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END USE ELASTICITIES

by Joseph G. Hirschberg

1 Introduction
This pai)er demonstrates a method for estimating relative price elasticities which
employs the second moments of the vector of the quantity demanded. This
method is based on the observation that observed randomness in demand is due
to variation in either preferences, prices, or income. In the short-run, (in this
case during a month) we assume that preferences and income remain constant.
Consequently, observed demand variation is due to perceived price changes
even when no moﬁetafy price changes occur, by aséﬁming that the percéived.
price includes a shadow éomponent. By making assumptiohs coﬁcern:jng the
stochastic process of the shadow prices and the form of the demand relationship
we can idehtify relative price elasticit& estimates from usage data with no
observed monetary price variation. '

Models which use the second moments of demand relationships to estimate
elasticity a;id_ substitution relationships have been proposed by a number of
authors. Theil and Neudecker (1958) first propose the examination of the
residuals frdm Engél curves though they do not attempt to apply the concept.
Phlips {1971) and Phlips and Rouzier (1972) provide an empirical example
based on the application of a Houthakker-Taylor demand model in which the
residual cross-equation covariance matrix from 2 demand system is examined
for signs of misspecification. Both Theil (1971) and Phlips (1974, page 209)
propose models in which the covariance of demand is made a function of the
preference structure via a stochastic component in the linear portion of a

quadratic utility function, The present model differs from these models in that
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it assumes that stochastic process in the observed usage is generated by shocks
in the prices.

We estimate the relative price elasticities by month and household for a panel
of households whose electricity consumption was monitored by time-of-day
{TOD) but were not placed on rates that varied by TOD. These households
constituted the control group in an experiment to measure the impact 6f TOD
prices on the demand for electricity that .was conducted by the Los Angeles
Department of Water ;';\nd Light. The elasticities are then made the dependent
variable in a second stz{ge anaiysi_s empléying a regression with the independent
variables deﬁned as dﬁ@my vaﬁables wh.ich. represent bresence of a particu.lar
electric appliance. |

This analysns can be viewed as a model in another dimension from the
extensive literature that has formed in the area of condltlonal demand analysis
as applied to forecast end-use demand for energy The first work in this area
was by Part: and Parti (198{)) w:th more recent extensmns employmg addztxonal
data and more sophisticated econometric models in Aigner, Sorooshlan and
Kerwin (1984), Caves, Herriges, Train, and Windle (1987), Bartels and erbig
(1990), Hsiao, Mountain and Ho (1990), Fiebig, Bartels and Aigner (1991),.
Fiebig, and Bartels (1991) and Bauwens, Fiebig, and Steel (1994). The
technique employed here could well be improved upon \#ith more sophisticated
econometric methods and the availability of appliance specific usage data as has

been done with the models of demand.



2 A Logarithmic Model

This section is a summary of the description of the model that appears in
Hirschberg (1994). Let us assume that TOD prices include a stochastic
component. Thus the log of the perceived price (P) is defined as:

P=Po+ (Pst+ &) 2.1
where Ps = log of the shadow price and it is assumed that the shadow price is
equal to one for every hour thus Ps = 0 for every hour, Po = log of the
observed monetary price (as defined by existing TOD rates) and & = a random
error in the perception of the log shadow price where Ele] = 0, E[ef]

= ¢% and Blee] = 0 when s # t.
A simple logarithmic demand relationship for 24 hourly commodities (or
services):

Ko = P (nx24)E(24x2‘3) (2.2
where n = the number of days in the sample, X = log of the hourly demand
for services, P = log of the perceived price by time of day, and E = matrix
of price elasticities. From the elasticity version of the Shutsky equation we can
obtain the relationship;

ew; + eLWw; = W, + e Wi, 2.3)
where e is the Marshallian or uncompensated price elasticity of commodity j
with respect to price i, &, is the income elasticity of commodity j, and w; is the
expenditure share of commodity j. Given the short time period of the data to
be analyzed we assume that the income elasticities for the same good at
different times of the day are equal to each other. Note also that in a situation
where n=24 and no explicit TOD price differences the expenditure shares will
average 1/24 and the w;w; will be of the order of (1/24)* or .0017 thus e;w; -
gw; = .0017(e,,- &) so that the differences in income elasticity need to be

[IhAN1

quite large to imply serious consequences from this assumption. From this
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assumption define hy= e;w; and hy = e;w; thus hy = h;; and we can define the
n by n symmetric matrix H by
H = E diag(w) 2.4)

where diag(w) is an n by n matrix. H can also be written as a function of the
Slutsky matrix

H = diag(p) S diag(p) m - diag(w) e_, diag(w), (2.5)
where diag(p) is a matrix with the prices on the diagonal, m is the income and
€, is a matrix with the income elasticities for commodity i in every column of
row i. Under the assumption that all ¢, = €m &, 18 3 matrix with equal
elements, thus H is symmetric. From this relationship it can be shown that a
necessary condition for § to be negative semidefinite is for H to be negative
semidefinite as well.

Using this model, and observations of hourly service demand for a number of
days over which we assume that Po, E(Ps), and E remain constant we can write
the expected value of the. level of usage as o _

E(X) = (Po+ Ps) E, (2.6)

and obtain
X -EX) = ¢E. 2.7
(2.4) can be solved for E,
E = H diag(w)". 2.8)
The covariance of the observed X is given by:
cov(X) = o’diag(w)'H"H diag(w)". (2.9)

To estimate H we can employ the eigenvalue decomposition of a
matrix for_m_ed by pre and post multiplication of the covarianca_a matrix by
diag(w). o

diag(w) cov(X) diag(w) = L A LT, N VA L)



where a symmetric and negative semidefinite estimate of H is given by
6H =1L -A”L. @2.11)

thus, L, = matrix of eigenvectors for cov(X) as each column, and A" =

diagonal matrix of the square roots of the eigenvalues for cov(X). It can be

shown that 6 isa unique solution (see Theil and Neudecker 1958). We can
define 6K by

68 = 6T diagtw)? 2.12)

Note that we can only identify E up to a scalar multiple and, in the application
given below, we only refer to relative elasticities, and not to absolute values,
While it may seem odd that we can identify E without reference to the

monetary prices, if it is the case that consumers react to opportunity costs and
if we assume these shadow prices are driven by stochastic processes, as shown
above, the identifying assumption is consistent ~with observed variations in
demand levels. In effect, the stochastic prices are translated into variations in

demand via the elasticities defined in this model as E.

3 Time-of-Day Electricity Demand

The application of this model was made to TOD electricity demand data. The
data set used consists of household level observations by day for each hour.
Along with the electricity demand data, we also have the results of a survey of
each household in which demographic and appliance stock data was obtained.
This data set was collected as part of the study conducted to investigate the
impact of TOD electricity rates although the customer’s data sets selected for
this analysis are from the control group, consequently, they were not subjected

to TOD energy rates. (See Hirschberg 1989 for 2 more complete description
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of this data.) In the following analysis we estimate the hour by hour elasticities
by use of the model described above. Then in a second step we determine the
impact of the ownership of appliance stocks to influence the hourly elasticities.
The electricity usage data were collected over a three year period and were
selected for the winter months when cooling demand will have a smaller chance
to dominate the components of electricity demand. There are 145 households
iz the control rate and seasonal groups (LADWP defined these rates as 101,
102, 201, 202, 211, and 212). The data are the integrated hourly demand for
electricity in kW recorded at the end of each hour using tape recording devices.
Before estimating the elasticities it was first necessary to remove the systematic
factors that impact the daily data. The presence of calendar effects and secular
trends will influence our results if we do not account for these non-random
change_s in daily usage patterns. To this end, we first compute a set of
regressions on the log of the electricity demand as a function of dummy
variables for days of the week and a cubic in time.

The equation for the log of a particular hour’s demand for a household-month

can be written as:

iy = P, + P, + e)(m,,) E,.M + Q(m) D 3.1

R
or

5=(P,+P)E+QD +¢E + u, @2
where Q is the matrix of dummy variables for each day of the week and a
cubic in time, Diis the vector of coefficients that corresponds to the columns
of Q and E, is the ith column of E. To facilitate estimation we assume i, =0
so that all error in the model is contained in the ¢E, term, The relaxation of

this assumption may be possible when special assumptions are made concerning



the form of E, i.e. that the elasticities for all hours from 1 a.m. to 4 a.m. are
the same. The regression is of the form :
xi=o+ QD + e, (3.3)
where o, = ( P, + P,) E;and ¢; = ¢ E;. The residuals from (3.3) denote the
variance in demand that is not explained by a systematic model. From (2.9)
we can show the relationship between the covariance of e, and H as
diag(w) cov(8) diag(w) = o* H'H. (3.4)

where & is the (24xn) matrix of residuals from the set of 24 regressions fit to

(3.3). Using the solution procedure as defined above we can then define 25
as

B = L -A? L7 diag(w). (3.5)
where L and A are the eigenvectors and eigenvalues of the matrix on the left

side of (3.4).

The estimate of 621 obtained above is a point estimate. Furthermore, we use

the relative elasticities in reporting these results. An element of 0“1 is chosen

as the divisor (in the present case the first row, first column). The relative

elasticity matrix (RE) is defined as

RE = AGZAE . (3.6)
i DA

In order to obtain variance estimates of this ratio of square roots of a modified
covariance matrices we use Efron’s (1982) bootstrap. Beran and Srivastava
(1985) demonstrate the use of the bootstrap method for functions of the

covariance matrix. Note that one of the advantages of this model is the low



computational expense for the calculation of the point estimates of 62K, which

allows the inexpensive application of the bootstrap technique. 20 bootstrap
resamplings were used from the residuals in (3.3) for each month-household to

estimate the variances of the relative elasticities.

We estimate ﬁfﬂ and its va.;izmce for each household and month (1064 cases).

The diagonal elements of RE are then used as the independent values and in

a regression model of the following form;

14
RE;=a+ 3 BzZ+hi=2t024 @37
=1

where REﬁ is the ith hour relative own-price elasticity, «, 8, ¢, and y are

parameters and Z, are independent variables. The appliances for which we. -
have information are: air conditioners (AC=1), dish washer (DWASH_::I),
electric; clothes dryer (EDRY: 1), cboking range (ERANGE==1), space heating
(ELHEAT=1) and water heater (EWHEAT=1). The demographic variables
are; income (INC), number of persons in the household (NHEH), proportion of
the household that is less than 21 (PLT?21), and the proportion of the persons
in the household over 65 (PGT65). The building characteristics are defined as;
the number of rooms (NR) and whether the house is attached to another
structure (HATT=1). The weather variables used are the average cooling
(CD) and heating degree days for the month (HD) (see Hirschberg 1989 for
additional details concerning the definition of these values). It is assumed that
the errors ({;} are heteroscedastic, with a variance proportional {o the variance

of the relative elasticities. Accordingly, each equation is estimated by
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employing a weighted least squares procedure where the inverse of the
bootstrap estimated standard error for each relative own-price elasticity was
used as the weight.

As mentioned in the introduction, this model is similar to the type of model
vsed in conditional demand analysis for forecasting end-use electricity usage.
Except for the introduction of the heteroscedastic error structure it is most
similar to early work by Parti and Parti 1980 and Aigner, Sorooshian and
Kerwin 1984) in which they use traditional regressions to decompose total

household energy demand by household appliance stock.

4 Results

Table 1 lists the coefficient estimates from estimating equation (3.7) (the
coefficients multiplied by 100 above the t-statistics). We can see from Table
1 that over 55% of the 322 non-intercept parameters estimated in the 23
equations of the form of 3.6 have estimated standard errors rejecting the
hypothesis that the coefficient is equal to zero at the 95 % or greater level of
confidence. And for a number of cases (AC, DWASH, EDRY, ELHEAT,
ERANGE, INC, NHH, PGT65 and PLT21) we can reject the null hypothesis
of no effect in well over half of the equations.

One method to view these results is in the form of plots by time of day as
given in Figures 1-15. In these figures the horizontal axis is the time of the
relative own-price elasticity and the vertical axis is the estimated coefficient on
the variable for that particular characteristic. In Figure 1 we have the intercept
term which indicates that proportion of the relative own-price elasticity that is
unexplained by the variables in the model. The lines in these plots provide the

smoothed value of the parameters along with the upper and lower 95%
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confidence interval based on the estimated standard errors for each coefficient,
the plotted points are the coefficient values. The smoothing used tends to
enlarge the confidence bounds, so that in some figures coefficients that are
statistically significant from zero at the 95% confidence level appear not to be,
Note from Figure 1 that the largest proportion of unexplained variation ocours
in the elasticities for the period from 8 a.m. to 11 p.-m.. Recall that these
elasticities are relative to the own-price elasticity from midnight to 1 a.m., so.
we expect that the elasticities during day-time will be more elastic than those
in the early morning and late at night. _

From Figure 2 it appears that having an air conditioner implies a lower
relative elasticity in the late afternoon hours when the demand for cooling is
greatest. Thus households with air conditioning will be less flexible in their
demand for electricity than those without, particularly in the afternoon.

In Figure 3 we can see the impact of the presence of a dishwasher on the
relative own-price elasticity for electricity is greatest in the afternoon which
indicates that use of a dishwasher in the afternoon is more variable than its use
in the morning before noon.

The influence of the use of an electric clothes dryer is provided in Figure 4.
The mid-morning and late afternoon appear to be the periods of lowest relative
own-price elasticity. _

Electric heaters (as can be seen in Table 1 and Figure 5) exert a greater
influence than air conditioners. This due to choice of winter months for the
data. The higher relative elasticity for electrically heated houses reflects the
wide fluctuation in these households demand even when conditioned by the
weather. The electric h_eatin.g requires such a large proportion of the total

electricity demand that it dominates the elasticity values.
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The plot of the coefficients for the presence of an electric range (see Figure
6) demonstrate the nature of the demand for cooking. In the late morning the
demand exhibits the greatest variation with the greatest elasticity arcund the
5 p.m. to 7 p.m. period.

The impact of electric water heaters on the relative own-price elasticity (see
Figure 7) shows a relationship in which the variation is the least after the
dinner period at 6 p.m. to 8 p.m.

In Figure 8 we view the variability due to whether a house is attached or
unattached. The implication of being attached is that the house is an apartment.
Less than half of the coefficients for apartments are significantly different from
sero and for those that are significant occur during the night-time. This may
indicate that HATT is a proxy for better insulation.

Income appears to have a significant negative impact on elasticity for those
hours from 9 a.m. to 11 p.m. with a major impact at 6 p.m. {see Figure 9).
This indicates that as income rises the elasticity for these hours of the day
becomes less and less. This finding could be used to assess the distributional
effects of a proposed TOD rate.

From Figure 10 it can be seen that as the number of occupants in the
household increases the impact on the relative own-price elasticities appears to
be pdsitive in the early morning and in the early afternoon and significantly
negative from 7 to 9 p.m.. The impact of this variable should be considered
in conjunction with the effect of income.

The number of rooms (Figure 11) has a small irpact on the relative own-price
elasticities. Only six of the hourly parameters are significantly different from
ero. The highest values are recorded for the 5 p.m. and 6 p.m. time periods

and these may indicate that the larger the number of rooms the greater the
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variation in cooking at home -- this could be interpreted as an other indication
of income.

The plot of the coefficient for the propostion of the household greater than 65
years of age (Figure 12) shows the possibility that these occupants are not home
during the period from 7 a.m. to 5 p.m. indicating that this period has a high
degree of variability in the demand and thus in the elasticity.

Figure 13 gives the relative elasticity as a function of the proportion of the
houschold that is under 21 years of age. This plot appears to be the direct
opposite image of Figure 12 which may indicate the differing at-home patterns
of these households.

The last two Figures (14 and 15) show the impact of weather on relative price
elasticities. These results indicate that greater weather demands force produce
higher relative own-price elasticities in the late afternoon. It is interesting to
note that the heating degree parameters are measured with considerably more
error than the cooling degree ones.. This may indicate a wider latitude in the

use of heating devices than in the use of cooling devices.

§ Conclusion _

The model proposed and estimated in this paper provides a method for the
interpretation of the variation observed in the demand for a sefvice (here TOD
electricity) as an indication of the elasticity of demand for that service. The
primary result of this application is the ability to predict the set of relative pﬁce

elasticities for any type of customer based on a model in which each element

of the estimated relative elasticity matrix RE can be defined as a function of

the household characteristics and the weather. Here we have limited the scope

of analysis to the diagonal elements of RE, however the entire relative cross
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price substitution matrix can be considered with the same model specified in
(3.7). In addition, it has been shown that a bootstrap can be used to compute
the variance of each household’s elasticity estimate so that the secondary
regression analysis can include a weight for each observation that accounts for
the quality of each household and month level estimate. Future uses for this
model include the computation of welfare measures for various scepario TOD
rates and household characteristics.

The simplicity of this model and the high level of detail in the resuits, makes
this type of analysis a convenient "first step” in the consideration of any pricing
proposal which involves the differentiation of a service which was has not
previously been subject to pricing differentials. A preliminary welfare analysis
of the impact of any proposed rate can be made using the aggregated relative
elasticity matrix or dissaggregated through the ability to taylor the relative price
elasticities by household type. The detailed data used in the analysis could also
be aggregate data — hourly observations which are summed over individual
demand. Another extension may be to the case were some price differentiation
exists, but it may be of interest to investigate more detailed patterns of
substitution than those available from traditional regression analysis of the first

moments,

13






REFERENCES

Aigner, Dennis J., Cyrus Sorooshian and Pamela Kerwin, 1984, "Conditional
~ Demand Analys:s for Estimating Resndenual End Use Load Proﬁles", _
I?ze Energy Joumal 5 81-98 o

Bartels, R. and Fiébig, D. G. (199__0) "Integrating Direct Metering and
Conditional Demand Analysis for Estimating End-Use Loads", The
Energy Jourral, 11, 79-97.

Beran, Rudolf and Muni 8. Srivastava, 1985, "Bootstrap Test and Confidence
Regions for Functions of a Covariance Matrix", The Annals of
Statistics, 13, 95-115.

Caves, D. W., Herriges, 3. A., Train'K. E. and Windle, R. I.; 1987, "A
Bayesian Approach to Combining Conditional Demand and
Engineering Models of Electricity Usage”, Review of Economics and
Statistics, 69, 438-448.

Efron, B., 1982, The Jacidmgfe the Bootstrap and Other Resampling Plans,
' Conference Series ‘in Applied Mathematics, Report 38, Soclety for
Industrial and Applied Mathematics, Phlladelphla

Fiebig, D. G., Bartels, R. and Aigner, D. J., 1991, "A random Coefficient
Approach to the Estimation of Residential End—Use Load Profiles”;
" Journal of Econometrics, 50, 297-328. :

H1rschberg, Joseph G., 1989, "Economic Experiment Data: A Primer on the
use of Tlme-of “Day Electricity Pricing Data" Joumal qf Economzc
" and Social Measurement, 15,:131-153. :

15



Hirschberg, Joseph G., 1994, *A Model of Relative Price Elasticities from the
Second Moments of Demand", SMU working paper.

Hsiao, Cheng, Dean C. Mountain and Kathleen F. Ho, 1990, "A Comparison
of Alternative Approaches for integrating End-Use Metering and
Aggregate Load Data”, Proceedings of the 1990 Taipei Symposium in
Statistics, ed M.T. Chao and P.E. Cheng, Institute of Statistical
Science, Academia Sinica, 183-213.

Parti, Michael and Cynthia Parti, 1980, "The total and appliance-specific
conditional demand for electricity in the household sector”, The Bell
Journal of Economics, 11, 309-321,

Phlips, Louis, 1971, "Substitution, Complementarity and the Residual Variation

Around Dynamic Demand Equations", dmerican Economic Review,
61, 587-597. N

Phlips, Louis, 1974, Applied Consumption Analyéis, North Holland Press.

Philps, Louis and Philippe Rouzier, 1972, *Substitution, Complementarity, and
the Residual Variation: Some Further Results”, American Economic
Review, 52, 747153,

’I'heil; Henri, .19"7'1,- "An. Economi_é Theory of the Secbnd Morments of
Disturbances of Behavioral Equations", American Economic Review,
61, 190-194,

Theil, I.-Ienri.a.nd Heini N‘eﬁdeckéf .1_95 8.,_ "_Subétitution, Complementﬁiity, and
the Residual Variation around Engel Curves", The Review of Economic
Studies, 25, 114-123,

16



FIGURES 1 - 15
and

TABLE 1

17




| I { i ] | I I { ] { |
2 4 & 8 o 12 14 16 18 20 22 M

Figure t Intercapt (INTERCEP)

0.7+

| i ] | i I i i ] i ] i
2 4 8 8 W 12 14 18 18 20 22 2

Figura 2 Air Canditioning (AG)

18



0.0

_ i ! I ] I ] I i ! i i
2 4 6 8 10 12 14 16 18 2w 22 2

Figura 3 Bish Washer {(OWASH)

0.1
0,0~
~0.1
-0.2 -
-0.34

], 4

-5 "7 \ IR .

i i i I 1 I ] i | I I |
2 4 6 8 1w 12z 14 18 t& 20 22 24

Figure 4 Clothes Oryer (EDRY)

19



-1.4

I | i | | f ] i i | i i
2 4 8 g 10 12 4 18 18 20 22 24

Figure § Spoce Haater (ELHEAT)

0.4
8.3
0.2
0.1
0.0 4

w1

(.2

~0.3

0.4 -}

0.5~

| I ] i - I i i ] { ]
2 4 6 g 10 12 14 16 18 20 22 2

Figure 8 Cooking Ronge (ERANGE)

20



1.6 =

1.4~

0.4 -
0.3+
0.2 Y !
0.1 - NS

3.0

I b : ] I | i i
2 4 & 8 10 12 14 18 18 20

Figure 7 Woter Haoter {EWHEAT)

0.4
0.3 -~
0.2
0.t -
9.0
~0.1

—{3,2 -~ b - - L

~0.3

22 24

| 1 i i | [ ] ] I
2 4 6 8 10 12 14 18 1@ 20

Figure B Attachad Housa (HATT)

21

I i
22 24



- S
Tren o
P
™
-1
&
]
=4
. @
- ~~
[#]
=
\\\ ”l\
. < @
e - m
53
£
e
o ]
et g
< ° &
e e © &
N -
b~ w
- w0
b <t
=
T id LA A I T T L
WEITNO NOOOTNCDOTNO T
000000000000000000060%&4

Figura 10 Parsons in Household (NHH}
22



0.09 -4
.08 —
0.67
0.06
.05
0.04
.03 -
0.024
0.0
0.00
—0.0t —
~0.02
~0.03
—-0.04 ~

0.4
0.3
0.2 4
(R
0.0+
-, =
—0.2
=03
-0.4
—0.5
~0.6
~0.7

} i i t ] I | ] i I
& 8 10 12 14 1 8 20 12 24

Figura { ¥ Rooms in House (NR)

] ] | ] | ] i i g I
8 a g 2 1« 16 18 20 22 24

Figure 12 % of Househald > 65 yrs {PGTES)

23



0.0 -

=0,1 ~}

()4

~0.9

(3.6

i i ] I ] i ] i i | i [
2 4 6 8 I 12 14 16 8 20 22 M

Figura 13 % of Household < 21 (PLF21

0.0008 |
0.0004 -1

0.0003 - ’ e N e
0.00024%, . R : . ;

—~0.0002 ~ .
—0.0003 -
~0.0004 S
~0.0005 -]
~0.5006 -
~0.0007 -
—{,0008 ~

2 4 8 B 10 12 14 16 i8 20 22 24
Figura 14 Couollng Degres Days (CO)

24



0.0020
00018 -
6.0048
0.0014

0.0012 ~
\

0.0410
0.6008
0,0006 —
6.0004
0.0002
0.0000 -

~0.0002 .

- 00,6004 5
~0.0008 -
{1, 0068 -

~0.0010}_

F ] i ¢ I i i

a8 t0 12. 14 16 18 . 20
Figurs 15 Haoting Degree Doys (HO}

25

i ]
22 24




Table 1

Time Intercept

10

11

12

13

5.767
0.287

-35.36
-1.846

-38.98
-2.212

-11.52
-0.623

-15.74
-0.742

17.3%90
0.555

1.385
0.047

162.48
4.558

161.49
4.837

146.75
4.915

- 151.21

4.233

150.74
5.113

-1.520
-0.675

11.560
5.785

2.074
1.081

~3.613
-1.848

-1.387
~0.558

8.381
2.363

9.106
2.154

15.107
3.217

6.155
1.225

10.794
2.376

-0.859
-0.174

-2.981
-0.650

-8.570
-3.162

~10.35
-4.315

-7.301
-3.407

-11.45
-5.554

-10.73
-3.715

-21.96
-5.296

-14.67
~2.864

0.040
0.007

7.324
1.352

-19.39
~3.732

-1.794
-1.392

-10.23
-1.985

7.535
2.599

11.928
4,535

-0.410
-0.206

-1.376
-4.174

10.079
3.716

-0.933
-0.263

~2.493
-0.475

-22.92
-4.041

-22.59
-3.420

~28.13
-4.455

22,74
-3.318

-10.18
-1.638
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- Coefficients (x 100) over t-statistics

AC Dwash Dryer Heater

48.407
7.626

66.595
8.582

61.669
8.037

49,737
6.394

38.729
4.001

54.318
4.530

63.515
3.137

45.472
3.177

49.635
3.287

64.338
5.070

30.342
4.192

54.753
4.451

Range

-6.032
-2.459

~6.392
-2.67%

-0.002
-0.001

0.862
0.427

5.615
2.226

-71.618
~2.042

-3.016
-0.636

11.189
2.219

17.890
3,385

21.904
3.970

14,739
2.871

24.109
4.754

Wheater Atf
-10.05 -11.36
-1.899 .3.415
4.805 -15.84
0.738 -5.493
1.748  -1.583
0.297 -0.629
-1.460  -7.155
-0.236 -2.854
-7.320 -10.77
-0.845 .3.236
-11.82 -16.48
-1.014 -3.494
30.159 -8.978
2.120 -1.377
-13.43 -0,097
-0.922  -0.014
2.555 10.564
0.163 1.346
-16.19 3.339
-1.227  0.483
-20.11 -6,283
-1.598 -0.811
3944 -12.26
-3.494  -1.743



Time Jocome #in . Hof % >65 % <21 CD HD
HH rooms

2 4288 1.171 0.671 9577 11.444 -0.020 0.006
2,600 1391 1,030 2300 3212 -2.330 0378

3 6240 -1.113 0988 7.703 -0.101 -0.009 0.011
3.002 -1.466 1.870 2.011 -0.032 -1.307 0.651

4 5.000 0.723 1.48 6153 -7.411 -0.003 0.046
2.642 1.106 2.642 -2.122 -3.224 -0.564 3.554

5 4.406 -1.021 1.426 -9.975. -4.617 -0.014 -0,013
2.193 -1.729 2596 -3.948 -2.110 -3.877 -1.195

6 4400 2.478 1261 -1477  -17.16 -0.010 -0.017
1.850 3.008 1,749 -4.414 -5.712 -1.871 -1.279

7 0.190 S$.755 1.545 -7.702 -6.271. 0.006. 0.034
0057 5336 1611 -1.741 -1.565 0676 1.537

8 3.861 10.346 0,457 21.059 -16.00  -0.018 -0.052
1220 7.498 0432 2799 -2.888 2,115 -1.652

9 -11.33 8.076 1,158 35.804 -29.50  -0.047 -0.054
2990 5.169 1.028 4.104 -5.028 -3.472 -1.538

10 -10.82 8.155 1.022 40,673 -38.94  -0.017 -0.063
2994 5179 0.832 4312 -6277 -1.081 -1.810

11 -6.822 3.485 1.168 25.789 26,46 . -0.046 -0.049
2225  2.421 0913 3,041 -4206 -3.245 -1.410

12 -7.128 3277 0329 38,191 -30.96 0.020. -0.024
-1.889 2344 0271 4201 -4.722 1088 -0.727

13 47,088  3.113  1.153 17.944 -28.67 0.021 -0.007
-2.561 2.155 1.016 2310 -4.657 1.234  -0.213
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Table 1 continued - Coefficients (x 100) over t-statistics

Time Intercept

14

15

i6

17

18

19

20

21

22

23

24

104.47
3.631

103.91
3.263

107.66
3522

68.967
1.964

144.45
3.913

328.27
8,627

195.14
5.965

113.72
3.355

148.77
4.633

142.16
3.903

17.676
0.588

-9.054
-1.985

-11.52

2827

-12.82
-2.894

-15.52
-2.960

-15.78
-3.198

2.801
0.670

~11.26
-2.824

4.684
1.280

-8.025
-2.251

0.738
0.221

12.846
4.096

-18.25
-3.565

0.656
0.135

0.010
0.002

12.848
2.406

3.128
0.511

17.583
3.018

11.158
2.188

-4.041
-0.839

2.120
0.461

16.031
3.664

20.541
5.3%

-8.643
-1.397

-14.60
-2.411

-23.15
-3.787

-16.31
-2.390

-32.48
-5.235

-26.14
-4.965

-17.29
~4.044

-24.57
-5.601

-20.2
-4.939

-23.98
-5.924

~14.31
-3.992

28

42.222
3.535

40.192
3.823

19,266
1.693

53.879
3.924

33.597
2,769

29.180
2.405

9.276
0.828

8.155
0.787

4,936
-0.520

-8.410
-0.899

-42.29
-4.799

AC Dwash Dryer Heater Range

29.040
5.840

-0.595
-0.132

9.480
1770

-11.05
-2.019

17.855
2.895

6.972
1.304

3.641
0.730

-25.16
~3.440

-13.9
-3.277

-6.782
-1.609

-0.806
-2.678

Wheater Att
<2127 -6.494
-1.910 -0.803
-10.92 11,988
-1.108  1.656
-45.60 12472
4,723 1.635
-33.18 5.263
-3.014  0.632
-56.09 9.546
-5.277 1220
3671 20.490
-3.880 3.067
-17.80  «7.257
-2.100  -1,376
3413 -1.992
0421  -0.389
5377 3473
0.767 0.58:
-0.928 20,195
0,128  3.6479
40.033 22.575
5319  5.083



Time Income #in Fof % >68 % < 2 CD HD
HH rooms

14 -3.865 3.875 1.316 24.024 -12.82 -0.007 -0.022
<1317 2,703 1.07% 3,23 2,095 -0.451 -0.655

5 <7337 8318  0.934 17584 -24.79 0.045 0.074
<2152 3757 0797 2225 4245 2.679 2458

16 -5.040 7.471 -2.682 -3.735 -13.97 0.048 0,106
-1.53%9 4347 2770 -0.42§5 -2.245 2.590 2994

17 <2311 5.582 -1.182 10.130 -1.3%9 0.080 0.066
-0.619  3.202 -0.922 0954 -0.177 3.509 1.810

18 -3.436 0513 -2.164 -10.25 -4.468  0.033 0.078
-1.388  0.287 -1.913 -1.022 -0.558 1,582 1.905

19 -25.59  -4.967 3,749 -51.89 7.974 0.0i8 -0.047
-6.493 2,926 3.197 -5.523 1.054 1.1660 -1.310

20 -8.510 -5.08% -1.559 -45.78 41.937 0.009 -0.052
-2.503 -3.501 -1.390 -6.140 6,206 0.545 -1.559

21 -0.849 -6.282 -0.862 -36.92 45.941 -0.000 -0.023
-0.247 -4.006 -0.753 -4.801 6.852 -0.011 -0.72]

22 ~4.560 0.646 -1.047 -41.25 44449 -0.025 -0.086
-1.387 0.432 -0.996 -5.642 7.226 -1.788 -2.940

23 -5.595 7.279 -2.284 3846 19336 -0.017 -0.103
-1.493 4.772 -1.996 -5.445 3.455 -1.531 -3.560

24 7.103  -0.275 0.415 -40.87 20.992 0.003 -0,049
2.232 -0.238 0453 -7.537 4612 0220 -1.920
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