(ii) Such equilibria exist if and only if

max
bj

(g(bj, b
∗)− bj) ≤ 0. (2)

The proof is straightforward: (i) If there is more than one player with
non-zero bids, at least one of them must earn negative payoffs. Also, the
active player must best-respond to zero. (ii) is a simple statement of the
best-response conditions for the candidate equilibria. Intuitively, condition
(2) requires that those players who choose bj = 0 do not find it profitable
to leapfrog player i, that is, to choose bj > b∗i . Assumption 1 works in favor
of this condition: Intuitively, with concave prizes and convex costs, earning
positive payoffs by overbidding a player who has chosen the best response to
0 becomes increasingly difficult. However, in Section 3, we will provide an
example where asymmetric PSEs even exist in the boundary case that the
prize is linear in the own bid.
In spite of its simplicity, the result is interesting, because it stands in stark

contrast with the case of fixed prizes. For deterministic all-pay auctions with
continuous strategy spaces, PSEs typically do not exist (Baye et al., 1996).
This result carries over to the case of discrete bids, as long as the prize is
sufficiently large: With a fixed prize v, a PSE would still require that at
most one player chooses bi > 0. The best response condition of player i
would require b∗i = 1 because this is sufficient to overbid the other players.
However, b∗i = 1 would make leapfrogging to b0j = 2 attractive for players
with bj = 0, unless k2 > v. More generally, even with bid-dependent prizes,
a PSE does not exist if g(ni, nj) increases more rapidly in ni than kni near
ni = nj = n.
Essentially, with bid-dependent prizes, it often makes sense to overbid the

other players by a sufficiently large amount. This may make it unattractive
for losing bidders to leapfrog the winner.
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2.3 Symmetric MSE

Next, we provide a general characterization of symmetric MSEs. The re-
sult implies that such equilibria exist under very general conditions, and it
provides an algorithm for calculating them. We use the following definitions.

Definition 1 For any mixed strategy p = (p0, ..., pn), p−(n) ≡ p−(n,I−1) is the
probability that the highest bid of I − 1 players following this strategy is n.

Next, we define a particularly important class of equilibrium candidates.

Definition 2 Suppose M ∈ {1, ..., N}. An M-equilibrium is a symmetric
MSE where all players put symmetric positive weights on strategies 0, ...,M,
and zero weights on all higher strategies.

Proposition 2 provides a recursive formula for calculating symmetric MSEs
for all-pay auctions with bid-dependent prizes. In particular, it provides con-
ditions for the existence of such an equilibrium.

Proposition 2 Suppose that Assumption 1 holds. (i) An M-equilibrium ex-
ists if and only if there exists a sequence (q0, ..., qM−1) such that:

qn =

kn+1 − kn −
n−1X
m=0

qm (g(n+ 1,m)− g(n,m))

g(n+ 1, n)
, (3)

where

qn ≥ 0 for n ≤M − 1,
M−1X
n=0

qn < 1; (4)

and

M−1X
n=0

qng (M + 1, n) +

Ã
1−

M−1X
n=0

qn

!
g (M + 1,M)− kM+1 ≤ 0. (5)

For this equilibrium, p−(n) = qn for n ∈ {0, ...,M − 1}.
(ii) If an M-equilibrium exists, it is the unique symmetric MSE.
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Proof. See Appendix.
We illustrate the meaning of the result, and its proof for M = 1. Then,

condition (5) becomes

q0g (2, 0) + (1− q0) g (2, 1)− k2 < 0. (6)

Condition (3) applied to n = 0 reads q0 = k1
g(1,0)

; and, therefore, (4) merely
requires that g(1, 0)− k1 > 0. By Proposition 2, the game has a symmetric
MSE (p0, 1− p0, 0, ..., 0) where p−(0) = q0 =

k1
g(1,0)

. This probability is such
that players are indifferent between bidding 1 unit or not bidding. Also,
(6) guarantees that bidding 2 units would lead to negative expected payoffs.
Using concavity of g and convexity of the function kn, choosing bi > 2 is not
profitable either. The standard characterization result for MSEs (Mas-Colell
et al. 1995, Proposition 8.D.1) therefore yields the result.

2.4 Asymmetric MSE

Baye et al. (1996) have shown that, for fixed prizes v and continuous bidding,
a symmetric equilibrium like the one just derived is not the only MSE of the
all-pay auction. In addition, there are asymmetric equilibria where some
players randomize over all strategies below a cut-off value, and all other
players randomize in exactly the same fashion over all strategies starting
from some lower bound above zero up to the cut-off value, but put all the
remaining mass on 0. In the following, we show that natural analogues of
such equilibria also exist in our discrete game when the prize is fixed. In our
more general setting, however, all these equilibria disappear. Instead, there
is another type of MSE where some of the players put all mass on zero.

2.4.1 Fixed prizes

In the degenerate case that the prize v is fixed, we show that there are also
many asymmetric MSEs similar to those identified by Baye et al. (1996). To
formulate this result, define Pn = p0 + ...+ pn.

Proposition 3 Suppose the prize is fixed, that is, g(ni, nj) = v for some
suitable constant v > 0 if and only ni > nj. Suppose there are I ≥ 3
players. Define n = M to be the maximal bid such that v > kn. Suppose
J ∈ {2, ..., I − 1}, r ≤M . Then there exist MSEs such that
(i) J players choose (p0, ..., pM , 0, ..., 0) ;
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(ii) I − J players choose (Pr, 0, ..., 0, pr+1, ..., pM , 0..., 0) ;

(iii) Pn−1 =
¡
kn
v

¢1/(I−1)
for n ∈ {r, ...,M − 1};

(iv) Pn−1 =
µ

kn

v(krv )
(I−J)/(I−1)

¶1/(J−1)
for n ∈ {1, ..., r − 1};

(v) PM = 1.

Proof. See Appendix.
To illustrate the proposition, suppose I = 4, M = 3. Then, the proposi-

tion says that there are four types of asymmetric equilibria, which differ with
respect to the number of players who are not mixing over all strategies (1 or
2) and the minimal non-zero strategy played by those players (2 or 3).8

2.4.2 Endogenous prizes

The next result rules out the possibility that equilibria as derived in Proposi-
tion 3 exist when prizes are strictly decreasing in competitor bids. Thus, the
equilibrium properties of all-pay auctions with negative prize externalities
are dramatically different from those of all-pay auctions with fixed prizes.

Proposition 4 Suppose g(ni, nj) is strictly decreasing in nj for ni > nj.
Then, there can be no equilibrium such that there exists an r ≥ 2 such that:
(i) At least one player chooses p with positive weights p0 and pr;
(ii) At least one player chooses ep with positive weights ep0 and epr such thatep0 > p0, but ep1 = 0,..., epr−1 = 0;
(iii)

r−1X
n=0

pr =
r−1X
n=0

epr.
Proof. See Appendix.
This immediately rules out equilibria as in Proposition 3. The scope for

asymmetric equilibria is further limited by the following result.

Proposition 5 There can be no equilibrium such that there exists r ≥ 1,
where (p0, ..., pr) 6= (ep0, ..., epr) ; pn > 0 and epn > 0 for all n ∈ {0, ..., r}.

8The condition that n = M be maximal with the property that v > kn is easily seen
to be necessary; for instance, when M = 2, there are no equilibria with some bidders
randomizing over 0, 1, and 2, and the remaining bidders randomizing over 0 and 2.
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Proof. Suppose s ≤ r is minimal such that ps 6= eps. Then,
sX

n=0

p−(s)g (s, 0) 6=
sX

n=0

ep−(s)g (s, 0) , (7)

contradicting the requirement that both players are indifferent between play-
ing s and 0.
Note that this result also holds in the case of fixed prizes.
However, there is one class of asymmetric MSE that does exist. In these

equilibria, some players mix over all strategies up to some value M. The
remaining players all choose 0.

Proposition 6 Suppose I ≥ 3. Then, for every J ∈ {2, ..., I−1}, there exist
equilibria such that:
(i) J players randomize over strategies 0, 1, ...,M, such that p−(n,J−1) = qn
for n ∈ {0, ...,M − 1}, where qn is defined as in (3) to (5);
(ii) The remaining players put all weight on 0.

Proof. See Appendix.
In spite of the similarities in the strategies of the J active bidders with

those played in the symmetric MSE, there is a crucial difference: As there
are some players who put all weight on zero, qn (for n > 0) is the highest
remaining bid. The intuition for the result is that, if the J active bidders
(who face J − 1 active bidders and I − J bidders who always bid 0) obtain
zero expected profits for all positive bids, the I − J passive bidders (who
face J active bidders and I − J − 1 bidders who always bid 0) must obtain
negative expected profits.

3 The Experiment

3.1 The Bertrand Investment Game

In the following, we will show that a simple two-stage game can be reduced
to an all-pay auction with negative prize externalities. In this Bertrand in-
vestment game (BIG), all firms i = 1, ..., I are identical ex-ante with constant
marginal costs c > 0. In the first stage, firms simultaneously choose invest-
ments Yi ∈ [0, c), resulting in marginal costs ci = c − Yi.9 Investment costs

9Even though we restrict the agents to finite choice sets in the experiment, the theo-
retical analysis is much more transparent if the choice set is a continuum.
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are kY 2
i , where k > 0. In the second stage, firms compete in the product

market as Bertrand competitors; with a demand function D(p) = a − p.
Let cm−i = minj 6=i cj, and denote the monopoly prices and payoffs (gross of
investment costs) associated with marginal costs ci as pM(ci) and πM(ci),
respectively. It is well known that gross payoffs of the most efficient firm are

πi(c1, ..., cI , α) =

½
(cm−i − ci)D(c

m
−i), if cm−i ≤ pM(ci)

πM(ci), if cm−i ≥ pM(ci)
. (8)

Intuitively, if efficiency differences are sufficiently small that the second-
most efficient firm has costs below the monopoly price of the most efficient
firm, this firm undercuts the competitors marginally, so that it obtains (ap-
proximately) a demand of D(cm−i) and a markup corresponding to the cost
differential; otherwise it sets the monopoly price. We assume that the ef-
ficiency differences are so small that no firm can earn the monopoly profit.
Then, defining Y (2) = maxj 6=i Yj, the net payoff of firm i is given by

Πi(Y1, ..., YI) =

½
(Yi − Y (2))D(c− Y (2))− kY 2

i , if Yi > Y (2)

−kY 2
i , if Yi ≤ Y (2) . (9)

Hence, with g(ni, nj) = (ni− nj)D(c− nj), the game corresponds exactly to
our general set-up. Even though this is a two-stage game, by assuming that
players play the Nash equilibrium in stage 2, we can reduce the game to the
first stage. The one-stage game obtained in this fashion corresponds to an
all-pay auction with negative prize externalities.
It is straightforward to calculate the equilibria for the BIG. First, as

already suggested for the general case in Proposition 1, the game has multiple
asymmetric PSEs. Define α ≡ a− c.

Proposition 7 For k > 1
2
, there are multiple asymmetric PSEs with one

firm investing Y IC
i = α

2k
and firms j 6= i investing Y IC

j = 0.

Proof. If firms j 6= i invest Y IC
j = 0, then the best response of firm i is

Y IC
i = α

2k
for any k > 0. If firm i invests Y IC

i = α
2k
, then the best response

of the other firms is Y IC
j = 0 for k > 1

2
.

Intuitively, if more than one firm invests, then at least one firm obtains
zero product market payoffs and therefore negative net payoffs; deviation is
therefore profitable.
The BIG also has a symmetric MSE under very general conditions. We

calculate this equilibrium in the Appendix.
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3.2 Experimental Design and Procedures

The experimental design reflects the two-stage investment game which, as
mentioned above, can be reduced to an all-pay auction with negative prize
externalities, assigning the payoffs of the respective product market game
to each investment vector. Apart from making the game more transparent
to the experimental subjects, this design feature highlights the nature of the
game as an all-pay auction, focusing attention on bidding (investment) rather
than on behavior in the product market. This guarantees that deviations do
not result from speculations about non-equilibrium behavior in the product
market.10

Our two sessions concern two examples of the BIG. We ran a two-player
(BIG2) and a four-player treatment (BIG4). The parameter values were
α = 30 and k = 3 for BIG2; α = 20 and k = 2 for BIG4.11 We restricted
investment choice sets to Yi ∈ {0, 1, ..., 9} in both cases. Applying the results
obtained above, the following holds.

Observation 1 For BIG2 and BIG4, there are asymmetric PSEs, each with
one player investing 5 and the other player(s) investing 0.
Coordination on such equilibria is obviously problematic. The MSE is

potentially more appealing as a predictor.

Observation 2 (i) For BIG2, there is a symmetric MSE given by³
p
BIG2

0 , ..., p
BIG2

9

´
= (0.1, 0.193, 0.187, 0.182, 0.176, 0.160, 0, 0, 0, 0) . (10)

(ii) For BIG4, there is a symmetric MSE given by³
p
BIG4

0 , ..., p
BIG4

9

´
= (0.464, 0.198, 0.116, 0.086, 0.069, 0.067, 0, 0, 0, 0) . (11)

Hence, in both cases, players randomize over all strategies up to and in-
cluding 5, the non-zero bid arising in the asymmetric PSE. (i) follows directly

10For instance, Dufwenberg and Gneezy (2000) have shown that experimental subjects
tend to choose prices above marginal costs in symmetric Bertrand games. If subjects
anticipate this, the investment incentives will differ from a situation with marginal-costs
pricing.
11Because BIG2 and BIG4 also differ with respect to α and k, the treatments cannot

be compared to identify number effects (see Sacco and Schmutzler, 2008 for a discussion
of number effects in investment games).
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from Corollary 1 in the Appendix, because pi = qi with two players. As to
(ii), Corollary 1 yields

(q0, ..., q9) = (0.1, 0.190, 0.182, 0.174, 0.167, 0.187, 0, 0, 0, 0) , (12)

from which we obtain

p
BIG4

0 = (q0)
1/3 = (0.1)1/3 = 0.464. (13)

The probability p
BIG4

1 = 0.198 follows from

q1 = 3
³
p
BIG4

0

´2
p
BIG4

1 + 3
³
p
BIG4

1

´2
p
BIG4

0 +
³
p
BIG4

1

´3
= 0.190. (14)

Recursively, the other probabilities are obtained.
We note the following immediate implication of Observation 2.

Observation 3 (i) For BIG2, the expected investment is 2.62. (ii) For BIG4,
the expected investment is 1.30.

The experiments were conducted in February and June 2006 at the Uni-
versity of Zurich. The participants were undergraduate students from various
disciplines. Each treatment was run for 20 periods. There were 34 subjects
in BIG2 and 36 in BIG4. This led to a total of 1400 investment observations.
No subject participated in both sessions. The participants were randomly
matched into groups of size 2 or 4 after each period (Stranger design).12 At
the end of each period, subjects were informed about the investment level of
the other group member(s) and their own net payoff for that period. All par-
ticipants received an initial endowment of CHF 35 (≈EUR 22) under BIG2
and CHF 45 (≈EUR 28) under BIG4. Average earnings including the endow-
ment were CHF 32 (≈EUR 20) for BIG2 and CHF 38 (≈EUR 24) for BIG4.
Sessions lasted about 90 minutes each. The experiment was programmed
and conducted with the software z-Tree (Fischbacher, 2007).

4 Experimental Results

4.1 The 2-player Case

Our first observations concern the relation between the symmetric MSE and
realized mean investments.
12The subjects thus take their decisions based on one-shot considerations.
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Result 1 Under BIG2, mean investments are higher than in the symmetric
MSE.

0

1

2

3

4

5

1 5 10 15 20

Period

Mean Investment MSE

Figure 1: Mean investment for BIG2.

Figure 1 reveals that the mean investment level exceeds the equilibrium
investment level of 2.62 throughout the 20 periods. A regression over a con-
stant and a Wilcoxon rank sum test show high significance (p < 0.01) when
considering the difference between predicted and observed investments over
all periods. This still holds when taking into account either the last ten or the
last five periods. That is, there is no convergence to the Nash equilibrium,
even though the investments in the first ten periods are significantly higher
than those in the last ten periods (Wilcoxon rank sum test, p = 0.016).13

A further interesting aspect concerns the investment distribution. The
properties of this distribution over all periods are summarized in Result 2.

Result 2 Under BIG2, (i) the frequency distribution exhibits a global maxi-
mum at 5. (ii) There is a local maximum at 0. (iii) A substantial fraction of
the subjects chooses strategies that are not part of the symmetric MSE, that
is, invests more than 5.
13Gneezy and Smorodinsky (2006) report qualitatively similar results for the symmetric

all-pay auction. As described in the introduction, however, there are important differences
between the structure of the Bertrand investment game and the all-pay auction.
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Figure 2: Investment distribution for BIG2.

Figure 2 shows that (i) the investment level of 5 is played in 24% of the
cases. (ii) The investment level of 0 is chosen in 15% of the cases. (iii) In 28%
of the cases a strategy that is not part of the symmetric MSE is played. We
see that the observed investment levels are higher than predicted. Except
for the investment level of 0, low investments are chosen less than predicted;
high investments more often than predicted.
Qualitatively, the properties summarized in Result 2 also hold in most

individual periods, not just in the aggregate.14

Interestingly, the heterogeneity of investments represents differences in
individual investment propensities as much as heterogeneity in investments
across time. Table 1 shows that the distribution of the mean investments
per subject displays similar heterogeneity as the overall distribution of in-
vestments.15 However, the two frequency distributions have qualitatively
different features. Specifically, the former has a single global maximum in
[4, 5), whereas the latter has a local maximum in 0 apart from the global

14(i) In 19 periods the investment distribution exhibits a global maximum at 4 or 5. (ii)
In 15 periods there is a local maximum at 0. (iii) The fraction of subjects investing more
than 5 lies between 15% and 35% per period.
15Decomposing the variance into the variance of the average investments of players and

the variances of individual players’ investments shows that 39% come from the former
source.
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maximum in 5.

Interval [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 9]
Frequency 1 1 6 6 11 6 2 1

Table 1: Subject distribution for BIG2.

To show how player heterogeneity translates into net payoff differences, we
first consider the relation between mean investments and mean losses. Figure
3 reveals that there is a clear positive relation.16 This is closely related to the
evolution of the mean net payoff over time. Figure 4 shows that the mean net
payoff is negative in all periods, even towards the end of the game. Over all
periods and subjects, the ratio between total bids (investment costs) and the
prize (gross payoffs) is 1.56. The ratio in the first ten periods is higher than
in the last ten periods (1.85 > 1.35). While still substantial, these values are
considerably lower than those reported by Gneezy and Smorodinsky (2006)
for the case of fixed prizes. There, depending on the treatment, total bids
where still 2-3 times higher than the prize in the last period.
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Figure 3: The relation between mean investments and losses for BIG2.

16The regression analysis shows an R2 of 0.77.

15



-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

1 5 10 15 20

Mean Net Payoff MSE

Figure 4: Mean net payoff for BIG2.

4.2 The 4-player Case

The analysis of the 4-player case leads to similar results as in the 2-player
case, confirming the overinvestment behavior. We start with the comparison
of predicted and observed mean investments.

Result 3 Under BIG4, mean investments are higher than in the symmetric
MSE.

Figure 5 reveals that the mean investment level lies above the equilibrium
investment level of 1.30 throughout the 20 periods. Note, however, that
there is a downward tendency. The investments in the first ten periods are
significantly higher than those in the last ten periods (Wilcoxon rank sum
test, p = 0.018). Even in the final periods, investments stay above the
equilibrium investment, though there is no significant difference for the last
5 periods (Wilcoxon rank sum test, p = 0.116).
Next, we deal with player heterogeneity. The properties of the investment

distribution over all periods are summarized in Result 4.

Result 4 Under BIG4, (i) the frequency distribution exhibits a global maxi-
mum at 0. (ii) There is a local maximum at 6. (iii) A substantial fraction of
the subjects chooses strategies that are not part of the symmetric MSE, that
is, invests more than 5.
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Figure 6 shows that (i) the investment level of 0 is played in 42% of the
cases. (ii) The investment level of 6 is chosen in 11% of the cases. (iii) In
22% of the cases a strategy that is not part of the symmetric MSE is played.
Again, there is overinvestment. Nevertheless, one aspect of the MSE is well
reflected in behavior, namely the fact that the investment level of 0 is chosen
in almost half of the cases.
The general patterns shown in Result 4 also hold in most individual pe-

riods.17

Table 2 shows that, as in BIG2, the distribution of investments reflects
player heterogeneity to a large extent. However, contrary to BIG2, the ma-
jority of players now chooses very low average investments, with the mode in
[0, 1). 10 of the 36 players invest at most one unit on average. Similarly, 10
of the 36 players invest between 4 and 6 units on average.18

17Specifically, (i) in all periods except the first one, the largest fraction of subjects
chooses zero. (ii) In 14 periods, there is a local maximum at 5 or 6. (iii) The fraction of
subjects investing more than 5 lies between 12% and 32% per period.
18The variance’s decomposition shows that 48.5% comes from the mean investments.
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Figure 6: Investment distribution for BIG4.

Table 2: Subject distribution for BIG4.
Interval [0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 9]
Frequency 10 6 6 3 4 6 1 0

Finally, we consider the effect of overinvestment on net payoffs. Fig-
ure 7 plots mean investments against mean losses. A clear positive relation
emerges.19 The mean net payoffs over the 20 periods are shown in Figure 8.
The mean net payoff is negative in all periods, implying that the overinvest-
ment is not profitable. Over all periods and subjects, the ratio between bids
and prizes is 1.92. Again, the ratio in the first ten periods is higher than in
the last ten periods (2.12 > 1.75).
Both for BIG2 and BIG4, we have seen that, apart from zero investments,

the symmetric MSE discussed above is not a perfect predictor for the observed
investment behavior. BIG4 also has asymmetric MSEs (see Proposition 6)
where some players put all weight on zero. This does not improve the fit,
as this would lead to more weight on 0, rather than on 5. For instance, if

19The regression analysis shows an R2 of 0.87.
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J = 2, the expected frequencies are given by³
p̂
BIG4

0 , ..., p̂
BIG4

9

´
= (0.55, 0.095, 0.091, 0.087, 0.083, 0.094, 0, 0, 0, 0) . (15)

The next section discusses MSEs based on alternative objective functions
which shall help us to understand the investment behavior better.

5 Alternative Objective Functions

For the Bertrand game, we now consider the following modified objective
function. The net payoff of firm i given in (9) is replaced by

Π̃i(Y1, ..., YI) =

½
(Yi − Y (2))D(c− Y (2))− kY 2

i + γ, if Yi > Y (2)

−kY 2
i − β, if Yi ≤ Y (2) ∧ Yi 6= 0 ,

(16)
where γ > 0 and β > 0.
(16) captures the idea that one may derive utility from winning the auc-

tion (captured by the parameter γ), and disutility from bidding a positive
amount in vain (captured by the parameter β). As we intend to explain
overinvestment, we consider parameterizations where γ > β. Subjects might
overinvest because they focus on winning on the investment race, neglecting
investment costs. In the following, we illustrate the symmetric MSEs of this
modified game for two parameterizations. We start with γ = 100, β = 20.
For BIG2, the investments are shown in Figure 9.
We see that the predicted zero investments essentially coincide with the

observed ones. Further, in contrast to the symmetric MSE of the previous
section, the frequency distribution corresponding to the symmetric MSE of
the modified game also has two maxima. In spite of this great advantage,
the fit is far from perfect: The symmetric MSE has too much mass on very
high investments, and it fails to predict the observed global maximum at 5.
The investments for γ = 50 and β = 20 are shown in Figure 10. The lower

value of the γ-parameter implies that the equilibrium does not overpredict
high values as much as in the case reflected in Figure 9. The symmetric
MSE is shifted to the left. The global maximum at 0 is more pronounced
(23% instead of 15%), whereas the local maximum is at 6. However, this im-
provement comes at a cost: The percentage of subjects choosing zero is now
predicted less accurately. This trade-off also shows up in other parameteri-
zations. It thus appears that, in spite of the additional degrees of freedom,

20



0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

Investment

Pe
rc

en
t

BIG2 MSE

Figure 9: Investment distribution for BIG2 (γ = 100, β = 20) .
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Figure 10: Investment distribution for BIG2 (γ = 50, β = 20) .
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the modified equilibrium does not capture behavior in a fully satisfactory
manner.
In the modified approach just described, subjects obtain some utility from

investing more than the others even if the net payoff is negative.20 As an
alternative, we assume that the additional benefit γ arises only if the net
payoff is positive. For the additional loss, the same as above holds. Figure
11 shows for γ = 100 and β = 20 the frequency distribution in the BIG2.
In contrast to Figure 9, except for zero investments, the symmetric MSE is
more concentrated on the left; the global maximum is at 3. A decrease to
γ = 50 would shift the global maximum from 3 to 0.21
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Figure 11: Investment distribution for BIG2 (γ = 100, β = 20) .

Next, consider the 4-player case. In contrast to the 2-player case, the dif-
ference between the symmetric MSE with modified payoffs as in (16) and the
standard symmetric MSE is very small. Figure 12 shows the investments for

20Obviously, even then if the monetary losses from investing more than the others are
sufficiently high relative to γ, the net payoff according to (16) may be negative.
21As a further alternative, we briefly mention the case where the additional benefit γ is

given if the net payoff is positive and the additional loss β if the net payoff is negative. The
results are qualitatively similar to those illustrated in Figure 11. However, a decrease in γ
would not shift the global maximum, which is at 3 for both considered parameterizations.
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γ = 5 and β = 1. In the symmetric MSE, players mix between all investment
choices up to 6 instead of 5. Apart from that, there are no consistent dif-
ferences: Low investments are chosen less than predicted, high investments
more often. Further, a parameter change does not have a large impact. For
γ = 2.5 and β = 1, the symmetric MSE-distribution is very similar to that
of Figure 12.22
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Figure 12: Investment distribution for BIG4 (γ = 5, β = 1) .

Summing up, the observed deviations from the symmetric MSE cannot
be explained perfectly by a “joy of winning” or “a fear of losing”, as pro-
posed here. One reason may be that the approach does not allow for the
asymmetries between players suggested by the experimental observations. It
might therefore be useful to consider an alternative approach where the β and
γ-parameters are allowed to vary across players, and calculate the Bayesian
equilibrium for alternative parameterizations.23 An alternative, more casual
22Like for the two-player setting, we also considered the case where the additional benefit

γ arises only if the net payoff is positive and another case, where γ is given if the net
payoff is positive and β if the net payoff is negative. The MSE does not show remarkable
differences with respect to Figure 12; we therefore omit additional considerations.

23Standard fixed-prize all-pay auctions have been analyzed as Bayesian games by Amann
and Leininger (1996).
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explanation that is also based on player heterogeneity could start from the
observation that, at least in BIG2, there is a large concentration of players at
5, which is the best response to 0. This suggests that some players speculate
that the opponent abstains from investing, and responds optimally to their
own belief.

6 Conclusion

We have analyzed all-pay auctions, where the prize is a positive function
of the own bid and a negative function of the other players’ bids; it is zero
when players’ bids are identical. That is, the effort of one player has negative
externalities on the prize that another player obtains. This negative effect of
the own effort on the prize that another bidder gets differentiates our setting
from standard all-pay auctions.
We showed that, contrary to the fixed-prize case, the game often has

asymmetric PSEs. Like the fixed-prize auction, it has a symmetric MSE.
The asymmetric MSEs that loom large in the fixed-prize case analyzed by
Baye et al. (1996) do not exist, however.24 We then provided an experi-
mental analysis that is motivated by a particular example that corresponds
to a reduced version of a Bertrand investment game. It turned out that,
the symmetric MSE of this game predicts the percentage of zero bids very
well. However, like in the fixed-prize case analyzed in earlier experiments
(e.g., Gneezy and Smorodinsky, 2006), there is overinvestment, but it is less
pronounced.
As the symmetric MSE resulting from the Bertrand investment game does

not predict the investment behavior well, we considered alternative payoff
functions. We extended the analysis to account for “joy of winning” and
“fear of losing”. For the 2-player setting, the symmetric MSEs obtained in
this fashion reflect the investment behavior better, but not perfectly. For
the 4-player setting, the symmetric MSEs based on the modified net payoff
functions do not lead to substantial improvements.

24However, there are alternative asymmetric MSE where some players mix over strategies
up to a cut-off value and others always play zero.
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Appendix

Proof of Proposition 2

(i) First, consider sufficiency. By (4),Ã
q0, ..., qM−1, 1−

M−1X
n=0

qn, 0, ..., 0

!
(17)

defines a probability distribution. Together with the requirement that qn =
p(n), (3) for n = 0 guarantees that players are indifferent between strategies 0
and 1. A simple induction argument yields indifference between all strategies
0, 1, ...,M : Suppose indifference obtains for some n = m, that is,

m−1X
n=0

qng(m,n)− km = 0. (18)

Then,
mX
n=0

qng(m+ 1, n)− km+1 =
m−1X
n=0

qng(m,n)− km+

m−1X
n=0

qn (g(m+ 1, n)− g(m,n)) + qmg(m+ 1, n)− (km+1 − km) = 0, (19)

where the last equation follows from (3) and (18). The left hand side of (5) is
the expected payoff that a player would obtain by choosingM+1 units, when
the other players play the proposed equilibrium (p0, ..., pM−1, 1− pM−1, 0, ..., 0)
such that p−(n) = qn. Concavity of g(ni, nj) and convexity of the function
kn imply that choosing arbitrary n > M would lead to negative expected
payoffs. By the standard characterization result for the MSE (Mas-Colell et
al. 1995, Proposition 8D1), an MSE obtains. Necessity is immediate in view
of this characterization result.
(ii) We show that (a) there exists no MSE without weight on zero, and

(b) no equilibrium with p0 > 0, pr > 0 for some r > 0, and ps = 0 for some
s ∈ {1, ..., r − 1}; (c) At most one M-equilibrium can exist.
(a) Let n > 0 be minimal in p such that qn > 0. Then the net payoff from

choosing n when all other players choose p is −kn < 0.
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(b) Let s be minimal such that ps = 0. Hence,

s−1X
n=0

qng(s− 1, n)− ks−1 ≥ 0 ≥
sX

n=0

qng(s, n)− ks =
s−1X
n=0

qng(s, n)− ks. (20)

Therefore,
s−1X
n=0

qn(g(s, n)− g(s− 1, n))− (ks − ks−1) ≤ 0. (21)

By concavity of g and convexity of kn, we have

s−1X
n=0

qn(g(s+ 1, n)− g(s, n))− (ks+1 − ks) ≤ 0. (22)

Using (20) and (22),

s−1X
n=0

qng(s+ 1, n)− ks+1 ≤ 0. (23)

Next, suppose

ps = 0, ..., ps+l−1 = 0,where l = 2, ..., N − s. (24)

Then,
s−1X
n=0

qng(s+ l, n)− ks+l =

s−1X
n=0

qng(s+ l − 1, n)− ks+l−1+

s−1X
n=0

qn(g(s+ l, n)− g(s+ l − 1, n))− (ks+l − ks+l−1) ≤ 0. (25)

(25) is non-positive by (24) and (22). Thus, ps+l = 0.
(c) Suppose an M-equilibrium exists. Hence,

M−1X
n=0

qng(M,n)− kM = 0. (26)
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An L-equilibrium (L < M) would require
L−1X
n=0

qng(M,n) + (1−
L−1X
n=0

qn)g(M,L)− kM ≤ 0. (27)

But,

(1−
L−1X
n=0

qn)g(M,L) >
M−1X
n=L

qng(M,L) >
M−1X
n=L

qng(M,n). (28)

Proof of Proposition 3

The J players who mix between all strategies between 0 and M must be
indifferent between all these strategies. To see this, note that (iii) and (iv)
imply

(Pn−1)
I−1 v − kn = 0 for n ∈ {r, ...,M} ; (29)

(Pr)
I−J (Pn−1)

J−1 v − kn = 0 for n ∈ {1, ..., r − 1} . (30)

As the left-hand sides of (29) and (30) are the expected payoffs of the
corresponding strategies, the required indifference conditions hold. For n >
M , expected payoffs are negative because v > kM .
The I − J remaining players must be indifferent between strategies 0 and
r, ...,M . As strategies n ∈ {r, ...,M} yield expected payoffs (Pn−1)

I−1 v −
kn = 0, the indifference condition holds. For strategies n ∈ {1, ..., r − 1},
these players face a lower chance of having submitted the highest bid than
those players that randomize over all strategies. Hence, using (30), their
expected payoff is negative.

Proof of Proposition 4

Let p−(n)(ep−(n)) denote the probability that the highest bid of the oppo-
nents of a player who chooses p (ep) is n. We shall show that, violating the
requirement that both types of players obtain expected payoffs equal to kr
when they choose bi = r, the following condition holds:ep−(0)g(r, 0)+...+ep−(r−1)g(r, r−1) < p−(0)g(r, 0)+...+p−(r−1)g(r, r−1). (31)
To see this, first note that (iii) implies

p−(0) =

Ã
r−1X
n=0

p−(n) −
r−1X
n=1

p−(n)
!
; (32)
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ep−(0) = Ãr−1X
n=0

p−(n) −
r−1X
n=1

ep−(n)! . (33)

Thus,
r−1X
n=0

¡
p−(n) − ep−(n)¢ g(r, n) =

¡
p−(0) − ep−(0)¢ g(r, 0) + r−1X

n=1

¡
p−(n) − ep−(n)¢ g(r, n) =Ã

r−1X
n=1

ep−(n) − r−1X
n=1

p−(n)
!
g(r, 0) +

r−1X
n=1

¡
p−(n) − ep−(n)¢ g(r, n) =

r−1X
n=1

¡
p−(n) − ep−(n)¢ (g(r, n)− g(r, 0)) > 0, (34)

where the last expression holds because g(ni, nj) is strictly decreasing in nj
and (i) and (ii) imply p−(n) < ep−(n) for all n ∈ {1, ..., r − 1}.
Proof of Proposition 6

(i) Following the argument in the proof of Proposition (2), the conditions
in (i) for the J active bidders show that these players obtain zero expected
profits on strategies 0, 1, ...,M.
(ii) Let p̂−(n) denote the probability that the highest of the remaining

bids for I−J passive bidders is n. Because, compared with an active bidder,
each passive bidder faces one more active bidder and one less passive bidder,
p̂−(n) stochastically dominates p−(n), that is, there exists an r ∈ {1, ...,M}
such that:

p̂−(n) < p−(n) for n ∈ {0, ..., r − 1}; (35)

p̂−(n) > p−(n) for n ∈ {r, ...,M}; (36)

By (35),
s−1X
n=0

p̂−(n)g(s, n) <
s−1X
n=0

p−(n)g(s, n) ∀s ∈ {0, ..., r}. (37)

By (35) and (36),
s−1X
n=0

p̂−(n)g(s, n)−
r−1X
n=0

p−(n)g(r, n) =
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r−1X
n=0

¡
p̂−(n) − p−(n)

¢
g(s, n)−

s−1X
n=r

¡
p−(n) − p̂−(n)

¢
g(s, n) <

g(s, r − 1)
r−1X
n=0

¡
p̂−(n) − p−(n)

¢− g(s, r)
s−1X
n=r

¡
p−(n) − p̂−(n)

¢
< 0. (38)

(38) holds because
g(s, r − 1) > g(s, r) (39)

and
r−1X
n=0

¡
p̂−(n) − p−(n)

¢
>

s−1X
n=r

¡
p−(n) − p̂−(n)

¢
. (40)

The Bertrand Investment Game

Proposition 2 immediately allows us to characterize the symmetric MSE
as follows.

Corollary 1 A symmetric MSE of the BIG exists if and only if, for some
M ∈ {1, ..., N}, there exists a sequence (q0, ..., qM−1) satisfying

qn =

kn+1 − kn −
M−1X
n=0

qm (α+m)

(α+ n)
, (41)

where

qn ≥ 0 for n ≤M − 1,
M−1X
n=0

qn < 1; (42)

and

M−1X
n=0

qn (M − n) (α+ n) +

Ã
1−

M−1X
n=0

qn

!
(α+M − 1)− kM < 0. (43)

The equilibrium is given as (p0, ..., pM−1, 1− pM−1, 0, ..., 0) such that for n =
0, ...,M − 1 qn is the probability that, given (p0, ..., pn), the highest of I − 1
bids is n.
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