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Authigenic carbonates that form at marine hydrocarbon seeps provide a unique geological archive of past local
environmental conditions and porefluid geochemistry. Recentwork on such carbonates revealed variable cerium
(Ce) anomalies and anomalous enrichments of certain trace metals. However, the mechanisms accounting for
such anomalies remain poorly constrained. Here, we characterize the rare earth element (REE) patterns of
carbonate phases and the trace metal patterns of bulk carbonate rocks sampled at three hydrocarbon seeps
located at Congo Fan pockmarks (CF) and the Gulf of Mexico sites AC645 and GB425. The analyzed CF, GB425,
and AC645 carbonates yielded different REE patterns, displaying positive, no, as well as negative Ce anomalies.
The covariation of molybdenum (Mo) with uranium (U), including authigenic Mo (Moauth) and U (Uauth)
enrichments as well as (Mo/U)auth ratios proved useful to obtain new insight into the applicability of Ce
anomalies to constrain past redox conditions. Trace element patterns suggest that (1) CF carbonates formed in
a restricted sulfidic environment, while (2) the AC645 site experienced intermittent oxygenation causing nega-
tive Ce anomalies, and (3) environmental conditions were variable at the GB425mud volcano site. Interestingly,
GB425 carbonates show significantMo, arsenic (As), and antimony (Sb) enrichments with the enrichment factor
of As (AsEF) correlatingwellwith the authigenic Fe fraction. These results suggest that iron oxyhydroxides played
an important role in the adsorption of Mo, As, and Sb in thewater column and their transfer to the sediment. The
combination of tracemetal and REE geochemistry of authigenic carbonates used here is a promising tool to better
assess past variability of redox conditions and biogeochemical processes at marine hydrocarbon seeps.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Seepage of hydrocarbon-rich fluids mainly consisting of methane
out of the sedimentary column is awidespread phenomenon along con-
tinental margins worldwide (Campbell, 2006; Judd and Hovland, 2007
and references therein). Seafloor expressions of focused fluid seepage
include a large range of geological structures such as gas chimneys,
pockmarks, mud volcanoes, and brine pools (Judd and Hovland, 2007
and references therein). Modern marine hydrocarbon seeps are charac-
terized by highly variable seepage intensity (Tryon et al., 1999; Klaucke
et al., 2010), resulting in significant changes of chemical and physical
parameters and early diagenetic conditions within sediments (Tryon
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et al., 1999; Tryon and Brown, 2004; Solomon et al., 2008). At seeps,
methane is mostly consumed within sediments by sulfate-dependent
anaerobic oxidation ofmethane (AOM)mediated by amicrobial consor-
tium (Hinrichs et al., 1999; Boetius et al., 2000). This process releases
dissolved bicarbonate and hydrogen sulfide, thereby increasing pore
water alkalinity, thus favoring precipitation of authigenic carbonate
close to the seafloor (Berner, 1980). The resultant authigenic carbonates
provide excellent geological and geochemical archives to evaluate
the conditions of mineral formation, the evolution of pore fluids, and
the biogeochemical processes at seeps (Roberts and Carney, 1997;
Bohrmann et al., 1998; Greinert et al., 2001; Peckmann et al., 2001;
Peckmann and Thiel, 2004; Roberts et al., 2010a).

Rare earth elements (REE) have been frequently used to trace chang-
es in the composition of seep fluids and to assess redox conditions
during the formation of seep carbonates (Chen et al., 2005; Feng et al.,
2009a,b, 2010a; Ge et al., 2010; Himmler et al., 2010; Bayon et al.,
2011; Birgel et al., 2011; Rongemaille et al., 2011; Kim et al., 2012;
Bayon et al., 2013; Feng et al., 2013; Himmler et al., 2013). Some of
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the studies on the REE geochemistry of seep carbonates revealed
varying redox conditions during mineral formation (Feng et al., 2009a,
b; Birgel et al., 2011). In particular, Birgel et al. (2011) suggested that
temporarily oxic conditions prevailed based on real negative Ce
anomalies and the presence of molecular fossils of aerobic
methanotrophic bacteria. However, highly alkaline, organic-rich pore
fluids may also cause the generation of negative Ce anomalies
(Pourret et al., 2008; Kim et al., 2012). To better constrain
paleoenvironments and paleoredox conditions, trace metals, including
redox-sensitive elements such as uranium (U) and molybdenum (Mo)
that are strongly enriched under anoxic conditions, are commonly
used (Algeo and Tribovillard, 2009; Tribovillard et al., 2012a,b). Urani-
um and Mo exhibit conservative behavior under oxic conditions and
have long residence times in seawater (~450 kyr for U, ~780 kyr for
Mo), while both elements are enriched in authigenic mineral phases
under reducing conditions (Algeo and Tribovillard, 2009). In oxic sea-
water, U is present mainly as U(VI), forming UO2(CO3)34−, and Mo is
adsorbed onto manganese oxyhydroxides (Tribovillard et al., 2006).
Under suboxic conditions close to the Fe(III)–Fe(II) transition, soluble
U(VI) is reduced to insoluble U(IV), the uptake ofwhichmay be acceler-
ated by the presence of organic substrates (Zheng et al., 2002;
Tribovillard et al., 2006; Algeo and Tribovillard, 2009). Under such con-
ditions, the rate of accumulation of authigenic U (Uauth) increases rela-
tive to that of authigenic Mo (Moauth), resulting in (Mo/U)auth ratios of
sediment that are below those of seawater (Algeo and Tribovillard,
2009). As the sedimentary environment becomes increasingly reducing
with free hydrogen sulfide being generated,molybdate (MoO4

2−) is con-
verted to thiomolybdates (MoS4 − xOx

2−) that are scavenged from solu-
tion via organic material or via Mo capture by iron sulfide phases (Helz
et al., 1996; Zheng et al., 2000; Tribovillard et al., 2006; Helz et al., 2011).
Under such conditions, Moauth enrichment tends to exceed that of Uauth

and (Mo/U)auth ratios of sediment equal or exceed ratios of seawater
(Algeo and Tribovillard, 2009). Therefore, authigenic U–Mo enrichment
and their covariation patterns in marine sediments are a robust proxy
for tracing variation of redox condition. The patterns of authigenic U–
Mo covariation as a redox indicator have already been employed in
the study of seep carbonates and sediments (Palomares et al., 2012;
Sato et al., 2012). However, such trace-metal studies focusing on the re-
construction of the conditions during mineral formation at seeps have
rarely been combined with REE geochemistry, yet, the combination of
trace-metal and REE studies has great potential to shed new light on
the causes of Ce anomalies and past environmental conditions.

Trace metals have the potential to serve as tracer for the source of
seep fluids. For instance, Nath et al. (2008) reported elevated levels of
arsenic (As) in mud volcano fluids. Similar As enrichment, as well as
Mo and antimony (Sb) anomalies have been observed in seep
sediments from an active mud volcano (Cangemi et al., 2010). The
enrichments of tracemetals have been attributed to the ascendingfluids
from deep sedimentary strata (Nath et al., 2008; Cangemi et al., 2010).
Similarly, Mo, As, and Sb enrichments have also been found in ancient
seep carbonates, however, the overlying seawater was considered
to have been responsible for the trace-metal enrichments through a
so-called iron–manganese-oxyhydroxide shuttle (Tribovillard et al.,
2013).

Similar trace-metal enrichments are also present in some of the seep
carbonates studied here, which were collected from an active mud vol-
cano situated at Garden Banks block 425 (GB425, Gulf of Mexico),
representing a good opportunity to explore possible enrichment
mechanisms. Seep carbonates from two other sites (Congo Fan offwest-
ern Africa andAlaminos Canyonblock 645, Gulf ofMexico)were used to
obtain new insight into the causes of Ce anomalies. Here, REE signatures
of individual, authigenic carbonate phases as well as trace element
compositions of bulk seep carbonate rocks are presented to explore
the mechanisms that cause anomalies of certain elements, allowing to
further constrain the formation conditions of seep carbonates and the
involved geochemical processes.
2. Geological background

2.1. Congo Fan

The northern Congo Fan is located offshore western Africa on the
Congo–Angolanmargin, which is a passive continental margin resulting
from the Early Cretaceous opening of the South Atlantic Ocean (130Ma;
Marton et al., 2000). After 1000 m thick evaporites accumulated in the
Early Cretaceous, black shales and bituminous sandstones deposited
during the middle Cretaceous (Droz et al., 1996). The terrigenous
sediment input to the Atlantic Ocean increased strongly during the
Cenozoic, resulting in the initiation of the huge Congo turbiditic sedi-
mentation system and the formation of the Congo Fan (Droz et al.,
1996). Numerous investigations on the Congo Fan revealed prominent
features of focused upward fluid migration such as pockmarks
(Charlou et al., 2004; Gay et al., 2006, 2007; Sahling et al., 2008; Haas
et al., 2010; Nöthen and Kasten, 2011). Among other sites, the distribu-
tion of chemosynthesis-based communities, authigenic carbonates, and
gas hydrates has been described from the Kouilou pockmarks located
north of the Congo Fan (Sahling et al., 2008; Haas et al., 2010; Nöthen
and Kasten, 2011).

2.2. Northern Gulf of Mexico

The northern Gulf of Mexico (GOM) is characterized by a column of
over 10 km of Mesozoic–Cenozoic sediment that resulted in the gener-
ation and accumulation of large oil and gas reservoirs (Sassen and
MacDonald, 1994). Extensive salt diapirism and related sediment defor-
mation created faults, which provide efficient conduits for hydrocarbon
fluid and gas migration from the deep subsurface petroleum systems
into shallow sediments or to the seafloor (Sassen and MacDonald,
1994). Massive leakage of oil and gas from hydrocarbon traps manifests
itself at the seafloor and in thewater column as gas plumes, gas hydrate,
oil-stained sediments, authigenic carbonates, and hydrocarbon-driven
chemosynthesis-based communities (Roberts and Aharon, 1994;
Aharon et al., 1997; Roberts and Carney, 1997; Sassen et al., 1999;
Feng et al., 2009b). The Alaminos Canyon (AC) area is situated along a
series of northeast–southwest trending salt-cored box folds of the Per-
dido fold belt located in the northwestern GOM (Trudgill et al., 1999).
The AC645 site is a small mound surrounded by hemipelagic mud
with no evidence of currently active hydrocarbon seepage; however,
the mound is composed of imbricated slabs and blocks of seep
carbonates (Roberts et al., 2010b). Garden Bank 425 (GB425) is a
brine-charged site located in the northern GOM. Overpressured fluids
migrating along faults above salt structures resulted in the formation
of the GB425 mud volcanoes (Milkov and Sassen, 2000; Castellini
et al., 2006), which is characterized by intense venting of
hydrocarbon-rich brines (Joye et al., 2005) and the development of
barite-rich carbonate nodules (Castellini et al., 2006).

3. Samples and methods

Considering different geological settings (e.g. pockmarks and mud
volcanoes) and different, previously reported Ce anomalies (cf. Feng
et al., 2010a; Birgel et al., 2011), authigenic carbonates from three
seep sites on the Congo Fan and the GOM were chosen in this study
(Fig. 1). Congo Fan (CF) carbonates were collected by TV-guided grabs
from the Hydrate Hole and Diapir Field sites during RV METEOR Cruise
M56. The AC645 carbonate samples were collected during dives with
deep submergence vehicle (DSV) Alvin in 1990 (Dive 2209) and 2006
(Dives 4194 and 4197). The GB425 carbonates were collected from
the southern venting sites of the mud volcano during an expedition
with DSVAlvin (Dive 4645) in 2010. Location, geographical coordinates,
water depth, δ13Ccarbonate values, and mineralogy of carbonate samples
are listed in Table 1. Authigenic carbonates from the Congo Fan are
mainly composed of aragonite and high-Mg calcite associated with



Fig. 1. Map showing the study locations of Congo Fan, Alaminos Canyon block 645 (AC645) and Garden Banks block 425 (GB425) in the Gulf of Mexico. Maps were created using
GeoMapApp software.
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abundant pyrite framboids enclosed in carbonate matrix (Feng et al.,
2010a). The AC645 carbonate samples are characterized by almost
pure aragonite, dense bivalve shells, and a porous texture (Feng et al.,
2008; Birgel et al., 2011). The GB425 carbonates mainly consist of
low-Mg calcite.
Table 1
Location, geographical coordinates, water depth, δ13Ccarbonate values (‰ VPDB), and mineralog

Location Latitude Longitude Water depth
(m)

Morphology of carbonate
precipitates

Congo Fan
Hydrate Hole 04°48.933′ S 09°54.833′ E 3100 Nodules, crusts, slabs, tu

and filled molds
Diapir Field 06°11.067′ S 10°25.833′ E 2400 Nodules, crusts and slab

Gulf of Mexico
AC645 26°21.102′ N

26°21.240′ N
94°30.300′W
94°29.802′W

2230 Blocks, slabs and crusts

GB425 27°33.189′ N 92°32.450′W 600 Nodules

Ara = aragonite, HMC = high-Mg calcite, LMC = low-Mg calcite, Bar = barite, Qz = quartz,
The carbonate samples were washed with deionized water immedi-
ately after collection and were subsequently air dried. The powdered
samples for REE, major and trace element analysis were taken from
slabs with a hand-held dental drill (ROTEX™ 782E). Carbonate samples
were dissolved in (1) 5% acetic acid solutions for REE analysis of
y of authigenic carbonate samples analyzed in this study.

δ13C
(‰ VPDB)

Mineral composition Reference

Major Minor Trace

bes, −62.5 to−46.3 Ara/HMC Kao, Qz, Bar Feng et al. (2010a);
Haas et al. (2010)

s −40.7 to−30.7 Ara HMC Kao, Qz Feng et al. (2010a);
Haas et al. (2010)

−33.9 to−22.2 Ara HMC Feng et al. (2008);
Roberts et al. (2010a)

−32.1 to−22.4 LMC Sme Qz, Dol This study

Kao = kaolinite, Sme = smectite, Dol = dolomite.
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authigenic minerals and (2) HF–HNO3 solutions for major and trace
element analysis of the whole rocks. For REE analyses, about 50 mg of
powdered sample was weighed in Teflon beakers and leached by an
ultra-pure solution of 5% acetic acid for 2 h to separate carbonate
mineral and residue phases. The obtained solutions were centrifuged
immediately after carbonate dissolution, and then evaporated on a
hotplate until dry. Finally, the samples were dissolved in 3% HNO3

spiked with an internal Rh standard (10 ppb) for REE analysis using a
Perkin-Elmer Sciex ELAN 6000 ICP-MS. In this paper, Ce/Ce* = 3CeN /
(2LaN + NdN), Ceanom = Log (Ce/Ce*), Eu/Eu* = 2EuN / (SmN + GdN),
and Pr/Pr* = 2PrN / (CeN + NdN), where N refers to normalization of
concentration against the Post Archean Australian Shale (PAAS;
McLennan, 1989).

Samples formajor and trace element analysis of whole rocks were
placed in Teflon beakers, dissolved by 1 ml of HF and 1 ml of HNO3.
The sealed beakers were then placed in an electric oven and heated
to 185 °C for about 36 h. The beakers were heated on a hot plate to
evaporate to dryness after cooling, and then 2 ml of HNO3 and 3 ml
of water were added. The beakers were sealed again and placed in
an electric oven at 135 °C for about 5 h to dissolve the residue.
Major elements were determined using a Varian Vista Pro ICP-AES.
Trace elements were determined using a Perkin-Elmer Sciex ELAN
6000 ICP-MS. All the samples were analyzed at the Institute of Geo-
chemistry, CAS. Certified reference materials (GSR-1, OU-6, 1633-a,
GXR-2, GXR-5) were used for quality control. Precision and accuracy
were both better than 5% for major elements, REE, and U, 10% for Mo,
and 15% for As and Sb. To compare the respective authigenic enrich-
ment of trace metals during seep carbonate formation, enrichment
factors (EF) were used and defined as following: XEF = [(X / Al)sample /
(X / Al)reference], where X and Al represent the weight concentrations
of elements X and Al, respectively. Samples were normalized using
the Post Archean Australian Shale (PAAS) compositions (Taylor and
McLennan, 1985) or the Earth's upper crust (crust) compositions
(McLennan, 2001). Although Al normalization has some potential
pitfalls, enrichment factors are useful for the assessment of
the authigenic fraction of trace metals (Tribovillard et al., 2006). In
practice, XEF N 3 represents a detectable authigenic enrichment and
XEF N 10 represents a moderate to strong enrichment (Algeo and
Tribovillard, 2009).
Table 2
Rare earth element, Mo and U contents (ppm) of authigenic carbonate phases in the carbonate

Sample ID GeoB8212-2a- GeoB8215-2c GeoB8212-2d AC

1 2 3 41

La 3.92 1.17 2.41 4.80 1.68 0
Ce 13.21 3.89 7.92 12.46 5.75 0
Pr 0.98 0.28 0.56 1.03 0.39 0
Nd 3.92 1.07 2.18 4.27 1.51 0
Sm 0.80 0.22 0.44 0.90 0.32 0
Eu 0.25 0.09 0.18 0.25 0.24 0
Gd 0.71 0.18 0.39 0.92 0.28 0
Tb 0.11 0.03 0.06 0.14 0.04 0
Dy 0.54 0.13 0.28 0.85 0.20 0
Ho 0.10 0.02 0.05 0.18 0.04 0
Er 0.27 0.07 0.14 0.56 0.10 0
Tm 0.03 0.01 0.02 0.08 0.01 0
Yb 0.21 0.05 0.10 0.52 0.08 0
Lu 0.03 0.01 0.02 0.08 0.01 b0
ΣREE 25.1 7.2 14.7 27.0 10.6 1
Ce/Ce⁎ 1.55 1.58 1.57 1.25 1.64 0
Eu/Eu⁎ 1.59 2.14 2.10 1.28 3.78 1
Pr/Pr⁎ 0.79 0.79 0.77 0.83 0.75 1
Mo 0.58 0.50 0.55 1.19 0.52 0
U 2.88 1.41 1.96 8.62 2.92 3

n.d: no data.
⁎ (a) and (b): data from Birgel et al. (2011) by 5% HNO3 dissolution.
4. Results

4.1. Rare earth elements

The total REE (ΣREE) contents of the studied seep carbonates range
from 1.9 ppm to 27.0 ppm. Among the samples, CF carbonates exhibit
the highest REE concentrations (ΣREE from 7.2 ppm to 27.0 ppm),
followedbyGB425 carbonates (11.6 ppm to 15.9 ppm), andAC645 sam-
ples (1.9 ppm to 4.3 ppm; Table 2 and Fig. 2). Carbonate samples of CF,
GB425, and AC645 display real positive Ce anomalies (Ce/Ce* N 1.2),
no Ce anomalies, and real negative Ce anomalies (Ce/Ce* b0.8), respec-
tively (Fig. 3). The Eu anomaly observed in CF and GB425 samples is
due to the interference of BaO on Eu during ICP-MS analysis (Qi et al.,
2005). Moderate middle REE (MREE) enrichments were observed in
GB425 carbonates.

4.2. Major and trace elements

4.2.1. Major elements
Major element data are listed in Appendix 1. The highest average

contents of Al2O3 are encountered in GB425 samples (mean
2.47 wt.%), followed by CF samples (mean 1.47%) and AC645 samples
(mean 1.07%). Most of the AC645 samples have low Al2O3 contents
that are below 0.33%. The Fe2O3 contents of GB425 samples vary from
1.88% to 7.44%, significantly higher than contents of CF and AC645 sam-
ples. MnO2 contents of GB425 samples (mean 0.19%) are one order of
magnitude higher than those of CF (mean 0.01%) and AC645 samples
(mean 0.01%).

4.2.2. Trace elements
The average Mo concentrations decrease from CF (2.6–14.9 ppm;

mean 6.2 ppm), over GB425 (1.0–7.6 ppm; mean 2.6 ppm) to AC645
samples (0.8–2.9 ppm; mean 1.6 ppm). Uranium concentrations are
even more variable, ranging from 0.9 to 13.2 ppm (mean 4.2 ppm) in
GB425, 2.6 to 6.5 ppm (mean 4.6 ppm) in AC645, and 1.8 to 12.0 ppm
(mean 5.1 ppm) in CF samples (see Appendix 2). Arsenic and Sb are ex-
tremely enriched in GB425 samples relative to CF and AC645 samples.
The average As concentrations in GB425 samples are as high as 27.9
ppm with maxima up to 140.0 ppm. High Sb concentrations are also
rocks.

645- GB425-

97-1 2209-ce(a) 4197-1-mi(b) a b c d

.59 0.59 0.99 2.31 3.12 3.08 2.54

.60 0.54 1.56 4.66 6.36 6.43 5.13

.09 0.12 0.21 0.48 0.65 0.63 0.52

.37 0.50 0.80 2.02 2.63 2.67 2.16

.06 0.10 0.17 0.45 0.60 0.62 0.47

.02 0.02 0.04 0.47 0.50 0.58 0.53

.06 0.10 0.17 0.43 0.58 0.61 0.48

.01 0.02 0.02 0.07 0.09 0.09 0.07

.05 0.10 0.14 0.31 0.45 0.47 0.35

.01 0.02 0.03 0.06 0.09 0.09 0.07

.03 0.05 0.08 0.17 0.27 0.27 0.19

.00 0.01 0.01 0.02 0.04 0.04 0.02

.02 0.04 0.07 0.15 0.24 0.24 0.16

.01 0.01 0.01 0.02 0.04 0.04 0.02

.9 2.2 4.3 11.6 15.7 15.9 12.7

.55 0.45 0.78 0.97 0.99 1.01 0.98

.23 0.94 1.1 5.08 4.02 4.46 5.19

.14 1.24 1.12 0.92 0.94 0.90 0.91

.32 n.d n.d 0.36 0.32 0.25 0.18

.39 n.d n.d 1.95 0.60 0.30 1.59
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Fig. 2. PAAS-normalized REE patterns of authigenic carbonates. (a) Congo Fan carbonate
samples; (b) AC645 carbonate samples, AC645-2209-ce and AC645-4197-mi: data from
Birgel et al. (2011); (c) GB425 carbonate samples.
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Ce anomaly; field IIb: a negative La anomaly causes an apparent positive Ce anomaly;field
IIIa: real positive Ce anomaly; field IIIb: real negative Ce anomaly; field IV: positive La
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Fig. 4. Enrichment factors (EF); MoEF vs. UEF for authigenic carbonates in this study
(modified from Algeo and Tribovillard (2009)). (Mo/U)SW = 3.1. EF are calculated as
follows:XEF= [(X / Al)sample / (X / Al)PAAS], samples are normalizedusing the Post Archean
Australian Shale (PAAS) composition (Taylor and McLennan, 1985). Note the triangles in
the circle of AC645 samples, remarkably high MoEF and UEF of these sub-samples result
from the extremely low Al contents (all Al2O3 contents below 0.33%).
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present in GB425 samples (mean 0.9 ppm). Samples of CF and GB425
also revealed high Ba concentrations (see Appendix 2).

The MoEF relative to PAAS of CF, GB425, and AC645 carbonates
decreases as the Mo concentrations drop except for the sub-samples
of AC645 highlighted by a circle in Fig. 4. The sub-samples highlighted
by the circle yielded low Mo concentrations (below 2 ppm), while the
remarkably high MoEF resulted from extremely low Al contents of
the pure aragonite sampled. Regarding the enrichment factors after
normalization to Crust (McLennan, 2001), Mo, As, and Sb show major
enrichment in GB425 samples (most of MoEF near to 10; almost all
SbEF and AsEF above 10). In contrast, the enrichment factors of U, Ni,
Co, Pb, and Zn only occasionally exceed 10 with most factors below 10
and the factors of CrEF, CuEF, ThEF, and VEF all near to 3, illustrating that
these trace elements are not significantly enriched in GB425 samples
(Table 3).
5. Discussion

5.1. Molybdenum, uranium, and rare earth element geochemistry

5.1.1. CF seep carbonates
Molybdenum behaves conservatively in oxic conditions, existing

as molybdate. However, the presence of hydrogen sulfide tends to
facilitate conversion of molybdate to thiomolybdates, and the latter is
eventually incorporated by iron sulfide phases or sulfidized organic
matter, resulting in anomalous enrichment of Mo in sediments in
euxinic basins (Helz et al., 1996; Tribovillard et al., 2006; Neubert
et al., 2008; Algeo and Tribovillard, 2009; Helz et al., 2011; Nägler
et al., 2011; Kowalski et al., 2013). Anomalous high Mo concentrations
(from 1.7 ppm to 28.3 ppm) were observed in seep sediments from
the Nankai Trough, believed to reflect the formation of iron sulfide
after hydrogen sulfide was generated during AOM (Sato et al., 2012).
In seep sediment cores recovered from the Krishna–Godavari basin,
the maximum Mo concentrations of the paleo-sulfate methane transi-
tion zone reached even 37 ppm, and the marked Mo anomalies were
again attributed to sulfide mineral formation after hydrogen sulfide
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Table 3
Enrichment-factor, Fe/Al and Mn/Al ratios of GB425 authigenic carbonates.

Sample ID MoEF AsEF SbEF UEF NiEF CoEF CrEF CuEF PbEF ThEF VEF ZnEF Fe/Al Mn/Al

GB425-1 9.1 106.6 n.d 6.0 7.4 2.9 3.7 3.2 1.7 1.2 3.6 5.5 1.55 0.09
GB425-2 14.3 223.8 n.d 2.5 6.7 4.0 2.0 1.1 1.9 1.3 4.4 5.5 2.12 0.14
GB425-3 12.2 74.2 n.d 8.0 8.4 3.2 2.3 0.8 1.8 1.2 3.1 10.4 1.40 0.12
GB425-4 6.1 115.1 n.d 15.8 5.7 2.4 2.3 0.8 1.9 1.3 3.2 5.9 1.40 0.06
GB425-5 19.7 499.6 n.d 3.1 6.5 5.3 1.9 0.9 13.6 1.1 6.0 6.3 3.47 0.19
GB425-6 8.8 168.4 n.d 4.4 7.8 3.8 4.0 2.8 1.9 1.4 4.2 4.8 1.90 0.15
GB425-7 8.7 125.8 n.d 13.2 6.1 2.5 2.3 1.4 1.5 1.3 3.7 8.5 1.49 0.08
GB425-8 10.0 99.5 n.d 2.4 7.8 4.0 5.9 2.0 1.6 1.3 3.1 3.7 1.14 0.09
GB425-9 12.8 91.5 n.d 1.9 5.1 2.2 2.7 3.4 33.5 1.4 3.3 6.4 1.31 0.04
GB425-10 19.5 118.7 n.d 5.7 13.0 3.5 7.8 2.2 1.8 1.3 4.2 5.5 1.62 0.10
GB425-11 10.4 130.0 n.d 3.5 9.6 3.5 4.2 1.2 1.5 1.4 4.4 4.0 1.79 0.16
GB425-12 11.6 116.7 n.d 2.2 5.4 2.4 2.3 1.8 1.6 1.3 4.1 4.7 1.51 0.06
GB425-13 8.9 39.2 n.d 3.1 7.4 3.1 3.2 1.3 1.2 1.2 3.4 3.8 1.60 0.13
GB425-14 36.9 57.6 n.d 4.0 10.3 13.9 6.4 1.6 2.4 1.5 3.3 5.1 1.27 0.41
GB425-15 4.0 38.1 9.8 24.4 4.7 1.9 1.8 4.4 1.2 1.0 2.7 3.0 1.07 0.03
GB425-16 7.9 40.7 23.8 3.7 4.0 3.8 1.6 4.3 1.3 1.0 2.4 4.3 0.95 0.15
GB425-17 5.8 36.8 17.7 19.4 4.4 2.6 1.5 3.9 1.4 1.0 2.4 3.3 0.98 0.07
GB425-18 10.0 51.6 12.7 7.1 6.2 2.7 1.6 2.7 1.5 0.9 3.0 2.4 1.13 0.09
GB425-19 5.1 48.9 11.6 19.8 3.5 1.6 1.5 3.0 1.2 1.0 2.8 3.9 1.14 0.03
GB425-20 6.4 31.0 19.7 14.7 4.5 2.3 1.9 2.8 1.4 1.0 2.7 2.5 0.93 0.07
GB425-21 11.6 34.3 27.0 11.7 6.3 3.8 1.8 2.8 1.5 1.0 2.9 3.1 1.18 0.15
GB425-22 7.0 59.4 39.1 27.5 6.6 2.4 1.7 3.5 1.7 1.0 3.2 3.4 1.14 0.06
GB425-23 9.3 70.1 27.6 3.0 8.2 2.2 4.7 3.2 6.8 1.0 2.7 2.8 1.29 0.11
GB425-24 11.7 371.2 49.0 3.5 6.1 4.2 1.6 2.7 1.9 1.0 5.5 4.0 2.98 0.17

Note: XEF = [(X / Al)sample / (X / Al)Crust], samples are normalized using the Earth's upper crust (crust) composition (McLennan, 2001). n.d: no data.
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was produced by intense AOM(Peketi et al., 2012). Likewise, similarMo
anomalies were observed in this study in CF seep carbonates with Mo
concentrations commonly above 10 ppm — significantly exceeding
crustal average (1–2 ppm; Taylor and McLennan, 1985). Pyrite
framboids are particularly abundant in CF carbonates (Feng et al.,
2010a). Thus, it seems likely that the Mo enrichment in CF seep carbon-
ate is linked to iron sulfide phases, representing a product of hydrogen
sulfide formation during AOM. In fact, carbonate sediments and rocks
(N30% CaCO3) generally contain an average Mo concentration of 1.1
ppm, and Mo concentration of pure carbonate is close to 0.1 ppm
(Morford and Emerson, 1999; Voegelin et al., 2009). Molybdenum con-
centration of authigenic carbonate phases in the carbonate rocks (disso-
lution in 5% acetic acid solutions) of this study averages 0.5 ppm
(Table 2), a concentration between the range of Mo concentrations in
carbonate sediments and rocks on the one hand and pure carbonate
minerals on the other hand. Consequently, it seems most likely
that iron sulfides are the main Mo-bearing phases considering the low
Mo concentrations in authigenic carbonates and detrital phases. The
(Mo/U)EF ratios of CF carbonates equal or exceed ratios in seawater.
Suboxic sediments typically reveal low (Mo/U)EF ratios, whereas
euxinic sediments typically exhibit much higher ratios (e.g., Algeo and
Tribovillard, 2009). Such patterns together with extremely high
Mo contents (Fig. 4) indicate that CF seep carbonates precipitated in
a sulfidic environment. The high concentrations of U and ΣREE
present in CF carbonates agree with anoxic conditions. Furthermore,
CF carbonates exhibit high UEF and positive Ce anomalies (Figs. 2 and
4), which also point to strictly anoxic conditions during carbonate
formation.

If sulfidic conditions are restricted to pore waters, sedimentMo con-
centrations average ~10 ppm and rarely exceed 25 ppm (Scott and
Lyons, 2012). Conversely, in euxinic environmentswhere hydrogen sul-
fide is present in the water column, Mo concentrations exceed 60 ppm
and can reach 100 s ppm in the sediments below euxinicwater columns
(Scott and Lyons, 2012). Numerous studies on modern seeps and mod-
ern and ancient seep carbonates revealed that seepage activity varies
episodically (Aharon et al., 1997; Roberts and Carney, 1997; Tryon et al.,
1999; Teichert et al., 2003; Bayon et al., 2009; Feng et al., 2010b; Bian
et al., 2013; Tong et al., 2013). Based on this variability, AOM-derived
hydrogen sulfide may even build up in the uppermost sediments or
may even seep into the water column. This circumstance explains the
distribution of Mo in seep sediments and carbonates observed in this
and other studies (cf. Peketi et al., 2012; Sato et al., 2012). To sum up,
CF carbonates formed under strongly reducing conditions as revealed
by positive Ce anomalies. The observed trace element patterns
suggest that hydrogen sulfide build up to high concentration in
surface-near sediments and may even have seeped into the water
column episodically.

5.1.2. AC645 seep carbonates
The AC645 carbonates yielded Mo concentrations in the range of

0.8 ppm to 2.9 ppm with an average of 1.6 ppm (close to the crustal
average: 1–2 ppm; Taylor and McLennan, 1985), reflecting the lack of
Mo enrichment in AC645 carbonates. The partially high MoEF of AC645
carbonates should be considered with caution in view of the extremely
low Al contents of the AC645 aragonites that yielded the highest enrich-
ment factors (Fig. 4). Three drawbacksmay occur in the application of Al
normalization: (1) a relative excess of Al compared to overall detrital
input; (2) the reference values of normalized elements are not neces-
sarily representative for the sediments in the study area; and (3) the
coefficient of variation (e.g. standard deviation divided by the mean)
of the Al concentration is large compared to that of the trace element
concentration (Van der Weijden, 2002; Tribovillard et al., 2006 and
references therein). The spurious high MoEF in AC645 carbonates is
best explained by the last scenario based on themuch higher coefficient
of variation of the Al concentration than that of the Mo concentration.
The absence of euxinic conditions is in fact confirmed by low
(Mo/U)EF ratios (about 0.3 × (Mo/U)sw; Fig. 4). Thus, the pattern of
authigenic U–Mo covariation with low (Mo/U)EF ratios suggests that
suboxic–anoxic rather than sulfidic conditions were dominant during
the formation of AC645 carbonates.

The AC645 carbonates are composed almost entirely of aragonite,
pointing to a formation environment close to the seafloor thatwas char-
acterized by high alkalinity and sulfate concentrations (Burton, 1993;
Luff and Wallmann, 2003; Peckmann et al., 2009). If the conditions
during carbonate formationwould have been characterized by the pres-
ence of hydrogen sulfide produced by sulfate-dependent AOM,
molybdate would have been converted to thiomolybdates (Helz et al.,
1996, 2011), leading to Mo enrichment. The fact that no substantial
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Fig. 5. Arsenic (As) patterns; (a) AsEF vs. MoEF, (b) AsEF vs. Fe/Al ratios for GB425 carbonates.
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Mo enrichment was observed in AC645 carbonates agrees with the
absence of high sulfide concentrations in the surface sediments.
The negative Ce anomalies observed for AC645 carbonates may re-
sult from high pore water alkalinity in the presence of organic matter
(cf. Pourret et al., 2008; Kim et al., 2012). However, this explanation
cannot account for the absence of Mo enrichment. Intermittent
oxygenation is an alternative explanation for the negative Ce anom-
alies, the presence of biomarkers of aerobic methanotrophic bacteria
(cf. Birgel et al., 2011), and the absence of Mo enrichment in AC645
carbonates. Likewise, seafloor observations suggested that the
downward flow of oxic seawater into the anoxic sediment at some
seeps is significant (Solomon et al., 2008). It seems feasible that
the downward flow of oxic seawater oxidizes some of the AOM-
generated hydrogen sulfide, keeping sulfide concentration at a
level that is too low to allow for Mo enrichment.

5.1.3. GB425 seep carbonates
At the GB425 mud volcano site, seeping fluids are typified by an

anoxic hypersaline brine supersaturated with methane, and hydro-
gen sulfide was found to be barely detectable (MacDonald et al.,
2000; Joye et al., 2005). Observations over eight years documented
substantial temperature variations and discontinuous fluid dis-
charge (MacDonald et al., 2000; Joye et al., 2005). The average Mo
concentrations and MoEF in GB425 samples fall between the range
of those in the CF and AC645 samples (Fig. 4). However, the
(Mo/U)EF ratios in GB425 samples, varying from 0.1 × (Mo/U)SW to
3 × (Mo/U)SW, are remarkably different from that of the CF and
AC645 samples. The varying (Mo/U)EF ratios are best explained by
changing redox conditions during the formation of GB425 carbon-
ates possibly induced by changes in seepage flux (cf. Feng et al.,
2009a,b; Birgel et al., 2011). On the other hand, the GB425 samples
exhibit MREE (Sm, Gd, Tb, Dy) enrichment, which is a typical feature
of pore waters of the iron reduction zone (Haley et al., 2004; Bayon
et al., 2011; Kim et al., 2012). Considering the MREE enrichment,
the absence of Ce anomalies, and Mo–U covariation patterns, it
seems likely that GB425 carbonates precipitated in suboxic to anoxic
sediments near to the iron reduction zone.

5.2. Molybdenum, arsenic, and antimony enrichments of GB425 samples

Recently, enrichments of Mo, As, and Sb have been reported in cold-
seep fluids and sediments of mud volcanos, ancient seep carbonates,
and hydrocarbon-derived ferromanganese nodules (Nath et al., 2008;
Cangemi et al., 2010; González et al., 2012; Tribovillard et al., 2013). In
this study, similar enrichments of Mo, As, and Sb are observed in
GB425 seep carbonates and, surprisingly, As enrichment were even
found to exceed those of Mo (Fig. 5a). Major element contents (Ca, Al,
Fe, Mn) and Mo concentrations in GB425 samples are similar to those
of Jurassic seep carbonates, but As and Sb concentrations are higher
than those in the ancient limestones (cf. Tribovillard et al., 2013). The
other trace metals do not show significant enrichment in GB425 seep
carbonates, although some elements (e.g. U, Ni) have enrichment
factors occasionally exceeding 10 (Table 3). With respect to themecha-
nism of Mo, As, and Sb enrichment, two hypotheses have been brought
forward: (1) the trace metals were carried to the surface sediments by
ascending seep fluids, resulting in trace-metal enrichment in the
shallow pore fluid and sediments (Nath et al., 2008; Cangemi et al.,
2010); (2) the trace metals were predominantly derived from the
seawater, scavenged by iron and manganese oxyhydroxides in
the water column, and then transferred to the surface sediments
(Tribovillard et al., 2013).

At GB425, the seeping brines were found to result from halite disso-
lution and contain no sulfate (Joye et al., 2005; Joye and Samarkin,
2009). If the chloride-rich ascending brine carries Mo, As, and Sb to
the surface sediments, the brine would also simultaneously capture
other elements in the stable form of chlorides (such as Cu, Ni and Zn)
and it would easily remobilize U, resulting in enrichment of all these el-
ements in the shallow sediments (cf. Tribovillard et al., 2013 and
references therein). However, the above scenario is inconsistent with
the fact that only Mo, As, and Sb enrichments were recognized in
GB425 carbonates.

It has been established that manganese oxyhydroxides are the main
carriers of Mo, transporting this element from the seawater to the sed-
iment by the so-called particulate shuttle process (Tribovillard et al.,
2006; Chaillou et al., 2008; Dellwig et al., 2010; Scott and Lyons, 2012;
Tribovillard et al., 2013). A similar process probably applies to the
redistribution of As and Sb by iron oxyhydroxides (Cutter et al.,
2001; Chaillou et al., 2008; Böning et al., 2009; Wang et al., 2012;
Tribovillard et al., 2013). Because other elements are known to be unaf-
fected by the particulate shuttle process (e.g. Tribovillard et al., 2013),
only Mo, As, and Sb enrichments are found in seep sediments and car-
bonates. But why then are seep sediments enriched in these elements,
although the particulate shuttle process is obviously not restricted to
thewater columnabove seeps? It seems likely that the enhanced forma-
tion of AOM-induced sulfide minerals at seeps captures much of these
chalcophile elements, avoiding subsequent loss of Mo, As, and Sb
to the water column after reduction of the manganese and iron
oxyhydroxides in anoxic sediments (cf. Tribovillard et al., 2013). In ad-
dition, anomalous enrichment of Mo, As, and Sb was frequently ob-
served in ferromanganese nodules and crusts in normal marine
environments (Calvert and Price, 1977; Koschinsky and Hein, 2003;
Dekov et al., 2007). In these cases, the elements were directly derived
from seawater, indicating that seawater without other sources (e.g. as-
cending fluids) has the potential to supply enough trace elements to
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generate the observed anomalies. Finally, the GB425 carbonates contain
high concentrations of Fe and Mn, confirming that particulate shuttle
processes are feasible. In particular, the enrichment factor of As (AsEF)
correlates well with the authigenic fraction of Fe (Fe/Al) (Fig. 5b),
confirming that iron oxyhydroxidesmay play a critical role in the devel-
opment of Mo, As, and Sb enrichments, although additional input from
ascending fluids cannot be ruled out.

Above the pockmark field of the Niger Delta margin, methane
plumes were found to rise up to about 100 m above the seafloor
(Bayon et al., 2011). Within these plumes iron and manganese
oxyhydroxides occur (Bayon et al., 2011). It was further concluded
that iron and manganese oxyhydroxides actively scavenge REE, espe-
cially MREE (Bayon et al., 2011). The same conclusion is believed to
apply for Mo, As, and Sb (Tribovillard et al., 2013). At the GB425 mud
volcano, the methane plume reached N200 m above the seafloor (Joye
et al., 2005). The abundance of suspended particulates in the GB425
brinewas found to provide an iron oxide source to fuel sulfide oxidation
(Joye et al., 2005). It seems consequently feasible that the suspended
particulates and the high Fe2+ concentrations in themud volcano fluids
facilitate the precipitation of iron andmanganese oxyhydroxideswithin
themethane plume (see Fig. 6 for a schematic diagram). In this scenario,
the formation of iron and manganese oxyhydroxides results in prefer-
ential removal of dissolved Mo, As, Sb, and MREE from the surrounding
seawater. Subsequently the iron andmanganese particulates sink to the
sediment–water interface and become exposed to the iron reduction
zoneupon ongoing sedimentation. After the iron andmanganese partic-
ulates are reduced, Mo, As, Sb, and MREE are released into the pore
water, leading to the enrichment of these elements in the proximity of
the iron reduction zone. The released elements can either return back
to the water column or become incorporated into authigenic sulfides
or even carbonates (Sato et al., 2012; Tribovillard et al., 2013, and refer-
ences therein).

6. Conclusions

Authigenic carbonates from cold hydrocarbon seeps from the
AC645 and GB425 sites of the Gulf of Mexico and from pockmarks
on the Congo Fan are characterized by negative, no, and positive Ce
anomalies, respectively. Moreover, the highest overall contents of
ΣREE and Mo as well as the highest ratios of (Mo/U)auth were
found in Congo Fan seep carbonates. Carbonates from AC645
were found to have the lowest ΣREE and Mo contents as well as
the lowest (Mo/U)auth ratios. In this context, the formation envi-
ronments of authigenic carbonates reflect a trend toward more re-
ducing conditions from AC645 over GB425 to the Congo Fan seeps.
The Congo Fan carbonates formed under sulfidic conditions and
high concentrations of AOM-derived hydrogen sulfide build up in
the uppermost sediments, possibly even leading to episodic re-
lease of hydrogen sulfide into the water column. No substantial
Mo enrichment and low (Mo/U)auth ratios in the AC645 carbonates
suggest that the observed negative Ce anomalies reflect intermit-
tent oxygenation. Variable (Mo/U)auth ratios in samples from the
GB425 site were apparently caused by episodic changes of the
seepage intensity. The enrichment of Mo, As, and Sb in GB425
carbonates is interpreted to reflect an efficient particulate shuttle
process. Similar processes and scenarios may apply to other
modern and fossil cold seep sites.
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Appendix 1. Major element contents (wt.%) of bulk authigenic carbonates
Sample ID MgO Al2O3 P2O5 CaO TiO2 MnO Fe2O3

CF-1 5.74 1.50 0.03 36.8 0.08 0.01 1.46
CF-2 0.73 1.23 0.01 39.3 0.07 0.01 1.43
CF-3 4.41 1.23 0.02 38.5 0.06 0.01 1.43
CF-4 1.06 1.24 0.01 37.9 0.07 0.01 1.31
CF-5 2.15 1.09 0.01 40.7 0.06 0.01 1.27
CF-6 0.76 1.02 0.02 39.5 0.07 0.00 1.34
CF-7 4.17 1.46 0.03 37.7 0.08 0.01 1.42
CF-8 6.85 1.63 0.04 36.9 0.08 0.01 2.06
CF-9 4.77 1.91 0.06 35.2 0.11 0.01 2.27
CF-10 4.93 1.87 0.06 36.3 0.11 0.02 2.06
CF-11 4.00 1.79 0.05 38.2 0.10 0.03 2.17
CF-12 4.70 1.82 0.05 35.3 0.10 0.01 1.96
CF-13 4.80 1.82 0.04 39.4 0.11 0.03 1.90
CF-14 2.63 1.18 0.02 39.5 0.06 0.01 1.35
CF-15 2.13 1.36 0.03 40.9 0.07 0.01 1.34
CF-16 4.08 1.42 0.02 42.5 0.08 0.01 1.74
CF-17 4.00 1.43 0.01 40.7 0.08 0.01 1.41
AC645-1 0.14 0.31 0.02 43.7 0.02 0.01 0.95
AC645-2 0.14 0.33 0.02 44.2 0.02 0.01 0.92
AC645-3 0.13 0.31 0.01 41.8 0.02 0.01 0.87
AC645-4 0.10 0.19 0.02 42.2 0.01 0.01 0.84
AC645-5 0.11 0.29 0.02 42.5 0.02 0.01 0.91
AC645-6 0.10 0.19 0.01 42.5 0.01 0.01 1.17
AC645-7 0.09 0.18 0.01 43.8 0.01 0.01 0.84
AC645-8 1.77 2.10 0.04 39.2 0.14 0.03 2.23
AC645-9 0.11 0.29 0.02 41.4 0.02 0.01 0.88
AC645-10 0.55 1.53 0.03 37.2 0.09 0.02 1.34
AC645-11 1.16 2.84 0.04 35.2 0.16 0.02 1.89
AC645-12 1.37 1.30 0.06 41.6 0.07 0.01 1.23
AC645-13 0.59 0.92 0.03 40.1 0.05 0.01 1.18
AC645-14 1.01 2.21 0.04 37.5 0.12 0.01 1.57
AC645-15 1.49 2.34 0.05 39.1 0.14 0.02 1.73
AC645-16 1.04 1.84 0.03 38.0 0.12 0.01 1.45
GB425-1 1.78 2.20 0.08 39.1 0.14 0.13 2.58
GB425-2 1.61 2.31 0.16 37.0 0.16 0.23 3.71
GB425-3 1.97 1.77 0.08 43.8 0.11 0.15 1.88
GB425-4 1.74 2.40 0.12 37.9 0.16 0.10 2.54
GB425-5 1.82 2.84 0.32 35.3 0.19 0.36 7.44
GB425-6 1.41 1.78 0.09 34.1 0.12 0.18 2.56
GB425-7 1.57 2.00 0.08 35.6 0.13 0.11 2.25
GB425-8 1.73 2.44 0.07 33.1 0.16 0.15 2.11
GB425-9 1.54 2.56 0.10 27.8 0.19 0.07 2.53
GB425-10 1.55 1.83 0.06 34.0 0.12 0.13 2.25
GB425-11 1.68 1.81 0.08 39.3 0.12 0.20 2.44
GB425-12 1.81 2.51 0.10 33.1 0.17 0.10 2.87
GB425-13 1.81 2.16 0.08 37.1 0.14 0.19 2.61
GB425-14 1.83 2.10 0.08 39.1 0.14 0.59 2.02
GB425-15 1.93 2.56 0.09 39.4 0.17 0.06 2.07
GB425-16 1.67 3.09 0.10 34.9 0.20 0.32 2.22
GB425-17 1.89 2.87 0.10 37.5 0.19 0.14 2.12
GB425-18 1.93 2.94 0.10 41.2 0.19 0.19 2.51
GB425-19 1.96 3.34 0.10 38.7 0.19 0.07 2.89
GB425-20 1.83 3.27 0.11 39.5 0.20 0.17 2.30
GB425-21 1.69 2.22 0.10 45.8 0.15 0.22 1.98
GB425-22 2.33 2.60 0.10 42.3 0.17 0.12 2.24
GB425-23 1.75 2.72 0.11 42.2 0.18 0.20 2.66
GB425-24 1.83 2.87 0.12 38.1 0.19 0.33 6.46



Sample ID V Cr Co Ni Cu Zn Sr Zr Mo Sb Ba Pb Th U As

CF-1 20.3 15.7 4.6 33.1 7.6 43.6 2121 12.0 14.9 n.d 705 4.5 2.5 2.9 3.9
CF-2 17.4 34.5 4.0 47.2 5.9 34.2 7315 11.0 4.0 n.d 567 4.5 1.2 2.4 4.5
CF-3 17.1 14.6 4.0 54.0 2.3 27.3 3794 11.6 2.8 n.d 972 2.5 1.6 2.6 3.5
CF-4 19.4 15.2 3.7 30.6 3.7 23.8 7208 12.3 5.2 n.d 609 2.9 1.3 3.2 3.9
CF-5 19.5 21.6 3.2 32.9 1.3 43.5 6301 11.3 4.0 n.d 990 3.8 2.9 4.5 2.1
CF-6 16.8 38.4 3.5 42.2 4.0 32.4 7703 12.3 3.3 n.d 578 2.2 1.1 2.5 1.7
CF-7 21.1 20.4 4.0 35.9 5.8 39.2 3723 13.9 3.0 n.d 773 3.1 1.2 1.8 4.9
CF-8 26.7 20.2 4.2 33.9 6.6 52.9 1672 12.9 2.9 n.d 563 3.3 2.5 4.5 4.6
CF-9 41.4 24.9 5.3 38.2 7.5 36.4 886 18.8 10.7 n.d 600 3.8 1.9 5.9 10.3
CF-10 40.0 26.0 6.1 33.8 6.2 76.5 889 19.0 9.9 n.d 454 4.4 1.8 9.6 9.3
CF-11 43.5 22.6 6.1 39.7 15.7 105.2 1756 18.9 10.6 n.d 515 5.5 2.6 12.0 12.5
CF-12 41.3 24.3 5.8 37.3 6.9 29.1 946 17.4 13.0 n.d 608 3.3 2.0 8.2 9.0
CF-13 42.5 28.9 5.5 44.4 8.5 65.4 1260 18.4 8.0 n.d 455 4.5 1.9 9.8 7.9
CF-14 17.0 15.8 4.2 33.4 8.5 86.6 6079 13.0 3.3 n.d 4769 11.9 1.1 3.7 3.6
CF-15 19.6 17.7 4.3 34.0 5.1 65.3 6083 22.6 4.4 n.d 894 3.3 1.4 3.5 5.5
CF-16 19.4 20.6 4.0 36.6 6.0 59.6 4092 13.3 2.6 n.d 897 2.4 1.6 4.4 1.7
CF-17 18.1 16.9 4.1 33.1 7.0 40.9 5011 14.9 3.0 n.d 7355 3.9 1.3 4.6 n.d
AC645-1 12.1 16.1 2.9 35.2 5.1 42.9 6540 4.6 2.2 n.d 31 0.6 0.2 4.8 0.5
AC645-2 13.9 14.9 2.9 34.3 3.1 26.4 6643 4.5 2.0 n.d 25 0.4 0.2 4.8 2.0
AC645-3 16.2 11.5 2.7 35.0 6.9 25.0 6504 4.3 2.5 n.d 27 0.9 0.3 6.5 0.7
AC645-4 9.9 11.7 2.4 32.9 3.5 24.3 6406 5.1 1.0 n.d 20 0.4 0.2 3.9 0.6
AC645-5 12.1 11.4 2.7 31.0 5.1 13.5 6455 3.8 1.2 n.d 24 1.1 0.2 4.5 0.3
AC645-6 13.6 11.4 2.6 35.3 9.6 23.6 6556 2.8 1.2 n.d 28 0.6 0.2 5.0 0.4
AC645-7 12.0 8.6 2.8 34.9 4.5 22.6 6655 2.5 1.3 n.d 23 0.5 0.2 4.4 0.3
AC645-8 13.1 14.8 2.8 52.3 3.5 36.6 6645 35.9 1.3 n.d 25 0.6 0.3 5.0 0.1
AC645-9 13.7 12.4 2.8 36.1 6.4 22.1 6637 3.4 1.2 n.d 66 2.9 0.2 4.8 0.9
AC645-10 39.3 27.9 5.2 38.0 9.3 41.3 8272 27.9 1.7 n.d 112 3.0 1.3 5.2 3.2
AC645-11 59.6 33.6 8.0 38.6 12.9 44.1 5236 32.2 0.8 n.d 103 4.5 2.0 5.4 6.1
AC645-12 30.1 32.5 4.3 45.7 12.9 49.8 5848 17.3 1.6 n.d 62 3.0 0.9 5.4 2.4
AC645-13 19.1 108.9 3.4 80.8 9.8 37.5 6088 9.2 2.9 n.d 56 1.9 0.7 3.9 2.8
AC645-14 44.0 23.4 4.9 34.3 10.0 38.7 7717 25.5 1.5 n.d 129 3.6 1.7 2.6 3.8
AC645-15 56.3 31.9 5.5 33.6 15.2 64.2 4558 33.5 1.9 n.d 115 9.4 2.2 3.0 7.2
AC645-16 46.3 25.9 5.5 35.9 11.0 36.7 6863 24.6 1.9 n.d 105 3.2 1.6 4.8 8.1
GB425-1 55.8 44.2 7.2 47.3 11.7 56.7 792 52.7 2.0 n.d 5693 4.3 1.9 2.5 23.2
GB425-2 71.8 25.7 10.4 45.1 4.2 59.4 599 43.8 3.3 n.d 243 5.0 2.1 1.1 51.1
GB425-3 38.7 22.7 6.3 43.1 2.3 85.9 786 40.2 2.1 n.d 348 3.5 1.5 2.6 13.0
GB425-4 54.3 30.2 6.4 39.4 3.0 66.0 822 57.7 1.4 n.d 428 5.2 2.2 7.0 27.2
GB425-5 120.7 29.4 16.7 53.4 4.3 83.6 625 69.2 5.5 n.d 237 43.0 2.2 1.6 140.0
GB425-6 52.0 38.4 7.5 39.9 8.2 39.7 588 40.5 1.5 n.d 232 3.7 1.7 1.5 29.5
GB425-7 52.5 25.7 5.7 35.7 4.6 80.0 825 47.5 1.7 n.d 6633 3.4 1.8 4.9 24.9
GB425-8 53.6 78.6 11.1 55.2 8.0 42.7 1171 51.3 2.4 n.d 14369 4.5 2.2 1.1 24.0
GB425-9 60.1 37.3 6.2 37.5 14.1 76.1 2197 59.5 3.2 n.d 61475 95.9 2.6 0.9 23.1
GB425-10 54.7 77.9 7.3 69.3 6.8 46.8 1338 37.9 3.5 n.d 16742 3.6 1.7 1.9 21.5
GB425-11 56.5 41.4 7.2 50.4 3.6 34.1 647 35.9 1.9 n.d 292 3.0 1.7 1.2 23.2
GB425-12 72.9 31.7 6.8 39.3 7.3 54.6 1382 48.2 2.9 n.d 20362 4.6 2.4 1.0 29.0
GB425-13 51.9 37.9 7.6 46.5 4.5 38.7 924 37.4 1.9 n.d 9817 2.9 1.8 1.2 8.4
GB425-14 49.2 73.3 32.5 62.1 5.5 50.2 730 65.4 7.6 n.d 299 5.7 2.2 1.6 11.9
GB425-15 47.8 24.5 5.5 34.5 18.7 35.8 1420 37.4 1.0 0.3 16600 3.6 1.8 11.5 9.6
GB425-16 52.5 26.5 13.1 35.9 21.9 61.4 1580 42.8 2.4 1.0 27700 4.6 2.2 2.1 12.4
GB425-17 49.5 24.3 8.5 36.9 18.6 44.5 1460 39.4 1.6 0.7 23800 4.4 2.1 10.3 10.5
GB425-18 63.0 26.3 9.0 52.6 13.0 32.8 849 40.6 2.9 0.5 3850 4.9 2.0 3.8 15.0
GB425-19 66.4 27.1 6.0 34.1 16.6 61.0 965 42.8 1.7 0.5 12300 4.5 2.3 12.2 16.1
GB425-20 61.7 33.2 8.5 42.5 15.0 38.3 1050 49.7 2.1 0.9 10100 5.1 2.3 8.8 10.0
GB425-21 45.5 21.9 9.5 40.6 10.4 32.1 896 35.2 2.6 0.8 4220 3.6 1.5 4.8 7.5
GB425-22 57.8 23.8 7.1 50.1 15.1 41.6 946 38.3 1.8 1.3 6560 5.1 1.9 13.2 15.3
GB425-23 51.3 69.7 6.6 64.8 14.4 35.8 555 42.3 2.5 1.0 1700 20.7 1.9 1.5 18.8
GB425-24 111.0 24.6 13.6 51.0 12.6 53.3 672 36.6 3.3 1.9 3560 6.0 2.1 1.9 105.2

n.d: no data.

Appendix 2. Trace element contents (ppm) of bulk authigenic carbonates

64 Y. Hu et al. / Chemical Geology 381 (2014) 55–66
References

Aharon, P., Schwarcz, H.P., Roberts, H.H., 1997. Radiometric dating of submarine hydro-
carbon seeps in the Gulf of Mexico. Geol. Soc. Am. Bull. 109, 568–579.

Algeo, T., Tribovillard, N., 2009. Environmental analysis of paleoceanographic
systems based on molybdenum–uranium covariation. Chem. Geol. 268,
211–225.

Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and
Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79,
37–55.
Bayon, G., Henderson, G., Bohn, M., 2009. U–Th stratigraphy of a cold seep carbonate
crust. Chem. Geol. 260, 47–56.

Bayon, G., Birot, D., Ruffine, L., Caprais, J.C., Ponzevera, E., Bollinger, C., Donval, J.P., Charlou,
J.L., Voisset, M., Grimaud, S., 2011. Evidence for intense REE scavenging at cold seeps
from the Niger Delta margin. Earth Planet. Sci. Lett. 312, 443–452.

Bayon, G., Dupré, S., Ponzevera, E., Etoubleau, J., Chéron, S., Pierre, C., Mascle, J., Boetius, A.,
De Lange, G.J., 2013. Formation of carbonate chimneys in the Mediterranean Sea
linked to deep-water oxygen depletion. Nat. Geosci. 6, 755–760.

Berner, R.A., 1980. Early Diagenesis — A Theoretical Approach. , Princeton University
Press, Princeton.

http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0005
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0005
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0010
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0010
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0010
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0015
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0015
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0015
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0030
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0030
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0020
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0020
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0025
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0025
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0035
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0035


65Y. Hu et al. / Chemical Geology 381 (2014) 55–66
Bian, Y., Feng, D., Roberts, H.H., Chen, D., 2013. Tracing the evolution of seep fluids from
authigenic carbonates: Green Canyon, northern Gulf of Mexico. Mar. Pet. Geol. 44,
71–81.

Birgel, D., Feng, D., Roberts, H.H., Peckmann, J., 2011. Changing redox conditions at cold
seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of
Mexico. Chem. Geol. 285, 82–96.

Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R.,
Jørgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium
apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.

Bohrmann, G., Greinert, J., Suess, E., Torres, M., 1998. Authigenic carbonates from the
Cascadia subduction zone and their relation to gas hydrate stability. Geology 26,
647–650.

Böning, P., Brumsack, H.-J., Schnetger, B., Grunwald, M., 2009. Trace element signatures of
Chilean upwelling sediments at ~36°S. Mar. Geol. 259, 112–121.

Burton, E.A., 1993. Controls on marine carbonate cement mineralogy: review and
reassessment. Chem. Geol. 105, 163–179.

Calvert, S.E., Price, N.B., 1977. Geochemical variation in ferromanganese nodules and
associated sediments from the Pacific Ocean. Mar. Chem. 5, 43–74.

Campbell, K.A., 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and
paleontology: past developments and future research directions. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 232, 362–407.

Cangemi, M., Di Leonardo, R., Bellanca, A., Cundy, A., Neri, R., Angelone, M., 2010. Geo-
chemistry and mineralogy of sediments and authigenic carbonates from the Malta
Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release
from a mud volcano system. Chem. Geol. 276, 294–308.

Castellini, D.G., Dickens, G.R., Snyder, G.T., Ruppel, C.D., 2006. Barium cycling in
shallow sediment above active mud volcanoes in the Gulf of Mexico. Chem.
Geol. 226, 1–30.

Chaillou, G., Schäfer, J., Blanc, G., Anschutz, P., 2008. Mobility of Mo, U, As, and Sb within
modern turbidites. Mar. Geol. 254, 171–179.

Charlou, J.L., Donval, J.P., Fouquet, Y., Ondreas, H., Knoery, J., Cochonat, P., Levaché, D.,
Poirier, Y., Jean-Baptiste, P., Fourré, E., Chazallon, B., 2004. Physical and chemical char-
acterization of gas hydrates and associated methane plumes in the Congo–Angola
Basin. Chem. Geol. 205, 405–425.

Chen, D.F., Huang, Y.Y., Yuan, X.L., Cathles, L.M., 2005. Seep carbonates and preserved
methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas
venting on the seafloor in the Northeastern South China Sea. Mar. Pet. Geol. 22,
613–621.

Cutter, G.A., Cutter, L.S., Featherstone, A.M., Lohrenz, S.E., 2001. Antimony and arsenic
biogeochemistry in the western Atlantic Ocean. Deep-Sea Res. II Top. Stud. Oceanogr.
48, 2895–2915.

Dekov, V.M., Scholten, J.C., Botz, R., Garbe-Schönberg, C.D., Stoffers, P., 2007. Fe–Mn-
(hydr)oxide-carbonate crusts from the Kebrit Deep, Red Sea: precipitation at the
seawater/brine redoxcline. Mar. Geol. 236, 95–119.

Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehne, F., Schnetger, B., Yakushev, E.V.,
Böttcher, M.E., Brumsack, H.-J., 2010. A new particulate Mn–Fe–P-shuttle at the
redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100–7115.

Droz, L., Rigaut, F., Cochonat, P., Tofani, R., 1996. Morphology and recent evolution of the
Zaire turbidite system (Gulf of Guinea). Geol. Soc. Am. Bull. 108, 253–269.

Feng, D., Chen, D., Qi, L., Roberts, H.H., 2008. Petrographic and geochemical characteriza-
tion of seep carbonate from Alaminos Canyon, Gulf of Mexico. Chin. Sci. Bull. 53,
1716–1724.

Feng, D., Chen, D., Peckmann, J., 2009a. Rare earth elements in seep carbonates as tracers
of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21, 49–56.

Feng, D., Chen, D., Roberts, H.H., 2009b. Petrographic and geochemical characterization of
seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of
Mexico. Mar. Pet. Geol. 26, 1190–1198.

Feng, D., Chen, D., Peckmann, J., Bohrmann, G., 2010a. Authigenic carbonates from meth-
ane seeps of the northern Congo fan: microbial formation mechanism. Mar. Pet. Geol.
27, 748–756.

Feng, D., Roberts, H.H., Cheng, H., Peckmann, J., Bohrmann, G., Lawrence Edwards, R.,
Chen, D., 2010b. U/Th dating of cold-seep carbonates: an initial comparison. Deep-
Sea Res. II Top. Stud. Oceanogr. 57, 2055–2060.

Feng, D., Lin, Z., Bian, Y., Chen, D., Peckmann, J., Bohrmann, G., Roberts, H.H., 2013. Rare
earth elements of seep carbonates: indication for redox variations and microbiologi-
cal processes at modern seep sites. J. Asian Earth Sci. 65, 27–33.

Gay, A., Lopez, M., Cochonat, P., Levaché, D., Sermondadaz, G., Seranne, M., 2006.
Evidences of early to late fluid migration from an upper Miocene turbiditic channel
revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks,
Lower Congo Basin. Mar. Pet. Geol. 23, 387–399.

Gay, A., Lopez, M., Berndt, C., Seranne, M., 2007. Geological controls on focused fluid
flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol. 244,
68–92.

Ge, L., Jiang, S.-Y., Swennen, R., Yang, T., Yang, J.-H., Wu, N.-Y., Liu, J., Chen, D.-H., 2010.
Chemical environment of cold seep carbonate formation on the northern continental
slope of South China Sea: evidence from trace and rare earth element geochemistry.
Mar. Geol. 277, 21–30.

González, F.J., Somoza, L., León, R., Medialdea, T., de Torres, T., Ortiz, J.E., Lunar, R.,
Martínez-Frías, J., Merinero, R., 2012. Ferromanganese nodules and micro-
hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic):
palaeoenvironmental records of fluid venting and bottom currents. Chem. Geol.
310–311, 56–78.

Greinert, J., Bohrmann, G., Suess, E., 2001. Gas hydrate-associated carbonates and methane-
venting at Hydrate Ridge: classification, distribution, and origin of authigenic litholo-
gies. Geophysical Monographs, 124. American Geophysical Union, Washington DC
pp. 131–143.
Haas, A., Peckmann, J., Elvert, M., Sahling, H., Bohrmann, G., 2010. Patterns of carbonate
authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Mar. Geol. 268,
129–136.

Haley, B.A., Klinkhammer, G.P., McManus, J., 2004. Rare earth elements in pore waters of
marine sediments. Geochim. Cosmochim. Acta 68, 1265–1279.

Helz, G., Miller, C., Charnock, J., Mosselmans, J., Pattrick, R., Garner, C., Vaughan, D., 1996.
Mechanism of molybdenum removal from the sea and its concentration in black
shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642.

Helz, G.R., Bura-Nakić, E., Mikac, N., Ciglenečki, I., 2011. New model for molybdenum be-
havior in euxinic waters. Chem. Geol. 284, 323–332.

Himmler, T., Bach, W., Bohrmann, G., Peckmann, J., 2010. Rare earth elements in
authigenic methane-seep carbonates as tracers for fluid composition during early
diagenesis. Chem. Geol. 277, 126–136.

Himmler, T., Haley, B.A., Torres, M.E., Klinkhammer, G.P., Bohrmann, G., Peckmann, J.,
2013. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge,
northeast Pacific Ocean. Geo-Mar. Lett. 33, 369–379.

Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-
consuming archaebacteria in marine sediments. Nature 398, 802–805.

Joye, S.B., Samarkin, V.A., 2009. Metabolic variability in seafloor brines revealed by carbon
and sulphur dynamics. Nat. Geosci. 2, 349–354.

Joye, S., MacDonald, I., Montoya, J.P., Peccini, M., 2005. Geophysical and geochemical sig-
natures of Gulf of Mexico seafloor brines. Biogeosciences 2, 295–309.

Judd, A., Hovland, M., 2007. Seabed Fluid Flow, Cambridge University Press, Cambridge.
Kim, J.-H., Torres, M.E., Haley, B.A., Kastner, M., Pohlman, J.W., Riedel, M., Lee, Y.-J., 2012.

The effect of diagenesis and fluid migration on rare earth element distribution in pore
fluids of the northern Cascadia accretionary margin. Chem. Geol. 291, 152–165.

Klaucke, I., Weinrebe, W., Petersen, C.J., Bowden, D., 2010. Temporal variability of gas
seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa
area, Hikurangi margin. Mar. Geol. 272, 49–58.

Koschinsky, A., Hein, J.R., 2003. Uptake of elements from seawater by ferromanganese
crusts: solid-phase associations and seawater speciation. Mar. Geol. 198, 331–351.

Kowalski, N., Dellwig, O., Beck, M., Gräwe, U., Neubert, N., Nägler, T.F., Badewien, T.H.,
Brumsack, H.-J., van Beusekom, J.E.E., Böttcher, M.E., 2013. Pelagic molybdenum con-
centration anomalies and the impact of sediment resuspension on the molybdenum
budget in two tidal systems of the North Sea. Geochim. Cosmochim. Acta 119,
198–211.

Luff, R., Wallmann, K., 2003. Fluid flow, methane fluxes, carbonate precipitation and bio-
geochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia
Margin: numerical modeling and mass balances. Geochim. Cosmochim. Acta 67,
3403–3421.

MacDonald, I.R., Buthman, D.B., Sager, W.W., Peccini, M.B., Guinasso, N.L., 2000. Pulsed oil
discharge from a mud volcano. Geology 28, 907–910.

Marton, L.G., Tari, G.C., Lehmann, C.T., 2000. Evolution of the Angolan passive margin,
West Africa, with emphasis on post-salt structural style. In: Mohriak, W., Talwani,
M. (Eds.), Atlantic Rifts and Continental Margins. Geophysical Monograph, 115.
AGU, pp. 129–149.

McLennan, S., 1989. Rare earth elements in sedimentary rocks: influence of provenance
and sedimentary processes. Rev. Mineral. Geochem. 21, 169–200.

McLennan, S.M., 2001. Relationships between the trace element composition of sedimen-
tary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2
(2000GC000109). http://dx.doi.org/10.1029/2000GC000109.

Milkov, A.V., Sassen, R., 2000. Thickness of the gas hydrate stability zone, Gulf of Mexico
continental slope. Mar. Pet. Geol. 17, 981–991.

Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sed-
iments. Geochim. Cosmochim. Acta 63, 1735–1750.

Nägler, T.F., Neubert, N., Böttcher, M.E., Dellwig, O., Schnetger, B., 2011. Molybdenum iso-
tope fractionation in pelagic euxinia: evidence from themodern Black and Baltic Seas.
Chem. Geol. 289, 1–11.

Nath, B., Jean, J.S., Lee, M.K., Yang, H.J., Liu, C.C., 2008. Geochemistry of high arsenic
groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive
transport of arsenic. J. Contam. Hydrol. 99, 85–96.

Neubert, N., Nagler, T.F., Böettcher, M.E., 2008. Sulfidity controls molybdenum isotope
fractionation into euxinic sediments: evidence from the modern Black Sea. Geology
36, 775–778.

Nöthen, K., Kasten, S., 2011. Reconstructing changes in seep activity by means of pore
water and solid phase Sr/Ca andMg/Ca ratios in pockmark sediments of the Northern
Congo Fan. Mar. Geol. 287, 1–13.

Palomares, R.M., Hernandez, R.L., Frias, J.M., 2012. Mechanisms of trace metal enrichment
in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz. J.
Geochem. Explor. 112, 297–305.

Peckmann, J., Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chem. Geol. 205,
443–467.

Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B., Heinicke, C., Hoefs, J., Reitner, J.,
2001. Methane-derived carbonates and authigenic pyrite from the northwestern
Black Sea. Mar. Geol. 177, 129–150.

Peckmann, J., Birgel, D., Kiel, S., 2009. Molecular fossils reveal fluid composition and flow
intensity at a Cretaceous seep. Geology 37, 847–850.

Peketi, A., Mazumdar, A., Joshi, R., Patil, D., Srinivas, P., Dayal, A., 2012. Tracing the Paleo
sulfate-methane transition zones and H2S seepage events in marine sediments: an
application of C–S–Mo systematics. Geochem. Geophys. Geosyst. 13, Q10007.
http://dx.doi.org/10.1029/2012GC004288.

Pourret, O., Davranche, M., Gruau, G., Dia, A., 2008. New insights into cerium anomalies in
organic-rich alkaline waters. Chem. Geol. 251, 120–127.

Qi, L., Zhou, M.F., Malpas, J., Sun, M., 2005. Determination of rare earth elements and Y in
ultramafic rocks by ICP-MS after preconcentration using Fe(OH)3 and Mg(OH)2
coprecipitation. Geostand. Geoanal. Res. 29, 131–141.

http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0040
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0040
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0040
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0045
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0045
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0045
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0050
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0050
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0055
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0055
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0055
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0060
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0060
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0060
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0065
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0065
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0070
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0070
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0075
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0075
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0075
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0080
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0080
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0080
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0080
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0085
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0085
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0085
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0090
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0090
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0095
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0095
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0095
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0100
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0100
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0100
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0100
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0105
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0105
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0105
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0110
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0110
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0110
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0115
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0115
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0120
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0120
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0135
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0135
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0135
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0125
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0125
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0140
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0140
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0140
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0130
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0130
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0130
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0150
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0150
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0145
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0145
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0145
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0160
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0160
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0160
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0155
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0155
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0155
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0165
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0165
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0165
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0170
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0170
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0170
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0170
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0460
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0460
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0460
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0460
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0175
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0175
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0175
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0180
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0180
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0185
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0185
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0190
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0190
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0195
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0195
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0195
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0200
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0200
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0205
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0205
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0215
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0215
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0210
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0210
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0220
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0225
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0225
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0230
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0230
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0230
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0235
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0235
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0240
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0240
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0240
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0240
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0245
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0245
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0245
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0245
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0250
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0250
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0465
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0465
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0465
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0465
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0255
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0255
http://dx.doi.org/10.1029/2000GC000109
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0260
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0260
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0265
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0265
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0270
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0270
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0270
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0275
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0275
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0275
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0280
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0280
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0280
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0285
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0285
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0285
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0290
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0290
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0290
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0305
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0305
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0300
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0300
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0295
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0295
http://dx.doi.org/10.1029/2012GC004288
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0315
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0315
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0320
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0320
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0320
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0320


66 Y. Hu et al. / Chemical Geology 381 (2014) 55–66
Roberts, H.H., Aharon, P., 1994. Hydrocarbon-derived carbonate buildups of the northern
Gulf of Mexico continental slope: a review of submersible investigations. Geo-Mar.
Lett. 14, 135–148.

Roberts, H.H., Carney, R.S., 1997. Evidence of episodic fluid, gas, and sediment venting on the
northern Gulf of Mexico continental slope. Econ. Geol. Bull. Soc. Econ. Geol. 92, 863–879.

Roberts, H.H., Feng, D., Joye, S.B., 2010a. Cold-seep carbonates of the middle and lower
continental slope, northern Gulf of Mexico. Deep-Sea Res. II Top. Stud. Oceanogr.
57, 2040–2054.

Roberts, H., Shedd, W., Hunt Jr., J., 2010b. Dive site geology: DSV ALVIN (2006) and ROV
JASON II (2007) dives to the middle-lower continental slope, northern Gulf of
Mexico. Deep-Sea Res. II Top. Stud. Oceanogr. 57, 1837–1858.

Rongemaille, E., Bayon, G., Pierre, C., Bollinger, C., Chu, N.C., Fouquet, Y., Riboulot, V.,
Voisset, M., 2011. Rare earth elements in cold seep carbonates from the Niger delta.
Chem. Geol. 286, 196–206.

Sahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S.,
Schneider, R., 2008. Pockmarks in the Northern Congo Fan area, SW Africa: complex
seafloor features shaped by fluid flow. Mar. Geol. 249, 206–225.

Sassen, R., MacDonald, I.R., 1994. Evidence of structure H hydrate, Gulf of Mexico
continental slope. Org. Geochem. 22, 1029–1032.

Sassen, R., Sweet, S.T., Milkov, A.V., DeFreitas, D.A., Salata, G.G., McDade, E.C., 1999.
Geology and geochemistry of gas hydrates, central Gulf of Mexico continental
slope. Gulf Coast Assoc. Geol. Soc. Trans. 49, 462–468.

Sato, H., Hayashi, K.-i., Ogawa, Y., Kawamura, K., 2012. Geochemistry of deep sea sedi-
ments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic ox-
idation of methane. Mar. Geol. 323–325, 47–55.

Scott, C., Lyons, T.W., 2012. Contrasting molybdenum cycling and isotopic properties in
euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies.
Chem. Geol. 324–325, 19–27.

Shields, G., Kimura, H., Yang, J., Gammon, P., 2004. Sulphur isotopic evolution of
Neoproterozoic–Cambrian seawater: new francolite-bound sulphate δ34S data and a
critical appraisal of the existing record. Chem. Geol. 204, 163–182.

Solomon, E.A., Kastner, M., Jannasch, H., Robertson, G., Weinstein, Y., 2008. Dynamic fluid
flow and chemical fluxes associated with a seafloor gas hydrate deposit on the north-
ern Gulf of Mexico slope. Earth Planet. Sci. Lett. 270, 95–105.

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution.
Blackwell, Oxford (312 pp.).

Teichert, B., Eisenhauer, A., Bohrmann, G., Haase-Schramm, A., Bock, B., Linke, P., 2003.
U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia
Margin: recorders of fluid flow variations. Geochim. Cosmochim. Acta 67, 3845–3857.
Tong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., Chen, D.,
2013. Authigenic carbonates from seeps on the northern continental slope of the
South China Sea: new insights into fluid sources and geochronology. Mar. Pet. Geol.
43, 260–271.

Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and
paleoproductivity proxies: an update. Chem. Geol. 232, 12–32.

Tribovillard, N., Algeo, T.J., Baudin, F., Riboulleau, A., 2012a. Analysis of marine environ-
mental conditions based on molybdenum–uranium covariation—applications to
Mesozoic paleoceanography. Chem. Geol. 324–325, 46–58.

Tribovillard, N., Sansjofre, P., Ader, M., Trentesaux, A., Averbuch, O., Barbecot, F., 2012b.
Early diagenetic carbonate bed formation at the sediment–water interface triggered
by synsedimentary faults. Chem. Geol. 300–301, 1–13.

Tribovillard, N., du Châtelet, E.A., Gay, A., Barbecot, F., Sansjofre, P., Potdevin, J.-L., 2013.
Geochemistry of cold seepage-impacted sediments: per-ascensum or per-
descensum trace metal enrichment? Chem. Geol. 340, 1–12.

Trudgill, B.D., Rowan, M.G., Fiduk, J.C., Weimer, P., Gale, P.E., Korn, B.E., Phair, R.L., Gafford,
W.T., Roberts, G.R., Dobbs, S.W., 1999. The Perdido fold belt, northwestern deep Gulf
of Mexico; part 1, structural geometry, evolution and regional implications. AAPG
Bull. 83, 88–113.

Tryon, M.D., Brown, K.M., 2004. Fluid and chemical cycling at Bush Hill: implications for
gas-and hydrate-rich environments. Geochem. Geophys. Geosyst. 5, 1–7.

Tryon, M.D., Brown, K.M., Torres, M.E., Tréhu, A.M., McManus, J., Collier, R.W., 1999. Mea-
surements of transience and downward fluid flow near episodic methane gas vents,
Hydrate Ridge, Cascadia. Geology 27, 1075–1078.

Van der Weijden, C.H., 2002. Pitfalls of normalization of marine geochemical data using a
common divisor. Mar. Geol. 184, 167–187.

Voegelin, A.R., Nägler, T.F., Samankassou, E., Villa, I.M., 2009. Molybdenum isotopic com-
position of modern and Carboniferous carbonates. Chem. Geol. 265, 488–498.

Wang, S., Xu, L., Zhao, Z., Wang, S., Jia, Y., Wang, H., Wang, X., 2012. Arsenic retention and
remobilization inmuddy sediments with high iron and sulfur contents from a heavily
contaminated estuary in China. Chem. Geol. 314, 57–65.

Zheng, Y., Anderson, R.F., van Geen, A., Kuwabara, J., 2000. Authigenic molybdenum for-
mation in marine sediments: a link to pore water sulfide in the Santa Barbara
Basin. Geochim. Cosmochim. Acta 64, 4165–4178.

Zheng, Y., Anderson, R.F., van Geen, A., Fleisher, M.Q., 2002. Remobilization of authigenic
uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66,
1759–1772.

http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0325
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0325
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0325
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0330
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0330
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0335
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0335
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0335
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0340
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0340
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0340
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0345
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0345
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0350
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0350
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0355
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0355
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0475
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0475
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0365
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0365
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0365
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0370
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0370
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0370
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0375
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0375
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0375
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0375
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0380
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0380
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0380
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0385
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0385
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0390
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0390
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0395
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0395
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0395
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0405
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0405
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0400
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0400
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0400
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0415
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0415
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0410
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0410
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0420
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0420
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0420
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0425
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0425
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0430
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0430
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0430
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0435
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0435
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0440
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0440
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0445
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0445
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0445
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0455
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0455
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0455
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0450
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0450
http://refhub.elsevier.com/S0009-2541(14)00253-8/rf0450

	New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps
	1. Introduction
	2. Geological background
	2.1. Congo Fan
	2.2. Northern Gulf of Mexico

	3. Samples and methods
	4. Results
	4.1. Rare earth elements
	4.2. Major and trace elements
	4.2.1. Major elements
	4.2.2. Trace elements


	5. Discussion
	5.1. Molybdenum, uranium, and rare earth element geochemistry
	5.1.1. CF seep carbonates
	5.1.2. AC645 seep carbonates
	5.1.3. GB425 seep carbonates

	5.2. Molybdenum, arsenic, and antimony enrichments of GB425 samples

	6. Conclusions
	Acknowledgments
	Appendix 1. Major element contents (wt.%) of bulk authigenic carbonates
	References
	Appendix 2. Trace element contents (ppm) of bulk authigenic carbonates


