Provided by Repositério do Centro Hospitalar de Lisboa Central, EPE

Clin Genet 2008: 74: 502-512
Printed in Singapore. All rights reserved

Short Report

Metadata, citation and similar papers at core.ac.uk

© 2008 The Authors

Journal compilation © 2008 Blackwell Munksgaard
CLINICAL GENETICS

doi: 10.1111/j.1399-0004.2008.01068.x

LAMA?2 gene analysis in a cohort of 26
congenital muscular dystrophy patients

Oliveira J, Santos R, Soares-Silva I, Jorge P, Vieira E, Oliveira ME,
Moreira A, Coelho T, Ferreira JC, Fonseca MJ, Barbosa C, Prats I,
Ariztegui ML, Martins ML, Moreno T, Heinimann K, Barbot C,
Pascual-Pascual SI, Cabral A, Fineza I, Santos M, Bronze-da-Rocha E.
LAMA?2 gene analysis in a cohort of 26 congenital muscular dystrophy
patients.

Clin Genet 2008: 74: 502-512. © Blackwell Munksgaard, 2008

Congenital muscular dystrophy type 1A (MDCI1A) is caused by
mutations in the LAM A2 gene encoding laminin-a2. We describe the
molecular study of 26 patients with clinical presentation, magnetic
resonance imaging and/or laminin-a2 expression in muscle, compatible
with MDCI1A. The combination of full genomic sequencing and
complementary DNA analysis led to the particularly high mutation
detection rate of 96% (50/52 disease alleles). Besides 22 undocumented
polymorphisms, 18 different mutations were identified in the course of
this work, 14 of which were novel. In particular, we describe the first fully
characterized gross deletion in the LAM A2 gene, encompassing exon 56
(c.7750-1713_7899-2153del), detected in 31% of the patients. The only
two missense mutations detected were found in heterozygosity with
nonsense or truncating mutations in the two patients with the milder
clinical presentation and a partial reduction in muscle laminin-o2.

Our results corroborate the previous few genotype/phenotype
correlations in MDCI1A and illustrate the importance of screening for
gross rearrangements in the LAM A2 gene, which may be underestimated
in the literature.
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Congenital muscular dystrophy type 1A
(MDCI1A) is the most frequent form of congenital
muscular dystrophy (CMD) in the European
population, accounting for 30-50% of the cases
(1-3). Major clinical symptoms include muscle
weakness, raised serum creatine phosphokinase,
no independent ambulation, cerebral white matter
abnormalities and, in the most severe cases, respi-
ratory insufficiency, which often leads to death in
early childhood (4).

The LAM A2 gene (MIM#156225), consisting of
65 exons and a 9.5-kb open reading frame, is
implicated in MDCIA (5, 6). Two alternative
transcripts have been described (accession num-
bers NM_000426 and NM_001079823); both iso-
forms are functional and encode the o2 chain of
laminin-211 (a2-B1-y1), laminin-221 (22-f2-y1) and
laminin-213 (a2-B1-y3) [nomenclature reviewed in
(7)]. Laminin-211 trimer is predominantly expressed
in skeletal muscle, cerebral white matter and
Schwann cells and is a major component of the basal
membrane (8). It binds to a-dystroglycan and the
integrin-a7-f1 complex, establishing a connection
between the cytoskeleton and the extracellular
matrix [reviewed in (9)].

MDCI1A patients usually have complete absence
of laminin-o2 staining in muscle biopsies associ-
ated with the presence of truncating mutations.
Patients presenting partial deficiency of laminin-
o2 may also have mutations in LAM A2, or this
deficit may be secondary to mutations in other
genes acting in the a-dystroglycan glycosylation
pathway [reviewed in (10)].

To date, 94 distinct mutations have been re-
ported in the LAMA2 locus-specific database
(LSDB) (http://www.lovd.nl/LAMA?2), the major-
ity of which are small out-of-frame deletions
(31.9%) and nonsense mutations (29.8%). Others
include splice mutations (16.0%), missense substi-
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tutions (14.9%) and small duplications (7.4%).
There is no noticeable mutational hotspot.

Since the identification of the LAMA2 gene,
a few reports have described a significant num-
ber of patients with mutations (11-14). However,
the mutation detection rates were lower than
could perhaps be expected considering the clini-
cal presentation and/or total absence of laminin-
o2 in muscle, used as selection criteria. This has
been attributed to factors such as technical diffi-
culties inherent to mutation screening in large
genes, the inclusion of patients with other clini-
cally indistinguishable forms of CMD, or the
existence of heterozygous deletions/duplications
that are not detected by standard polymerase
chain reaction (PCR)-based screening methods.
This study describes the molecular characteriza-
tion of a group of 26 MDCI1A patients. A total of
18 distinct LAMA2 mutations were detected
corresponding to 96% of the disease alleles. In
particular, a single new large exonic deletion,
which accounted for 10 disease alleles, is
described in detail.

Materials and methods
Patients

The study included a total of 26 CMD cases from
Portugal (patients 1-11, 13—17, and 22-26), Spain
(patients 12 and 18-20) and Switzerland (patient
21) who met defined clinical criteria for MDCIA,
compatible magnetic resonance imaging (MRI)
anomalies and/or revealed changes in muscle lam-
inin-¢2 immunostaining (Table 1). The parents
were screened, whenever possible, to confirm
mutation allelism or homozygosity. None of the
families were consanguineous. Informed consent
was obtained for the molecular studies.
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Genomic DNA analysis

Genomic DNA (gDNA) was extracted from
peripheral blood by the salting-out method (15).
All 65 exons of LAMA2 were amplified by PCR
using intronic M13-tailed primers. Amplicons
were purified using ExoSAP-IT® (USB Corpora-
tion, Cleveland, OH) and sequenced with M13
universal primers and BigDye™ Terminator Cycle
Sequencing Kit V1.1 (Applied Biosystems, Foster
City, CA). Products were resolved on an ABI
3130x1 Genetic Analyzer (Applied Biosystems).
Mutation analysis was aided by SEQSCAPE V2.5
software (Applied Biosystems) using the comple-
mentary DNA (cDNA) reference sequence
NM _000426.3. Population screening was carried
out in 150 anonymized control samples by single-
stranded conformation analysis (SSCA), direct
sequencing or fragment size analysis.

Bioinformatics

The effect of splicing mutations was predicted
with the aid of the GENSCAN program (http://
genes.mit.edu/GENSCAN.html) using segments
of the LAM A2 genomic reference sequence NC _
000006:129246035-129879404. The scores of
normal and mutated splice sites were calculated
according to Shapiro and Senapathy (16). For mu-
tations predictably inducing amino acid altera-
tions, phylogenetic conservation analysis was
performed with laminin-o2 protein sequences from
several organisms (Data S1, supporting informa-
tion online), aligned using the software CLUSTALX
version 1.83 (17).

cDNA analysis

Total RNA was extracted from muscle or skin biop-
sies using the Versagene RNA Purification kit
(Gentra, Minneapolis, MN). Reverse transcrip-
tion-PCR (RT-PCR) was performed using
Superscript One-Step RT-PCR with Platinum Taq
(Invitrogen, Carlsbad, CA) and previously
described primer sets (5). For the gross deletion,
the specific primers designed to amplify exons
54-58 were ¢.54F — 5’ GGTGTTACCAAAGGAT-
GTTCCC3' and ¢.58R — 5'"CAGCATTTTTGAA-
GGACACAGGS3’. Products were sequenced as
described above.

Haplotyping

Typing was performed using short tandem repeats
(STRs) flanking the LAMAZ2 locus: D6S1715,
D6S407, D6S1620, D6S1705 and D6S1572; and

LAMA?2 mutations in 26 CMD patients

intragenic single nucleotide polymorphisms
(SNPs): ¢.3174+38A>@, ¢.5466G>A, ¢.5502A>G,
c.5727-24_5727-21delinsACTG, c.6237G>A,
c.6707+37T>C, c¢.7760T>C, c¢.7830C>G,
c.7845G>A and c.*190_192dupATA.

Southern blot analysis

gDNA from patients 1 and 12 was digested with
Accl (New England Biolabs, Beverly, MA), electro-
phoresed on a 0.8% agarose gel and transferred to
a GeneScreen Plus® membrane (Perkin Elmer,
Waltham, MA). This was hybridized with a cDNA
probe recognizing exons 54-58 labelled with fluo-
rescein (Gene Images Random Prime Labelling
Module, GE Life Sciences, Piscataway, NJ). After
antibody incubation, the membrane was washed at
60°C once in 1 X SSC/0.1% SDS and twice in 0.5X
SSC/0.1% SDS for 15 min each and developed
using CDP-Star detection reagent (GE Life
Sciences).

Long-range and deletion-specific PCR

Exon 56 deletion breakpoints were determined by
amplification of gDNA using the BIO-X-ACT™
Long DNA Polymerase kit (Bioline, Taunton,
MA) and the following primers complementary
to exons 55 and 57: ¢.55F — 5'CTAGGAG-
AAAACGAAGGCAGAC3' and ¢.57R — 5'TCA-
ACTGTCAGGTTTTGCATG3'. Resolved PCR
fragments were purified using the MinElute PCR
Purification Kit (Qiagen, Germantown, MD) and
sequenced with the internal primer g.INTS5F-
S'"CTCTACAAGCCAGCAATTCCAC3'. Arapid
deletion-specific PCR was developed using the
following primers: g.INT55-F2—-5'ATCAGCTG-
GAGAACAGAGAGGC3’ and g.INT57-R — 5'-
GTTTCAGTGGCTGATTCTTAGAGTTTC3".
Because this fragment only amplifies in deletion-
positiveindividuals, it was multiplexed with aninter-
nal control (D YSFexon 20).

Results
Patients

Table 1 summarizes the clinical, neuroradiologi-
cal and neuropathological data. Except for pa-
tients 11 and 20, all had symptoms since infancy.
Patient 11 had a peculiar clinical picture with pro-
gressive spastic paraparesis followed later by
a slowly progressive neuropathy. Pregnancy and
delivery had been uneventful. Nerve conduction
studies (at the age of 14 years) revealed delayed F
waves. While myopathy was not clinically evident,
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variation in fibre size was observed in the muscle
biopsy. Patient 20 also had a milder phenotype
with myopathy and clinically a mild neuropathy.
MRI, performed in 22 patients, revealed white
matter changes in all but one patient (tested in
the neonatal period where these changes are not
always visible). In another patient, this was
observed in the computerized tomography scan.
In three patients, cerebral changes included abnor-
mal gyration. Seizures were reported only in the
oldest patient. Twenty-two patients presented total
absence of laminin-o2 staining in muscle, two pa-
tients presented partial absence and in a further
two patients, this was not determined.

Table 2. Mutations identified in the LAMAZ2 gene

|dentification of LAMAZ2 gene mutations

Causative mutations were identified in all 26 pa-
tients (Table 2). Only one mutant allele was iden-
tified in patients 19 and 24; the mother of patient
24 carried the mutation, while the parents of
patient 19 were not tested.

A total of 18 different mutations were identified,
14 of which have not been reported previously.
Distribution by type was as follows: four nonsense
mutations (22%), four duplications (22%), five
deletions (28%), three splicing mutations (17%)
and two missense mutations (11%). The two most
frequent mutations were ¢.3085C>T (11 disease

Predicted
Gene Effect polypeptide
Patient Mutations®® location on mMRNA  change® Reference
1and 15 C.[7750-1713_7899-2153del]+ Introns 55-56 Frameshift p.Ala2584HisfsX8  This report
[7750-1713_7899-2153del]
2 and 10 c.[3976C>T]+[3976C>T] Exon 27 PTC p.Arg1326X (13)
3, 13, and 18 ¢.[3085C>T]+[3085C>T] Exon 22 PTC p.Arg1029X (13)
4 €.[4739dupG]+ Exon 33 Frameshift p.Leu1581ProfsX5  This report
[7490_7493dupAAGA] Exon 54 Frameshift p.Asp2498GlufsX4  This report
5 c.[1854_1861dupACGTGTTC]+ Exon 13 Frameshift p.Leu621HisfsX7 (13)
[1854_1861dupACGTGTTC]
6 C.[8244+1G>A]+ Intron 58 Splicing p.Pro2693ValfsX12  This report
[7750-1713_7899-2153del] Intron 55-56  Frameshift p.Ala2584HisfsX8  This report
7 c.[363C>A]+ Exon 3 PTC p.Tyr121X This report
[7750-1713_7899-2153del] Intron 55-56  Frameshift p.Ala2584HisfsX8  This report
8 c.[4318C>T]+ Exon 30 PTC p.GIn1440X This report
[4739dupG] Exon 33 Frameshift p.Leu1581ProfsX5 This report
9, 14, and 23 ¢.[3085C>T]+ Exon 22 PTC p.Arg1029X (13)
[7750-1713_7899-2153del] Intron 55-56  Frameshift p.Ala2584HisfsX8  This report
11 c.[1854_1861dupACGTGTTC]+ Exon 13 Frameshift p.Leu621HisfsX7 (13)
[3832G>T] Exon 26 Missense  p.Gly1278Cys This report
12 c.[1854_1861dupACGTGTTC]+ Exon 13 Frameshift p.Leu621HisfsX7 (13)
[7750-1713_7899-2153del] Intron 55-56  Frameshift p.Ala2584HisfsX8  This report
16 c.[3085C>T]+ Exon 22 PTC p.Arg1029X (13)
[6234+1G>A] Intron 36 Splicing p.Val1765SerfsX21  This report
17 c.[3976C>T]+ Exon 27 PTC p.Arg1326X (13)
[8776_8792del] Exon 62 Frameshift p.Thr2926TrpfsX14 This report
19 €.[1798_1800delGGA]+ Exon 13 Codon del p.Gly600del This report
[=] ? ? ? ?
20 €.[8613dupC]+ Exon 61 Frameshift p.Ser2872HisfsX34 This report
[412T>C] Exon 4 Missense  p.Tyr138His This report
21 c.[2049_2050delAG]+ Exon 14 Frameshift p.Arg683SerfsXx20 (11)
[6993-2A>C] Intron 49 Splicing?  ? This report
22 and 25 c.[5234+1G>A]+[5234+1G>A] Intron 36 Splicing p.Val1765SerfsX21  This report
24 c.[3085C>T]+ Exon 22 PTC p.Arg1029X (13)
= ? ? ? ?
26 €.[8443_8450delACAGTTCA]+ Exon 60 Frameshift p.Thr2815AlafsX11  This report

[8443_8450delACAGTTCA]

cDNA, complementary DNA; del, deletion; PTC, premature termination codon.
@Mutations described according to Human Genome Variation Society nomenclature (23).
PcDNA reference sequence with accession number NM_000426.3.

°Deduced from the changes detected at the genomic or cDNA level.
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alleles) and ¢.7750-1713_7899-2153del (10 disease
alleles) together accounting for 42% of the mutant
alleles (21/50).

The in-frame deletion c¢.1798 1800delGGA
(p-Gly600del) and the missense variants ¢.412T>
C (p.Tyr138His) and ¢.3832G>T (p.Gly1278Cys)
were not detected in 300 normal alleles. Addition-
ally, protein alignments indicated that the mis-
sense mutations affected highly conserved amino
acids (Data S1, supporting information online).
The single residue deletion (p.Gly600del),
although coinciding with a known missense poly-
morphism in humans and between species
(p.Gly600Arg), may have a detrimental effect on
protein folding and/or function. The GENSCAN
program predicted that the splice mutations
¢.5234+1G>A and c¢.8244+1G>A promote
skipping of exons 36 and 58, respectively, whereas
€.6993-2A>C should disrupt the acceptor splice
site with subsequent use of a cryptic splice site
located 7 bp into exon 50. Transcript analysis in
patients 6 and 16 confirmed the in silico prediction
for the former mutations, showing full skipping of
the neighbouring preceding exons (data not
shown). However, no muscle or fibroblast speci-
mens from patient 21 were available for cDNA
analysis to confirm the effect of ¢.6993-2A>C.

A total of 55 polymorphisms were also identified
in the course of this study, 22 of which had not
been reported previously (Data S2, supporting
information online).

All the variants detected in this study were sub-
mitted to the LAM A2 LSDB (http://www.lovd.nl/
LAMAY).

(a)
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LAMA?2 mutations in 26 CMD patients

Characterization of a new gross deletion

A large genomic deletion was first suspected in
patient 1 when exon 56 failed to amplify. Further
evidence was provided by haplotype analysis in
patient 12, seen to be hemizygous for three infor-
mative SNPs in exon 56 (Fig. 1a). cDNA analysis
in patients 1 and 12 revealed the presence of a
smaller fragment missing the entire exon 56 (Fig.
1b). Southern blotting and hybridization indi-
cated that the genomic deletion was approxi-
mately 5 kb long (Fig. 2a). This was confirmed
by long-range PCR (Fig. 2b), which was used to
further delineate the deletion endpoints. Sequenc-
ing revealed the absence of exon 56 plus a signifi-
cant part of the flanking introns (4987 bp)
characterized as ¢.7750-1713_7899-2153del (Fig.
2¢). If translated, this frame shift predictably orig-
inates a truncated polypeptide (p.Ala2584HisfsX8).

The deletion-specific PCR that was developed
enabled rapid screening of additional individuals.
In all, 8 patients presented the ¢.7750-1713_7899-
2153del mutation (2 homozygous and 6 heterozy-
gous), and 10 family members were found to be
carriers (data not shown).

Discussion

We describe the nature and frequency of LAMA?2
mutations in a group of 26 CMD patients. In
this relatively large cohort, the high mutation
detection rate of 96% (50/52 disease alleles) was
achieved by direct gDNA sequencing or by com-
bining this with RT-PCR analysis in cases where

Exon 55 Exon 56

AGACL GGaACt

f %/\;/V\(_‘J\W\Wﬁﬁ_ﬁf iy

ATG

cC P12 P1

bp A

500

300 Exon 55 Exon 57
AG AC GGACAdCA CTTTACAG

bl

Fig. 1. (a) Pedigree of family/patient 12 showing analysis with microsatellite markers around the LAMA2 locus and
intragenic single nucleotide polymorphisms. Haplotyping suggested the presence of a heterozygous deletion of exon 56. (b)
Complementary DNA analysis of LAM A2 transcripts by Reverse transcription—polymerase chain reaction amplification of
exons 54-58. Results revealed a smaller fragment missing the entire exon 56 in patients 1 and 12. C, control; M, molecular

weight marker; P, patient.
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(a) Accl Accl Accl
54 WMl 5 WEETy 57 WMl 5,

2.5kb 9.2kb

M C1 C2 P12 P1 C3

-

9.2kb

2.5KD w— »
-

cDNA probe
exons 54-58

(b)

M P1 P12 C1 C2 M
kb
12

5

(¢) Intron 55 4_|_> Intron 56

AAAAGTAAGATT

ﬂ»"@%’\fNL.ML

c.7750-1713_7899-2153del

CTATTTY

Fig. 2. (a) The size of the genomic deletion was determined by Southern blotting and hybridization using a complementary
DNA probe encompassing exons 54-58. (b) Long-range PCR amplification of the genomic region between exons 55 and 56.
(¢) The resulting PCR fragments were sequenced revealing the deletion of exon 56 and part of the flanking intronic sequences
(4987 bp). C, control; M, molecular weight marker; P, patient; PCR, polymerase chain reaction.

only one mutation had been detected. In patients
19 and 24, no adequate specimens were available
for mRNA studies, and these were the only two
cases where a single causal mutation was
identified.

Similar previous studies, in a significant number
of patients, have reported lower mutation detec-
tion rates ranging from about 60% to 80% (11, 12,
14). Because LAM A2 is a large gene, most groups
applied indirect mutation scanning techniques
such as SSCA or denaturing high performance
liquid chromatography combined with RT-PCR.
However, these approaches may not detect all the
mutations that are possibly present. Pegoraro
et al. (11) also described the use of the protein
truncation test (PTT) applied to LAMA2 muta-
tion detection. Because the majority of the muta-
tions described in this gene cause premature
translation termination, the use of this technique
allowed the identification of 80% of the mutations
in their cohort. Incomplete sensitivity was attrib-
uted to failure in the amplification of the mutated
allele, the presence of mutations in the primer
binding site or the fact that PTT is limited to the
detection of nonsense mutations and mutations
that alter the reading frame — small in-frame dele-
tions/duplications or missense mutations — could
be missed (11).
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Almost 30% of the mutations described to date
in the LAM A2 gene are of the nonsense type. In
our group of patients, these were also found to be
the most frequent, comprising 18 of the 50 disease
alleles (36%); however, ¢.3085C>T (p.Argl029X)
alone accounted for 11 of these.

A new 5-kb genomic deletion, encompassing
exon 56, was also seen to be very frequent in this
cohort (20% mutated alleles). To our knowledge,
this is the first fully characterized genomic dele-
tion described in LAMA2. A previous report
documents an exon 56 deletion detected by RT-
PCR (12); however, it remains uncertain that the
genomic defect is the same. Although this muta-
tion was detected in Portuguese and Spanish pa-
tients, no common haplotypes were found using
STRs flanking the LAMA2 locus (data not
shown). These preliminary results point towards
either a single ancient mutational event that has
suffered genetic drift or a recurrent event that has
occurred on different genetic backgrounds.

Quantitative assays such as multiple ligation-
dependent probe amplification should improve
mutation detection rates, enabling the identifica-
tion of other gross rearrangements, which are
probably underestimated in the LAMA2 gene.
Such changes could account for a reasonable num-
ber of MDCIA alleles and should therefore be



considered in the diagnostic setting, especially in
patients with a single mutation identified by rou-
tine screening methods. An important implication
in the failure to detect gross heterozygous deletions
is that the identification of a single variant sequence
may be erroneously interpreted as a homozygous
mutation if masked by a coincident exonic dele-
tion. Moreover, the absence of the variant in one
of the parents may be mistaken as evidence of a de
novo occurrence.

As expected, given the patients’ inclusion criteria
for the molecular study, the majority of mutations
in our series were predictably truncating (94% of
the mutated alleles). In line with previous observa-
tions (11), strict genotype/phenotype correlations
were difficult to establish in such severely affected
patients. Nevertheless, patients 11 and 20, who were
compound heterozygous for a truncating and a mis-
sense mutation, presented partial deficiency of lam-
inin-o.2 in muscle. The clinical phenotype of these
patients was also clearly milder with a later age of
onset (2-3 years) when compared with the other
patients (birth to 4 months). They achieved the
ability to walk unsupported, which is rarely
observed in MDCI1A. Patient 19 has also kept inde-
pendent ambulation till the age of 17 years; in this
case, a single in-frame deletion was detected, but
laminin-o2 expression in muscle has not been ac-
cessed. These patients may belong to a clinical sub-
form of CMD with primary partial laminin-o2
deficiency, as has been suggested previously (18).

Our results have enabled the reliable determina-
tion of carrier status in additional family members
and a more accurate prenatal diagnosis in several
pregnancies. The importance of extensive molec-
ular characterization is increasingly recognized
also in light of the new therapeutic strategies that
are currently being developed, such as the use of
antisense oligonucleotides (19) and drug-induced
stop codon read-through in MDCIA patients
(20). To this end, mutations need to be contextu-
alized. In those inducing premature termination
codons, the extent of nonsense-mediated mRNA
decay needs to be assessed by real-time RT-PCR
(20, 21, 22) because mRINA stability influences the
efficacy of transcript rescue. It is thus foreseeable
that future demand on diagnosis will include qual-
itative and quantitative transcript analysis to
identify the cases amenable to the different tar-
geted therapies.

Supporting information

Data S1. Partial laminin-o2 protein sequences alignment.

Data S2. New polymorphisms detected in LAMA2.

Supporting information are available as part of the online article
at http://www.blackwell-synergy.com
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