Origins of gas discharging from the Qiangtang Basin in the northern Qinghai–Tibet Plateau, China: Evidence from gas compositions, helium, and carbon isotopes

Min Luo a, d, Huagu Huang a, c, d, Peng Zhang b, Qingbai Wu b, Duofu Chen a, *

Keywords: Gas emission Carbon isotope Helium isotope Origin Qinghai–Tibet Plateau

A B S T R A C T

Gas compositions, helium isotopic ratios, and carbon isotopic compositions of CO2 and CH4 from six gas emission sites in the Qiangtang Basin and its adjacent areas were measured in order to unravel their origins. Gas samples from the Beiluhe, the Bucha Lake, and the eastern Tuotuo River are N2-rich with N2 over 75 vol.%, while the contents of CO2 and CH4 are only 3.45–20.91 vol.% and 0–3.58 vol.%, respectively. Relatively high CO2/3He (~9.95 × 1011) and CH4/3He (5.9 × 107–1.65 × 1010), and low δ13C values of CO2 (~−15.4‰) and CH4 (~−29.7‰) suggest that both CO2 and CH4 from the Bucha Lake are biotic. The S–M–L (S, M, and L represent sedimentary organic carbon, mantle, and limestone, respectively.) three-component mixing model suggests that no mantle-derived CO2 exists in these samples, which is consistent with the result that He in these gas samples is all crust-derived. CO2 in gas samples from the Beiluhe and the eastern Tuotuo River are relatively enriched in 13CO2 (~8.4‰ and −5.5‰) and low CO2/3He (2.3 × 108 and 2.4 × 109) as well as CH4/3He (5.9 × 107 and 3.4 × 107) ratios. These patterns suggest that both CO2 and CH4 are abiotic, demonstrated by the S–M–L three-component mixing model displaying that more than 50% CO2 in these two sites are mantle-derived. CO2-rich gases are discovered in the southern Erdaogou Depot, the branch of Tuotuo River, and the Tanggula Mountain Depot with CO2 exceeding 96 vol.%. The relatively high δ13C of CO2 (~4.2 to −7.7‰), low CO2/3He ratios (7.9 × 108–9.3 × 109), as well as the S–M–L three-component mixing model reveal that CO2 at least partially originates from the mantle source. Only one gas sample from the Tanggula Mountain Depot contains a trace amount of abiotic CH4 (CH4/3He = 1.2 × 107) generated by abiotic reduction of mantle-derived CO2. However, the source of He is dominantly crust-derived with only 2.15–5.66% mantle-derived He. The emission of large quantity of mantle-derived CO2 is likely due to the presence of the Hoh Xil–Jinsha River suture and the Cenozoic volcanism in northern Tibet. Nevertheless, the small fraction of mantle-derived He may result from the limited degree of openness at the bottom of fault zones and possibly reflect a geological setting of strong extrusion and crustal thickening.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gas discharge is ubiquitous worldwide and its related geological phenomena are also widespread in both terrestrial and marine environments, such as mud volcanoes, hot springs, pockmarks, and cold seeps (Etiope et al., 2009; Judd and Howland, 2007). Geochemical studies of discharging gases, including measuring gas species, concentrations, and isotopic compositions, play a significant role in the exploration of hydrocarbon and gas hydrate, in monitoring tectonic and magmatic activities, and in the environmental effect assessment of greenhouse gases (Bräuer et al., 2009; Etiope and Klusman, 2002; Yang, 2008, 2013; Yang et al., 2010). The analysis of carbon isotopes is one of the most direct and effective ways to fingerprint the origin of emitting gases. Moreover, concentrations and isotopic ratios of noble gases that provide information about the source of fluids are widely applied in the study of crust–mantle interaction, geotectonics, terrestrial heat flow, etc. (Battani et al., 2000; Holland and Ballentine, 2006; Lollar and Ballentine, 2009; Xu et al., 1996, 2003; Yang et al., 2009).

Previous studies associated with surface gas manifestations in the Qinghai–Tibet Plateau are mainly focused on the geothermal gases in the southern and central Tibetan Plateau. Helium in hot spring gases from Yangbajain and its adjacent areas in southern Tibet consist of both crust-derived and mantle-derived helium and δ3He values also show that the CO2 are multi-sourced (Yokoyama et al., 1999). Zhao et al. (2002) found that most of the hydrothermal activities occurred in the...
southern side of the Bangonghu–Nujiang suture and two types of geo-
thermal gases can be distinguished, i.e. CO₂-enriched and N₂-enriched
 gases. They also detected helium of mantle origin at the Moincer hot
spring, which indicates a mantle component at shallow crustal depth.
Hoke et al. (2000) defined two principal domains in the southern Tibetan
Plateau based on the isotopic composition of helium. Their suggested
boundary, about 50°–100 km north of the Brahmaputra suture zone, is
not only regarded as the southern limit of recent mantle melting and
mantle melt extraction beneath the Tibetan Plateau, but also inferred to
coincide with the junction between the Indian and Asian Plates. Howev-
er, Hou and Li (2004) asserted that the principal domains based on
helium isotope variations are divided along the 89°E longitude in the
east–west direction rather than in the south–north direction. To the
west of 89°E divide, the continental slab, gently dipping in NNE direction,
has probably passed the Brahmaputra suture, whereas to the east of 89°E,
an underthrusting slab front is subducted in a steep slope, and thus has
not spanned the Brahmaputra suture. In addition, CH₄ discharging from
cold emissions was discovered in the Tuojiu Mountain, the Kunlun
Pass, and Yanshiping, which was attributed to possible gas hydrate
occurrence in these regions (Lu et al., 2007).

The Qiangtang Basin is located in the northern Qinghai–Tibet Plateau
with an average altitude of more than 5000 m. So far, the surface gas
manifestations have been poorly investigated due to difficulties
accessing northern Tibet and its severe natural condition. In the present
study, we report for the first time field investigations on eight gas emis-
sion sites in the Qiangtang Basin and its adjacent areas. We present
gas compositions, stable carbon isotopic ratios of CO₂ and CH₄, as well
as helium isotopic composition from six gas emission sites in order to
trace the origin of the discharging gases. We also provide some basic
geochemical data of surface gas manifestations for studying the tectonic
evolution of the Qiangtang Basin and supporting hydrocarbon and gas
hydrate exploration in the Qiangtang Basin.

2. Geological setting

The Qiangtang Basin covers a region of approximately 18.5 × 10⁴ km²
(–300 km wide and –640 km long) in the north-central Qinghai–Tibet
Plateau (Wang and Yi, 2001). Sandwiched between the Gangdise-
Nyainqentanglha plate and the Hoh Xil–Bayan Har plate, and bounded
by the Hoh Xil–Jinsha River suture zone to the north and the Bangong
Lake–Nujiang River suture zone to the south, the Qiangtang Basin
consists of the Northern Qiangtang depression, the Central Uplift, and
the Southern Qiangtang depression (Huang, 2001) (Fig. 1). It developed
on the pre-Paleozoic crystalline basement and Paleozoic fold basement
and evolved to a foreland basin during the Triassic and Jurassic. Since
the Cretaceous, the Bangong Ocean closed by northward subduction
beneath the Qiangtang terrane and a large-scale regression occurred in
the Qiangtang Basin, leading to the uplift and denudation of the basin
(Cai et al., 1996; Kapp et al., 2003). The late Permian, Triassic, and Jurassic
oil-generating strata are the primary oil source rocks in the Qiangtang
Basin which are currently in mature to overmature stage. They mainly
distribute along the rim of the Central Uplift and in the central Northern
and Southern Qiangtang depression and show a great potential for gas
and oil formation. Moreover, hundreds of oil seepage sites have been
discovered mainly in the central Qiangtang Basin (Nan et al., 2008).
Thus, the Qiangtang Basin is considered as a favorable area for hydrocar-
bon exploration in northern Tibet (Wang et al., 2004; Zhao et al., 2001). In
addition, in consideration of the gas sources, transportation and reservoir

Fig. 1. Tectonic units of the Qiangtang Basin and the distribution of the investigated gas emission sites (modified from Xia (2009)). The distribution of mud volcanoes is according to
Hu and Zhang (1998) and Xie et al. (2009), and the occurrences of oil seepage sites are taken from Nan et al. (2008). Note that only major focused oil seepage sites are shown. Names
of gas emission sites: 1, the Beiluhe; 2, the southern Erdaogou Depot; 3, the Bucha Lake; 4, the eastern Tuotuo River; 5, the branch of Tuotuo River; 6, the northwestern Mazhanguocuoqin;
7, the Tanggula Mountain Depot; and 8, the southwestern Rongmaxiang.
Fig. 2. Photographs of the eight investigated gas emission sites. (A) The Beilube. The bubbles ascend continuously from the water and the diameters of most bubbles are ~1 cm; (B) The southern Erdaogou Depot. Most bubbles rise continuously from the water and their diameters are no more than 2 cm; (C) The Bucha Lake. The gas bubbles intensely and continuously emit from the water with their diameters of 1–5 cm; (D) The eastern Tuotuo River. The gas discharges continuously from the water with the bubbles’ diameters of 1–3 cm; (E) The branch of Tuotuo River. A stretch of continuous gas emission with the bubbles’ diameters of 1–3 cm is observed; (F) The northwestern Mazhangcuoqin. The gas emission site is situated on a mud volcano with its crater’s diameter of 25–30 m. The gas and water expulse drastically after the ice is broken; (G) The Depot of Tanggula Mountain. The water temperature is about 38–40 °C and the bubbles emit continuously and intensely from the water with their diameters of 1–5 cm. Yellow–gray travertine is observed around the vents; (H) The southwestern Rongmaxiang. The gas and water of ~40 °C emit continuously and intensely with the bubbles’ diameters of 1–5 cm. The pictures of gas emission sites A, B, C, D, E, and G were taken in August, 2011, and the pictures of gas emission sites F and H were taken in December, 2011.
conditions, the Qiangtang Basin should be the best prospective region for gas hydrate occurrence (He et al., 2012; Zhu et al., 2011).

3. Sampling and methods

Twelve gas samples were collected from the six emission sites in the Qiangtang Basin and its adjacent areas (Figs. 1&2). Cylindrical glass bottles with a frosted piston switch at each end of the bottle were used to collect the seeping gas. A funnel with a rubber tube connected to a hand-operated vacuum pump was inverted upon the bubbles in the water. Air was continuously pumped out of the glass bottle, and then the seeping gas was introduced slowly into the bottle by using the hand-operated vacuum pump through the rubber tube. After an adequate amount of gas was collected, the frosted piston switch was turned off and the gas samples were transported to the Key Laboratory of Gas Geochemistry (Lanzhou), Institute of Geology and Geophysics, Chinese Academy of Sciences as soon as possible for geochemical analysis.

Gas compositions were analyzed by HP5890II gas chromatography system equipped with a flame ionic detector and thermal conductivity. The analytical precision for major gas constituents is ±5%. Carbon isotopic ratios are expressed by the conventional delta notation in per mil (%) with respect to PDB (Pee Dee Belemnite from South Carolina). The measurement errors for carbon isotopic ratios are ±0.2‰. Helium isotopic compositions were measured by a MM5400 mass spectrometer. The accuracy of helium isotopic results was checked by repeatedly measuring the standard air collected from the top of Gaolan Mountain in Lanzhou City, China. Hot-blanks with 4He = 2.46 × 10⁻¹⁰ and 20Ne = 4.08 × 10⁻¹⁰ at 1600 °C (cm³ STP) were run using the same procedure as the real samples, and all the results were calibrated to hot-blank. Details of analytical procedures and errors were described in reference Ye et al. (2007).

4. Results

4.1. Characteristics of gas emission sites and gas compositions

The gas emission site of the Beiluhe is located near the Qinghai–Tibet Highway in front of the Beiluhe Base of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The bubbles ascend continuously from the water and most of them are ~1 cm in diameter (E92°56'19.8", N34°49'44.8", 4633 m in altitude) (Fig. 2A). Gas sample from the Beiluhe (G1) is N₂-dominated with the proportion of 82.59 vol.%. It also contains small amounts of CO₂ (13.80 vol.%), CH₄ (3.58 vol.%), and trace amounts of C₂H₆ (0.02 vol.%) as well as C₃H₈ (0.01 vol.%) (Table 1).

The gas emission site of the southern Erdaogou Depot was found in the flood plain of Herinachiqu River. Gas seeps continuously from the water. The diameter of the bubbles is typically smaller than 2 cm (E92°44'51.5", N34°35'37.7", 4620 m in altitude) (Fig. 2B). Gas samples from the southern Erdaogou Depot (G2, G3, G4, and G5) have high content of CO₂ (99.41–99.99 vol.%) but low content of CH₄ (0.01–0.59 vol.%) (Table 1).

The gas emission site of the Bucha Lake is located 48 km southwest of the Tuotuo River. Gas emissions continuously and intensely from the water. Bubble diameters are between 1 and 5 cm (E92°40'54.1", N34°03'05.4", 4483 m in altitude) (Fig. 2C). Mud seepage was also seen expulsing from some fluid discharge outlets. N₂ (95.50–96.20 vol.%) is the major component of gas samples from the Bucha Lake (G6, G7, G8) and the contents of CH₄ are only 3.43–3.84 vol.% (Table 1).

The gas emission site of the eastern Tuotuo River was discovered 6 km away from the Tuotuo River, with gas seeping continuously from the water with the bubble-diameters of 1–3 cm (E92°33'45.0", N34°12'10.1", 4518 m in altitude) (Fig. 2D). The gas sample from the eastern Tuotuo River (G9) consists of N₂ (78.79 vol.%), CO₂ (20.91 vol.%), and CH₄ (0.3 vol.%) (Table 1).

The gas emission site of the branch of Tuotuo River is situated near the junction of the branches of Tuotuo River–Dongduoqu and Zhamaqu, 40 km northwestern away from the Tuotuo River. A stretch of continuous gas emission was observed with the bubble-diameters of 1–3 cm (E92°07'30.8", N34°18'46.6", 4585 m in altitude) (Fig. 2E). The gas sample from the branch of Tuotuo River (G10) is almost comprised of pure CO₂ (Table 1).

The gas emission site of the Tanggula Mountain Depot is located on the hillside in proximity to the Tanggula Mountain Depot. The water temperature is about 38–40 °C. The gas and water discharge continuously and intensely with the bubbles' diameters of 1–5 cm (E91°51'04.3", N33°08'30.6", 4901 m in altitude) (Fig. 2G). Yellow–gray travertine was observed around the fluid outlets. The gas samples (G11, G12) are dominated by CO₂ with N₂ and CH₄ proportion of 1.46–3.12 vol.% and 0.01–0.11 vol.%, respectively (Table 1).

4.2. Isotopic compositions of discharging gases

3He/4He values of the 11 gas samples range from 0.07 × 10⁻⁶ to 1.19 × 10⁻⁶, and R/Ra values are between 0.05 and 0.85 (Ra is the 4He/3He ratio of air) (Table 2). It is necessary to adjust the 3He/4He values due to the possible air contamination during sampling. Assuming that all the 20Ne concentration of the samples come from the atmosphere, we can correct the helium ratios for atmospheric helium contamination by Eq. (1) (Poreda and Craig, 1989).

\[
\frac{3\text{He}^{s}}{4\text{He}^{s}} = \left(\frac{3\text{He}^{c}}{4\text{He}^{c}}\right) \times \frac{1}{(1-r)}
\]

where the subscript c is the corrected value; air is the value of air; and s is the measured value. Since 3He/20Ne ratio of G12 is quite close to the ratio

Table 1
Gas compositions and their carbon isotopic ratios.

<table>
<thead>
<tr>
<th>Sample numbers</th>
<th>Sampling sites</th>
<th>N₂ (%)</th>
<th>CO₂ (%)</th>
<th>CH₄ (%)</th>
<th>C₂H₆ (%)</th>
<th>C₃H₈ (%)</th>
<th>δ¹³C₀₂ (PDB, ‰)</th>
<th>δ¹³C₂H₆ (PDB, ‰)</th>
<th>⁴He/⁴He (air) ⁴He/⁴He (air) ⁴He/⁴He (air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Beiluhe</td>
<td>82.59</td>
<td>13.80</td>
<td>3.58</td>
<td>0.02</td>
<td>0.01</td>
<td>−28.3</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G2</td>
<td>Southern Erdaogou Depot</td>
<td>0.00</td>
<td>99.41</td>
<td>0.59</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G3</td>
<td></td>
<td>0.00</td>
<td>99.97</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G4</td>
<td></td>
<td>0.00</td>
<td>>99.99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G5</td>
<td></td>
<td>0.00</td>
<td>99.99</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G6</td>
<td>Bucha Lake</td>
<td>96.07</td>
<td>3.64</td>
<td>0.22</td>
<td>0.00</td>
<td>0.01</td>
<td>−29.7</td>
<td>−20.5</td>
<td>−</td>
</tr>
<tr>
<td>G7</td>
<td></td>
<td>95.50</td>
<td>3.84</td>
<td>0.64</td>
<td>0.1</td>
<td>0.01</td>
<td>−29.7</td>
<td>−18.0</td>
<td>−</td>
</tr>
<tr>
<td>G8</td>
<td></td>
<td>96.55</td>
<td>3.45</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>−29.6</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G9</td>
<td>Eastern Tuotuo River</td>
<td>78.79</td>
<td>20.91</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G10</td>
<td>Branch of Tuotuo River</td>
<td>0.00</td>
<td>>99.99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G11</td>
<td>Tanggula Mountain Depot</td>
<td>3.12</td>
<td>96.77</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>−27.7</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>G12</td>
<td></td>
<td>1.46</td>
<td>98.54</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

‡ δ¹³C₁ and δ¹³C₂ represent the δ¹³C values of methane and ethane, respectively.
of air (0.319) because of serious air contamination, it is not further considered in the following discussion. The variation range of 3He/4He values diminishes after correction and R_c/R_a ratios are between 0.04 and 0.50 (Table 2).

δ^{13}CCO$_2$ values of the 11 gas samples from the six gas emission sites range from -15.9 to -4.5‰. δ^{13}C values of CH$_4$ in gas samples from the Beiluhe (G1), the Bucha Lake (G6, G7, G8), and the Tanggula Mountain Depot (G11) are between -29.7 and -27.7‰, and δ^{13}C values of C$_2$H$_6$ in gas samples from the Bucha Lake (G6, G7) are -20.5% and -18.0% (Table 1).

5. Discussion

5.1. Origin of helium

Helium has been commonly used as a fluid source tracer because it is chemically inert, physically stable, and highly mobile. It can travel in rock matrix, accumulate in the rock pores and fissures, and finally enter groundwater and atmosphere (Ozima and Podosek, 2002). The helium isotopic ratios of natural gases are typically defined by varying fractions of the three major components (1) air (homogeneous 3He/4He ratio of $R_a = -1.40 \times 10^{-6}$), (2) crust (3He/4He ratios of ~0.05R_a are much lower than that of air because abundant 4He gases are produced by alpha decay of radioactive isotopes (238U, 235U, 222Th)), and (3) mantle (characterized by high 3He/4He ratios of ~8R_a related to high amounts of primordial 3He (Oxburgh et al., 1986; Porcelli et al., 2002)). The relationship of 3He/4He and 4He/20Ne shows that gas samples from the Qiangtang Basin and its adjacent area mainly cluster along the mixing line of air–crust end-members (Fig. 3), reflecting a major contribution of radiogenic crustal He. Additionally, the relative proportion of mantle-derived He can be calculated according to Eq. (2) (Andrews, 1985):

$$\text{He}(\%) = \left[\frac{(1 - R_c/R_a)c_s}{R_c/R_a} + \frac{(1 - R_c/R_a)c_m}{R_c/R_a} - \frac{R_c/R_a}{R_c/R_a}m\right]$$

where $\text{He}(\%)$ is the relative proportion of mantle-derived He; subscript s is the measured value; c is R_c/R_a value of crust-derived He (~0.05) (Morrison and Pine, 1955); and m is R_c/R_a value of mantle-derived He (~8) (Graham, 2002). The calculations also reveal that the radiogenic crustal helium is dominant in all gas samples in the investigated area, which are consistent with the results of the 3He/4He/20Ne plot. He in measured samples from the Bacha Lake is crustal-radiogenic without the mixture of mantle-derived He. In contrast, gas samples from the Beiluhe, the eastern Tuotuo River, the branch of Tuotuo River, and the Tanggula Mountain Depot contain certain amounts of mantle-derived He (2.15–2.97%) (Table 2). Gas samples from the southern Erdaogou Depot exhibit the highest proportion of mantle-derived He (up to 5.66%), most likely because this gas emission site is in close proximity to deep seated fault zone — the Hoh Xil–Jinsha River suture zone (Fig. 1). This fault zone acts as a conduit for mantle-derived fluid to migrate to shallow crust, resulting in the relatively high mantle-derived He content in seeping gases. However, the proportion of mantle-derived He in the gas samples from the target area is much lower than those from the southern Tibet and the southwestern Yunnan, which possibly results from the limited degree of openness at the bottom of fault zones (Shen et al., 2007; Zhao et al., 2002) and reflects a geological setting of strong extrusion and crustal thickening (Li et al., 2011; Zhao et al., 2004). Alternatively, the small contribution from mantle-derived He may be caused by the dilution of radiogenic crustal He from U and Th decay in the continental crust.

5.2. Sources of CO$_2$

CO$_2$ in natural gases may be derived from various sources, including methanogenesis, oil field biodegradation, kerogen decarboxylation, hydrocarbon oxidation, decarbonation of carbonates, and magma degassing (Wycherley et al., 1999). The δ^{13}CCO$_2$ value can be used to distinguish between some of these sources. Biotic CO$_2$ generally has δ^{13}CCO$_2$ values below -10‰, whereas the abiotic CO$_2$ contains high amounts of heavy carbon, resulting in δ^{13}CCO$_2$ values above -8‰ (Song and Xu, 2005). Among them, the δ^{13}C of mantle-derived CO$_2$ associated with MORB falls within -6.5 ± 2‰ (Sano and Marty, 1995).

The average δ^{13}CCO$_2$ value of gas samples from the Bucha Lake is -15.4% (Table 1), indicating that CO$_2$ is biogenic in origin. The CO$_2$ in gas samples from the Beiluhe, the southern Erdaogou Depot, the eastern Tuotuo River, the branch of Tuotuo River, and the Tanggula Mountain Depot exhibit δ^{13}C values of -29.7 to -27.7‰ (Table 1), indicating that CO$_2$ is biogenic in origin. The CO$_2$ in gas samples from the Beiluhe, the southern Erdaogou Depot, the eastern Tuotuo River, the branch of Tuotuo River, and the Tanggula Mountain Depot exhibit δ^{13}C values of -29.7 to -27.7‰ (Table 1), indicating that CO$_2$ is biogenic in origin.
Depot is abiotic and could possibly be associated with mantle-derived fluid because their δ13C values (−4.5 to −8.4‰) fall within the range of MORB (Table 1). Dai et al. (1995) concluded that CO2 in gas samples is abiotic in origin, if CO2 concentrations are higher than 60 vol.% (based on synthesizing the concentrations and carbon isotopic compositions of CO2 in 212 gas samples of different sources from China and in more than 100 gas samples from Australia, Thailand, New Zealand, Philippines, and Canada). The CO2 contents of discharging gas from the southern Erdaogou Depot, the branch of Tuotuo River, and the Tanggula Mountain Depot are all greater than 90 vol%, which further supports the hypothesis of the CO2 being of abiotic origin.

Undoubtedly, the use of δ13C values has its limits in deciphering CO2 origins due to the overlap over δ13C values from different sources. Hence, we combine other parameters to trace CO2 origins. The CO2/3He ratio can act as a sensitive indicator for mantle-derived ratios of gas samples from Tanggula Mountain Depot are below that of mantle-derived sources. Hence, we combine other parameters to trace CO2 origins.

Assuming the CO2 signatures in the study area result from the mixture of three components: sedimentary organic carbon (S), mantle (M), and limestone (L), we adopt the classical three-component mixing model of Sano and Marty (1995) to assess carbon provenance. Using the following equations, the relative contributions (expressed as fractions, f) from the three sources can be determined:

\[
\begin{align*}
\frac{13C}{12C} = & f_M \frac{13C}{12C} + f_L \frac{13C}{12C} + f_S \frac{13C}{12C} \\
\frac{12C}{3He} = & f_M \frac{12C}{3He} + f_L \frac{12C}{3He} + f_S \frac{12C}{3He} \\
f_M + f_L + f_S = & 1
\end{align*}
\]

where subscripts m, M, L, and S refer to the measured sample, the mantle, the limestone, and the sedimentary organic carbon, respectively. Using δ13C values of −6.5‰, 0‰, and −30‰ for M, L, and S and 12C/3He ratios of 1.5 × 10^9, 1 × 10^13, and 1.6 × 10^13 for M, L, and S, respectively, we estimate that no mantle-derived CO2 is in gas samples from the Bacha Lake with the fraction of CO2 originating from sedimentary organic carbon exceeding 50% (Figs. 5 & 6). Thus, we infer that more than half of the CO2 is likely to derive from methane oxidation or organic matter degradation because these gas samples contain a small amount of CH4. In contrast, gas samples from other sites all contain certain amounts of mantle-derived CO2 (−16 to −65%) (Fig. 6), especially for the gas sample from the Tanggula Mountain Depot containing 100% mantle-derived CO2, which is consistent with the inferences from δ13C values and CO2/3He ratios. The geothermal gas in southern Tibet is also characterized by mantle-derived CO2 (Yokoyama et al., 1999; Zhao et al., 2002). The mantle-derived CO2 discharge in the target area may be associated with the occurrence of the Hoh Xil–Jinsha River suture and the Cenozoic volcanism in northern Tibet (Deng and Sun, 1999; Li et al., 2011; Turner et al., 1993). From Early Triassic to Late Jurassic, the Qiangtang Basin was filled by marine sediments dominated by marls and marly carbonate beds (Guo et al., 2008), and crustal thickening and large-scale magmatic intrusion resulting from intensive crustal shortening in the Tanggula–Tuotuo River area characterized by strong tectonic compression (Fu et al., 2010a; Li et al., 2011). Therefore, the decarbonation of carbonates resulting from magmatic activity is possibly the main contributor of limestone-derived CO2 in gas samples.

5.3. Source of CH4

Methane produced in most sedimentary basins is generally classified as either being of microbial or thermogenic origin, i.e. related respectively to metabolic and biosynthetic activity of bacteria or thermal degradation of sedimentary organic matter (Schoell, 1988; Welhan, 1988; Whiticar, 1999). Abiotic methane, formed by chemical reactions that are not related to the existence of organic matter, is produced in much smaller amounts on a global scale. The occurrence of economically exploitable abiotic methane reservoirs has not been found apart from rare exceptions (Dai et al., 2005; Etiope and Lollar, 2013; Jin et al., 2009), which have been controversially discussed. δ13C vs. δD plot has been proven to be an effective tool to unravel the sources of methane within certain limits (Schoell, 1980; Welhan, 1988; Whiticar, 1999), but we are not able to utilize this method, because no obtain δD values.

![Fig. 4. Plot of CO2/3He against CO2 volume for all of the gas samples studied. The shade region highlights the range of CO2/3He values of magmatic samples (Giffillan et al., 2008). All error bars are smaller than plotted symbols.](Image 327x128 to 527x270)

![Fig. 5. Plot of CO2/3He versus δ13C of CO2 for gas samples. S, M, and L represent the sedimentary organic carbon, the mantle carbon, and the limestone. The end-member compositions for S, M, and L are δ13C = −30, −6.5, and 0‰, and CO2/3He = 1 × 10^9, 1 × 10^13, and 1 × 10^13, respectively (Sano and Marty, 1995). The data are explained by a 3-component mixing model between S–M–L. CO2 from the Bucha Lake show a significant input of S and M end-members and CO2 from the Beiluhe, the southern Erdaogou, the eastern Tuotuo River, and the branch of Tuotuo River mainly clusters close to the end-member M. All error bars are smaller than plotted symbols.](Image 35x85 to 284x249)
from our samples are available. Meanwhile, overlapping ranges of δ13C values from biotic and abiotic methane have been reported as pointed out by several studies (Horita and Berndt, 1999; McCollom and Seewald, 2006; McCollom et al., 2010; Taran et al., 2010) suggesting that abiotic CH4 produced by gas–water–rock reactions can result in values as depleted as −57‰, which was previously assumed to be an indicator for biotic CH4. The δ13C values alone thus, do not enable a clear differentiation between biotic and abiotic methane sources. Hence, CH4/3He ratios are adopted to further investigate fluid origins in the present study. Mantle-derived fluids typically have CH4/3He values between 103 and 106, while CH4/3He values of crust-derived fluid are much higher ranging from 109 to 1011 (Dai et al., 2005; Gigenbach et al., 1993). CH4/3He values of gases from the Beiluhe (3.4 × 107), the eastern Tuotuo River (3.4 × 107), and the Tanggula Mountain Depot (1.2 × 107) indicate that CH4 may be dominantly mantle-derived. In addition, there is a positive correlation between the δ13C values and the abundance of mantle-derived He (Tables 182), possibly suggesting a mantle-derived CH4 input. Although it has been traditionally assumed that abiotic CH4 is mainly associated with mantle-derived or magmatic processes, new data show that relatively low-temperature synthesis related to gas–water–rock reactions is more common (Etiope and Lollar, 2013). Mantle-derived or magmatic CH4 is abiotic, but not all abiotic CH4 is mantle-derived. Thus, we can at least conclude that CH4 from the Beiluhe, the eastern Tuotuo River, and the Tanggula Mountain Depot is abiotic. Notably, gas samples were collected from hot springs in the Tanggula Mountain Depot which is a major geothermal system of the Qiangtang Basin. The CH4 thus, may be generated by abiogenic reduction of the mantle-derived CO2, comparable with the abiotic CH4 discharging from the geothermal systems of the peri-Tyrrhenian area, Italy (Tassi et al., 2012). The CH4 in gas samples collected from the Bucha Lake is referred to be crustal-derived with CH4/3He values ranging from 5.9 × 108 to 1.65 × 1010. Because mud bubbling was observed in some of the fluid releasing outlets and most of the CO2 is inferred to stem from organic matter and contain no mantle information in the Bucha Lake, we postulate that the CH4 is possibly also originated from organic matter and the biotic gas discharge might be linked to mud volcanism. It has been demonstrated that the seepage of biogenic hydrocarbon is widespread in the hinterland of the Qiangtang Basin (Nan et al., 2008) while the CH4 from our study area is mainly abiogenic. The proximity to the Hoh Xil–Jinsha River suture and the possible influence by the Cenozoic volcanism may explain the difference of gas geochemistry between the oil seepage sites in the central Qiangtang Basin and our sampling sites which are primarily located along the eastern margin of the northern Qiangtang depression.

6. Conclusions

Although a myriad of lines of evidence have demonstrated that the Qiangtang Basin is the most favorable sedimentary basin for hydrocarbon and gas hydrate exploration and exploitation in the Qinghai–Tibet Plateau (Chen et al., 2005; Ding et al., 2013; Fu et al., 2010b, 2013; He et al., 2012), we did not see many surface hydrocarbon manifestations in the study area. Instead, CO2 in gas samples from the Beiluhe, the southern Erdaogou Depot, the eastern Tuotuo River, the branch of Tuotuo River, and the Tanggula Mountain Depot at least partially originate from the mantle. In particular, all CO2 from the Tanggula Mountain Depot seems to be derived from mantle sources, comparable with the geothermal gas discharge in southern Tibet. Meanwhile, the trace amount of abiotic CH4 from Tanggula Mountain Depot is possibly produced by abiogenic reduction of the mantle-derived CO2. Only CO2 and CH4 from the Bucha Lake are inferred to be primarily biotic and are possibly linked to mud volcanism. The large-scale emission of mantle-derived CO2 discovered in gas samples is likely to be associated with the occurrence of a regional deep-seated fault (Hoh Xil–Jinsha River suture) and the Cenozoic volcanism in northern Tibet. However, the limited discharge of mantle-derived He (2.15–5.66‰) may be caused by the limited degree of openness at the bottom of fault zones and possibly reflects a geological setting of strong extrusion and crustal thickening.

Acknowledgements

We are grateful to Prof. Yi Haisheng (Chengdu University of Technology) who provided us the data about the gas emission sites. We also thank Dr. Christian Hensen (GEOMAR) for his kind help in polishing the revised manuscript. This study was funded by the Gas Hydrate Drilling Project in Permafrost Areas of the Qinghai–Tibet Plateau [KZCX2-XB3-03]. This is the contribution no. IS-1909 from GIGCAS.

References

Ding, W., Wan, H., Zhang, Y., Han, G., 2013. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet. J. Asian Earth Sci. 60, 63–72.