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Major element compositions of 36 bulk samples and 41 clay samples, which were obtained from 47 top-
soils collected in monsoonal eastern China, were investigated with conventional wet chemistry and X-ray
fluorescence (XRF) spectrometry, respectively. Based on major element analyses, the mobility of major
elements and latitudinal distributions of SiO2/Al2O3 ratio, chemical index of alteration (CIA), chemical
index of weathering (CIW) and weathering index of Parker (WIP) were analyzed. Meanwhile, the suitabil-
ity of these chemical weathering indices to topsoils in monsoonal eastern China and its controls were dis-
cussed.

These investigations indicate that Na, K, Ca, Mg, and Si are relatively depleted, while Mn, P, Fe and Ti are
relatively enriched in topsoils of the study area by comparison with their contents in the upper continent
crust (UCC), and that alkali metal (Na, K) and alkaline earth metal (Ca, Mg) elements are generally easier
to be depleted from their parent materials than other major elements during chemical weathering. The
latitudinal distributions of CIA, CIW and WIP show that they are suitable to both bulk and clay samples,
but SiO2/Al2O3 is only suitable to clay samples, not suitable in bulk ones. All these investigations indicate
a significant dependence of grain-size in major element abundance and latitudinal distributions of SiO2/
Al2O3, CIA, CIW and WIP, but parent rock type has little effect on them, except its impact on the latitu-
dinal distribution of WIP in clay samples. The significant grain-size dependence probably indicates the
presence of unaltered minerals in bulk samples, thus we suggest that clay samples are more suitable
to investigating chemical weathering of sediments on continents than bulk samples. The trivial effect
of parent rock type probably indicates a relatively uniform chemical weathering on various parent rocks.
Correlation analyses indicate that climate is the dominant control of chemical weathering of topsoils in
the study area, and the significant latitude effect indicated by the spatial distributions of chemical weath-
ering indices actually reflect the climate control on chemical weathering of topsoils.

Chemical weathering indices actually reflect the integrated weathering history in the study area.
Besides the dominant control of climate, other factors like tectonics, parent rock, biology, landform
and soil depth and age might also have some effect on the chemical weathering of topsoils in the study
area, which needs further research.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Chemical weathering is an important surface process of the earth
and related to many environmental changes caused by interactions
and feedbacks among atmosphere, lithosphere, hydrosphere and
biosphere. It has long been a research focus in geosciences because
of its significance in the earth surface evolution (Nesbitt and Young,
1982; Allen et al., 2001; Chen et al., 2001; Minasny and McBratney,
2001; Dixon et al., 2009), global carbon cycle (Berner et al., 1983;
Volk, 1987; Raymo et al., 1988; Brady, 1991; Berner, 1992, 1995;
Amiotte Suchet and Probst, 1993; Kump et al., 2000), pedogenisis
(Jackson and Sherman, 1953; Sverdrup and Warfvinge, 1988; Mina-
sny and McBratney, 2001; Yoo et al., 2007), and civil engineering
(Dearman et al., 1978; Steward and Cripps, 1983; Fookes et al.,
1988; Lan et al., 2003).

Persistent investigations on the controls of chemical weathering
have contributed a lot to our understanding on the links between
chemical weathering and its controlling factors, such as tectonics
(geological settings and topographical conditions) (Raymo et al.,
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Fig. 1. A sketch map of the study area with sampling sites and weather stations.
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1988; Drever and Zobrist, 1992; Raymo and Ruddiman, 1992;
Berner and Berner, 1997; Riebe et al., 2001; Jacobson et al., 2003;
West et al., 2005; Liu et al., 2007a,b; Moore et al., 2013); prove-
nance (or lithology of source rock) (Sawyer, 1986; Nesbitt and
Wilson, 1992; Le Pera et al., 2001; Dessert et al., 2003; Price and
Velbel, 2003; Caspari et al., 2006); climate (temperature, precipita-
tion and runoff) (Velbel, 1993; Brady and Carroll, 1994; White and
Blum, 1995; Riebe et al., 2001, 2004; Yang et al., 2004; Deepthy
and Balakrishnan, 2005; Singh et al., 2005; West et al., 2005; Liu
et al., 2007a,b; Gislason et al., 2008; Gabet et al., 2010; Li and Yang,
2010); vegetation (Berner, 1992; Drever, 1994; Gislason et al.,
1996); time (Grantham and Velbel, 1988; Taylor and Blum, 1995;
Gislason et al., 1996; White and Brantley, 2003); and even human
activities (Motuzova and Hong Van, 1999; Chetelat et al., 2008).
Although much work has been done, controversies still remain
on the controlling mechanisms of chemical weathering, especially
of silicate rocks (Stallard, 1995; Yang et al., 2004; West et al., 2005;
Li and Yang, 2010; Willenbring and von Blanckenburg, 2010;
Moore et al., 2013). Some conventional views about chemical
weathering have even been challenged by new discoveries. For
example, the famous ‘‘Uplift-Weathering Hypothesis’’ proposed a
tectonic forcing of global cooling in Late Cenozoic, suggesting that
the increases in chemical weathering driven by the uplift of the
Tibet Plateau during that period may have resulted in the de-
creases of atmospheric CO2, thus cooling the Late Cenozoic climate
(Raymo and Ruddiman, 1992). A recent investigation questioned
the tectonic forcing, however, with evidence on the long-term sta-
bility of global erosion and chemical weathering rates during the
Late-Cenozoic cooling (Willenbring and von Blanckenburg, 2010).
A most recent investigation also concluded that silicate weathering
in uplifting mountain ranges does not control long-term climate
change, based on Ca isotope analyses of silicate and carbonate



Fig. 2. Latitudinal distributions of MAT and MAP, and their correlations. Climatic data of (a), (b) and (d) are obtained from all the weather stations lower than 1000 m above
seal level in the study area, and climatic data of (c), (d) and (e) were obtained from those closest to the sampling sites. Source: China Meteorological Data Sharing Service
System (1961–1990).
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weathering from rivers draining active mountain belts (Moore
et al., 2013). Moreover, a recent investigation suggested that it is
not the atmospheric CO2 sink by silicate weathering but by carbon-
ate weathering that is responsible for both long-term and short-
term climate change (Liu et al., 2011). Another controversy dealt
with the relationship between physical denudation and chemical
weathering. It is generally believed that chemical weathering is
positively related to physical denudation (Gaillardet et al., 1999;
Millot et al., 2002), but a recent case study doubted that by com-
parison of silicate weathering between the drainage basins of



Table 1
Major element concentrations and LOI of bulk samples (in wt%).a

Bulk samples SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total

HHBBB 61.60 0.77 12.89 3.74 0.05 1.15 1.42 2.07 2.63 0.09 13.18 99.59
HMHCB 54.26 1.48 15.24 7.28 0.07 2.09 1.45 2.36 1.61 0.11 13.26 99.21
HMWBB 50.31 1.24 13.88 6.25 0.14 2.93 3.22 1.73 2.31 0.19 17.31 99.51
HMJBB 48.03 1.04 14.02 6.22 0.10 1.92 3.36 1.39 1.21 0.40 22.05 99.74
JHFAB 62.24 1.14 13.33 6.08 0.09 2.05 1.42 1.90 2.11 0.17 9.19 99.72
HWYBB 62.13 0.65 12.47 3.68 0.05 1.64 2.02 1.72 3.00 0.09 11.96 99.41
HWYAB 75.45 0.18 12.20 1.22 0.01 0.74 0.10 2.85 5.16 0.01 1.71 99.63
JATDB 62.73 0.68 15.75 5.36 0.08 0.78 1.57 5.31 2.41 0.07 4.78 99.52
JTWAB 54.37 0.73 14.69 5.64 0.04 2.75 1.34 0.80 3.05 0.15 16.08 99.64
LKHAB 37.52 1.36 13.00 7.63 0.12 3.42 3.26 0.80 1.78 0.33 30.40 99.62
HSJAB 49.73 2.14 14.70 9.32 0.06 4.08 4.95 2.25 1.36 0.44 10.29 99.32
HSJCB 67.38 0.91 12.29 4.02 0.05 1.51 2.44 0.91 1.55 0.12 8.56 99.74
SPWAB 49.24 1.99 13.86 11.03 0.09 3.42 2.92 1.50 1.26 0.37 14.14 99.82
SLSAB 51.19 1.64 13.63 8.96 0.12 3.80 3.29 2.84 2.04 0.24 11.81 99.56
JDAAB 51.72 1.79 14.80 11.52 0.09 2.15 2.10 1.33 1.25 0.37 12.62 99.74
ASNAB 45.99 1.94 15.58 12.69 0.13 6.55 4.98 0.87 0.43 0.68 9.53 99.37
JXYAB 47.88 2.36 13.24 11.88 0.24 2.46 2.57 1.00 1.22 0.27 16.11 99.23
JZWAB 59.30 2.09 14.09 8.72 0.13 1.71 0.07 0.53 1.37 0.07 11.48 99.56
ZHLBB 71.62 0.83 12.04 4.38 0.02 0.85 0.01 0.30 1.58 0.11 7.91 99.65
ZSPAB 34.95 3.90 14.05 21.00 0.25 6.53 3.74 0.38 0.42 0.85 13.25 99.32
ZLSAB 65.28 0.73 14.75 4.04 0.11 0.92 0.17 1.36 3.02 0.06 9.14 99.58
ZWWAB 55.68 1.23 18.36 5.87 0.01 1.19 0.01 0.25 1.91 0.12 14.98 99.61
FNSAB 72.93 0.76 10.98 2.51 0.01 1.01 0.21 0.19 1.24 0.06 9.87 99.77
FMSBB 34.96 3.01 20.27 18.08 0.11 1.49 0.12 0.19 0.46 0.77 20.18 99.64
FZCB 70.15 0.50 14.30 3.83 0.00 0.75 0.21 0.26 1.66 0.06 7.98 99.70
FLZAB 42.76 2.12 17.05 13.97 0.17 1.77 0.90 0.50 0.61 0.14 19.68 99.67
FLBBB 39.87 2.73 15.07 13.69 0.14 3.73 1.68 0.66 1.15 0.23 20.52 99.47
TB 78.66 0.71 8.37 3.86 0.05 0.47 0.16 0.36 1.51 0.07 5.46 99.68
GJHAB 60.19 0.69 17.44 5.17 0.03 1.20 0.12 0.51 3.04 0.08 11.21 99.68
GGZAB 70.29 0.39 15.08 1.88 0.01 1.20 0.12 0.16 0.71 0.08 9.61 99.53
GDB 56.50 2.06 14.69 12.73 0.14 1.11 0.17 0.32 0.28 0.13 11.33 99.46
HHJAB 50.73 2.30 18.85 13.61 0.04 1.18 0.12 0.13 0.21 0.10 12.26 99.53
HLGAB 34.38 4.49 17.58 21.58 0.30 1.90 0.83 0.68 0.62 0.25 17.21 99.82
HXYBB 52.51 2.52 13.88 11.39 0.24 2.51 1.87 0.84 0.79 0.28 12.94 99.77
HHLBB 68.06 1.45 9.15 7.74 0.13 1.95 0.45 0.38 1.11 0.17 9.03 99.62
HWNB 29.50 4.40 22.52 21.89 0.11 0.93 0.00 0.73 0.06 0.19 19.23 99.56

a LOI = loss on ignition, the subscript letter B in the table means bulk sample.
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Changjiang and Huanghe, and suggested that strong physical denu-
dation does not always result in intensive chemical weathering in
drainage basins (Yang et al., 2004).

One of the major problems in chemical weathering investiga-
tion is the quantitative evaluation of chemical weathering inten-
sity. To solve this problem, various solutions and chemical
indices have been established and applied, most of which are based
on major element analyses, such as SiO2/Al2O3 ratio (Ruxton,
1968), WIP (weathering index of Parker) (Parker, 1970), CIA (chem-
ical index of alteration) (Nesbitt and Young, 1982), CIW (chemical
index of weathering) (Harnois, 1988), and ternary diagrams of
chemical elements (Nesbitt and Young, 1989; Ohta and Arai,
2007). Good results have been obtained in their applications to
the geochemistry of weathering profiles (Nesbitt and Young,
1989; Nesbitt and Wilson, 1992; Ng et al., 2001; Duzgoren-Aydin
and Aydin, 2003; Price and Velbel, 2003; Deepthy and Balakrish-
nan, 2005; Singh et al., 2005; Caspari et al., 2006; Ohta and Arai,
2007; Shao et al., 2012) and river chemistry of dissolved loads
(Liu et al., 2004, 2007a,b, 2009; Li and Yang, 2010; Shao et al.,
2012). In fact, till present, most of our chemical weathering infor-
mation is obtained from the geochemistry of weathering profiles
and river chemistry of dissolved loads. Besides river sediments
(Liu et al., 2004; Yang et al., 2004; Li and Yang, 2010; Shao et al.,
2012) and weathering profiles of bedrock (Lan et al., 2003; Li
et al., 2007a,b; Ma et al., 2007), eolian sediments have been an-
other source of chemical weathering information in China (Gallet
et al., 1998; Jun et al., 1998; Chen et al., 2001; Ding et al., 2001;
Yang et al., 2006; Li et al., 2008; Hong et al., 2010; Xiong et al.,
2010), particularly the loess–paleosol sequence from Chinese Loess
Plateau (Gallet et al., 1998; Chen et al., 1998; Chen et al., 2001;
Yang et al., 2006). Unfortunately, the suitability of chemical weath-
ering indices to topsoils developed on different rock types and
spanning various climatic zones is rarely discussed.

Theoretically, the development of topsoils by in situ weathering
of earthy and rocky materials on direct exposure to atmospheric
agents in positive landforms without being altered by transporta-
tion, differentiation and deposition will probably result in a better
preservation of chemical weathering information. Thus, here we
present a chemical weathering investigation of topsoils from mon-
soonal eastern China with different chemical indices based on ma-
jor elements analyses.
2. Study area, sampling and experiments

2.1. Study area

45 sampling sites, spanning 13 provinces along the east part of
China (ca. 109�E–130�E, 18�N–46�N), were carefully selected to
avoid contamination by alien sediments or human disturbance
(Fig. 1 and supplementary Table 1). The study area is located on
the eastern margin of the Eurasian continent, and western coast
of the Pacific Ocean, topographically characterized by plains and
hills lower than 1000 m above sea level (a.s.l.) on the average.
The tectonic framework of the study area is primarily composed
of the North China Craton, South China Block and Central China
Oregenic belt, with very intense tectonic activities in Mesozoic,
resulting in strong topographic contrasts and extensive crustal



Table 2
Major element concentrations and LOI of clay samples (in wt%).a

Clay samples Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI Total

HHBBC 18.02 1.15 7.94 2.78 2.29 0.17 0.59 0.26 45.96 0.91 20.27 100.33
HMHCC 16.55 2.44 11.92 1.62 2.58 0.18 0.37 0.27 43.17 1.24 19.82 100.18
HMWBC 18.74 1.93 9.85 2.88 2.38 0.26 0.54 0.39 42.70 1.26 18.87 99.81
HMJBC 19.54 1.51 11.01 1.57 2.10 0.22 0.38 0.87 35.92 1.31 25.69 100.12
JHFAC 19.90 0.96 9.10 2.45 2.47 0.27 0.67 0.40 46.88 1.18 15.95 100.24
HWYBC 18.02 1.83 8.08 3.23 2.61 0.30 0.47 0.28 43.10 0.69 21.44 100.06
LKHAC 15.62 2.33 7.27 1.37 1.89 0.13 0.80 0.66 31.82 1.06 36.96 99.91
HSJCC 24.66 1.58 7.02 2.92 1.94 0.16 0.23 0.17 45.45 0.69 15.26 100.08
SPWAC 23.54 1.63 10.96 1.09 1.67 0.14 0.34 0.45 38.96 1.27 20.24 100.29
SLSAC 20.50 1.29 9.59 2.19 2.94 0.21 0.34 0.29 40.93 0.72 20.88 99.88
JDPAC 22.15 1.20 13.53 1.49 2.05 0.14 0.26 0.38 41.93 1.64 15.25 100.01
JDAAC 22.86 1.36 13.03 1.29 2.29 0.28 0.17 0.83 40.58 1.48 16.09 100.27
ASNAC 23.84 2.42 9.47 1.17 1.99 0.21 0.37 1.16 41.85 1.26 16.73 100.46
JXYAC 17.44 1.45 13.86 1.18 2.21 0.13 0.45 0.30 41.71 1.85 19.41 99.99
JBTAC 19.11 1.28 14.24 0.78 3.57 0.33 0.36 0.31 39.30 0.76 20.22 100.27
JZWAC 24.96 0.43 13.26 1.89 1.70 0.11 0.14 0.11 44.31 1.15 11.72 99.77
ZHLBC 23.57 0.09 7.06 2.74 1.15 0.02 0.23 0.21 49.79 0.94 14.14 99.94
ZSPAC 23.81 1.06 13.26 0.44 1.19 0.24 0.17 0.55 40.63 2.73 16.18 100.25
ZLSAC 22.69 0.11 6.63 3.82 1.32 0.15 0.67 0.16 45.85 0.58 17.72 99.71
ZWWAC 28.12 0.04 8.18 1.70 0.74 0.02 0.13 0.18 42.49 0.54 17.48 99.63
FNSAC 24.51 0.04 4.00 2.49 0.99 0.03 0.00 0.07 53.33 0.78 13.42 99.65
FZCC 31.55 0.06 7.69 3.82 0.84 0.01 0.15 0.05 44.82 0.52 11.01 100.52
FLZAC 20.64 0.62 17.87 0.30 1.24 0.22 0.20 0.20 37.49 1.76 19.44 99.96
FLBBC 19.46 0.85 13.89 0.80 3.04 0.19 0.29 0.27 39.39 1.77 20.31 100.26
GJHAC 28.99 0.07 10.65 1.53 0.99 0.06 0.00 0.09 40.71 1.11 15.95 100.15
7-59C 33.79 0.03 8.70 0.85 0.43 0.02 0.00 0.10 37.31 0.85 17.61 99.69
GGZAC 35.96 0.10 3.81 0.62 0.36 0.04 0.00 0.06 40.64 0.30 17.77 99.65
3-49C 27.67 0.22 18.14 0.29 0.38 0.14 0.00 0.28 32.14 2.70 17.63 99.59
GDC 27.08 0.33 18.70 0.52 0.56 0.25 0.00 0.25 35.79 2.98 13.15 99.61
4-24C 29.99 0.13 16.41 0.09 0.28 0.05 0.00 0.10 35.92 1.83 15.10 99.90
HHJAC 29.39 0.11 19.35 0.29 0.39 0.08 0.00 0.13 29.84 2.67 17.34 99.58
HLGAC 20.83 0.60 19.62 0.51 0.93 0.28 0.32 0.41 34.27 3.33 18.66 99.76
HHLAC 21.98 0.44 17.76 1.12 1.20 0.31 0.11 0.37 37.24 3.52 16.26 100.32
HXYBC 24.56 0.58 18.01 0.79 0.70 0.45 0.31 0.56 31.39 3.18 19.38 99.92
HHLBC 20.39 0.73 17.77 1.14 1.36 0.40 0.00 0.37 38.60 3.54 15.79 100.10
HWNC 28.62 0.08 19.34 0.08 0.31 0.10 0.00 0.24 30.74 2.30 17.88 99.69
HWPAC 28.02 0.05 18.11 0.05 0.24 0.11 0.00 0.24 32.49 1.09 19.54 99.94
HQWAC 32.43 0.03 5.99 1.93 0.52 0.02 0.00 0.06 40.68 0.36 17.61 99.63
HWAC 31.32 0.09 11.18 0.41 0.35 0.03 0.00 0.19 34.93 1.77 19.87 100.15
HWAAC 29.63 0.05 9.91 2.32 0.84 0.04 0.00 0.12 40.04 0.62 16.84 100.41
HBBAC 31.04 0.31 6.46 1.74 0.60 0.08 0.00 0.15 40.89 0.61 17.91 99.81

a LOI = loss on ignition, the subscript letter C in the table means clay sample.
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movement in these regions (Zheng et al., 2013; Zhao and Zhai,
2013; Zhang and Zheng, 2013; Wang et al., 2013). Due to interac-
tions between the largest continent and the largest ocean in the
world, and seasonal variation of intertropical convergence zone
(ITCZ), the study area is dominated by a monsoon climate of con-
current rainy and hot seasons, with a mean annual temperature
(MAT) of 2.9–25.6 �C and a mean annual precipitation (MAP) of
400–2500 mm, both increasing southward and showing a latitude
effect (supplementary Table 1 and Fig. 2).
2.2. Sampling

A total of 47 topsoil samples were collected from the top 2–
4 cm of soils developed on various weathered silicate rocks (mostly
basalt and granite) of the sampling sites along the east part of Chi-
na between September and November in 2004 and 2005. The sam-
pling intensity was one sample a site at 43 sites, and two samples a
site at the rest two, but at different altitude and from different par-
ent rock (supplementary Table 1). All the samples were collected in
positive landforms, either on the top or gentle slope of a hill lower
than 1000 m a.s.l., except HWY1 (1110 m) and HWY2 (1240 m),
with identifiable parent rock, natural vegetation and far away from
human activities. The geographic coordinate (longitude, latitude
and altitude) of each sampling site was given by a handheld GPS
device during sampling at the site. The climatic data (MAT and
MAP) of each site were obtained from the meteorological record
of the nearest weather station during 1961–1990, which is
available in China Meteorological Data Sharing Service System.
Details of these samples, including parent rock, major element
samples, longitude, latitude, altitude, MAT and MAP, are presented
in supplementary Table 1.
2.3. Sample preparation and major element analyses

To investigate the major element geochemistry of all samples,
36 bulk samples were selected and 41 clay samples were separated
from the 47 topsoils (supplementary Table 1, Tables 1 and 2)
according to the following procedures.

First, plant residues, coarse sand and gravels were removed by
sieving from the topsoil samples through a 200-mesh sieve before
they were air-dried at room temperature. By this way, soil grains
smaller than 75 lm were obtained. Then they were sub-sampled
into two groups, one is for major element analysis, the other is
for clay separation before chemical analysis. Clay grains smaller
2 lm were separated at Guangdong Institute of Eco-environment
and Soil Sciences with sedimentation method according to Stokes’
Law. First, 30 g of dry bulk sample was weighed to make a 1:10 li-
quid suspension. Then the liquid suspension was put into an ultra-
sonic oscillation tank and disaggregated by stirring and ultrasonic
oscillating at a power of 21.5 kHz and 300 mA for 30 min, and then



Fig. 3. Major element ratios of all bulk (a) and clay samples (b), and their averages (c) along the latitudinal gradient.
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clays were separated by settling and centrifuging from the 1:10 li-
quid suspension. After the withdrawal time the liquid-suspension
in the top 5 cm of the column was siphoned out, and air-dried into
slices in an evaporating dish. Conventional chemical reagents, such
as HCl, H2O2 or NaO3P, were not used during clay separation in or-
der to preserve terrigenous materials from dissolution of labile ele-
ments. A total of 36 bulk samples and 41 clay samples (in slices)
were obtained from the 47 topsoil samples. These samples were
first finely ground in an agate mortar. Then 2 g of powdered sam-
ples were precisely weighed with an electronic balance, and then
treated with 20% acetic acid for over 12 h at room temperature
to remove their carbonate fraction, followed by rinsing with dis-
tilled water for three times. After that, the carbonate-free samples
were dried at 100 �C in an oven for 3 h. Finally, 0.7–1 g of these
powder samples were precisely weighed and ignited in a clean
ceramic crucible at 920 �C in a muffle furnace for at least 30 min
to remove their organic and water components. By calculating
the loss on ignition, the LOI values of these samples were obtained.
The chemical compositions of bulk and clay samples were mea-
sured with different methods.

Chemical composition of bulk samples was determined by con-
ventional wet chemistry at the Key Laboratory of Marginal Sea
Geology in Guangzhou Institute of Geochemistry, Chinese Acad-
emy of Sciences. Concentrations of K2O, Na2O, CaO, MgO, MnO
and P2O5 in bulk samples were determined with an atomic absorp-
tion spectrophotometer of Shimadzu AA-6300C following the pro-
cedure of atomic absorption spectrometry (AAS) (Welz et al.,
2008). The SiO2 concentration of bulk samples was determined
with wet chemical method. First, 0.25–0.5 g powder samples was
precisely weighed and placed in a silver crucible. After alkali disso-
lution, water extraction and acid digestion, they were evaporated,
treated by animal glue, and then the condensate was filtered and
ignited. Finally, the precipitate of ignition was weighed to calculate
the SiO2 concentration. The Fe2O3 content of bulk samples was
measured with EDTA (ethylene diamine tetraacetic acid) volumet-
ric method (Bennett and Reed, 1971). First, 50 ml of the filtrate was
drawn after the separation of SiO2, and then it was neutralized
with ammonia water till the appearance of yellow Fe precipitate.
After that, the solution was diluted with distilled water to
100 ml, and then treated by 2–3 ml of 1 M HCL, and the Fe2O3 con-
tent was estimated with titration method by titrating the indicator
of salicylic acid into the standard EDTA solution. After the determi-
nation of Fe2O3 content, excessive standard EDTA solution and buf-
fered solution (pH = 4.5) were added to the filtrate, followed by
boiling and cooling, then the Al2O3 and TiO2 concentrations were
determined by titrating the indicators of nitroso R salt and stan-
dard CuSO4 solution into the excessive EDTA solution. The Al2O3

content was then calculated by a subtraction method in the
Al2O3 and TiO2 contents.

Chemical composition of clay samples was determined by X-ray
fluorescence (XRF) spectrometry with an XRF spectrometer of Rig-
aku 100e at the State Key Laboratory of Isotope Chronology and



Fig. 4. SiO2/Al2O3 ratios of bulk (a), basaltic bulk (b), clay (c), and basaltic clay (d) samples along the latitudinal gradient.
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Geochemistry in Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences. After the determination of LOI, 0.6 ± 0.02 g
of the carbonate-free samples and 8 times that amount of dry lith-
ium tetraborate (Li2B4O7) were weighed accurately, and then
mixed carefully in a plastic container. After that, they were put into
a platinum crucible with two drops (about 0.1 g) of 2% LiBr and 1%
NH4I added as a co-solvent. The mixture was then fused in the plat-
inum crucibles for 10 min with the fusion being carried out in an
automatic fusion system. During the fusion, the crucible was regu-
larly rotated and increasingly heated up to 1160 �C to ensure com-
plete mixing and melting. After cooling at room temperature, glass
samples were placed in a sample container for major element
analysis.

12 Chinese standard reference samples were used for quality
control of the chemical measurements, including GSR-1, GSR-3,
GSD-9, GSD-12, GSS-1, GSS-3, GSS-5, GSS-6, GSS-7, GBW07409,
GBW07410 and GBW07411. The detection limit is ±0.01 wt% and
analytical uncertainties are ±2% for all major oxides of bulk and
clay samples. The analytical precision and accuracy of major ele-
ment were monitored by stand reference materials, which are
measured as ‘‘unknowns’’ with samples and sample duplicates.
With few exceptions, there were no discrepancies between the
analytical data obtained and the consensus data in the reference
samples. The concentrations (weight %) of 10 elements tradition-
ally listed as oxides in major element chemical analysis, Al, Ca,
Fe, K, Mg, Mn, Na, P, Si and Ti have been determined in all samples,
and their results are presented sequentially from high latitudes to
low latitudes in Tables 1 and 2, respectively.
3. Results and discussion

3.1. Element mobility

Chemical weathering is a weathering process whereby rocks
and minerals are transformed into new, fairly stable chemical com-
binations by such chemical reactions as hydrolysis, oxidation, ion
exchange, and solution (Parker, 2003). During this process, mobile
elements, such as K, Na, Ca, Mg and Si will be increasingly removed
from parent rocks, while other elements, such as Al, Fe and Ti will
be relatively enriched in the weathered materials (Ruxton, 1968;
Parker, 1970; Nesbitt et al., 1980). To investigate the mobility of
major elements for topsoils from eastern China, we employed the
element ratio proposed by Singh et al. (2005) and defined as: ele-
ment ratio ðXÞ ¼ X=Al2O3ðsampleÞ

X=Al2O3ðUCCÞ , where X is the analyzed element and
UCC refers to the upper continent crust. The numerator refers to
the content ratio of X oxide and Al2O3 in the analyzed sample,
while the denominator refers to their content ratio in UCC. The
data source of UCC in our calculation was cited from Rudnick
and Gao (2003). This element ratio refers to the relative enrich-
ment or depletion of the analyzed element, i.e. >1 indicates enrich-
ment, <1 indicates depletion and =1 indicates no change in the



Fig. 5. CIA values of bulk (a), basaltic bulk (b), clay (c), and basaltic clay (d) samples along the latitudinal gradient.
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relative abundance of element (Singh et al., 2005). Element ratios
of bulk and clay samples were calculated as shown in supplemen-
tary Tables 2 and 3, respectively.

As shown in Fig. 3, the element ratios of bulk and clay samples
display quite different variations along the latitudinal gradient,
but both with relatively low element ratios of Na, Ca, K, Mg and Si,
and relatively high contents of Mn, P, Fe and Ti. The average element
ratios of Na, K, Ca, Mg, and Si in all samples are below 1, except the
Mg content in basaltic bulk samples (1.09), indicating the relative
depletion of these elements in topsoils by comparison with their
corresponding contents in UCC (Rudnick and Gao, 2003). By con-
trast, the average element ratios of Mn, P, Fe and Ti in all samples
are above 1, indicating the relative enrichment of these elements
in topsoils by comparison with their corresponding contents in
UCC (Rudnick and Gao, 2003). As shown in Fig. 3c, the average ele-
ment ratios of bulk samples either developed on heterogeneous par-
ent rocks or developed on homogeneous parent rock (basalt) display
similar variations, and so do the average element ratios of clay sam-
ples, but the difference in the variations of element ratios between
bulk and clay samples is a little bigger, generally with higher values
of element ratios in bulk samples than in clay samples, except that of
Mn, indicating that the element mobility of topsoils is less depen-
dent on parent rock type than on grain-size. The intensity of relative
depletion is: Na > Ca > K > Mg > Si > Mn > P > Fe > Ti for all bulk
samples, Na > Ca > K > Si > Mg > Mn > P > Ti > Fe for all clay samples,
Na > K > Ca > Si > Mg > Mn > P > Fe > Ti for basaltic bulk samples,
and Na > Ca > K > Si > Mg > Mn > P > Fe > Ti for basaltic clay sam-
ples, indicating that alkali metal (Na, K) and alkaline earth metal
(Ca, Mg) elements are generally easier to be depleted from their par-
ent materials than other major elements during chemical
weathering.

3.2. Chemical weathering intensity indicated by various chemical
indices

Si/Al, WIP, CIA and CIW are the most widely used major element
indices of chemical weathering, thus they are selected here to
investigate the chemical weathering of topsoils in the study area.
Weathering indices that include iron in their calculations were
not included here because they do not distinguish between ferric
and ferrous iron (Price and Velbel, 2003). The Si/Al ratio, WIP,
CIA and CIW values of bulk and clay samples were calculated as
shown in supplementary Tables 2 and 3, and plotted along the lat-
itudinal gradient in Figs. 4–7, respectively.

The silica–alumina ratio was proposed by Ruxton (1968) to
measure the intensity of desilicication and allitization, and it is de-
fined as the molecular ratio of SiO2/Al2O3, traditionally expressed
as Si/Al. WIP is a weathering index of Parker (Parker, 1970) defined
as WIP = 100 � (2Na2O/0.35 + MgO/0.9 + 2K2O/0.25 + CaO*/0.7). It
is an important weathering index based on the molecular propor-
tions of alkali metal (Na, K) and alkaline earth metal (Ca, Mg)
elements. Both Si/Al and WIP are negatively related to chemical
weathering intensity, with Si/Al ratio and WIP value decreasing
with the increase of chemical weathering intensity. CIA is a



Fig. 6. CIW values of bulk (a), basaltic bulk (b), clay (c), and basaltic clay (d) samples along the latitudinal gradient.
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chemical index of alteration proposed by Nesbitt et al (Nesbitt and
Young, 1982), and defined as the molecular proportions of labile
elements, CIA = 100 � [Al2O3/(Al2O3 + K2O + Na2O + CaO*)]. CIW is
a chemical index of weathering (Harnois, 1988), defined as the
molecular proportions of Al, Na and Ca, i.e. CIW = [Al2O3/(Al2O3 + -
CaO* + Na2O)] � 100, without considering the proportion of K com-
pared with CIA. Both CIA and CIW are positively related to
chemical weathering intensity, with CIA and CIW values increasing
with the increase of chemical weathering intensity. The CaO* con-
tent of WIP, CIA and CIW is the amount of CaO incorporated in the
silicate fraction of samples.

A chemical weathering investigation with these chemical indi-
ces applied to weathering profiles developed on heterogeneous fel-
sic metamorphic parent rocks suggested that WIP was the most
appropriate for application to weathering profiles on heteroge-
neous (and homogeneous) parent rock (Price and Velbel, 2003). A
recent investigation has discussed the application of CIA to the riv-
er chemistry in China, and suggested that CIA does not reflect the
instantaneous chemical weathering on continents, and that it is
unrealistic to find a simple law of regulating chemical weathering
in continents (Li and Yang, 2010). Another recent investigation on
the river geochemistry of China reveals that integrated chemical
weathering intensity in large latitudinal watersheds can be
quantitatively estimated using the proper geochemical proxies of
river sediments with careful application (Shao et al., 2012). What
about the applications of these chemical indices to chemical
weathering of topsoils from monsoonal eastern China? For com-
parison, all the chemical indices were applied to four different
types of samples, those developed on heterogeneous parent rocks,
including 36 bulk samples and 41 clay samples, and those devel-
oped on homogeneous parent rock (basalt), including 27 basaltic
bulk samples and 28 basaltic clay samples (supplementary Table 1,
Tables 1 and 2).

3.2.1. SiO2/Al2O3 ratio
As shown in supplementary Tables 2 and 3, SiO2/Al2O3 ratio is

above 1 in all samples, and generally higher in bulk samples than
in clay samples, with an average of 6.84 in all bulk samples, 6.96
in basaltic bulk samples, 2.90 in all clay samples, and 3.03 in basal-
tic clay samples, indicating that the topsoils of monsoonal eastern
China are still undergoing processes of desilicication and allitiza-
tion, and that parent rock diversity has little effect on the SiO2/
Al2O3 ratios of both bulk and clay samples, but grain size has much
effect on the SiO2/Al2O3 ratios of topsoil samples. As shown in
Fig. 4, linear regression analysis shows no linear correlations be-
tween SiO2/Al2O3 ratios and their corresponding latitudes of all



Fig. 7. WIP values of bulk (a), basaltic bulk (b), clay (c), and basaltic clay (d) samples along the latitudinal gradient.
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bulk samples, no matter their parent rocks are heterogeneous or
homogeneous, but a positive correlation is shown between SiO2/
Al2O3 ratios and their corresponding latitudes of all clay samples,
and the linear correlation is even better in clay samples developed
on homogeneous parent rocks (basalt). All these results indicate
that the latitudinal distribution of SiO2/Al2O3 ratio is more depen-
dent on grain-size than on parent rock type, and that SiO2/Al2O3 ra-
tio is not suitable to chemical weathering evaluation of bulk
samples.
3.2.2. CIA
As shown in supplementary Tables 2 and 3, CIA value is gener-

ally higher in clay samples than in bulk samples, with an average of
71.81 in all bulk samples, 72.46 in basaltic bulk samples, 87.30 in
all clay samples, and 86.17 in basaltic clay samples, indicating
the significant impact of grain-size on CIA values, and little impact
of parent rock type on CIA values. Fig. 5 shows the latitudinal dis-
tributions of CIA values for bulk and clay samples. A negative cor-
relation is shown between the CIA values and their corresponding
latitudes of both bulk and clay samples, and the linear correlation
is even better in clay samples than in bulk samples, but parent rock
diversity makes little difference in the linear correlations of them,
indicating that CIA is suitable to both bulk and clay samples, and
CIA values are more dependent on grain-size than on parent rock
type.

3.2.3. CIW
As shown in supplementary Tables 2 and 3, CIW values are gen-

erally higher in clay samples than in bulk samples, with an average
of 78.26 in all bulk samples, 79.51 in basaltic bulk samples, 92.55
in all clay samples, and 90.58 in basaltic clay samples, indicating
the significant impact of grain-size on CIW values, and little impact
of parent rock type on CIW values. Fig. 6 shows the correlation be-
tween CIW values and their corresponding latitudes of bulk and
clay samples. Similar to the latitudinal distributions of CIA, the
CIW values of both bulk and clay samples are negatively correlated
with their latitudes, and the linear correlation is better in clay sam-
ples than in bulk samples, but parent rock diversity makes little
difference in the latitudinal distributions of them, indicating that
CIW is suitable to both bulk and clay samples, and CIW values
are more dependent on grain-size than on parent rock type.

3.2.4. WIP
As shown in supplementary Tables 2 and 3, WIP values are

generally higher in bulk samples than in clay samples, with an
average of 33.16 in all bulk samples, 32.08 in basaltic bulk samples,
20.36 in all clay samples, and 19.34 in basaltic clay samples, also



Fig. 8. The A–CN–K ternary diagrams of molecular proportions for bulk (a) and clay
(b) samples of topsoils from eastern China. A = Al2O3; C = CaO; N = Na2O and
K = K2O. Also plotted is the UCC (Rudnick and Gao, 2003) as well as idealized
mineral compositions (Nesbitt and Young, 1982, 1989). Arrows indicate predicted
weathering trends exhibited by eastern China southward, which had experienced
relatively weak to strong chemical weathering. The A–CN–K ternary diagrams
probably indicate the presence of unaltered primary minerals in bulk samples.
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indicating the significant impact of grain-size on WIP values, and
little impact of parent rock type on WIP values. Fig. 7 shows the
latitudinal distributions of WIP values for bulk and clay samples.
Fig. 9. Correlation between CIA and MAT (a), and correlation between CIA and MAP (b), sh
China.
WIP values are positively correlated with their latitudes for both
bulk and clay samples, with little difference in the latitudinal dis-
tributions of WIP between all bulk samples and all clay samples,
but the difference is a little bigger between clay samples developed
on diverse rocks and those developed on the same rock type (ba-
salt), indicating that WIP is also suitable to bulk and clay samples,
and parent rock type plays an important role in the latitudinal dis-
tribution of WIP for clay samples.

As described above, grain-size has a significant impact on major
element abundance and the latitudinal distributions of SiO2/Al2O3,
CIA, CIW and WIP. This is probably due to the presence of unaltered
detrital minerals, such as quartz, plagioclase and K-feldspar in bulk
samples, as indicated by the much higher SiO2 content in bulk sam-
ples (with an average of 55.0) than that in clay samples (with an
average of 39.8) (Tables 1 and 2), and illustrated by the A–CN–K
ternary diagrams (Fig. 8). Moreover, soil grain size itself implies
the weathering intensity, i.e. the finer size meaning the stronger
weathering, because weathering is one of the most important pro-
cesses in soil formation. Compared with bulk samples, clay sam-
ples obtained from topsoils largely consist of secondary minerals
which are produced by chemical weathering, particularly clay min-
erals, thus more directly and accurately reflect the chemical
weathering of source sediments. In fact, the grain-size dependence
of chemical weathering intensity has also been detected in Chinese
loess-red clay deposit (Xiong et al., 2010). Consequently, we be-
lieve that clay samples are more suitable to investigating chemical
weathering of sediments on continents than bulk samples. As for
parent rock type, it has little impact on the latitudinal distributions
of these indicators, except its impact on the latitudinal distribution
of WIP in clay samples, probably indicating the relatively uniform
chemical weathering on different rock types, and the difference in
the latitudinal distributions of WIP between basaltic clay samples
and clay samples of different source rocks may have resulted from
the difference in enrichment of K, Na Ca and Mg between them.
3.3. Controls of chemical weathering

As indicated by the latitudinal distributions of SiO2/Al2O3, CIA,
CIW and WIP (Figs. 4–7), the chemical weathering intensity of top-
soil samples increases with the decrease of latitude in monsoonal
eastern China, displaying an obvious latitude effect. What is the
control behind this phenomenon? To answer this question, we
analyzed the latitudinal distributions of MAT and MAP in the study
owing the climatic control on chemical weathering of topsoils in monsoonal eastern
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area by correlating the MAT and MAP values of weathering stations
located below 1000 m a.s.l. in the study area (ca. 109�E–130�E,
18�N–46�N) with their latitudes1 (Fig. 2), then correlating the CIA
values of all clay samples with their corresponding MAT and MAP
along the latitudinal gradient (Fig. 9). The corresponding MAT and
MAP for CIA values of all clay samples were estimated from the cli-
matic record of the nearest weathering stations.

As shown in Figs. 2 and 9, the latitudinal distributions of MAT
and MAP in the study area display a significant latitude effect like
SiO2/Al2O3, CIA, CIW and WIP of topsoils in the study area, partic-
ularly the latitudinal distributions of MAT, with MAT and MAP
increasing southward along the latitudinal gradient in the study
area, and the chemical weathering of topsoils gradually intensify-
ing with the increase of MAT and MAP. Obviously, the latitudinal
distributions of SiO2/Al2O3, CIA, CIW and WIP of topsoills in mon-
soonal eastern China reflect those of MAT and MAP in the study
area, indicating the dominant control of a monsoonal climate on
the chemical weathering of topsoils in eastern China. This result
is consistent with those obtained from river chemistry of China
(Li and Yang, 2010; Shao et al., 2012). However we should keep
in mind that the samples in our study were collected from different
environments with various tectonics, parent rocks, climatic condi-
tions, landforms, altitudes and vegetations in the study area. Soil
formation is controlled by multiple factors like climate, biology,
parent rock, landform, soil depth and age. In addition to the dom-
inant control of climate, other factors might have some effect on
the chemical weathering of topsoils in our study area, which needs
further research. As pointed out by a recent investigation, chemical
indices like CIA actually reflect the integrated weathering history
in the study area (Li and Yang, 2010).

4. Conclusions

Our chemical weathering investigations on topsoils from mon-
soonal eastern China based on major element analyses have ob-
tained the following results.

1. Na, K, Ca, Mg, and Si are relatively depleted, while Mn, P, Fe
and Ti are relatively enriched by comparison with the Al
content. Alkali metal (Na, K) and alkaline earth metal (Ca,
Mg) elements are generally easier to be depleted from their
parent materials than other major elements during chemi-
cal weathering.

2. All the chemical weathering indices of SiO2/Al2O3, CIA, CIW
and WIP are suitable to bulk and clay samples, except the
application of SiO2/Al2O3 in bulk samples. The SiO2/Al2O3

ratios of all samples indicate that the topsoils of the study
area are still undergoing desilicication and allitization.

3. Grain-size has a significant impact on the mobility of major
elements, and the latitudinal distributions of chemical
weathering indices, but parent rock type has little effect on
them, except its impact on the latitudinal distribution of
WIP in clay samples. The significant grain-size dependence
probably indicates the presence of unaltered minerals, such
as quartz, plagioclase and K-feldspar in bulk samples, thus
we suggest that clay samples are more suitable to investigat-
ing chemical weathering of sediments on continents than
bulk samples. The trivial effect of parent rock type probably
indicates a relatively uniform chemical weathering on vari-
ous parent rocks. The difference in the latitudinal distribu-
tions of WIP between basaltic clay samples and clay
samples of different source rocks may be attributed to the
difference in enrichment of K, Na Ca and Mg between them.
1 Data source: China Meteorological Data Sharing Service System (1961–1990).
4. Climate is the dominant control of chemical weathering of
topsoils in monsoonal eastern China. In addition to the
dominant control of climate, other factors like tectonics,
parent rock, biology, landform and soil depth and age might
have some effect on the chemical weathering of topsoils in
our study area. Chemical indices like CIA actually reflect the
integrated weathering history in the study area.
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