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Abstract

This paper considers the continuous-treatment case and develops nonparametric estima-
tors for the average dose-response function, the treatment level at which this function is
maximized (location of the maximum), and the maximum value achieved by this function
(size of the maximum). These parameters are identified by assuming that selection into
different levels of the treatment is based on observed characteristics. The proposed non-
parametric estimators of the location and size of the optimal dose are shown to be jointly
asymptotically normal and uncorrelated. More generally, these estimators can be used to
estimate the location and size of the maximum of a partial mean (Newey, 1994). To illus-
trate the utility of our approach, the techniques developed in the paper are used to estimate
the turning point of the environmental Kuznets curve (EKC) for NOx, that is, the level
of per capita income at which the emissions of NOx reach their peak and start decreasing.
Finally, a Monte Carlo exercise is performed partly based on the data used in the empirical
application. The results show that the nonparametric estimators of the location and size of
the optimal dose developed in this paper work well in practice (especially when compared
to a parametric model), in some cases even for relatively small sample sizes.
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1 Introduction

This paper proposes a method to estimate and carry out inference for different parameters of

interest when we have a continuous dose of the treatment. In particular, it focuses on estimating

three objects: the entire curve of average potential outcomes or average dose-response function,

the treatment level at which that curve is maximized (location of the optimal dose), and the

maximum value achieved by that curve (size of the optimal dose). Under the assumption

that selection into different treatment levels is based on observable characteristics, the paper

estimates these objects nonparametrically based on kernel methods and establishes asymptotic

normality for the estimators.

The importance of the average dose-response is obvious from a policy perspective since it

gives the average outcome for all possible values of the treatment. The location and size of the

optimal dose are important when a policy maker wants to apply or recommend a particular

treatment dose to a population. For example, it is of interest for an agency to know the level of

training that maximizes the average net benefits of a given program; or for a health provider to

have an estimate of the maternal age at which health outcomes of the newborn are optimized.

These two parameters can also be interpreted as the location and size of the turning point of

the dose-response function, or more generally, of a given relation of interest. These objects are

relevant in many areas of economics. For example, after the work by Grossman and Krueger

(1991), a large number of studies have documented an inverted U-shaped relationship between

some measures of pollution and per capita income. A lot of emphasis is given in this literature to

estimating the turning point of this relationship.1 Similarly, Imbs and Wacziarg (2003) estimate

the turning point for the relationship between various measures of sectoral concentration and

per capita income. In the area of program evaluation, Flores-Lagunes et al. (2007) and Kluve

et al. (2007) estimate inverted U-shaped dose-response functions for the effect of length of

exposure to a training program on earnings and the probability of employment, respectively,

and the location and size of the turning point provide valuable information.2

The nonparametric approach presented in this paper for estimation of optimum doses or

turning points has advantages over previous approaches found in the economics literature.

One approach that has been previously used is to discretize the treatment, estimate average

outcomes for each group, and conclude which group is best (e.g., Royer, 2003). The problem

with this approach is that often discretization is arbitrary. Moreover, confidence bounds for the

best group are rarely provided. Another common approach is to assume a parametric form for

the relationship between the treatment and the outcome of interest and estimate the optimal

1Some examples are Grossman and Krueger, 1991; Selden and Song, 1994; Cropper and Griffiths, 1994; List
and Gallet, 1999; Millimet et al., 2003 among others.

2Flores-Lagunes et al. (2007) focus on the effects of Job Corps in U.S. and Kluve et al. (2007) study training
programs in Germany. Fryges (2006) and Fryges and Wagner (2007) are two more recent examples of estimated
dose-response functions with an inverted-U shape in which estimation of the turning point is relevant.
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treatment or turning point from it (e.g., Grossman and Krueger, 1991; Flores-Lagunes et al.,

2007 and Kluve et al., 2007). Results, however, may be quite sensitive to model specifications

(e.g., Millimet et al. 2003). Finally, even when some authors use nonparametric methods for

estimating turning points without controlling for additional covariates (e.g., Millimet et al.,

2003; Imbs and Wacziarg, 2003), they do not provide standard errors for their estimators.

Contrary to the existing literature, the nonparametric estimators developed in this paper allow

controlling for additional covariates nonparametrically and are shown to have an asymptotically

normal distribution that can be used to undertake statistical inference. In addition, the results

from a Monte Carlo exercise show that the nonparametric estimators of the location and size

of the optimal dose developed in this paper work well in practice (especially as compared to a

parametric model), in some cases even for relatively small sample sizes.

In order to identify the parameters of interest, we assume that selection by individuals into

different treatment levels is made based on an observed set of covariates and on unobserved

components not correlated with the potential outcomes. This is a straightforward extension

to the continuous treatment case of the “unconfoundedness” or “selection-on-observables” as-

sumption commonly used in the binary-treatment literature (e.g., Firpo, 2007; Imbens, 2004;

Hirano et al., 2003; Heckman et al., 1999). Under this assumption we can write the average

dose-response function as a partial mean, which is an average of a regression function over some

of its regressors while holding others fixed. Partial means were introduced in the econometrics

literature by Newey (1994). More specifically, the average dose-response function can be writ-

ten as the average over the covariates of the regression function of the outcome variable on the

treatment level and the covariates. Hence, the estimators presented in this paper estimate the

location and size of the maximum of a partial mean. Note that in this case we do not want

to maximize the regression function of the outcome variable on the treatment level and the

covariates over all regressors, but only over the treatment level after we integrate over all the

covariates.

The asymptotic properties of the estimators are derived using some of the general results in

Newey (1994) to analyze functionals of kernel estimators. Newey (1994) derives the asymptotic

distribution of a kernel-based estimator of the partial mean. The estimator of the size of the

maximum of the partial mean presented in this paper behaves asymptotically as the kernel-

based estimator of the partial mean evaluated at the true location of the maximum. On the

other hand, the asymptotic properties of the estimator of the location of the maximum of the

partial mean are closely related to those of an estimator of the first derivative of the partial

mean. Hence, the scaling factor needed to obtain asymptotic normality of the location estimator

is the same as the one used for a derivative estimator of the partial mean. As a result, the kernel

estimators of the location and size of the maximum of the partial mean presented in this paper

are based on different bandwidths. The conditions imposed on these bandwidths are stronger
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than those needed for asymptotic normality of the estimators of the derivative and the level of

a partial mean since, in obtaining asymptotic normality of the location and size estimators, we

need convergence in probability of the Jacobian resulting from a Taylor expansion around the

true value of the parameters. The paper also shows that even when controlling for covariates the

scaling factors needed for asymptotic normality of the location and size estimators are the same

as those needed for the estimators of the location and size of the maximum of the regression

function of the outcome variable on the treatment level. This comes from the fact that the

rate of convergence of partial mean estimators depends on the number of regressors that are

averaged out (Newey, 1994).

This paper is organized as follows. The next section presents the parameters of interest,

defines the estimators, and derives their asymptotic distribution. Section 3 presents an empirical

application of the methods developed in this paper. The proposed estimators are used to

estimate the turning point of the “Environmental Kuznets Curve” (EKC) for NOx, that is, the

level of per capita income at which the emissions of NOx reach their peak and start decreasing.

Section 4 reports results from a Monte Carlo exercise. The simulation design is partly based

on the data used in the empirical application in order to gain insight into the behavior of the

estimators in situations found in empirical research. Section 5 concludes.

2 Definition and Asymptotic Distribution of the Estimators

The model is based on the potential outcome approach (Neyman, 1923; Rubin, 1974) now widely

used in the program evaluation literature.3 Assume we have a random sample of size n from a

large population. We are interested in how the units in our sample respond to different doses of

some treatment with the response measured by some outcome variable Y . The treatment levels,

t, take on values in a set T , where T is an interval. Let Yi(t) denote the potential outcome of

unit i under dose t; that is, the outcome unit i would received if exposed to treatment level t.

Also, let ti be the actual treatment dose received by unit i. For each unit, out of all possible

values Yi(t), t ∈ T , only Yi = Yi(ti) is observed, which leads to the usual missing-data problem.4

In this paper, we focus on estimation of three objects:

μ0 (t) = E{Y (t)} for all t ∈ T (1)

α0 = argmax
t∈T

μ0 (t) (2)

3See, for instance, the surveys by Heckman, Lalonde and Smith (1999) and Imbens (2004).
4As noted in Hirano, Imbens and Ridder (2003), the stable-unit-treatment-value assumption (SUTVA) is

implicitly assumed in this notation. SUTVA is the assumption that the potential outcome for unit i at treatment
level t is not affected either by the mechanism used to assign treatment level t or by the treatment received by
other units (Rubin, 1978).
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and

γ0 = μ0 (α0) (3)

The first parameter is the average dose-response function. The second and third parameters

are the location and size of the optimal treatment dose, respectively.

When units are randomly assigned to different levels of the treatment, estimating α0 and

γ0 is equivalent to estimating the location and size of E [Y |T = t]. Kernel estimators of the

location and size of the maximum of E [Y |T = t] have been previously studied in the statistics

literature. Müller (1985) was the first one to analyze this type of estimators in the context of

the non-random regressors model and using the Gasser-Müller estimator. Müller shows that

his estimators of location and size of the peak of E [Y |T = t] are asymptotically jointly normal

and uncorrelated. Ziegler (2000) obtains similar results when analyzing the random regressor

model and using the Nadaraya-Watson estimator.5,6

Unfortunately, in economics we usually do not have an experiment at hand to evaluate the

effects of a given treatment. A common approach in the binary-treatment literature and a

natural “next step” when analyzing the effects of a given treatment is to assume that selection

into treatment is based on a given set of observed covariates (e.g., Imbens, 2004). We follow

an analogous approach and assume that assignment into different levels of the treatment is

unconfounded given a set of covariates X with dimension equal to k, that is, we assume that

selection is based on observables.7

Assumption 1. {Y (t)}t∈T ⊥ T |X.
Let g0 (t, x) = E [Y |T = t,X = x]. Assumption 1 implies that we can write the dose-

response function at a given fixed value t ∈ T as

μ0
¡
t
¢
= E

£
E
£
Y (t)|X = x

¤¤
= E

£
E
£
Y
¡
t
¢
|T = t,X = x

¤¤
= E

£
g0
¡
t, x
¢¤
, (4)

where the unconfoundedness assumption is used in the second equality. Randomization of

the treatment levels in an experiment controls for observed and unobserved confounders by

not allowing their values to differ systematically across different treatment doses. On the

5Another important difference between the work by Müller (1985, 1989) and Ziegler (2000) is that the former
allows the order of the bandwidths for the estimators of location and size to differ and uses the same kernel
for both, while Ziegler (2000) uses a bandwidth of the same order for both estimators and allows the order of
the kernel to differ. Also, the conditions in Ziegler (2000) for asymptotic normality are imposed locally in a
neighborhood of the location of the maximum rather than globally on a compact set.

6Although the literature on estimation of the maximum of a regression function is not large, the opposite is
true for the related problem of estimating the mode of a density using kernel methods (e.g., Parzen, 1962; Eddy,
1982; Romano, 1988). Also, there are other approaches in the statistics literature for estimating the location of
a maximum of a regression function. Some involve algorithms detecting peaks (e.g., Heckman, 1992) and the use
of extreme order statistics (e.g., Chen et al., 1996). We prefer the approach based on nonparametric estimators
because its extension to the case when one needs to control for additional covariates is more natural.

7As in Dawid (1979), we write X ⊥ Y to denote independence of X and Y .
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other hand, in the non-experimental case and under assumption 1, we need to control for

systematic differences in the observed covariates across treatment doses, and E
£
g
¡
t, x
¢¤
does

so by averaging over them. The last term in (4) is what Newey (1994) calls a partial mean, which

is an average of a regression function over some conditioning variables while holding others fixed.

Thus, the estimators of the location and size of the optimal treatment dose analyzed below are

also useful in the more general context of estimating the location and size of the maximum of

a partial mean.

The last expression in (4) suggests calculating the dose-response function following a re-

gression approach by first computing the regression function of the observed outcome (Y ) on

the observed treatment (T ) and covariate values (X) and then taking its expectation over the

covariates.8 As commonly done in the partial mean literature (e.g., Newey, 1994; Hausman and

Newey, 1995), let τ (x) be a fixed trimming function used to bound the denominator of g0 (t, x)

away from zero. Using τ (x) along with assumption 1 we redefine μ0
¡
t
¢
in (1) as

μ0
¡
t
¢
= E

£
τ (x) g0

¡
t, x
¢¤

(5)

Assume we observe i.i.d. data on (yi, ti, xi), i = 1, . . . , n. Based on (5), we define our estimators

of the parameters in (1)-(3), respectively, as

bμσ ¡t¢ = 1

n

nX
i=1

τ (xi) bgσ(t, xi) for all t ∈ T (6)

bα = argmax
t∈T

bμσ1 ¡t¢ (7)

bγ = bμσ2 (bα) (8)

where bgσ(t, x) is the usual multivariate Nadaraya-Watson (NW) regression estimator based on
bandwidth σ, which, for a kernel function K (u), is given by

bgσ(t, x) =
nP

j=1
yjK

³
t−tj
σ ,

x1−x1j
σ , · · · , xk−xkjσ

´
nP

j=1
K
³
t−tj
σ ,

x1−x1j
σ , · · · , xk−xkjσ

´ (9)

As previously mentioned, we allow the bandwidths for bα and bγ to differ.
Newey (1994) derives the asymptotic distribution of the partial mean estimator in (6). To

state his result we introduce some notation. Let r = (t, x), s be the order of the kernel used,

f0 (r) be the true joint density of t and x, and ef0 (x) be the true density of x. Newey (1994)
8 In this continuous-treatment case one could apply other methodologies to estimate the dose-response function

such as weighting by the (generalized) propensity score or matching on the covariates. These methods are
described in Flores (2005) for the continuous-treatment case.
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shows that under some regularity conditions (see Theorem 4.1 in Newey, 1994), and assuming

the bandwidth σ = σ (n) satisfies σ → 0, nσ2k+1/ [ln(n)]2 → ∞ and nσ2s+1 → 0, as n → ∞,
the asymptotic distribution of (6) is given by

√
nσ(bμσ ¡t¢− μ0

¡
t
¢
)

d−→ N (0, V0) (10)

where V0 =
£R
{
R
K(u1, u2)du2}2du1

¤
×
R
f0(t, x)

−1τ2 (x) ef20 (x)V ar £y|r = ¡t, x¢¤ dx; and u in

K(u) is partitioned according to r =
¡
t, x
¢
.

As discussed in Newey (1994), since μ
¡
t
¢
is only a function of T its nonparametric esti-

mators will converge faster than estimators of E [Y |T = t,X = x]. This can be seen from the

normalizing factor in (10), which is the same as the one from a nonparametric estimator of the

regression function E [Y |T = t]. The bandwidth conditions in this result imply undersmoothing,

which is reflected in the fact that the limiting distribution is centered around zero.

We now derive the joint limiting distribution of the estimators of the location and size of

the optimal dose in (7) and (8). This result is derived following an approach similar to the one

in Newey (1994), and by using some of his general results on functionals of kernel estimators.

Newey considers two-step estimators where the first step is a vector of kernel estimators, saybh(r), and the second step is anm-estimator that depends on bh(r). To state the conditions needed
for our result we introduce some additional notation. Let q = [1 y]0 and h0(r) = E[q|r]f0(r) =
[h10(r) h20(r)]

0. A kernel estimator of h0 (r) is bh(r) = 1
n

nP
j=1

qjKσ(r − rj) = [bh1(r) bh2(r)]0,
whereKσ(u) = σ−(k+1)K (u/σ). This is the first-step kernel estimator. We impose the following

conditions.

Assumption 2. Let K(u) be such that
R
K(u)du = 1; K(u) is zero outside a bounded set;

K(u) is twice continuously differentiable with Lipschitz derivatives; and, there is a positive

integer s such that for all j < s,
R
K(u)[⊗j=1u ] = 0.

Assumption 3. There is a non-negative integer d ≥ s+1 and an extension of h0(r) to all of

Rk+1 that is bounded and continuously differentiable to order d with bounded derivatives on

Rk+1.

Assumption 4. E[|y|4] <∞ and E[|y|4 |r]f0(r) is bounded.
Assumptions 2-4 are standard in the literature and are useful to obtain uniform convergence

rates for bh(r) (e.g., Newey and McFadden, 1994). Assumption 2 requires the use of higher order
kernels, which are commonly used to center the asymptotic distribution of estimators around

the true parameter values.

To write the second step m-estimator we make the following assumption.

Assumption 5. α ∈ T , where T is compact, μ0 (α) = E [τ (x)E [Y |r = (α, x)]] is uniquely
maximized at α0; and α0 is in the interior of T . Also, ∂2μ0 (α0) /∂α2 6= 0.

Let z = (q, r), β = [α γ]0, and define m1 (z, β, h) = τ (x) ∂g (α, x) /∂α, where g (α, x) =

h2 (α, x) /h1 (α, x). Then, under assumption 5 we have that β0 solves E [m1 (z, β0, h0)] =
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∂μ0 (α0) /∂α = 0. Also, let m2 (z, β, h) = τ (x) g (α, x) − γ, so that E [m2 (z, β0, h0)] = 0.

Finally, let our moment vector be given by m (z, β, h) = [m1 (z, β, h) m2 (z, β, h)]
0. Then,

the estimators in (7) and (8) are given by the vector bβ that solves the corresponding sample
equation given by

1

n

nX
i=1

"
m1(z, β,bhσ1)
m2(z, β,bhσ2)

#
=
1

n

nX
i=1

m(zi, β,bhσ1 ,bhσ2) = 0 (11)

where note that bhσ1 is used in the first moment and bhσ2 in the second one.
Our goal is to derive the asymptotic distribution of bβ − β0. As usual for m-estimators, in

order to derive the limiting distribution of bβ − β0 we expand (11) around β0 to obtain

√
nDn(bβ − β0) = −

h
Jn(zi, β

∗,bhσ1 ,bhσ2 , σ1, σ2)i−1√nDn

h bmn(zi, β0,
bhσ1 ,bhσ2)i (12)

where β∗ is a mean value; and we let Dn =

"
σ
3/2
1 0

0 σ
1/2
2

#
, Jn(zi, β∗,bhσ1 ,bhσ2 , σ1, σ2) =

Dn(
1
n

Pn
i=1 ∂m(zi, β

∗,bhσ1 ,bhσ2)/∂β)D−1n and bmn(zi, β0,bhσ1 ,bhσ2) = 1
n

Pn
i=1m(zi, β0,

bhσ1 ,bhσ2).
Hence, the normalizing factors for bα and bγ are given by √nσ3/21 and

√
nσ

1/2
2 , respectively.

Assumption 5 is also useful to show consistency of bα which, along with uniform convergence
in probability of the averages appearing in Jn, is used to show convergence in probability of

Jn to some matrix J . Assumption 5 implies J is invertible. Then, asymptotic normality of
√
nDn(bβ − β0) follows from asymptotic normality of

√
nDn[bmn(zi, β0,

bhσ1 ,bhσ2)]. Since in this
last term the moment functions depend on the kernel estimators bhσ1 and bhσ2 , its asymptotic
distribution is derived in two steps. The first one involves a linearization around h0, and the

second entails asymptotic normality of such linearization.

To derive our main result we also make the following assumption.

Assumption 6. (i) τ (x) is bounded, continuous almost everywhere and zero except on a

compact set where f0 (t, x) is bounded away from zero; (ii) ef0(x) is bounded and continuously
differentiable; (iii) E[y|r] and E[y2|r] are continuously differentiable; and (iv) for some ε > 0,R
sup||η||<ε

£©
1 +E

£
y4|r = (α0 + η, x)

¤ª
f0 (α0 + η, x)

¤
dx <∞.

The dominance condition in (iv) integrates over the covariates and is used when showing

asymptotic normality of the linearization of bmn(zi, β0,bhσ1 ,bhσ2) in (12) around h0. A similar

assumption appears also in Newey (1994) and Hausman and Newey (1995). We now present

the main result in the paper.

THEOREM 1: Suppose that (i) Assumptions 1-6 are satisfied; (ii) for a scalar u1, eK (u1) is

symmetric, where we partition u according to r = [t x] and let eK (u1) =
R
K (u1, u2) du2; (iii)

for = 1, 2 and σ = σ (n), σ → 0; nσk+5/ ln (n)→∞; nσ2k+1/ [ln (n)]2 →∞; nσ2s+31 → 0;

nσ2s+12 → 0. If k = 0, also assume nσ61 →∞. Then,
√
nDn(bβ − β0) =

µ p
nσ31(bα− α0)√
nσ2 (bγ − γ0)

¶
d−→ N

µ∙
0
0

¸
,

∙
V1 0
0 V2

¸¶
(13)
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with V1 =
³
∂2μ0(α0)

∂α2

´−2 hR
{ eKu1 (u1)}2du1

i R
ψ (α0, x) dx; V2 =

hR
{ eK (u1)}2du1

i R
ψ (α0, x) dx;eKu1 (u1) = ∂ eK (u1) /∂u1 and ψ (α0, x) = f0(α0, x)

−1τ2 (x) ef20 (x)V ar [y|r = (α0, x)]. If k = 0

then V1 =
¡
∂2g0 (α0) /∂α

2
¢−2

ϕ (α0)
R
{Ku (u)}2du and V2 = ϕ (α0)

R
{K (u)}2du, with ϕ (α0) =

f0(α0)
−1V ar [y|T = α0].

PROOF. See appendix.

Assumption (ii) is used in showing that the elements of the vector
√
nDn[bmn(zi, β0,bhσ1 ,bhσ2)]

in (12) are asymptotically uncorrelated. Although this condition is sufficient but not necessary

for this result, it is kept in Theorem 1 since it is satisfied by most of the kernels typically

used in practice. The conditions requiring nσk+5/ ln (n)→∞ for = 1, 2 are useful in showing

uniform convergence in probability of ∂2bμσ (α) /∂α2 to ∂2μ0 (α) /∂α2, which is used in showing
convergence in probability of Jn(β∗, ·) in (12) to J . The conditions nσ2k+1/ [ln (n)]2 → ∞ for

= 1, 2 are used for linearization of
√
nDn[bmn(zi, β0,

bhσ1 ,bhσ2)] around h0. The conditions

involving the order of the kernel imply undersmoothing and are made to center the asymptotic

distribution around the true value of β0. Finally, the requirement that nσ
6
1 → ∞ when k = 0

is made to guarantee that our result is true also in the absence of covariates (i.e., in the case

when doses are randomly assigned).9 In fact, when k = 0 theorem 1 is comparable to previous

results by Müller (1985) and Ziegler (2000).

Note that the bandwidth used for estimation of α0 converges to zero slower than the

one for estimation of γ0. This comes from the fact that the asymptotic distribution of bα is
determined by the asymptotic distribution of ∂bμσ1 (α0) /∂α (see 12). In general, the con-

ditions on the bandwidth imply that if σ is proportional to nδ and k > 0, then δ1 ∈
(max [−1/(2k + 1),−1/(k + 5)] ,−1/(2s + 3)) and δ2 ∈ (max [−1/(2k + 1),−1/(k + 5)] ,
−1/(2s + 1)).10 The conditions on σ1 and σ2 also imply that the order of the kernel used

must be s > max {2 + k/2, k}, so higher order kernels are required if k > 0.11 It is also impor-

tant to note that the restrictions imposed on σ2 and on the order of the kernel for asymptotic

normality of the size estimator are stronger than those needed for asymptotic normality of the

partial mean estimator in Newey (1994). This comes from the fact that in our case we need

convergence in probability of Jn(zi, β∗, .) in (12).

The asymptotic variances in (13) are very intuitive. The asymptotic variance of the size

estimator is the same as that of the partial mean estimator in (10) evaluated at α0. As for

the location estimator, its asymptotic variance equals the asymptotic variance of the kernel

estimator of the first derivative of the partial mean E
£
τ (x) g

¡
t, x
¢¤
evaluated at α0, divided

9Note that nσk+51 / ln (n) →∞ implies nσ61 →∞ for k ≥ 1. We use nσ61 →∞ when showing convergence in
probability of the cross-term in Jn (see equation (A.6) in the appendix).
10For k = 0, theorem 1 requires δ1 ∈ (−1/6,−1/(2s+ 3)) and δ2 ∈ (−1/5,−1/(2s+ 1)).
11 If we were only interested on estimation of the location of the maximum, the conditions on σ1 imply s > k.

Hence, in this case the use of a second order kernel (which is commonly used in practice) in the presence of a
single covariate is allowed. Similarly, for the case without covariates (i.e., k = 0) Flores (2005) shows that the
conditions on σ1 and σ2 in the joint normality result can be weakened to allow for second order kernels.
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by
¡
∂2μ0 (α0) /∂α

2
¢2. This last term is a measure of the curvature of the partial mean at α0.

Hence, as one would expect, the greater the curvature of the partial mean at the maximum the

smaller the asymptotic variance of bα.
We now briefly discuss the result that bα and bγ are asymptotically uncorrelated. The cross

terms of Jn(·) in (12) equal 0 (since ∂m1(z, β,bhσ1)/∂γ = 0) and (σ2/σ31)
1/2∂bμσ2 (α∗) /∂α for

some mean value α∗ between bα and α0. In the appendix is shown that under our assumptions

(σ2/σ
3
1)
1/2∂bμσ2 (α∗) /∂α p→ 0. Note that even if we choose σ1 and σ2 such that σ2/σ31 → C <

∞, we still get the same result since ∂bμσ2 (α∗) /∂α p→ ∂μ0 (α0) /∂α = 0. Now consider the

asymptotic covariance of the elements in the vector
√
nDn[bmn(zi, β0,

bhσ1 ,bhσ2)] in (12). This
term is asymptotically equivalent to {

R
ψ (α0, x) dx}[

R eKu1 (anu1)
eK (bnu1) du1], where eK (u1),eKu1 (u1) and ψ (α0, x) are defined in theorem 1, and an = (σ2/σ1)
1/2, bn = (σ1/σ2)

1/2. Our

assumption that eK (u1) is symmetric implies that
R eKu1 (anu1)

eK (bnu1) du1 = 0 regardless of

the limits of an and bn. Moreover, note that given assumption 2, even if eK (u1) is not symmetricR eKu1 (anu1) eK (bnu1) du1 → 0 as long as σ1 and σ2 are of different order.

The conclusion in theorem 1 implies that the normalizing factors used to obtain asymptotic

normality of the estimators of the location and size of the optimal dose when we control for

covariates using a partial mean is the same as the ones used for asymptotic normality of the

location and size of the maximum of E [Y |T = t]. As discussed in Newey (1994), this happens

because of the averaging over the covariates of the non-parametric regression of Y on T and X.

On the other hand, note that for calculation of bα and bγ we first need to estimate g0 (t, x) with
some precision. This may be a problem if the dimension of X is large, as is usually the case

for assumption 1 to be more plausible. In this case one may need to impose some restrictions

such as additivity, or make part of the model parametric. For example, one approach is the use

of the generalized propensity score (GPS) introduced by Imbens (2000) and extended to the

continuous treatment case in Hirano and Imbens (2004). The GPS is the conditional density of

the treatment given the covariates. Analogous to the binary-treatment case, in our setting one

could estimate the GPS parametrically and reduce the problem of estimating nonparametrically

a regression function with k + 1 regressors to the problem of estimating one with only two

regressors: the treatment level and the GPS. Some recent applications using this approach but

restricting the regression function to be a parametric function include Flores-Lagunes et al.

(2007), Kluve et al. (2007) and Mitnik (2007).

Finally, note that one can use theorem 1 to obtain the asymptotic distribution of the es-

timators of location and size of the optimal dose even if one uses the same bandwidth σ2 for

both estimators, provided that σ2 satisfies its corresponding assumptions in theorem 1 and

the estimators are appropriately normalized (
√
nσ

3/2
2 for location;

√
nσ

1/2
2 for size). However,

as our results suggest, we would prefer σ1 to go to zero slower than σ2 since the asymptotic

behavior of bα is similar to that of a kernel estimator for the first derivative of a partial mean.
9



3 Empirical Application: the Environmental Kuznets Curve

This section illustrates how the proposed estimators can be used in practice by analyzing the

relation between emissions of nitrogen oxide (NOx) and per capita income. Since the paper by

Grossman and Krueger (1991) a large number of studies have documented an inverted U-type

relationship between diverse environmental indicators and income per capita, known in this

literature as the environmental Kuznets curve (EKC). A lot of emphasis is given to estimating

the turning point of this curve. Estimation of EKCs and their turning points for different

pollutants have been at the center of discussions on worldwide organizations such as the World

Bank, World Trade Organization, and environmental organizations in general, since they raise

doubt on the argument that progress invariably means more pollution.12 In addition, turning

points are also commonly used in this literature to summarize results from different studies

(e.g., Stern, 1998).13

The typical paper in this literature uses panel data with measures of some pollutants in

various locations (usually countries or cities) over time. The relation is usually specified using

a location and time fixed effects model, which can be written as

yit = ξi + λt + g(xit) + εit (14)

where i stands for a given location and t for time, y is an indicator of environmental degradation,

x is per capita income, ξi and λt are the corresponding location and time fixed effects, and εit is a

random error term. The function g (·) is almost always specified as a quadratic or cubic function
of per capita income. An obvious problem of working with parametric specifications such as

those considered in this literature is the sensitivity of the results to the assumed functional

form. There have been some recent attempts to allow g (·) to depend on x in a more flexible

way. For example, Schmalensee et al. (1998) consider a piecewise linear specification with 10

segments, while Millimet et al. (2003) estimate (14) as a partially linear model. However, those

studies that document the existence of a EKC for particular pollutants using nonparametric

methods do not assign standard errors to their estimators of the turning point, so they cannot

be used to create confidence intervals. In this section, the nonparametric methods previously

described in the paper are used to estimate the location and size of the turning point of the

EKC for NOx, and provide standard errors for the estimators.14

12See, for instance, the World Bank’s World Development Report 1992: Development and the Environment
(IBRD, 1992). For some references regarding estimation of EKCs see footnote 1.
13Several reasons have been considered in the literature for the eventual decline in environmental degradation

as income raises. Some of them are a negative income elasticity for pollution; increased levels of education,
environmental awareness and openness of the political system; changes in the composition of consumption and
production; better technologies, among others. See, for instance, Stern (1998) and Dasgupta et al. (2002). For
a critical review of the EKC literature see Stern (1998) and Stern (2004).
14NOx is a pollutant that receives considerably public policy attention and is one the most studied in this

literature.
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In this particular empirical application we follow the EKC literature and focus on estimation

of the location and size of the turning point of the reduced-form model in (14) (e.g., List and

Gallet,1999; Millimet et al., 2003), without claiming a causal interpretation to the relationship

between per capita income and pollution. In addition, we also estimate (14) controlling for

population density for the purpose of illustrating the results presented for partial means. A

similar model controlling for population density using a quadratic form in income can be found

in Selden and Song (1994). They argue that more densely populated areas are more likely to

be concerned about reducing per capita emissions than areas where the population is more

sparse.15

The data for emissions of NOx and income used in this section is the same as the one

analyzed in List and Gallet (1999) and Millimet et al. (2003). It comes originally from the

US EPA in their National Air Pollutant Emission Trends, 1900-1994. It consists of data on

emissions and per capita income for 48 US states from 1929 to 1994. One of the advantages

of this data set is that it covers a long period of time, so it is more likely to cover both, the

increasing and decreasing parts of the EKC.16 Table 1 presents basic statistics of the variables

used. Per capita emissions of NOx are measured in thousands of short tons, per capita income

in thousands of 1987 US dollars, and population density in habitants per square mile.

We first estimate a reduced form relation (i.e., without covariates), subsequently including

population density in the model as a covariate. In both cases we estimate (14) as a partially

linear model with the fixed effects as the linear part of the model. For comparison purposes

we also present results for quadratic and cubic specifications of g (·) in (14), which are identical
to those previously reported by List and Gallet (1999) and Millimet et al. (2003). The kernel

estimators for the reduced-form case are based on a second-order Gaussian kernel.17 The choice

of bandwidth is always an issue when using nonparametric methods. In this application, the

bandwidth is chosen as σ = asxn
δ−η, where a = 1, sx is the sample standard deviation of

x, δ helps to determine the order of the bandwidth, and η > 0 is a small number used for

undersmoothing. This type of bandwidth has been previously used in the literature (e.g.,

Baltagi et al., 1996; Pagan and Ullah, 1999), and for our purposes it has the advantage that the

order of the bandwidth can be specified directly. Below we analyze the sensitivity of the results

to the choice of bandwidth by varying a. Given the kernel used, we base our estimator of the

location of the turning point on a bandwidth of order n−(1/7)−η, and our size estimator on a

15Other papers including population density as an additional explanatory variable include Panayotou (1993),
Grossman and Krueger (1995), among others.
16For more information on the data see List and Gallet (1999) and Millimet et al. (2003).
17Although in the way theorem 1 was stated we would need to use higher order kernels, theorem 1 in Flores

(2005) shows that it is possible to weaken those conditions when k = 0 to allow for second order kernels. We use
this type of kernels in this reduced-form case because they are commonly used in this literature (e.g., Millimet
et al, 2003).
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bandwidth of order n−(1/5)−η.18,19 The asymptotic variances in Theorem 1 are estimated using

“plug-in” estimators, so we substitute estimates for the unknown functions appearing there.

Figure 1 and Table 2 present results for the reduced-form case. Our location estimate of

the turning point is 8,210 dollars, and the estimated level of emissions of NOx at this point is

110.5 short tons. The estimated asymptotic standard errors for these estimators are 292.2 and

1.4, respectively. As a point of reference, in 1966 per capita income in Texas was 8,155 dollars.

We now let g (·) in (14) be a function of x and z, where z is population density. Theorem

1 requires the order of the kernel used to be greater than max {2 + k/2, k}, where k is the

number of covariates used. Here we use a sixth order Gaussian kernel. Specifically, we use

the product kernel K (u, v) = K (u)K (v), with K (ζ) = 1
8

¡
15− 10ζ2 + ζ4

¢
φ (ζ), and φ (ζ)

the standard normal density function. Based on our discussion of the bandwidth conditions in

section 2, the order of the bandwidth used for estimation of the location of the turning point is

n−(1/15)−η, and the one used for estimation of the size is n−(1/13)−η, where as before η is used

to undersmooth. As before, the asymptotic variances in Theorem 1 are estimated using plug-in

estimators. For this purpose, it is helpful to write the integral
R
ψ (α0, x) dx appearing in both

variances as E
£
f0(α0|x)−1τ2 (x)V ar [y|r = (α0, x)]

¤
, where f0(α0|x) is the conditional density

of α given x, and the expectation is taken over the covariates. Thus, a plug-in estimator of this

term is n−1
Pn

i=1{ bf(bα|xi)−1τ2 (xi)dV ar [y|r = (bα, xi)]}, where bf(bα|xi) and dV ar [y|r = (bα, xi)]
are nonparametric estimators of the corresponding unknown functions.

Figure 2 and Table 3 present the results for this case. The estimated turning point based on

our nonparametric estimator is 8,090 dollars, with a standard error of 310.7; and the estimated

size of the turning point is 110.1, with a standard error of 1.2. These results are not very

different from the ones obtained before in the reduced-form models. Selden and Song (1994),

using parametric methods, also obtain that conditioning on population density does not affect

their results considerably.

To check the sensitivity of the results to different choices of σ, we now vary a in the interval

[0.5, 2].20 Table 4 presents the results. In general, the results are not drastically changed by

the choice of bandwidth, except for the case when controlling for population density and a = 2.

This may suggest that, not surprisingly, bandwidth choice is more important in the presence of

covariates.

Finally, note that both estimates of the location of the turning point based on parametric

models are above the ones from the nonparametric model, especially the ones from the quadratic

18The optimal bandwidth for a NW regression estimator used to estimate the d derivative of a regression
function with q regressors and using a kernel of order s is of order n−1/[2(d+s)+q].
19 In order to avoid boundary problems the nonparametric estimation is performed in the interval

[min(x+ σ),max(x− σ)], where x is per capita income and σ is the bandwidth used. Other ways to proceed are
the use of boundary kernels (e.g., Gasser and Müller, 1979) or local polynomial kernel estimators.
20Outside this range the nonparametric estimates of the EKC look either too undersmoothed or oversmoothed

to be considered reasonable estimates of the curve.
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specification commonly used in this literature. Even though in this particular application

the estimates from the cubic specification are relatively close to the nonparametric ones, our

approach allows the outcome variable to depend on the regressors on a more flexible way and

are therefore less sensitive to functional form assumptions. This can be more relevant in other

applications, as exemplified in the following section.

4 Monte Carlo

This section analyzes the finite properties of the estimators presented in this paper through

a Monte Carlo study. First, we consider the case when the treatment level is assumed to be

randomly assigned; and second, the case when we control for an additional covariate. Although

this latter case has not been considered before in the literature, there are a few simulation

results on estimation of the location and size of the maximum of a regression function in the

statistics literature.21 The simulations presented here for the first case differ from the ones in

the statistics literature in various ways. First, we intend our simulation design to be closer to

situations found in empirical research by basing our design on the same data set used in the

previous section. Also, we consider larger sample sizes, a larger number of repetitions, and

present a larger set of summary statistics of the simulation results including those regarding

estimation of the asymptotic variance of our estimator, which has not been done before.

For simplicity, in this section we ignore the panel-data nature of the original data and pool

all observations. We start with the case of randomly-assigned treatment doses. The functional

forms considered for g (t) = E [Y |T = t] are:

g1 (t) = 0.07 + 0.025 sin (0.5t) + 0.15e{−0.15(t−8)
2} (15a)

g2 (t) = 0.2 + 0.005 sin (0.75t− 5)− 0.001 (t− 11)2 (15b)

g3 (t) = 0.09 + 0.05 sin (0.5t− 13) + 0.15e{−0.02(4t−35)
2} (15c)

The parameter values (α0, μ (α0)) for each function are: (7.7968, 0.2019), (9.7418, 0.2021)

and (8.548, 0.2059), respectively. These parameter values were chosen to be close to the esti-

mated turning point for the relation between emissions of NOx and income obtained in section

3. Figures 3-5 show graphs for these functions. The first function has a sharp and symmetric

peak. This function is similar to the one analyzed in Müller (1985, 1989). The second one

has a smooth and asymmetric peak. Finally, the third function has also a sharp peak and is

21For example, Müller (1985) studies the performance of his estimators of location and size, which are based
on the Gasser-Müller nonparametric estimator. He considers the fixed design case with equidistant points in
the [0,1] interval and reports results for 100 repetitions with sample sizes 25 and 100. Müller (1989) uses 50
observations equidistantly in [0, 1] and 200 repetitions focusing on the use by his estimators of a global versus a
local bandwidth.
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relatively highly nonlinear. While the case of a smooth peak represents a challenging case for

our location estimator, the cases with a sharp peak are challenging for our size estimator.

We add a Gaussian error with standard deviation s = 0.1 to the functions in (15a)-(15c).

For reference, the sample standard deviation of emissions of NOx in our data is 0.07. For this

case we consider five sample sizes: 100, 300, 500, 1000 and 3000. In order to have a better idea

of the noise-to-signal ratios in our simulations, figures 3-5 also show representative simulated

samples of size 500 for each of the models considered.

As in section 3, in our simulations we use a second order Gaussian kernel and choose the

bandwidths equal to σ1 = stn
−(1/7)−η and σ2 = stn

−(1/5)−η for estimation of the location and

size of the maximum, respectively; where st is the sample standard deviation of per-capita

income at each simulated sample and η is a small quantity chosen to undersmooth.22 At each

replication, we estimate the asymptotic variance of our estimators in Theorem 1 using a plug-in

estimator in the same way we did in our empirical application. Finally, for comparison purposes,

we also present results for estimation of α0 and μ (α0) based on a cubic model of per-capita

income.23

Tables 5-7 present some of the results for the models in (15a)-(15c) based on 10,000 repeti-

tions.24 In general, the conclusions to draw from these simulations are: i) The nonparametric

estimator of the location of the peak performs better for sharp than for smooth peaks. ii) The

more non-linear the true regression function is the better is to use our nonparametric estimators

of location and size, as compared to those based on a cubic specification, even for relatively

small sample sizes (e.g., 100). iii) For the smooth peak in (15b), our location estimator needs

a larger sample size to outperform the cubic-based model. iv) As discussed in section 2, the

variance of the location estimator is higher with a smooth peak than with a sharp peak. v) Our

size estimator performs better for smooth peaks than for sharp ones.25 vi) For the three models

22See footnote 17.
23As in the previous section, we restrict the search for the maximum to the interval [min(ti) + σ1,max(ti)− σ1]

in order to avoid boundary problems; where ti are the per-capita-income observations from a given simulated
sample. In order to make a better comparison between the cubic and our nonparametric model, we also restrict
the search for the maximum in the cubic model to the same interval.
24For the purposes of this section we define an estimated function to be “monotonic” when using our

nonparametric approach if either gσ1(min(ti) + σ1) > gσ1(t) or gσ1(max(ti) − σ1) > gσ1(t) for all t ∈
(min(ti) + σ1,max(ti)− σ1); where ti are the per-capita-income observations from a given simulated sample.
Note that this definition would classify as “monotonic” a case in which the estimated function has a local
maximum but the function evaluated at one of the boundaries is larger. For consistency, in the cubic case we
defined an estimated function to be monotonic if: i) the maximum of the estimated cubic function is outside
[min(ti) + σ1,max(ti)− σ1]; or ii) the value of the estimated cubic function at either min(ti)+σ1 or max(ti)−σ1
is greater than at any other point in the interior of [min(ti) + σ1,max(ti)− σ1].
25Given the relatively poor performance of the size estimators in the presence of sharp peaks, and following

Müller (1989), Flores (2005) investigates the performance of our estimators when a local bandwidth is employed.
For brevity, we have omitted those results. The use of local bandwidths improves the performance of the size
estimator when the peak is sharp (as in Müller, 1989); however, it may negatively affect it in the case of smooth
peaks. How much the performance of the size estimator improves with the use of a local bandwidth depends on
how well the optimal local bandwidth is estimated.
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and all sample sizes considered, the coverage rates of the confidence intervals for the location of

the peak are higher than the nominal 95 and 90 percent. The coverage rates of the confidence

intervals for the size are relatively low and decreasing as the sample size increases. However, in

all cases they outperform those of the cubic model. vii) For the three models considered and

for large sample sizes (e.g., 1000, 3000) the plug-in variance estimator of the location based

on Theorem 1 tends to overestimate the standard error of the estimator. This happens for all

sample sizes considered in cases with a sharp peak. On the other hand, the plug-in variance

estimate of the size estimator provides a good approximation to its standard error. This may

suggest that the plug-in estimator of the second derivative of the regression function evaluated

at α0 is not very accurate and is underestimating its true value.

We now consider controlling for an additional covariate: population density.26 We consider

two models, one having a sharp and symmetric peak and another one with a smooth and

asymmetric peak. The true regression functions in this case are given by

g1 (t, x) = −0.25 + 0.15e{−0.15(t−9.5)
2} + 0.175e{−0.025(t−0.1x)

2} (15d)

+10000e{−0.01x−10}

g2 (t, x) = 0.01 sin (0.75t− 5)− 0.002 (t− 0.01x− 9)2 + 10000e{−0.01x−10} (15e)

Following (4), the dose-response functions are given by μ0
¡
t
¢
= E

£
g
¡
t, x
¢¤
, where E is

taken to be the empirical expectation of the population density variable based on the original

data set. Using this approach, the true values of the parameters (α0, γ0) for the models based

on (15d) and (15e) are (9.2982, 0.2107) and (9.4262, 0.2354), respectively. As before, we added

a Gaussian error term with standard deviation sε = 0.1 to these models. The sample sizes

analyzed are 100, 300, 500, 1000 and 2000. Figures 6 and 7 show the true dose-response

function based on these functions along with a scatterplot of a representative simulated sample

of size 500.

In order to satisfy our assumptions in Theorem 1 we base our estimates on the same sixth-

order Gaussian kernel used in our empirical application. We choose the bandwidths using

standardized data as σ1 = n−(1/15)−η and σ2 = n−(1/13)−η for estimation of the location and

size of the maximum, respectively. As before, η is used to undersmooth. Finally, for comparison,

we also estimate a cubic model in per-capita income controlling linearly for population density

and evaluate it at the sample mean population density.

In the case of additional covariates one has to be especially careful regarding the use of

nonparametric methods. Nonparametric estimators can become too noisy in regions where

there is not enough data or there is a poor overlap between the treatment variable and the

26For referece, the correlation between population density and per capita income and emissions of NOx is
0.3292 and -0.2275, respectively.
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covariates. For instance, in our data we do not have observations with high (low) population

density for values of per-capita income below 5000 (above 15,000) dollars (not shown in tables).

One would expect nonparametric estimators to become noisier and more difficult to use in these

regions, possibly ending up with a few very high estimates of the dose-response function which

our estimator can erroneously identify as the maximum. For example, when in our simulations

we allow the search for the maximum to be betweenmin (ti) andmax (ti), the standard deviation

of the estimators is very large in some cases, and most importantly, we fail to find a maximum

at all in many cases (i.e., the maximum is at the boundary). This illustrates the importance

of having enough data and overlap between the treatment and covariates in order for the

nonparametric estimators to work properly. To evaluate the performance of our estimators

when we have “enough” data points and a “reasonable” overlap between our treatment and

covariates, we simulate the models in (15d) and (15e) restricting the search for the maximum

between the 25th and 75th sample percentiles of the treatment and trimming those observations

with estimated joint density lower than 0.01.27

Table 8 and 9 present some of the results for the models in (15d) and (15e) based on 1000

repetitions. Some of the conclusions to draw are: i) As in the case of no additional covariates,

our nonparametric estimator of location performs better for sharp than for smooth peaks. ii) For

the sharp-peak case, the performance of our location and size estimators is better than that of

the cubic model in terms of root MSE, median absolute error and coverage rates for all sample

sizes considered. In some cases the differences in performance are very large. iii) For both

models and all sample sizes considered, our size estimator performs better than the one based

on the cubic model in terms of root MSE, median absolute error, bias and coverage rates. iv)

For the smooth case in (15e), the location estimator based on the cubic model has a lower root

MSE and median absolute error than our location estimator for all sample sizes considered. This

may suggest that we need a large amount of data for our location estimator to perform better

than the cubic-based one in this case. v) In both models, for the smaller (larger) sample sizes

considered, our plug-in variance estimator for location tends to overestimate (underestimate)

the standard error of the estimators. vi) It is important to have enough data and overlap of our

treatment with the additional covariate(s) in order for our estimators to perform adequately;

otherwise, we may be better off relying on parametric assumptions to extrapolate to those

regions.

27The simulation results when we allow the search for the maximum to be between min(ti)+σ1 andmax(ti)−σ1
are not shown in this paper. They are available in Flores (2005). The qualitative conclusions from these
simulations are very similar to the ones in Tables (6) and (7), conditional on being able to find an interior
maximum. However, the number of times the maximum is at the boundary in those simulations is substantially
higher. For example, for a sample of size 3000 the maximum was at the boundary in about 50% (23%) of the
cases with a sharp (smooth) peak.
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5 Conclusions

This paper considers the continuous-treatment case and proposes nonparametric estimators

for three objects of interest: the average dose-response function, and the location and size of

the optimal dose. To identify these parameters we assume that units are assigned to different

doses of the treatment based on an observed set of covariates and on unobserved components

not correlated with the potential outcomes. Under this assumption the average dose-response

function can be written as a partial mean (Newey, 1994). The proposed estimators are based on

kernel estimators of partial means. This paper shows that the estimators for the location and

size of the optimal dose are jointly asymptotically normal and uncorrelated. The asymptotic

normality result can also be used in the case in which doses are randomly assigned and we want

to find the location and size of the maximum of a regression function. Whether one needs to

control for covariates or not, the scaling factors used for asymptotic normality of the estimators

of the location and size of the optimal dose remain the same.

To illustrate the use of the tools developed in this paper, we estimate the location and size

of the turning point of the environmental Kuznets curve for emissions of NOx. We also carry

out a Monte Carlo study partly based on the same data. The results show that the location

and size estimators work well in practice, especially when compared to those from a parametric

specification.

An important extension of the results presented in this paper deals with the case of selec-

tion into different treatment doses based on unobservables and the availability of a continuous

instrument. In this case, one may use a control function approach similar to the one in Newey

et al. (1999) to estimate the objects of interest analyzed in this paper. Another useful exten-

sion considers a more general class of dose-response functions, such as quantile dose-response

functions.

6 Appendix

The proof of theorem 1 is based on the general framework developed in Newey (1994) (hereafter

N) and uses some of his results from section 5. As in N, for a matrix B let kBk = [tr (B0B)]1/2.
Let < be the compact set from assumption 6 where h10 (r) is bounded away from zero; and let

kh (r)kj = max≤j supr∈<
¯̄¯̄
∂ h(r)/∂r

¯̄¯̄
be the Sobolev norm used in N. Finally, let C > 0 be a

generic constant which may take different values through the appendix.

Before proving Theorem 1, we prove the following Lemma.

Lemma A.1. Suppose that (i) Assumptions 1-6 are satisfied; (ii) for σ1 = σ1 (n), σ1 → 0;

nσk+51 / ln (n)→∞; nσ2k+11 / [ln (n)]2 →∞ and nσ2s+31 → 0. Then,q
nσ31(bα− α0)

d−→ N (0, V1)
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with V1 as given in Theorem 1.

Proof: From equation (12) in the text we have

q
nσ31(bα− α0) = −

"
1

n

nX
i=1

∂m1(zi, α
∗,bhσ1)

∂α

#−1q
nσ31 bm1,n(α0) (A.1)

for a mean value α∗, and where we let bm1,n (α0) =
1
n

Pn
i=1m1(zi, α0,bhσ1). First we show

1
n

Pn
i=1 ∂m1(zi, α

∗,bhσ1)/∂α = ∂2bμσ1 (α∗) /∂α2 p−→ ∂2μ0 (α0) /∂α
2. Note that bα is an ex-

tremum estimator that maximizes the objective function bμσ1 (α). We use Lemma 5.1 in N
to show uniform convergence in probability of bμσ1 (α). Let r = (α, x) and m3 (z, α, h0) =

τ (x)h20 (r) /h10 (r). Assumptions 3, 5 and 6(i) imply assumption (i) in Lemma 5.1. Con-

ditions K, H and Y in Lemma 5.1 are satisfied by hypothesis. Choose ε > 0 small enough

that h10 (r) is bounded below for all r ∈ <. Then, it is straightforward to show that for all
α ∈ T and kh− h0k ≤ ε, km3 (z, α, h)−m3 (z, α, h0)k ≤ C (kh− h0k0)

ε. Finally, note that

assumption (ii) in lemma A.1 implies ln (n) /nσk+11 → 0, so all conditions in lemma 5.1 in N are

satisfied. Therefore, supα∈T
¯̄bμσ1 (α)− μ0 (α)

¯̄ p−→ 0 and μ0 (α) is continuous in T , which along
with assumption 5 imply that bα p−→ α0 (e.g., Theorem 2.1 in Newey and McFadden, 1994).

We use Lemma 5.1 in N again to show uniform convergence in probability of ∂2bμσ1 (α) /∂α2.
Let m4 (z, α, h0) = τ (x) ∂2[h20 (r) /h10 (r)]/∂α

2. As above, assumptions 2-5 and 6(i) imply

assumption (i), K, H and Y in Lemma 5.1. Again, choose ε > 0 small enough that h10 (r) is

bounded below for all r ∈ <. Using the quotient rule for derivatives along with mean value
expansions (and assumptions 3 and 6(i)) one obtains that for all α ∈ T and kh− h0k ≤ ε,

km3 (z, α, h)−m3 (z, α, h0)k ≤ C (kh− h0k2)
ε. Finally, the requirement that ln (n) /nσk+51 → 0

in Lemma 5.1 is satisfied by hypothesis. Therefore, by Lemma 5.1 in N supα∈T
¯̄
∂2bμσ1 (α) /∂α2−

∂2μ0 (α) /∂α
2
¯̄ p−→ 0 and ∂2μ0 (α) /∂α

2 is continuous in T . Given that bα p−→ α0, we get

∂2bμσ1 (α∗) /∂α2 p−→ ∂2μ0 (α0) /∂α
2, with ∂2μ0 (α0) /∂α

2 6= 0 by assumption 5.
We now show

√
nσ

3/2
1 bm1,n(α0)

d−→ N (0,M1). To simplify notation, in what follows let

h(d) (r) denote the d-th derivative of h (r) with respect to α. Let r0 = (α0, x) and r (φ) = (α0, φ).

Define the following functions

D (z, h, h0) (A.2)

=
τ (x)

h10 (r0)

Ã
−g0 (r0)h(1)1 (r0) + h

(2)
2 (r0) +

Ã
2h
(1)
10 (r0) g0 (r0)− h

(1)
20 (r0)

h10 (r0)

!
h1 (r0)

−h
(1)
10 (r0)

h10 (r0)
h2 (r0)

!

w11 (φ) =
τ (φ) ef0 (φ)
h10 (r (φ))

[−g0 (r (φ)) , 1] (A.3)
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w12 (φ) =
τ (φ) ef0 (φ)
h10 (r (φ))

"Ã
2h
(1)
10 (r (φ)) g0 (r (φ))− h

(1)
20 (r (φ))

h10 (r (φ))

!
,
h
(1)
10 (r (φ))

h10 (r (φ))

#
(A.4)

m1 (h) =
R
D (z, h, h0) dF (z) ; m11 (h) =

R
w11 (φ)h

(1) (r (φ)) dφ and m12 (h) =
R
w12 (φ)

h (r (φ)) dφ; where h(1) (r) = [h(1)1 (r) h
(1)
2 (r)]0.

Our proof proceeds by showing each of the following steps hold:

√
nσ

3/2
1 bm1,n(α0) =

√
nσ

3/2
1 n−1

Pn
i=1

h
m1(zi, α0,bhσ1)−m1(zi, α0, h0)

i
+ op (1)(A.5.a)

=
√
nσ

3/2
1 [m1(bhσ1)−m1 (h0)] + op (1) (A.5.b)

=
√
nσ

3/2
1 [m11(bhσ1)−m11(h0)] + op (1)

d−→ N (0,M1) (A.5.c)

Let ψi = m1(zi, α0, h0) = τ (xi) ∂g0 (α0, xi) /∂α, where E (ψi) = ∂μ0 (α0) /∂α = 0 and

E
¡
ψ2i
¢
<∞ given assumptions 3 and 6(i). By Lindberg-Levy CLT we have

£
E
¡
ψ2i
¢
n
¤−1/2Pn

i=1

ψi → N (0, 1). Thus, σ3/21 n−1/2
Pn

i=1m1(zi, α0, h0)
p−→ 0 given σ1 → 0, and (A.5.a) follows.

The equality in (A.5.b) follows by checking the conditions of Lemma 5.4 in N. Let D (z, h) =

D (z, h, h0) be as given in (A.2). D (z, h) is linear in h on {h : khk1 < ∞}, so condition (i) in
Lemma 5.4 is satisfied. As before, choose ε > 0 small enough that h10 (r0) is bounded below for

all r0 ∈ <. Then, by repeated used of the triangle inequality and the mean value theorem for

functionals we have that for all h with kh− h0k1 < ε (also note that, given our assumptions,

kh− h0k1 < ε implies khk1 <∞ by kh0k1 <∞)

||m (z, α0, h)−m (z, α0, h0)−D (z, h− h0)||

≤ |τ (x)|
¯̄̄̄
¯ h(1)2h1h10

− h
(1)
20

h210

¯̄̄̄
¯ |h1 − h10|+ |τ (x)|

¯̄̄̄
1

h210

¯̄̄̄ ¯̄̄
h
(1)
1 − h

(1)
10

¯̄̄
|h2 − h20|

+ |τ (x)|
¯̄̄̄
¯h(1)1 h2 (h1 + h10)

h21h
2
10

− 2h
(1)
10 h20
h310

¯̄̄̄
¯ |h1 − h10|

≤ C kh− h0k1 kh− h0k0

where before the last inequality all functions are evaluated at r0. Hence, assumption (ii) in

Lemma 5.4 is satisfied with ∆1 = 1, ∆2 = 0. Condition (iii) in Lemma 5.4 is also satisfied

since by using Cauchy-Schwartz and triangle inequalities we have |D (z, h)| ≤ |C1h(1)1 (r0) +

C2h
(1)
2 (r0) | + |C3h1 (r0) + C4h2 (r0)| ≤ C khk1. The rate hypothesis in Lemma 5.4 require

that for ηjn = [ln(n)/(nσk+1+2j1 )]1/2 + σs we have a) η1n → 0; b)
√
nσ

3/2
1 η1nη

0
n → 0; and c)

√
nσ

k+1/2
1 → ∞. σ1 → 0 and nσk+51 / ln (n) → ∞ imply (a). Also, nσ2k+11 / [ln (n)]2 →

∞ implies (c). Write
√
nσ

3/2
1 η1nη

0
n = [{ln (n)}2/nσ2k+11 ]1/2 +

h
nσ2s+31 σ21 ln(n)/nσ

k+5
1

i1/2
+h

nσ2s+31 σ41 ln(n)/nσ
k+5
1

i1/2
+
£
nσ2s+31

¤1/2
σs1. Hence, our assumptions imply

√
nσ

3/2
1 η1nη

0
n → 0.

Therefore, the conditions of Lemma 5.4 in N are satisfied, and for m1 (h) =
R
D (z, h) dF (z)

the equality in (A.5.b) follows.
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Since m1 (h) =
R
D (z, h) dF (z) =

R
w11 (φ)h

(1) (r (φ)) dφ+
R
w12 (φ)h (r (φ)) dφ = m11 (h)

+m12 (h), to show the equality in (A.5.c) it suffices to show
√
nσ

3/2
1 [m12(bhσ1)−m12 (h0)]

p→ 0.

Write
√
nσ

3/2
1 [m12(bhσ1)−m12 (h0)] =

√
nσ

3/2
1 [m12(bhσ1)−E{m12(bhσ1)}]+√nσ3/21 [E{m12(bhσ1)}−

m12 (h0)]. Note that w12 (φ) is bounded, continuous a.e. and zero outside the compact set <
by assumptions 3 and 6. Cauchy-Schwartz inequality implies that |m12 (h) | ≤ C khk0. Hence,
by Lemma B.4 in N E{m12(bhσ1)} = m12(E{bhσ1}); and therefore, √nσ3/21 [E{m12(bhσ1)} −
m12 (h0)] =

√
nσ

3/2
1 [m12(E{bhσ1})−m12 (h0)] =

√
nσ

3/2
1 [m12(E{bhσ1}−h0)] ≤ √nσ3/21 C||E{bhσ1}

−h0||0 = O(
£
nσ2s+31

¤1/2
) → 0, where we used Lemma B.2 in N in the last equality. Now

we show An =
√
nσ

3/2
1 [m12(bhσ1) − E{m12(bhσ1)}] p→ 0. Since E[An] = 0, the result fol-

lows by showing limn→∞ V ar(An) = 0. Similar to the proof of Lemma 5.3 in N, let ρ12 (r) =

σ−k−11

R
w12 (φ) [I ⊗K ((r (φ)− r) /σ1)] dφ, where I is a 2×2 identity matrix. Then,m12(bhσ1) =

n−1
Pn

i=1 ρ12 (ri) qi and V ar (An) = σ31V ar (ρ12 (ri) qi) = σ31E[ρ12 (ri) qiq
0
iρ
0
12 (ri)] + o (1), since

given i.i.d. data and following similar steps as above we get |E[ρ12 (ri) qi] − m12 (h0) | =
|E{m12(bhσ1)}−m12 (h0) | ≤ O(σs1), which implies σ

3
1E[ρ12 (ri) qi]→ 0. By a change of variables

u2 = (φ− xi) /σ1 we can write ρ12 (ri) as ρ12 (ri) = σ−11
R
w12 (xi + σ1u2) [I ⊗K((α0 − ti) /σ1,

u2)]du2. Let Ω (ri) = E[qiq
0
i|ri]. Given the properties of w12 (φ) and our assumptions on the

kernel we obtain:

σ1E[ρ12 (ri) qiq
0
iρ
0
12 (ri)]

= σ1E[ρ12 (ri)Ω (ri) ρ
0
12 (ri)]

= σ21

Z Z
ρ12 (α0 − σ1u1, x)Ω (α0 − σ1u1, x) ρ

0
12 (α0 − σ1u1, x) f0 (α0 − σ1u1, x) du1dx

→
∙Z

{ eK (u1)}2du1
¸ ∙Z

w12 (x)Ω (α0, x)w
0
12 (x) f0 (α0, x) dx

¸
<∞

where in the third equality we used the change of variable u1 = (α0 − ti) /σ1, and in the fourth

one the bounded convergence theorem. Given σ1 → 0, this implies σ31E[ρ12 (ri) qiq
0
iρ
0
12 (ri)]→ 0.

Therefore, V ar (An)→ 0, so that An
p→ 0 and the equality in (A.5.c) follows.

Finally, we use lemma 5.3 in N to show the asymptotic normality result in (A.5.c). By

definition m11 (h) =
R
w11 (φ)h

(1) (r (φ)) dφ, where w11 (φ) is bounded, continuous a.e. and

zero outside the compact set < by assumptions 3 and 6. The rate conditions in Lemma 5.3 are
(nσ1)

1/2 →∞ and
¡
nσ2s+31

¢1/2 → 0, which are implied by our assumptions. Also, assumptions

2-4 and 6 directly satisfy the rest of the conditions in Lemma 5.3. Then, the asymptotic normal-

ity in (A.5.c) follows withM1 given byM1 =
R
w11 (x)

h
Ω (α0, x)⊗

nR
{ eKu1 (u1)}2du1

oi
w011 (x)

f0(α0, x)dx =
hR
{ eKu1 (u1)}2du1

i R
ψ (α0, x) dx, with ψ (α0, x) as in Theorem 1.

Given ∂2bμσ1 (α∗) /∂α2 p−→ ∂2μ0 (α0) /∂α
2 6= 0 and

√
nσ

3/2
1 bm1,n(α0)

d−→ N (0,M1), the

conclusion follows by Slutsky’s theorem. Q.E.D.

Proof of Theorem 1. From equation (12) in the text we first showJn(zi, β∗,bhσ1 ,bhσ2 , σ1, σ2)
20



P→ J (β0, h0). The elements in the second column are ∂m1(z, β,bhσ1)/∂γ = 0 and ∂m2(z, β,bhσ2)/
∂γ = −1. The first diagonal term equals ∂2bμσ1 (α∗) /∂α2, which in the proof of Lemma A.1
we showed ∂2bμσ1 (α∗) /∂α2 p−→ ∂2μ0 (α0) /∂α

2. The last term equals (σ2/σ31)
1/2∂bμσ2 (α∗) /∂α.

We now show (σ2/σ31)
1/2∂bμσ2 (α∗) /∂α p→ 0. For suitable mean value α∗∗ between α∗ and α0

writeµ
σ2
σ31

¶1/2 ∂bμσ2 (α∗)
∂α

=
1p

nσ22σ
3
1

q
nσ32

∂bμσ2 (α0)
∂α

+

√
σ2p
nσ61

∂2bμσ2 (α∗∗)
∂α2

q
nσ31 (α

∗ − α0) (A.6)

Note that
p
nσ32∂bμσ2 (α0) /∂α = p

nσ32
1
n

Pn
i=1m1(zi, α0,bhσ2) = p

nσ32 bm1,n,σ2(α0). Since σ2
satisfies all the assumptions imposed on σ1, by (A.5a)-(A.5c) we have

p
nσ32 bm1,n,σ2(α0) =

Op (1). Also note that our assumptions on σ1 and σ2 imply
¡
nσ22σ

3
1

¢1/2
= [
¡
nσ42

¢1/2 ¡
nσ61

¢1/2
]1/2

→∞. Hence, the first term to the right of (A.6) is op (1). Since |α∗−α0| ≤ |bα−α0|, it follows
from lemma A.1 that (nσ31)

1/2(α∗− bα) = Op(1). In the proof of lemma A.1 we showed uniform

convergence in probability of ∂2bμσ1 (α) /∂α2. Following similar steps as there, and given σ2 sat-
isfies all the assumptions imposed on σ1, we have supα∈T

¯̄
∂2bμσ2 (α) /∂α2 − ∂2μ0 (α) /∂α

2
¯̄ p−→

0 and ∂2μ0 (α) /∂α
2 is continuous in T . Also, α∗∗ p−→ α0 follows from bα p−→ α0. Hence,

∂2bμσ2 (α∗) /∂α2 p−→ ∂2μ0 (α0) /∂α
2. Given our assumptions on σ1 and σ2 imply

¡
σ2[nσ

6
1]
−1¢1/2

→ 0, we obtain (σ2/σ31)
1/2∂bμσ2 (α∗) /∂α p→ 0. Therefore, Jn(·) P→ J , where J is a diagonal ma-

trix with elements ∂2μ0 (α0) /∂α
2 6= 0 (by assumption 5) and −1.

We now show
√
nDn[bmn(zi, β0,

bhσ1 ,bhσ2)] d−→ N (0,M). In (A.5a)-(A.5c) we showed
√
nσ

3/2
1

1
n

Pn
i=1m1(zi, α0,bhσ1) = √nσ3/21 [m11(bhσ1) − m11(h0)] +op (1), where m11 (h) =

R
w11 (φ)

h(1) (r (φ)) dφ with w11 (φ) given in (A.3) and h(1) (r) = [h
(1)
1 (r) h

(1)
2 (r)]0. Similarly, in his

proof of Theorem 4.1 N shows
√
nσ

1/2
2

1
n

Pn
i=1m2(zi, α0,bhσ2) = √nσ1/22 [m2(bhσ2) − m2(h0)]

+op (1), where m2 (h) =
R
w2 (φ)h (r (φ)) dφ and w2 (φ) = w11 (φ). For simplicity let w (φ) =

w11 (φ), which is bounded, continuous a.e. and zero outside the compact set < by assump-

tions 3 and 6. Cauchy-Schwartz inequality implies that |m1 (h) | ≤ C khk1. Hence, by Lemma
B.4 in N E{m11(bhσ1)} = m11(E{bhσ1}); and therefore, √nσ3/21 [E{m11(bhσ1)} − m11 (h0)] =√
nσ

3/2
1 [m11(E{bhσ1})−m11 (h0)] =

√
nσ

3/2
1 [m11(E{bhσ1}− h0)] ≤

√
nσ

3/2
1 C||E{bhσ1}− h0||1 =

O(
£
nσ2s+31

¤1/2
)→ 0, where we used Lemma B.2 in N in the last equality. A similar argument

shows
√
nσ

1/2
2 [E{m2(bhσ2)}−m2 (h0)]→ 0 since by assumption nσ2s+12 → 0. Define m∗(eh, h) =

[m11(eh),m2

¡
h
¢
]0. Then, our goal is to show

√
nDn[m

∗(bhσ1 ,bhσ2) − E{m∗(bhσ1 ,bhσ2)}] d−→
N (0,M). We follow steps similar to those in the proof of Lemma 5.3 in N. Let ρ∗ (ri) =

[ρσ1 (ri) , ρσ2 (ri)]
0, with ρσ1 (r) = σ−k−21

R
w (φ) [I ⊗Ku1 ((r (φ)− r) /σ1)] dφ and ρσ2 (r) =

σ−k−12

R
w (φ) [I ⊗K ((r (φ)− r) /σ2)] dφ, where I is a 2 × 2 identity matrix. Note that by a

change of variables u2 = (φ− xi) /σ1 and u2 = (φ− xi) /σ2 we can write, respectively, ρσ1 (ri) =

σ−21
R
w (xi + σ1u2) [I ⊗ Ku1((α0 − ti) /σ1, u2)]du2 and ρσ2 (ri) = σ−12

R
w (xi + σ2u2) [I⊗

K ((α0 − ti) /σ2, u2)]du2. By Liapunov’s CLT and given m∗(bhσ1 ,bhσ2) = n−1
Pn

i=1 ρ
∗ (ri) qi, to

obtain asymptotic normality ofm∗(bhσ1 , bhσ2) it is sufficient to show that (i) n−1E[kDnρ
∗ (ri) qik4]
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→ 0 and V ar(Dnρ
∗ (ri) qi)→M . Using the Cr-inequality we can write n−1E[kDnρ

∗ (ri) qik4] ≤
2{n−1E[||σ3/21 ρσ1 (ri) qi||4] + n−1E[||σ1/22 ρσ2 (ri) qi||4]}. Note that n−1E[||σ3/21 ρσ1 (ri) qi||4 ≤
σ61n

−1E[||ρσ1 (ri) ||4E[||qi||4|ri] ≤
C
n σ

6
1E[||ρσ1 (ri) ||4{1 + E[y4|ri]}] = C

nσ1

R R
||
R
w (x+ σ1u2)

[I ⊗Ku1 (u1, u2)] du2||4{1 + E
£
y4|r = (α0 − u1σ1, x)

¤
}f0 (α0 − u1σ1, x) du1dx ≤ C/nσ1 → 0.

By a similar argument we have that n−1E[||σ1/22 ρσ2 (ri) qi||4] ≤ C/nσ2 → 0. Therefore,

n−1E[kDnρ
∗ (ri) qik4]→ 0.

By i.i.d. data, and following similar steps as above, note that |E[ρσ1 (ri) qi] −m11 (h0) | =
|E{m11(bhσ1)}−m11 (h0) | ≤ O(σs1), which implies σ

3/2
1 E[ρ11 (ri) qi]→ 0. By a similar argument

we have σ1/22 E[ρσ2 (ri) qi] → 0. Hence, we need to show E[Dnρ
∗ (ri) qiq0iρ

∗0 (ri)D0
n] → M . Let

Ω (ri) = E[qiq
0
i|ri]. For the first diagonal term we obtain

σ31E[ρσ1 (ri) qiq
0
iρ
0
σ1 (ri)]

= σ31E[ρσ1 (ri)Ω (ri) ρ
0
σ1 (ri)]

= σ41

Z Z
ρσ1 (α0 − σ1u1, x)Ω (α0 − σ1u1, x) ρ

0
σ1 (α0 − σ1u1, x) f0 (α0 − σ1u1, x) du1dx

→
∙Z

{ eKu1 (u1)}2du1
¸Z

ψ (α0, x) dx =M1

where in the second line we used the change of variable u1 = (α0 − ti) /σ1 and in the third one

the bounded convergence theorem, with ψ (α0, x) as in Theorem 1. Following a similar approach

we obtain for the second diagonal term σ2E[ρσ2 (ri) qiq
0
iρ
0
σ2 (ri)]→ [

R
{ eK (u1)}2du1]

R
ψ (α0, x)

dx = M2. Finally, consider the covariance term. Let an = (σ2/σ1)
1/2, bn = (σ1/σ2)

1/2 and

Γ (α, x) = w (x)Ω (α, x)w0 (x) f (α, x), where Γ (α0, x) = ψ (α0, x). Then we can write

σ
3/2
1 σ

1/2
2 E[ρσ1 (ri) qiq

0
iρ
0
σ2 (ri)] (A.7)

= σ21σ2

Z Z
ρσ1 (α0 −

√
σ1σ2u1, x)Ω (α0 −

√
σ1σ2u1, x) ρ

0
σ2 (α0 −

√
σ1σ2u1, x)

f0 (α0 −
√
σ1σ2u1, x) du1dx

=

Z Z
Γ (α0 −

√
σ1σ2u1, x)

h eKu1 (anu1)
eK (bnu1)

i
du1dx+ o (1)

=

∙Z
ψ (α0, x) dx

¸ ∙Z eKu1 (anu1) eK (bnu1) du1

¸
+

√
σ1σ2

∙Z ½
∂Γ (α∗, x)

∂α

¾
dx

¸ ∙Z
u1 eKu1 (anu1)

eK (bnu1) du1

¸
+ o (1)

for a mean value α∗. The first equality in (A.7) follows by a change of variable u1 = (α0 − t) /
√
σ1σ2. For small σ1 and σ2, the second equality comes from mean value expansions of

σ21ρσ1
¡
α0 −

√
σ1σ2u1, x

¢
=
R
w (x+ σ1u2) [I ⊗Ku1 (anu1, u2)] du2 and ρσ2

¡
α0 −

√
σ1σ2u1, x

¢
= w (x+ σ2u2) [I ⊗K (bnu1, u2)] du2 around x. For small

√
σ1σ2, the last expression in (A.7)

is obtained by a mean value expansion of Γ
¡
α0 −

√
σ1σ2u1, x

¢
around α0. Consider the second

term in the last line of (A.7). This term is o (1) since
R
{∂Γ (α∗, x) /∂α} dx→

R
{∂ψ (α0, x) /∂α}

22



dx < ∞ and our assumptions on the kernel imply
√
σ1σ2

R
u1 eKu1 (anu1)

eK (bnu1) du1 → 0.

Regarding the leading term, by symmetry of eK (u1), eKu1 (u1) = − eKu1 (−u1), which impliesR eKu1 (anu1) eK (bnu1) du1 = 0. Thus, σ3/21 σ
1/2
2 E[ρσ1 (ri) qiq

0
iρ
0
σ2 (ri)] → 0. Then, using Lia-

punov CLT we obtain
√
nDn[bmn(zi, β0,bhσ1 ,bhσ2)] = √nDn[m

∗(bhσ1 ,bhσ2)− E{m∗(bhσ1 ,bhσ2)}] +
op (1)

d−→ N (0,M), where M is a diagonal matrix with elements M1 and M2.

Given J−1n (·) P→ J−1 and
√
nDn[bmn(zi, β0,

bhσ1 ,bhσ2)] d−→ N (0,M), the conclusion follows

by Slutsky’s theorem. Q.E.D.
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Table 1. Basic Statistics. Number of observations: 3168. 
  Per-capita   
  Income Emissions of NOX Population density 
Mean 9.10 0.0928 132.32 
Std. Deviation 4.24 0.0735 198.74 
Minimum 1.16 0.023 0.820 
Maximum 22.46 1.136 1080.3 
Some percentiles:      
5% 2.81 0.0347 4.72 
25% 5.85 0.0514 25.41 
50% 8.43 0.0759 58.75 
75% 12.38 0.1066 131.86 
95% 16.27 0.2064 647.83 
Emissions in thousand of short tons; income in thousands of 1987 US dollars and population 
density in habitants per square mile. 
 
Table 2. Estimated location and size of the turning point of the EKC for NOx including 
state and year fixed effects but no additional covariates. 
  Functional form for per capita income 
  Quadratic Cubic Nonparametric 
Estimated Turning point 10.79 8.66 8.21 

(0.8118) (0.7223) (0.2922) 
 Estimated level at turning point 
(at average fixed effects)  

0.1105 0.1111 0.1105 
(0.0032) (0.0014) (0.0014) 

Standard errors in parenthesis. For location and size we use a Gaussian kernel. Based on theorem 1 the 
bandwidths used for estimation of location and size using standardized data are 0.2916 and 0.1840, 
respectively. 
 
Table 3. Estimated location and size of the turning point of the EKC for NOx including 
state and year fixed effects and controlling for Population Density. 
  Functional form for per capita income 
  Quadratic Cubic Partial Mean 
Estimated Turning point 11.9 8.87 8.09 

(1.2349) (1.0408) (0.3107) 
 Estimated level at turning point 
(at average fixed effects)  

0.1067 0.1053 0.1101 
(0.0046) (0.0016) (0.0012) 

Standard errors in parenthesis. For location and size we use a sixth-order Gaussian kernel. Based on 
theorem1 the bandwidths used for estimation of location and size using standardized data are 0.5794 and 
0.5337, respectively. In the partial mean model per capita income and population density both enter 
nonparametrically. 
 
Table 4. Sensitivity of results to bandwidth selected. In tables 2 and 3 the bandwidths 
are chosen as σ=an-(1/δ)-η, where δ satisfies the conditions in theorem 1, η is used to 
undersmooth and a=1. Here a is varied.   

  No additional covariates Controlling for Population Density 
a Location Size Location Size 
2 7.56 0.1096 11.18 0.0923 

1.75 7.54 0.1099 8.21 0.1065 
1.5 7.6 0.1102 7.89 0.1085 
1.25 7.86 0.1103 7.91 0.1114 

1 8.21 0.1105 8.09 0.1101 
0.75 8.85 0.1121 8.74 0.1121 
0.5 9.19 0.1152 8.34 0.1157 



Sample Number of mo- Mean Median Root Median St. dev. of Range of Mean Median
size notonic fitsa bias bias MSE abs. error estimators estimators Std. Error Std. Error nom. 95% nom. 90%

100 76 -0.2882 -0.2644 0.6716 0.4087 0.6067 [4.0033, 16.8752] 1.0972 1.0022 0.9866 0.9733
300 6 -0.158 -0.1538 0.3287 0.2196 0.2882 [6.0702, 8.7516] 0.6298 0.615 0.9987 0.9945
500 2 -0.1178 -0.1136 0.2482 0.1657 0.2185 [6.744, 8.4803] 0.4946 0.4866 0.9995 0.9976

1000 0 -0.0725 -0.0717 0.1685 0.1151 0.1521 [7.0848, 8.2812] 0.3567 0.3539 0.9997 0.9988
3000 0 -0.0193 -0.0203 0.0937 0.063 0.0917 [7.4094, 8.1134] 0.2154 0.2149 1 0.9998

100 146 -0.8758 -0.8869 1.1483 0.9057 0.7427 [3.8122, 11.4044] 0.7543 0.6286 0.6995 0.5985
300 141 -0.8156 -0.8177 0.9075 0.8179 0.398 [4.5898, 8.791] 0.3892 0.3716 0.4221 0.3145
500 194 -0.8043 -0.8071 0.8589 0.8071 0.3014 [5.5749, 8.153] 0.2963 0.2885 0.2227 0.1504

1000 200 -0.7899 -0.7922 0.8173 0.7922 0.2102 [6.1521, 7.8928] 0.2068 0.2042 0.0409 0.0217
3000 84 -0.7853 -0.7852 0.7944 0.7852 0.1204 [6.4995, 7.4827] 0.1183 0.1178 0 0

100 76 -0.0269 -0.0268 0.0311 0.0268 0.0156 [0.1145, 0.235] 0.0146 0.0146 0.5441 0.4305
300 6 -0.0203 -0.0205 0.0225 0.0205 0.0096 [0.1467, 0.2204] 0.0093 0.0093 0.4104 0.298
500 2 -0.0177 -0.0176 0.0193 0.0176 0.0079 [0.1486, 0.2166] 0.0076 0.0076 0.3644 0.2519

1000 0 -0.0141 -0.014 0.0153 0.014 0.0059 [0.1641, 0.2094] 0.0057 0.0057 0.3119 0.2096
3000 0 -0.0097 -0.0098 0.0104 0.0098 0.0038 [0.1784, 0.2075] 0.0037 0.0037 0.2477 0.1616

100 146 -0.0339 -0.0339 0.0374 0.0339 0.0159 [0.1092, 0.2282] 0.0156 0.0156 0.4121 0.2999
300 141 -0.0367 -0.0368 0.0378 0.0368 0.009 [0.132, 0.2054] 0.0089 0.0089 0.0172 0.0083
500 194 -0.0372 -0.0372 0.0379 0.0372 0.007 [0.1391, 0.1923] 0.0069 0.0069 0.0005 0.0003

1000 200 -0.0376 -0.0376 0.0379 0.0376 0.0049 [0.1459, 0.1823] 0.0049 0.0049 0 0
3000 84 -0.0378 -0.0378 0.0379 0.0378 0.0028 [0.1537, 0.1755] 0.0028 0.0028 0 0

a. For an explanation of what we mean by "monotonic fit" see footnote 24 in text. 

Nonparametric Estimator of Location

Cubic Estimator of Location

Nonparametric Estimator of Size

Cubic Estimator of Size

Table 5. Simulation results for regression function g1 with a sharp peak at 7.7968 and size 0.2019. Number of repetitions: 10,000.
Coverage Rate



Sample Number of mo- Mean Median Root Median St. dev. of Range of Mean Median
size notonic fitsa bias bias MSE abs. error estimators estimators Std. Error Std. Error nom. 95% nom. 90%

100 983 1.4983 1.1561 2.811 1.5476 2.3785 [3.9957, 19.6356] 2.69 1.8667 0.8036 0.7643
300 251 1.3202 0.9101 2.3459 1.1028 1.9392 [6.0027, 19.994] 1.9085 1.6136 0.8507 0.8163
500 77 1.134 0.7776 2.011 0.928 1.6609 [6.7419, 19.1878] 1.6164 1.4557 0.8767 0.8462

1000 7 0.849 0.6197 1.5004 0.7129 1.2372 [7.2079, 19.2959] 1.3079 1.2347 0.9218 0.8923
3000 0 0.5184 0.4321 0.8718 0.4841 0.701 [8.4736, 14.8575] 0.9246 0.8901 0.9742 0.9451

100 921 1.1186 1.1191 2.2035 1.5387 1.8986 [4.2016, 19.7164] 1.9042 1.5334 0.7945 0.7305
300 222 1.2033 1.1506 1.7083 1.1975 1.2127 [7.1026, 18.8452] 1.2282 1.1112 0.8012 0.7276
500 67 1.1861 1.1688 1.5205 1.1771 0.9514 [7.3492, 16.416] 0.9492 0.8975 0.7509 0.6582

1000 11 1.1781 1.1718 1.361 1.1718 0.6814 [8.6094, 13.665] 0.6767 0.6596 0.6021 0.4766
3000 0 1.1753 1.1668 1.2386 1.1668 0.391 [9.5347, 12.4526] 0.3954 0.3911 0.148 0.0859

100 983 0.0054 0.0046 0.0156 0.01 0.0147 [0.1563, 0.2985] 0.0167 0.016 0.9589 0.9183
300 251 0.0022 0.0019 0.0096 0.0062 0.0093 [0.1711, 0.2949] 0.0109 0.0106 0.9723 0.9355
500 77 0.0014 0.0012 0.0077 0.0051 0.0076 [0.1799, 0.2373] 0.0088 0.0087 0.9694 0.9366

1000 7 0.0004 0.0003 0.0058 0.0039 0.0058 [0.182, 0.2253] 0.0067 0.0066 0.973 0.9405
3000 0 -0.00004 -0.0001 0.0039 0.0027 0.0039 [0.184, 0.2187] 0.0043 0.0043 0.9718 0.9329

100 921 0.0034 0.003 0.0146 0.0096 0.0142 [0.1584, 0.2583] 0.0155 0.0151 0.961 0.9168
300 222 -0.0005 -0.0005 0.0082 0.0055 0.0081 [0.1701, 0.2386] 0.0085 0.0083 0.9592 0.9135
500 67 -0.0011 -0.0012 0.0065 0.0043 0.0064 [0.1793, 0.2317] 0.0065 0.0064 0.9501 0.899

1000 11 -0.0017 -0.0017 0.0048 0.0032 0.0045 [0.184, 0.219] 0.0045 0.0045 0.9354 0.8764
3000 0 -0.002 -0.002 0.0033 0.0023 0.0026 [0.1895, 0.2095] 0.0026 0.0026 0.8772 0.8003

a. For an explanation of what we mean by "monotonic fit" see footnote 24 in text. 

Nonparametric Estimator of Size

Cubic Estimator of Size

Table 6. Simulation results for regression function g2 with a smooth peak at 9.7418 and size 0.2021. Number of repetitions: 10,000.
Coverage Rate

Nonparametric Estimator of Location

Cubic Estimator of Location



Sample Number of mo- Mean Median Root Median St. dev. of Range of Mean Median
size notonic fitsa bias bias MSE abs. error estimators estimators Std. Error Std. Error nom. 95% nom. 90%

100 1719 -0.9605 -0.8996 1.5344 0.9182 1.1967 [3.1597, 19.5984] 2.6788 1.4978 0.937 0.9048
300 590 -0.6578 -0.6149 0.811 0.6152 0.4744 [2.9875, 17.4201] 1.0967 0.9924 0.9868 0.9713
500 198 -0.5115 -0.4959 0.5844 0.4959 0.2828 [3.4566, 17.8204] 0.8216 0.7905 0.9963 0.9877

1000 13 -0.373 -0.3676 0.4041 0.3676 0.1557 [7.4337, 8.708] 0.58 0.5697 0.9995 0.9968
3000 0 -0.2188 -0.2175 0.2324 0.2175 0.0785 [8.0223, 8.6256] 0.3357 0.3341 1 0.9996

100 2027 -2.1707 -2.2853 2.5535 2.3137 1.345 [3.2992, 19.057] 1.4614 1.0434 0.4524 0.3586
300 2183 -2.4295 -2.3697 2.5786 2.3706 0.8643 [2.9406, 11.6721] 1.0033 0.7607 0.2239 0.1465
500 2650 -2.4422 -2.364 2.5434 2.364 0.7103 [2.7918, 8.679] 0.7708 0.6284 0.0759 0.0399

1000 3566 -2.3994 -2.3457 2.4505 2.3457 0.4977 [3.0267, 7.5747] 0.5092 0.4603 0.0016 0.0005
3000 4706 -2.3738 -2.3599 2.3884 2.3599 0.2635 [4.7437, 6.9549] 0.2736 0.266 0 0

100 1719 -0.0405 -0.0406 0.0431 0.0406 0.0146 [0.1094, 0.2218] 0.015 0.0148 0.2255 0.1505
300 590 -0.0366 -0.0367 0.0379 0.0367 0.01 [0.1304, 0.2091] 0.0096 0.0095 0.0414 0.0204
500 198 -0.0332 -0.0332 0.0342 0.0332 0.0084 [0.1452, 0.204] 0.0078 0.0078 0.0195 0.0091

1000 13 -0.028 -0.028 0.0287 0.028 0.0063 [0.1547, 0.2022] 0.006 0.006 0.0053 0.0025
3000 0 -0.0203 -0.0203 0.0207 0.0203 0.0041 [0.1699, 0.2006] 0.0039 0.0039 0.0011 0.0003

100 2027 -0.0463 -0.0468 0.0487 0.0468 0.0152 [0.1118, 0.2222] 0.0161 0.016 0.1751 0.1064
300 2183 -0.0517 -0.0518 0.0525 0.0518 0.0091 [0.1209, 0.1919] 0.0092 0.0091 0.0001 0.0001
500 2650 -0.0531 -0.0531 0.0536 0.0531 0.0071 [0.1242, 0.1835] 0.0071 0.007 0 0

1000 3566 -0.0542 -0.0542 0.0544 0.0542 0.005 [0.1313, 0.1712] 0.0049 0.0049 0 0
3000 4706 -0.0547 -0.0546 0.0547 0.0546 0.0028 [0.142, 0.1623] 0.0028 0.0028 0 0

a. For an explanation of what we mean by "monotonic fit" see footnote 24 in text. 

Nonparametric Estimator of Location

Cubic Estimator of Location

Nonparametric Estimator of Size

Cubic Estimator of Size

Table 7. Simulation results for regression function g3 with peak at 8.5480 and size 0.2059. Number of repetitions: 10,000.
Coverage Rate



Sample Number of mo- Mean Median Root Median St. dev. of Range of Mean Median
size notonic fitsa bias bias MSE abs. error estimators estimators Std. Error Std. Error nom. 95% nom. 90%

100 116 -0.5039 -0.2978 1.2923 0.635 1.1907 [5.20, 11.65] 2.7647 2.1197 1 0.9989
300 72 -0.2228 -0.0771 0.943 0.4366 0.9168 [5.78, 11.21] 1.2022 1.0034 0.9989 0.9806
500 55 -0.0975 0.0558 0.8542 0.3525 0.8491 [5.77, 11.23] 0.8072 0.705 0.9778 0.9503

1000 42 0.0655 0.0989 0.697 0.2763 0.6943 [6.02, 11.16] 0.5175 0.4457 0.9113 0.8622
2000 3 0.2148 0.2059 0.423 0.2628 0.3645 [6.39, 10.81] 0.2862 0.2831 0.8485 0.7904

100 104 -1.9593 -2.098 2.1765 2.098 0.9483 [4.46, 11.22] 0.9862 0.8015 0.3828 0.2991
300 23 -2.2953 -2.3391 2.3477 2.3391 0.4937 [5.66, 8.89] 0.4894 0.4535 0.0358 0.0225
500 7 -2.3244 -2.3385 2.3527 2.3385 0.3639 [5.81, 8.44] 0.3544 0.3356 0.003 0

1000 0 -2.3508 -2.355 2.3648 2.355 0.2571 [6.17, 7.98] 0.2434 0.2383 0 0
2000 0 -2.3487 -2.3522 2.3548 2.3522 0.17 [6.23, 7.57] 0.1692 0.1668 0 0

100 116 -0.0062 -0.0055 0.0292 0.0197 0.0285 [0.1236, 0.2966] 0.0205 0.0205 0.8167 0.75
300 72 -0.0115 -0.0118 0.0223 0.0153 0.0191 [0.1399, 0.2765] 0.0121 0.012 0.708 0.6164
500 55 -0.0127 -0.0125 0.0201 0.0143 0.0156 [0.1428, 0.2445] 0.0095 0.0095 0.6106 0.5407

1000 42 -0.0113 -0.0115 0.0165 0.0123 0.012 [0.161, 0.2448] 0.0069 0.0069 0.5449 0.4562
2000 3 -0.0091 -0.0093 0.0125 0.0096 0.0085 [0.174, 0.2272] 0.005 0.005 0.5045 0.4173

100 104 -0.1014 -0.0997 0.1065 0.0997 0.0325 [0.0134, 0.2113] 0.0198 0.0197 0.0201 0.0156
300 23 -0.1024 -0.103 0.104 0.103 0.0178 [0.0434, 0.1642] 0.0113 0.0113 0 0
500 7 -0.1023 -0.102 0.1033 0.102 0.0145 [0.0568, 0.1527] 0.0087 0.0087 0 0

1000 0 -0.1014 -0.1011 0.1019 0.1011 0.0101 [0.0767, 0.1383] 0.0062 0.0062 0 0
2000 0 -0.1022 -0.1023 0.1025 0.1023 0.0074 [0.0844, 0.1318] 0.0044 0.0044 0 0

a. For an explanation of what we mean by "monotonic fit" see footnote 24 in text. 

Cubic Estimator of Location

Nonparametric Estimator of Size

Cubic Estimator of Size

Table 8. Simulation results for model based on regression function g1(t,x). In this case the dose-response function has a sharp peak at 9.2982 
with size 0.2107. Number of repetitions: 1,000.

Coverage Rate

Nonparametric Estimator of Location



Sample Number of mo- Mean Median Root Median St. dev. of Range of Mean Median
size notonic fitsa bias bias MSE abs. error estimators estimators Std. Error Std. Error nom. 95% nom. 90%

100 109 -0.253 -0.1978 1.7197 1.2668 1.7019 [4.67, 13.67] 5.4938 3.5125 0.9989 0.9989
300 99 -0.085 0.1026 1.4777 0.9019 1.476 [5.24, 12.83] 2.3707 2.0502 0.9945 0.98
500 77 0.1089 0.283 1.344 0.8122 1.3404 [5.89, 12.73] 1.7566 1.5791 0.9772 0.9523

1000 79 0.2315 0.3705 1.2182 0.6814 1.1966 [5.88, 12.36] 1.2328 1.1311 0.9446 0.911
2000 57 0.1954 0.4204 1.1654 0.6215 1.1495 [5.94, 11.94] 0.8518 0.7976 0.9109 0.8717

100 95 -0.5062 -0.697 1.3661 1.0799 1.2695 [5.60, 12.50] 1.431 1.1519 0.7901 0.737
300 11 -0.4032 -0.5036 0.9522 0.7385 0.863 [7.24, 12.17] 0.841 0.7625 0.8079 0.7371
500 0 -0.4081 -0.4721 0.788 0.6129 0.6745 [7.32, 11.60] 0.6445 0.6048 0.784 0.717

1000 0 -0.4791 -0.5017 0.668 0.5353 0.4657 [7.74, 11.25] 0.4364 0.4233 0.701 0.62
2000 0 -0.4976 -0.5132 0.5921 0.5173 0.321 [8.01, 10.30] 0.3019 0.2959 0.568 0.471

100 109 0.021 0.0213 0.0346 0.0247 0.0276 [0.1682, 0.3423] 0.0216 0.0214 0.7699 0.6723
300 99 0.014 0.0143 0.0223 0.0159 0.0174 [0.1892, 0.3064] 0.013 0.013 0.7314 0.6349
500 77 0.0113 0.0112 0.0184 0.0128 0.0146 [0.1995, 0.2951] 0.0102 0.0102 0.7075 0.6381

1000 79 0.0102 0.0101 0.0149 0.0111 0.0108 [0.2079, 0.2791] 0.0074 0.0074 0.6363 0.5581
2000 57 0.0091 0.0089 0.0124 0.0094 0.0085 [0.2165, 0.2726] 0.0053 0.0053 0.5493 0.474

100 95 -0.0643 -0.0635 0.071 0.0635 0.0303 [0.077, 0.2714] 0.0185 0.0184 0.168 0.1249
300 11 -0.068 -0.0683 0.0702 0.0683 0.0176 [0.1053, 0.2218] 0.0103 0.0103 0.002 0.001
500 0 -0.0681 -0.0685 0.0694 0.0685 0.0132 [0.1243, 0.2106] 0.0079 0.0079 0 0

1000 0 -0.0681 -0.0681 0.0687 0.0681 0.0096 [0.139, 0.1956] 0.0056 0.0056 0 0
2000 0 -0.0682 -0.0683 0.0685 0.0683 0.0065 [0.148, 0.1875] 0.0039 0.0039 0 0

a. For an explanation of what we mean by "monotonic fit" see footnote 24 in text. 

Cubic Estimator of Location

Nonparametric Estimator of Size

Cubic Estimator of Size

Table 9. Simulation results for model based on regression function g2(t,x). In this case the dose-response function has a smooth peak at 9.4262
 with size 0.2354. Number of repetitions: 1,000.

Coverage Rate

Nonparametric Estimator of Location
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