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INTRODUCTION

Modelling the demand for energy and recent developments

Understanding the demand for energy is of interest for three main reasons.
In the first place, knowledge of demand assists in the assessment of
government policy towards energy. The welfare effects of such recent
developments as the decision to impose VAT for the first time on energy can
only be evaluated with knowledge of relevant demand elasticities. Secondly,
prediction of demand is needed for rational choice of levels of investment in
energy industries. At a macro level, such investments have been of
considerable importance in the overal! investment actmty of the economy,
Finaily, the new breed of private energy enterprises in gas and electricity
sectors and (shortly) in the coal sector will find it useful to have access to
latest research on the determinants of demand. This collection of papers
represents an attempt to build on an already extensive base of modelling
work in order to satisfy the demand for up to date information in the energy
area.

it is howaver, lmportant to understand that each generation of modelling
activny takes place in changing circumstances The modelling work
undertaken in'the. 19705 and 1980s was conducted in an environment of hlgh
energy prices and great condern about potentxai risks to which the macro -
economy might be exposed from the pricing and output behaviour: of the -
major oil producers. Today the situation is very different - low international
oif prices, much greater choice of energy. suppher in all markets and less .
state involvement i in consumer country energy. sectors. ‘This affects both the
nature of the econometr:c results attainable and the uses to whlch they may -
be put. At a more basic level, the abiilt_y to cope with' persmtent long term
trends as well as more recent changes in the energy market is needed in
cuirent’ modcllmg work. The next section tries to illustrate graphically some
of these changes and argues that future emphasis onght to be placed on price
and income elasticity estiration in contrast to the complex non economic
modelling of the past




The first chart shows in broad detail the development of the four major
final demand maikets in the UK since 1949/50. The striking features are
the overall stability of the domestic (residential) market, the steady decline
in industrial demand and the relatively rapid rise of the transport sector.
These long term trends were accompanied by rapid changes in appliance

ownership, intensity of use and household composition during the 1960s and

70s. Since the mid 1980s however, these movements have tended to
stabilise.

CHART 1 FINAL ENERGY DEMAND UK
1950 TO 1991
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Chart 2 shows that we have now reached a very matuse phase of the
peneteation of heavy energy using durables in the UK. Central heatmg was
assaciated with the rapid development of gas sales in the 1960s and 1970s.
However, now over 80% of households have central heatmg, and larger
proportions have washing machines and refngerators (mciudmg freezers) _
The significance of these trends for the future is that new apphance sales
have ceased to be the dnvmg force of changes in energy demand. Change
in future will be much more ‘strongly geared to feplacement cycles. Even in
the case of the car with L penetrat:on of only 69% of households, little

CHART 2 OWNERSHIP OF CONSUMER DURABLES
' 1964 TO 1991 o
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change has occurred recently except in the proportions of families owning 2
or 3 cars where consumption per vehicle is significantly smaller. In the past
there was a strong tendency o regard purchasers of new appliances as
innovative, more likely to introduce new technology for the sake of fashion.
Currently fashionable durables including audio and video equipment, are of
relatively less significance for energy demand. Much early modelling work
tried to mode! the growth in appliance ownership first, and then derived
energy demand as a product of the durable stock and energy consumption
per durable. In contrast modelling should now treat energy demand mote
like the demand for any other commodity and focus on the estimation of
price and income elasticities making use of developments in the analysis of
time series.

Intensities of energy use measured by crude ratios of energy input to
activity output, exhibited strong secular downward trends long before the
price movements of the early 1970s. This is indicated in Chart 3 for the
three major markets - Domestic, Industrial and Transport. In the case of the
domestic sector, intensity is measured by the ratio of total domestic final
energy demand divided by real PDI. We observe a smooth decline until
1973, largely associated with the substitution out of coal into cleaner fuels.
Fhereafter, the decline becomes less steep. The same phenomenon is
observed in other sectors. In the Industsial sector (excluding iron and steel),
there is'some evidence that intensity trends in terms of final energy demand
divided by the production index, accelerated in the mid 1970s and persisted
fo the mid 1980s. However, more recently, there is some evidence that the
pattern has been reversed. Transport intensities are more like those of the
domestic sector although the downward phase of the trend may be seen to
have ended around 1966} Since then energy use per kilometre mile of
demand has remained remarkably stable. This is partly due to the tack of an
effective substitute for motor vehicles and for the private car in particular.
In all markets, therefore, we have witnessed the slowing down of trends
towards greater efficiency with the suggestion that asymptotes or long run
relationships are being reached. The implications for modelling are that
less emphasis is now needed on unravelling the complex chains through
which these intensities are generated, and more on the general underlying
economic relationships.
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CHART 3 INTENSITY OF ENERGY USE IN UK
1950 TO 1981
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The extension of time of day tariffs and demand management systems is
likely to increase the importance of economic factors in the consumer
decision making process as consumers are made increasingly aware of
alternative ways of reducing expenditure on fuel.

Finally, current interest in carbon and energy taxes both to achieve CO2
emission targets and to raise revenue imply that the principal means by
which behaviour is likely to be affected in future wilf be through prices and
taxes. This enhances the importance of reliable econometric estimates based
on the more stable relationships which have emerged in recent years in
energy markets,

Against this background, Roger Fouquet presents a survey of recent
modelling work and provides estimates of energy demand functions for the
UK domestic (residential) sector based on his current research at Surrey.
Keith Miller of the DTI discusses results from a detailed modet of domestic




energy demand which has been developed in the government department
now responsible for energy policy in the UK. Joyce Dargay of the Institute
for Transport Studies in Oxford provides estimates from a new model of
private transport demand which suggest that demand is sensitive to both
price and income. John Peirson and Andrew Henley of the University of
Kent investigate the relationship between temperature and electricity demand
in an innovative approach based on an economic analysis of temperature
effects,

David Hawdon
Surrey Energy Economics Centre
University of Surrey
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RECENT DEVELOPMENTS IN ENERGY DEMAND MODELLING

Roger Fouquet, University of Surrey

1 INTRODUCTION

The first models of energy demand applied basic consumer theory lo energy.
Theoretical and statistical limitations meant modellers were unabie to
incorporate even the most basic features of energy demand. Recent
developments in modelling techniques and approaches, as well as a greater need
and desire to understand, has enabled economists to incorporate some of the
basic features of energy demand into their models.

In order to perceive the developments, 1 will highlight some of the basic
features and ways economists have attempted to model them. (For a concise
discussion of earlier energy demand models, see Griffin (1993)). The
heterogeneous nature of energy demand suggests using & dlsaggregated
approach. Heterogeneity results from the fact that, for every user, the complex
relationship between energy use and appliance ownership differs, Through time,
even the reiat:onshnp for individual users changes as a result of technical
progress, Progress in appliance efficiency influences consumer reactions to
price and income changes. Its influence now leads modellers to question the
assumption of constant price elasticity, These interrelated features -
heterogeneity, appliance stock, technical progress, and variable price elasticity -
must be incorporated into models if economists are to more fully understand
and more accutately predict energy demand Improvements will also emerge
fmm the use of more suitable models, such as the Almost Ideal Demand
System and Error Correction Model. A discussion of the features, and the
recent econometric modelling techniques used to incorporate them, follows,

2 THE PECULIAR NATURE OF ENERGY DEMAND
Demand for Heat, Power and Light
Econometric models explain economic behaviour determined by the same

variables. Many different variables explain total energy consumption. For
modelling purposes, therefore, energy consumption must be split into separate




sectors: residential, industrial, transport. ‘The split more accurately represents
homogeneous groups. Most groups, however, disaggregate further. The
transport sector, modelied as one entity, explains little since use of road, rail
or air vehicles vary for different reasons. Industrial energy demand
disaggregates in a similar fashion. Disaggregating energy consumption into
more homogeneous groups charactesises certain recent models,

Even within homogeneous groups the importance placed on each determinant
varies substantially between consumers. The amount residential consumers
demand energy depends on the specifics of many variables: income, socio-
economic and demographic characteristics, physical structure of the house,
price expectations and appliance ownership and purchase. The reaction to, say,
a dramatic rise in electricity prices for a large, wealthy family living in its own
centrally-gas-heated home differs considerably to that of an unemployed person
based in a rented flat with only an electric heater for warmth. Variables differ
for each household. Micklewright (1989) agrees, claiming that "heterogeneity
is present on a massive scale when we consider household energy demand."
The heterogeneity, also present in other sectors, indicates the need for an even
more disaggregated approach.

Important variations within sectors cali for a microeconomic approach. Micro
studies, such as Peirson and Henley (below) and Poyer and Williams (1993),
observe energy demand at the individual level, Studying individual behaviour,
however, requires many variables and vast quantities of data. Twenty years
ago, such complexity significantly limited empirical micro analysis, both
because of number-crunching problems and scant data sources; today, the
power of compufers and increasing availability of information, such as the
Family Expenditute Survey, drive costs down. With costs still wel above those
of more aggregated studies, benefits of such an undertaking depend on its
purpose and the sector investigated. '

A disaggregated investigation enables economists to analyze distributional
effects of energy policies or improve short run sector forecasts. Baker {1991)
admits, however, that such a concern for detail can have its drawbacks and that
it may not always be appropriate. On the other hand, he supports a
microeconomic approach to energy modelling, arguing that it enables energy
economists to see matters from a different angle. From this angle, he stresses,
economists can more clearly observe, understand and model one of the



fundamental features of energy demand: the relationship between energy use
and appliance ownership.

Warmer, Faster, Brighter

Energy-run appliances provide services for users. Whether a reader requiring
light or a driver requiring transportation, users demand services from their
appliances. The appliances, whether lamps using electricity or cars using petrol,
provide the services by consuming energy. In other words, energy demand
derives from a two-step procedure: demand for a service, which an appliance
provides by using energy.

Energy consuinption, therefore, depends on the services required and the rate
at which they can be provided. The level required is based on individual taste
and s beyond the modeller’s grasp. The rate of provision, however, is based
on appliances’ efficiency and can sometimes be obtained (or at least proxied).
For example, modeliers cannot predict where a driver wants fo travel, but can
predict the fuel used to get there, as it depends on the car’s efficiency, which
is a function of the distance it can travel (all other things being constant) on a
gallon of petrol, Thus, economists have started building modais of energy
demand in part, based on the rate of appliance efficiency.

So, derived demand now features prominently in energy models. Without
using micro data, however, it is difficult to work directly with an appliance
variable, since each machine uses energy at different rates depending on
appliance depreciation, embodied technical progress and level of services
required. The vintage capital approach tackles the problem by assuming there
will be a continual replacement of appliance stock, which embodies state-of-the-
art technical progress. Every firm - and, to a Jesser extent, households - wiil,
therefore, have some new, efficient appliance and some old, less efficient ones.
The rate of energy-use is approximated from the expected age and efficiency
of appliance stock. (For more on the vintage capital approach, see, for
example, Ingham, Maw and Ulph (1992)).

Alternatively, modellers, such as Manning (1988) may avoid directly using
appliance stock variables; instead, they often use a variable which influences
the cost function. Through time, the cost of providing a service becomes




" cheaper, since increasing the efficiency of an appliance equates to reducing the
quantity of energy required. Modellers simply introduce a variable that reduces
the cost of energy as efficiency grows.

But, how does efficiency grow? In the past, modellers have included efficiency
or technical progress as a time-trended deterministic variable. Its growth, or
annual rate of cost reduction, is constant. Technical progress, however,
depends on research and development (R&D). R&D is a function of
investment, patent life and luck. Being highly volatile and unpredictable
determinants, technical progress appears to be more appropriately modelled as
a stochastic variable. Harvey and Marshall (1991} include such a stochastic
variable, generated as a random walk with drift in their energy model. But, this
assumes technical progress to be only neutral. That is, it affects all cost
functions equally, though, in reality, i does not. Through time, technical
progress favours certain fuels or appliances. Thus, as efficiency rises in certain
appliances more rapidiy than others the cost of running them declines faster as
well. Like Harvey and Marshall’s, certain recent models show that an
efficiency variable should be included and, as it varies through time, it should
be factor-augmenting,

Inciudmg such a variable aids in the understanding of energy consumptmn Its
omission causes the price variable to be biased upwards, because an increase
in appliance efficiency effectively reduces the cost of providing a service
relative to its price (Manning 1988). Furthermore, fuel price and total
expenditure fluctuations alter energy consumption indirectly, by affecting
investment in appliance stock, as well as directly. The inclusion or exclusion
of an appliance stock (or efficiency) variable, generally, determines whether
price elasticities estimated are short or long-run.

In the short run, when consuming energy-generated services, individuals
depend on a fixed set of appliances. Because an appliance costs dearly to
acquire, but considerably less to run, it often provides the required service for
many years, even when slternative equipment could provide the service more
efficiently or using a cheaper fuel. As Waverman (1992) reminds, the services
are provided by “long-lived durable equipment” (p.7). As such equipment may
not be replaced until it stops working, full adjustments to fuel price or total
expenditure fluctuations occur only in the long-run. Thus, ’sticky’ (or slow



adjusting) markets for energy-using appliances further characterises the demand
for energy.

Modellers deal with the problem of durable goods in three ways. Since
consumer adjustiments are slow, and past events influence present decisions, it
becomes necessaty to include lagged explanatory variables, such as past
investment in appliance stock or fuel price fluctuations. An alternative method
uses the error correction method to estimate both short and long-run elasticities
and observe the speed of adjustment towards the long run (see section 3), Or,
as suggested above, models may incorporate an efficiency variable, which
enables them to differentiate between the short and long run, Recent energy
demand modelling developments emphasise the relevance of analyzing both
immediate and gradus] adjustments to cnrcumstantlai changas However, more
discussion is required on the very nature of consumer adjustments,

How witl they React?

"The estimation of elasticities , as well as applied econometrics in
general, critically depends on the available data, the’ model.
peciﬁcation and the structure of the economy at each point in hme
As all of these factors change contmuously, any elasticity estimates
will incur corresponding changes. Thus, the notion of the ’true’
elasticity is more an illusion than a reaiity If such a thing as a ’true’
elasticity exists, it is certainly a moving target and not a value that
_ "remams unaltesed through time." (Kouris 1981 p.69) n

For qunte some tnne, modeiiers have been arguing agamst the assumptmn of
constant elasticities. In energy demand modelling, much recent debate has
focused on timc-v_axj!able prace_eﬁas}_iqlt;es and ways of dealing withit. ..

It has been argued that similar price increases and decreases do not lead to
equivalent demand adjustrments (Dargay 1992). Modellers propose that demand
adjustments are subject to a ratchet-effect, It results from & structural change
in the nature of demand, The structure of demand changes for at least two
reasons: consumers invest in more energy efficient appliances when fuel prices
rise but hardly choose to invest in inefficient appliances as they drop,.
presumably reducing demand; and, as fuel prices rise the demand for energy-




intensive goods declines, demand for energy drops as well, Thus, the sign of
" a price change appears to influence demand adjustments.

Demand adjustments vary not only with sign of price changes but also their
size and duration, and past fluctuations. Dramatic changes shock consurners
into reaction. They react by immediately altering appliance usage and later by
investing in more efficient appliances. Small, gradual changes may cause little
reaction: a minimal decline in usage and investment in efficient appliances
oceurs only whén replacing 'dead’ old ones. '

The duration of a price change also affects consumers’ reactions. Temporary
price changes require future flexibility, since, when the price reveris to its
original level, consumers will have to readjust. Thus, consumers will tend to
immediately reduce usage rather than gradually alter appliances. Long-terin
changes lead to more structural inflexible adjustments, such as acquiring more
efficient equipment.

Past fluctuations in fuel prices determine consumers ability to adjust.
Consumers in the late 1960’s had a potential to reduce energy usage and
increase appliance efficienicy not available to consumers in the 1990’s. The
potential for reductions in energy demand becomes smaller every time prices
rise dramatically. '

Perhaps, this somewhat explains contradictions raised by the Khazzoom-
Brookes Postulate, which proposes "., that increases in energy efficiency can
lead to increased, not decreased, energy consumption..” (Saunders 1992 p. 143).
Nevertheless, the postulate highlights the enetgy economists’ uncertainty about
behaviour resulting from fuel price changes. According to Saunders, the
postulate occurs as a result of fuel becoming cheaper felative to other inputs
and efficiency improvements leading to economic growth, which in turn drags
up energy demand.

Price rises induce investment in more energy efficient technology, but because
two opposing forces work simultaneously to influence the change in demand
resulting from increased efficiency (i.e. a declining energy-use per service
provided and the Kazzoom-Brookes postulate), the effect of price changes on
energy demand remains ambiguous. Irrespéctive of the change in energy
demand following price fluctuations though, Gately (1992) "conclude[s] that the



assumption of perfectly price reversible oil demand must be abandoned." The
same can be said for all energy sources.

Time-varying price elasticities suggests econometric estimates are inaccurate.
Estimates produced give a value for the whole period of analysis. If reactions
to price changes vary through time, then a value for the whole period averages
out the time-series. An average value, clearly, limits the accuracy of
explanations and forecasts, by ignoring specific and abnormal time-periods.

Splittingthe period of analysis into smaller homogeneous sub-periods improves
the accuracy of estimates, Estimates are, thus, closer to the *{rue’ value as they
have been modelled for sub-periods during which the determinants of price
elasticity were {(more or less) constant. Unfortunately, reducing the number of
data points in a sub-period causes the accuracy of statistical inferences to
decline. Alternatively, modellers can allow price elasticities to change in
unusual periods, as Dargay has done for the period between 1979-81. Energy
demand modelling now needs to spend more effort tackling the problem of
variable price elasticity.

Many uncertainties remain about energy demand. However, recent
investigations into the nature of the demand enable economists to understand
its fundamental characteristics, By ‘modelling specific characteristics,
economists produce more accurate explanations and forecasts of energy
demand. This production has also been enhanced by :mprovements in
econometric methods

3 NEWER, BETTER'ECONOMETRIC MODELS
Almost Ideal Demand System

Econometrics took a step forward when Deaton and Muellbaver (1980)
introduced the Almost Ideal Demand System (A.L.D.S.). Prior to then, demand
models could satisfy some but not all assumptions of consumer theory. The new
system enabled econometricians to use a model which did not violate any
assumptions of consumer theory.

The model, instead of trying to approximate the direct or indirect utility
function, approximates the consumer’s cost function. The cost function defines




the minimum necessary expenditure to provide a specific level of utility at
given prices. In other words, it indirectly takes account of consumer
preferences, such as the level of services required from a particular appliance.

Estimates of energy used in appliances proceeds in two steps. The modeller,
first, finds the share of energy in consumers’ total expenditure and, then, each
of the fuels in energy expenditure. Both Manning (1988) and Baker (1991) use
A.LD.S. to estimate energy demand. A.1.D.S. models, unfortunately, do not
directly produce elasticities of demand, thus, complicating estimates somewhat.
The results, though, are similar to older energy studies using less appropriate
models.

Thus, A.I.D.S. provides a new framework to estimate energy demand, which
completely meets requirements laid down by consumer theory, Deaton and
Muellbauer’s framework specifies a particular functional form and ensures that
time-series data fits it. An alternative method specifies no functional form and,
after estimation, tests to see whether the data fits assumptions of consumer
theory; such an approach is used for the Error Correction Model.

Correcting Trends Data, with new Predictive Power

Modellers observe energy demand through two different lenses: the long run
and the short run. The long run picture duspiays a smooth series rising through
time, moving around a trend. Long-run time series, uniess growing at the same
rate, would tend to diverge. Related time series, however, including energy
demand and its determinants, such as price and income, can be seen - even
expected - to follow similar paths and, therefore, not diverge, There are certain
underlying forces that, economic theory prescribes, will keep these time series
from drifting apart; the series tend to an ethbnum a path they follow. The
long-run demand for energy follows such a rising path,

Observing the short run (i.e. differenced time-series) tends to produce a
picture of a volatile series, movmg around a constant. The variables are seen
out-of-equilibrium, either moving away from the ‘attractor’, after a shock, or
returning towards it. The short-run demand for energy appears to wander but
without rising.



The rising prominence of the error correction model as an econometric method
for andlyzing energy demand is based on the argument that long-run time-series
data are non-stationary (i.e are not moving around a constant but a trend) and,
therefore, the standard statistical tests used in econometrics cannot be trusted

‘to give accurate values. The solution to such a problem is to cointegrate the

long-run time series data (i.e. find the equilibrating” force). Then, the error
term of this cointegrated series is infroduced, as a stationary series, into an
equation which estimates the relationship between the differenced values of
explanatory and dependent variables (i.e. the short run). This method should
produce short and long-run elasticities of energy demand while using only
stationary data.

Since Granger and Weiss (1985) proved that error correction models generate
cointegrated series, economists, such as Hunt and Manning (1989) and Bentzen
and Engsted (1993), can be confident of estimating coefficients using stationary
time series; assuming the long-run series are non-stationary (i.e. I(1) -
integrated of order one). This is, indeed, what they found, using the Dickey-
Fuller test (see Engle and Granger 1987, for more): non-stationary, I(1),
energy demand, price and income time-series and stationary residuals,
suggesting the three series are cointegrated. Their results, when compared with
previous studies which did not take account of the time-series properties of the
variables, appear to be in the same range of values,

The error correction model may be the most suited econometric method for
forecasting energy demand. Granger (1993) discussing the properties of
cointegrated series and their long-run tendencies towards an 'atiractor’, states
that ”.. forecasts from a cointegrated system hang together’ in ways that other
forecasts may nof and do correspond to a certain type of equilibrium" (p.313).

Following previous studies using error correction models, (Hunt and Manning;
Bentzen and Engsted (1993)), Surrey Energy Economics Centre has produced
estimates for price and income elasticities of energy demand (see Table 1). The
results are intended to feed into a forthcoming forecasting exercise (three to
five years ahead) for United Kingdom energy demand for each sector (e.g.
tesidential, industrial, transport, agriculture, ..).

Such forecasts must be seen as additional information relating to the future
path of energy demand. No one model yet produces reliable predictions, even




Table 1y ELASTICITY BSTIMATES FOR ENERGY DEMAND {N UK DOMESTIC SECTOR {1950-1991;

« USING ERROR CORRECTION MODEL

Fucl Equatianst Own Price Encorste R- Duogd
: Long-Run (Cofnfograted) Elstlcity Elaatiolty Squared Wais
Short-Rua {t-Raito) Stand
e B e
Eoergy LogENt = o, + o LogPENt + ay.LogYL 031 .47 0.837 0.97
¢-6.85) (i1.83)
Einerpy LogDEN= 8, + 8,LogDPENt + B,.LogTEMPL 0,39 * 0.723 134
+ By iLogEt-l - o -4.4%
» e LOgPENE] - oy LogYi-1)
Coal LogCt = o + < LogPCt + «,.Log‘h. 2.0 “2.02 0.957 0.62
411} 2574} ’
Ceal LogDCt = §, + 0, LogDC4-1 -1.06 * 0.486 182
+ . 40g0PC + iy LogTEMIM (-4.18)
4 RplLogCid - &
~ oy LogPCt-1 - ay.Log¥'t-1}
Gas Eog@ = oy + 00 doogP T F . Log¥t -1.08 0.64 0.935 0.09
(-3.149) 233
Gas LagOth = i, + A, LogDGi-1 943 * 0.683 132
+ £,.LogDPGL + 8, LogTEMPL 0.9
+ B [LogGt-d - o
] » oty LoglGtl « o, Log¥t-1f
Eteélriciiy Loglt = o + op.LogPEl 4 o.LogYt -1.28 4,72 0.989 9,65
, {-21.84) (14.88)
Blectriciy FogDEL =, + &,.LogDPEt 0.95 .07 0.747 i3
+ B, LogD¥t + 8,.LogTENP 8.29) ©0.32)
+ B, dLogELd - 3,
« oty LogPEl - 0. LogYi-if
it LegOt = o + o LopPOt + oy Lop¥t .99 019 0,897 0.32
-11.23) (-1.23
Oil LogDOU = @, -+ 8,.LogDPOL 0.50 0.02 0499 1.47
+ M, LogD¥t + B, LogTEMP 16 0.03)
+ B logOt-i - &,
= ay LogPOa-1 - o Log¥i-1}

PENu: Prioe of Encrgy Relative to the Retail Frive fndex.
PCh, PG, PEL, PO1: Prios of Coal, Gas, Electrioity, Oif,
DENE, DCt, DA, DEY, B0 Change in Eneray, Coal, Gas, Eleairlolty, O3l Consumpiion.

h’ﬂl. T, Ch, Ex, Ot: Encrgy, Coal, (a3, Llcctrloly, Ol Conswnption (it Riifilons of Themal Taliay.

Yi: Real Porsomal Disposable [ncome,

TEMPU Averago Annwal Temporatuse,

*t Does not Inereaso Tixplanatazy Power, so the variabls s not ineluded in the cquati

Using the Dickey-Fuller test {see, for exwnple, Engle and Granger (£987) on desoription and oritical vatues), none of ibe time-series,
oxocpl TEMPL, rejected the null hypotheais of non-siationacity.
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if it is more suited for the task than earlier ones, and, therefore, its forecasts
should be compared with others before being used. Though, forecasts provide
a necessary task for planners and policy makers they are vulnerable to the
-modeller’s subjective assumptions and beliefs (Robinson 1992).

In particular, the assumptions made about the future of the explanatory
variables, such as fuel prices and income must be analysed thoroughly. To
produce forecasts of any practical use, the future path of energy demand’s
determinants must be *known’ with a high degree of certainty. Energy demand
systems may not be a hecessary condition to produce accurate forecasts, but the
use of deter mmants based on a genume understandmg of thelr course or path
centa:nly is. oo

For a genuine understanding of determinants modellers are ‘starting to ask
whether the relationship between vatiables is non-linear. The growing interest
in non-linear analysis, predominantly in other sciences, begins to influence
economics (see, for example Baumol and Benhabib (1989)) and even energy .
zmalysm (see Peirson and Henley, below) Certamly, it makes intuitive sense
that not all re!ataoush:ps, especlally ones among economic var:ables, aré linear,
This approach to modelling must be encouraged, though comphcated systems
tend to detract from the real world, Only through continuous trial and error,
and regular discussion and debate can economists decide whether non-lmear,
Almost Ideal Demand Systems or Error Correchon modeis prov:de the
necessaly tools for analysm of energy demand

Imprdvcments in mathematical models, including their predictive powers,
inevitably leads us to forget their limits. Many qualitative variables cannot be
incorporated in the models, others may be but only with inaccurate data.
Qualitative data can, however, be taken into account by 1nfluencmg post-
regression analysxs Inaccurate data slowiy becomes a thmg of the past. as'
statistics become more accesmbie and re!:able ' '

Regardmg whether the future will prov:de us w1th new features, more models
and a change in the basic structure and features of energy demand, the answer
is unlikely to be no. No doubt we w:ll see more discussion of prlce effects
reversibility for explanatory purposes, more micro analysis for policy purposes,
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and more research into technical progress’ role and non-linear dynamics for
predictive purposes. This is a feature of the continuing search for improving
forecast methods.

4 CONCLUSION

Since the beginning of the 1970’s, energy demand modelling has matured into
an important field of study. It has borrowed tools from theoretical and applied
econometrics for its development, and returned the favour by testing them on
a highly publicised sector of the economy. The matters I raised suggest that the
complexities of energy demand are being tackled with a certain amount of
siccess. The difficulty ahead lies in integrating these issues into mainstream
modeliing. This can be done by ensuring that modellers ate consistently updated
about the ever-expanding web of developments in energy demand modelling and
using them to further improve their understandings, estimates and predictions,

I briefly discussed the recent attempts to improve energy demand modelling.
I overviewed the peculiarities of energy demand: its heterogeneity; the fact that
appliances not energy provide the users with services; and, that technical
progress and improvements in appliance efficiency greatly influence users’
reactions to price change. Two models were discussed, which provide energy
economists with new tools to understand and estimate energy consumption, the
Almost Tdeal Demand System and the Error Correction Model. In partlcular,
I examined the growing interest in the Error Correction Madel, dlsplaymg
Surrey Energy Economics Centre’s results for the United Kingdom’s domestic
sector as an example of the approach and the pitfalls relating to energy demand
forecasts.

it is clear that energy demand modelling thrived on the oil crises and concerns
about high fuel prices. Economists of the 1970’s and 1980°s developed a
generation of models suited to tackle these probiems. These models have now
matured. Their offspring prepare to explain new problems, The concerns of the
1990°s revolve mainly around Third-world development and the symptoms of
post-industrial economies, such as environmental and urban degradation. If
energy economists intend to use their models to explain, perhaps even resolve,
the problems of foday and tomorrow, their tools must be aimed at the correct
beasts.
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THE DTI ENERGY MODEL

Keith Miller, Department of Trade and Industry’

From the late 1970’s onwards economists at the Department of Energy
developed and used various computer models of energy supply and demand,
Following the merger of the Department of Trade and Industry (DTI) and the
Department of Energy (DEn) in 1992, responsibility for energy modetling was
subsumed within the enlarged DTI.

The increasing significance in recent years of environmental issues associated
with energy consumption has reinforced the need for a UK energy model
available for use by policy makers. The current DTI energy model has
developed out of these revised requirements for a systematic approach to long-
term energy futures.

In recent years the DTI energy model has been used in several policy areas,
some examples of its use are listed below: '

@ Environmenial policy issues, e.g. projections of CO, and SO,
emissions
@ Energy policy issues, e.g. impact of VAT on domestic fuels,

and various aspects of the Coal Review

The most recent work describing the projections from the DTI energy model
is Energy Paper Number 59, Energy Related Carbon Emissions in Possible
Future Scenarios for the United Kingdom, HMSO. Details about the energy
model used to produce EP59 can be found in a recent paper by Hodgson &
Miller (sce bibliography). The emphasis in the title of EP5S9 on scenarios is
particularly important as the DTI energy model is not used to produce forecasts

1 The author of this paper is an econemic adviser in the Economics and
Statistics Division of the DTI. He is responsible for the development and upkeep
of the Department’s energy demand models, Further details of the DTI energy
model are available from Keith Miller, Room 4:3:10, Economics and Statistics
Divison, DTI, I Palace Street, Victoria, London, SWIE SHE, Tel: 071 238 3338,
Fax: 071 238 3121
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of energy demand but is instead used to produce different scenarios of energy
demand. Furthermore the emphasis of the model is medium to fong term rather
than short term. This emphasis on longer term modelling allows a wide range
of different input scenarios, e.g. economic activity and fuel prices, to be
entered into the model without the need for excessive attention to be paid to
short term variations in these model inputs. Short term variations in these
inputs are easily swamped by variations in the longer term assumptions once
one starts to project info the next decade.

Apart from using'in house tesources to develop the energy model a number
of .outside bodies also provide advice including the following energy
consultants:

e Science Policy Research Unit (Industrial & Service Sector
Boiler model);

® Building Research Establishment (domestic end use ancl stock
data);

@ Energy Technology Support Unit (Industiial and Service

Sector data & advice).

Currently the energy model has six sub-sector demand models, they are:

Service Sector

Iron & Steel Sector
Other Industry Sector
* Agricultural Sector
Domestic Secfor
Transport Sector

= W~ T R S R

The equations used in these sub-sector demand models are typically of the
unrestricted error correction mechanism type and are estimated on annual data
between 1950 and 1991, The exact period depends on the availability of sub-
sectoral stock data etc. Each of the econometric demand equations is specified
in terms of useful therms iather than delivered therms as it is the demand for
energy services that is important hot the demand for delivered energy.
Increasingly the models are making use of bottom-up analysis as experience
with simple econometrxc relationships between energy demand, mcome/output
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and prices suggests they are not always appropriate tools to answer questions
regarding the likely effects of long term policy intervention in energy markets.
Recently the Department’s modelling resources have been devoted to improving
the Domestic and Transport sub-sector demand models; further details are given
below. In developing these models a conscious attempt has been made to allow
for backward integration. It is hoped that this approach will facilitate further
improvements . if additional detailed data/information becomes available in
future, . : : w

In adopting a more bottom-up approach to energy modelling there is an
implicit recognition that the key relationship to be modelled is between the
stock of energy-using capital equipment and energy demand itself, Examples
of the stock of energy-using capital equipment include the number of central
heating units, petrol cars, diesel cars and the number of industrial/ service sector,
boilers. One major advantage of this approach is that it allows saturation levels
to be directly inserted into the energy demand equations via the stock variable.
Thus for instance domestic sector energy demand is constrained by the fact that
the percentage of households with central heating cannot rise above 100%. An
econometric demand equation for the domestic: sector that used real personal
disposable income as its main driver could not hope to impose a similar
saturation level on energy demand. Since the DTY energy model can be used
to produce projections over a 30-40 year time horizon, this attention to detail
is important. S S S '

This increased emphasis on bottom-up modelling is.important both for long
term consistency and because it allows the model to answer specific questions
raised by policy makers increasingly concerned with reducing global warming
and acid rain emissions by encouraging the more efficient use of energy. The
emphasis in the sub-sector demand models is therefore increasingly weighted
towards structural models rather than reduced form models. In order to see
how this approach is implemented the domestic and tfransport sub-sector models
are outlined below. It is hoped to develop this approach further in the Service
and Other Industry sectors during the last quarter of 1993,

Domestic Sector Model

The recently developed domestic sector model disaggregates energy demand
into three end uses: U :
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1 Space & Water Heating
2 Cooking
3 Appliances.

Each of these end uses is discussed below.

The domestic sectot’s space & water heating model begins by modelling the
stack of central heating units by fuel type. Once the total number of households
with central heating has been determined the stock of households with non-
central heating units is modelled, again by fuel type. These stock equations are
based on logit type equations and use energy prices and real personal disposable
income to determine their values. The sum of the outputs from the stock
equations is constrained in order to ensure that they equal the total number of
UK households. Once the number of central heating and non- -central heating
units by fuel has been estimated these variables are used as inputs in the
individual heating (econometric) demand equations. The structure of the space
& water heating mode} can be seen from the foltowing schematic.

DOMESTIC SECTOR SPACE & WATER HEATING MODEL

{ Erergy Prices and Real Pecsonal Dispoastis incams |
Z:::;‘gm“:""' Eloctiic Contral Moating || Oas Central Hasting it Gontral Healing
Stock Equallan % Stack E [on %
Equation % Stock Equation % qualian ack Edpueat]
‘ Humbar of UK Hausaholkss : I
: l Total Dersand
Salld FuelHeating | 4 Electric Heating | Gus Heating Oti Hoating for Hpace &
Demand Equatt o d Equalh L] d Equalion Demand Equation Walar iin_{lng
‘ Humbes of UK Households
Solid Fuad HorCantral] | Electio Hon-Cantral Qas Hon-Coniral Ol Hor-Contral
Heating Stock Heatlogy Stock Hegting Stock Heallng Stock
tquation % Equation % Bqualion % Equation %
b h ¥ b | X
i Enorgy Pricea and Real P | Dlsposabia b ‘
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Cooking

Domestic energy demand for cooking is dominated by gas and electricity. This
allows just one simple share equation to determine the stock of both electric and
gas cookers, Once the stock of electric and gas cookers has been determined
two average consumption equations are used to estimate the total amount of
energy used for cooking. The structure of the cooking model is shown below:

E E OE D D
ELECTRIC :
o ¥ |cookn ¥ |numeen e | coOOKNG
coo AVERAGE OF UK = | ezonicny
OWJ‘E%;:*P CONSUMPTION HOUSEHOLDS DEMAND
eQuA EQUATION
B

s oty SO o :

NUMBER COOXING
COOKER X |averace 1 X EENEER [ | SOOHNG
OWNEASHIP CONSUMPTION

JHOUSEHOLDS] - DEMAND
LEVEL EQUATION Sk o
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growth could continue indefinitely. In order to reflect this UK household
ownership of cars is assumed to saturate at a level similar to the current level
of US household car ownership. In practice even this saturation level may be
tao high as the size of the US relative to the UK makes the ownership of a car
in the US a much greater necessity than is the case in the UK. With these
points in mind the DTI road transport model is shown overleaf. Note that
LGV’s in the schematic refers to light goods vehicles.

ROAD TRANSCORL ENERGY. NEMANLY: MOUEL STRUCTURE

FEMSOHAL OSIOSADLE $hCOVE
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l / WO OF PETROL Cafs
CAR OWNCRSI B CAR STOUW PR, SAT
e il | S Skl | ASSUIPTIONS O OF PETAOL EARS PETROLDEUAMD
O EOUANGH o | souanon
NOOF DRV 45
<
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IV FTOOK FLCL PR DL

umreounin oo
OR £QUATN DS

. 1O OF DORV UV /

uooas _— mooamousvwmm mmm— exocmousmsuums :
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It can be seen from this diagram that this transport model is much more of a
structural modet than many of the simple reduced form econometric transport
models that often appear in the academic press'. The advantage of this more
structural approach is that it ehables many questions to be answered which a
simple econometric approach simply could not hope to answer.

1 See for instance "The Irreversible Effects of High Oil Prices: Empirical
Evidence for the Demand for Motor Fuels in France, Germany and the UK" by I. M.
Dargay in "Energy Demand: Evidence and Expectations” edited by David Hawdon,
Surrey University Seminars, Surrey University Press, 1992,
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Future Modelling

As mentioned earlier on in this paper future development of the DT} energy
model will during the remainder of 1993 be ¢oncentrated on the Service and
Other Industry sectors. Although the structure ‘of the new Other Industry
demand model has still to be finalised the structure of the new Service sector
medel is known and this is shown below:

Total Haatiy Eaargy
Damand Equation

Total Service

tighiing Energy Desmand

Electricity Hoallng Enargy
Demand Equallan Equalion oty Sector

1 _ — #  Encrgy
Fosalk Fual Heating Energy Alr Condittoning Energy Demand
Bamend Demand Equation

-

SPU Boller Model Divides Other Uses Energy
Fosslt Fual Heatlng Energy Demand Equation
Domand inta Hs Fosshi Fugl i, - v e e
Componsnts. e}

Cooking Encrgy
Demand Equallon

Although a small component of Service sector energy demand, the energy
consumption assoctated with Service sector cooking must reflect the decline in
average Domestic sector cooker consumption if these two models are to be
consistent. Often energy consultants develop sub-sector models separately and
this can lead to problems if these cross-sector restrictions (such as that between
domestic and service sector cooking energy demand) are not included in the
estimation process.
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Summary

‘This paper has described some of the modelling recently undertaken by the
DTI. It has been noted that the emphasis in the modelling is changing from one
based on econometric relationships directly linking energy demand to variables
such as price or income to one increasingly based on bottom-up/structural
modelling. Further progress in this area will depend on the availability of good
disaggregated energy demand data.
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THE DEMAND FOR FUELS FOR PRIVATE TRANSPORT
IN THE UK

Joyce M Dargay, University of Oxford

I INTRODUCTION

Fuel demand for road transport is comprised of petrol and diesel used in private
cars, public transport vehicles (taxis and buses), and goods vehicles. The
demand relationships for these user groups are not necessarily the same. One
might expect fuel demand for private cars to be more income elastic and more
price elastic than fuel demand for both public and goods transport. If such
differences do exist, elasticities estimated on the basis of aggregate fuel demand
would be representative of no particular user group, but instead be some sort
of weighted average of the elasticities of the different demand categories, A
further problem arises if aggregate demand is estimated for a period during
which the shares for the various users have changed. The aggregate elasticities
would then also reflect the changes in the relative shares of the user groups in
total demand. These elasticities would tend to rise or decline over time and bear
little relation to the elasticities for the individual consnmer groups, Since
aggregation tends to produce "average" elasticities, which are not truly
applicable for any consumer category, the use of such elasticities to analyse the
effects of price or income changes on individual demand categories or of
specific policies would be misleading.

It is thus advantageous to be able to disaggregate the separate user groups.
However, this is not so easily done on the basis of most statistical sources,
which generally report consumption of petrol and diesel separately, but only for
road: transport as a whole. Although petrol consumption largely relates to
private cars and diesel to commiercial and public transport vehicles, this is not
entirely the case. Most importantly, the situation has changed significantly over
the past decades as first commetcial vehicles and then, to a fesser degree,
private cars have switched from petrol to diesel engines. At the same time
private cars have increased their share of total fuel use for road transport from
60 to nearly 70 per cent. Unfortunately the available data do not allow a
complete breakdown of the two fuels for each consumer group for a long
enough period of time to permit econometric estimation. Because of this most
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empirical analyses consider aggregate road transport and either the demand for
petrol and diesel separately, or combined. In this paper, an indirect method is
employed by which the demand for private transport is analysed and elasticities
pertaining to fuel use in private cars are derived. Due to insufficient data, the
study is yet incomplete and only some preliminaty results are presented here.

2 METHODOLOGY

The demand for transport fuels is most commonly estimated using some sort
of reduced form model, in which equilibrium fuel use is specified as a function
of fuel prices, Py some measure of income, Y, and perhaps some other relevant
variables, Z, which may be the prices of complementary goods, such as
vehicles, or substitutes, such as public transport.

Fo=0®,Y, Z) o)

If the model is to be estimated from time series data, some sort of dynamic
structure should also be included to allow for lags in the adjustment process.
The primary advantage of reduced form models is that they require data on
relatively few variables, which are generally easily accessible. Although these
models provide useful information about demand and allow the estimation of
price and income elasticities, they provide no explanation about the mechanism
througli which demand responds to changes in the explanatory variables. This
will be a disadvantage if we want to use such models to predict demand in the
future, as they give no basis for evaluating the plausibility of our predictions
in terms of actual behaviour. For this reason, and for a number of others more
to do with transport than energy per se, it is useful to analyse fuel demand on
a more detailed level on the basis of behavioural models. :

Similar approaches have been used in a number of transport demand studies
including those by Sweeney (1978) and Griffin (1979). The basic idea is that
fuel consumption for private transport can be ‘broken down info iwo
components: the demand for travel by private car, eg in km, and fuel use per
km. The first of these is largely determined by socioeconomic factors while the
second largely by technologicat factors, which can be economically induced.
Aggregate travel demand by private car can be further broken down into the
total number of cars (car ownership) and an average uiilisation rate
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(km/vehicle). Fuel consumption for private cars can thus be written as the
product of three elements:

= [Fo/KmIx[Km/CarJxCars. (2)

The first, fuel consumption per km, is the specific energy use or the inverse
of fuel efficiency. ‘The second, Kim/Car, is a measure of car use and the last
is car ownership. Each of these can be represented by individual demand
functions so that the effects of prices and other explanatory variables can be
examined for each component,

Fo/Km = h (Y,P,,Z;) &)
Km/Car = g (Y,P,,Z) )
Cars = f (Y,P,PpZc) _ ' 5

Where Y is income, P is the purchase price cf. cars, P, is the petrol price.
Z is a vector of other relevant variables, some of which will be common to two
or all equations (eg public transport prices or other car running costs may be
in'(4) and (5). As written above the individual demand components represant
equilibrium relationships, so that some sort of dynamic lag structure must be
appended in each case to describe the intertemporal adjustment process. By
doing so, we will be able to obtain estimates of both short- and long-run
elastlcmes as wel! as of the speed of adjustment over time,

We would expact car ownersh:p to be posmveiy :elated to income, both as
non-car households purchase cars and as car-owning households obtain second
ones. The effects of income on car use, however, will be twofold: a positive
influence through the greater use of existing cars, but a negative impact through
the purchase of second cars. “The first effect should occur relatively quickly,
while the latter would be more promment over time. Finally, we would expect
fuel ‘use per km to increase with rising income as larger cars with more
powerful engines are chosen. Conversely, increases in gasoline prices shouid
lead to a decline in all three variables. The immediate effects will be a decline
in car use and perhaps even fuel use per car use as driving habits become more
economical. In the longer term, the effects will mainly be on the vehicle stock,
both in terms of declining car ownership and fuel use per car as smaller and
more fuel efficient cars are chosen, and a more fuel efficient technology is
developed.
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Given the identity in equation (2), bath short- and long-run price and income
elasticities for fuel demand can be obtained by adding the elasticities estimated
for the individual components in
equation (3) - (5). In this way we not only have an indication of fuel elasticities
for private cars, but also some idea of the mechanism of the response to price
and income changes. This disaggregate approach will also provide a better basis
on which to investigate possible irveversible or asymmetric price response,
Particularly, we can examine whether irreversibility is solely explained by fuel
efficiency improvements or whether there is also a behavioural component.

3 HISTORICAL DEVELOPMENT

Before presenting the results of the empirical analysis it is useful to have a look
at the development of the relevant variables. These are shown in the two
figures on the following page. In the top diagram, all variables are shown in
index form with the log of 1950's value set equal zero. Annual vehicle kms for
cars (VKM), car ownership (CARS) petrol consumption (PETROL) and GDFP
are all given on a per capita basis, while car use (USE} is calculated as Km per
car. All data have been taken from various issues of HMSO Transport Statistics
Great Britain, Unfortunately these dafa are not totally consistent with each
other, VKM is annual vehicle ki driven by cars and taxis whereas CARS are
private passenger cars only. USE, which is calculated as VKM/CARS is thus
a slight overestimation of kms driven by private cars. PETROL is petrol
consumption for all road transport and thus includes use by petrol-powered
cars, taxis, goods vehicles and motorcycles. As mentioned in the introduction,
the share of petrol consumption used by private cars has changed significantly
over the past four decades, Both the rapid increase in the use of private cars
and the conversion of commercial vehicles to diesel powered engines resulted
in an increasing importance of the role of private cars on the petrol market,
from a share of less than 75 per cent in the fifties to over 90 per cent today.
In addition to this, an increasing use of diesel-powered engines for private cars
in the 1980s led to significant substitution away from petrol. By 1991 diesel
accounted for about 7 per cent of fuel use in cars, increasing from virtually
zero in the seventies. Because of both of these developments, our measure of
petrol consumption grossly underestimates the growth of petrol - and more
importantly fuel - demand for private cars. This should be kept in mind in the
following discussion.
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A number of important trends are apparent in the diagrams. First, we see from
the top graph that over the period as a whole car ownership, km. driven and
fuel consumption increased more rapidly than income, while use per car rose
less quickly. Secondly, the growth rates of all the variables have been retarded
since the mid 70s. From 1960 to 1973, per capita GDP rose by 4 per cent per
year, while vehicle kms rose by 15 per cent, car ownership by 13 per cent,.
petrol consumption by 8 per cent and use per car by 2 per cent. The
discrepancy in growth rates between kms driven and petrol consumption reflects
the development pointed out earlier, i¢ the increasing share of petrol
consumption used by private cars. Since 1973 the variation in growth rates of
the individual variables has narrowed considerably. Car ownership and fuel
consumption increased proportionally with GDP, at 2 per cent per annum,
while km travelled increased by 3 per cent and use per car by | per cent.

The development of real petrol prices and car purchase prices is shown in the
lower figure. Both prices are in index form, with 1970 set equal to 1. We see
that although petrol prices have been very volatile over the past forty years,
there is no apparent trend either upwards or downwards over the period as a
whole. Despite the substantial price increases of the seventies, real prices only
just surpassed those of the mid-fifties. With the price collapse of 1986, real
prices are today lower than they have been at most times previously. Car
purchase prices have behaved in a rather different fashion, displaying a
significant downward trend during the fifties and early sixties. As we will see
later, this decline in car prices is partially responsible for the rapid growth in
car ownership, use and fuel consumption during the fifties and sixties.

Given the apparent trends in most of the variables under consideration, it is
important to examine their stochastic properties. Specifically, we need to
determine two things. Firstly, the order of integration of the individual series
must be determined to see which are stationary and which are not. Secondly,
we must examine whether or not sets of nonstationary variables move together
over time to determine whether or not a long-run relationship can exist.

The tesis for stationarity of the individual variables are shown in Table 1. Both
aungmented Dickey Fuller and Durbin Watson statistics are given. The first two
colurnns report the tests for the null hypothesis that the variable Is I(i), while
the second two test for 1(2). For all variables, both tests are in agreement: car
ownership, vehicle kms, car use, petrol consumption, car purchase costs and
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Table 1: Tests for The Order of Integration of Data Series (X).
Dickey Fuller, Augmented Dickey Fuller and Cointegrating
Regression Durbin Watson Tests

H,:X is I(D) H:X is I(2)

DF/ADF 'CRDW DE/ADF CRDW -
Car -2.18 1 0.01 -3.69%%% 1,04
Ownership {c,t,D) (¢,0)
GDP . - | -2.85 0.01 | 4374 144

{c,t, 1) (c.0) .
Vehicle 272 0.01 | -4.79%m 1,260k
Km {e,t,1) (c.0)
Car Use -2.99 0.08 ~7. 86k 1, T4k
o {c,t,1) (c.0) -
Petrol 2.31 0.01 5. 42w L7

{c,4, 1} {c,0)
Petrol a.65w | o7amer | 5 664 1.G4Hk
Price {c,1) (c,0)
Car Price -1.75 _ 0.05 3,078 0.8k

' (c,1) ©
Note: - The form of the ADF/DF equation is shown in parenthesis

under the test statistics: ¢ and ¢ indicate a constant and trend
are included, and the number gives the number of lagged
differences included. The * indicate significance levels:

*10 %, * 5 % and *¥* 1 %,
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GDP are all integrated of the first order I(1), whereas petrol prices are
stationary or I(0). Apart from this, all non-price variables also confain a
deterministic trend. This is as one would expect from the graphs of these
vanables :

An implication of this non-stationarity is that a long-run relationship can only
exist between any set of these variables if their paths do not diverge over time.
In order to test for a long-run relationship Dickey Fuller (or ADF) and Durbin-
Watson tests for cointegration were carried out.

The results are shown in Table 2, for both linear and logarithmic forms of the
variables. Two tests are carried out in each case: first for cointegration between
the transport variables and GDP only, and then also including car purchase
costs (CPC). Given the stationarity of petrol prices, this variable cannot be
included in the cointegrating relationship. Although the exact critical values for
the DW tests are unavailable, it seems that there is some conflict between the
DF and DW test results. Given the general preferability of the DF tests, the
strongest evidence appears to be in favour of the logarithmic model. Both car
ownership and vehicles kms appear to be cointegrated with GDP and car

Table 2 Tests for Cointegration
Linear Model Logarithmic Model
GbP QDP & CPC GDP aDP & CPC

CARS | -1.87 0.19 | -2.80 0.73 2,08 0.09 | 4. 02% 1 028

DF DW DF Dw DE DW | DF bw
VEM -2.45 0.61 2.56 0.80 202 0] 6.14 «3.99%% | 0.45 |

USE | -3.46% | 1.00 | 3.64% | 1.08 | 8700 | 1.09 | -3.76% | 1.1

ROL

PET- -1.91 023 | 2.51 052 | -1.M4 022 | 3.34 0.83 ﬂ

Note: The * indicate significance level for the DF/ADF tests:
*10 %, ** 5 %. Critical values for the DW tests for the specific
cases estimated here are not available.
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purchase costs, while car use is cointegrated with GDP only (car purchase costs
are extraneous). The evidence for petrol consumption is less clear, but
cointegration is suspect. The necessity of including car purchase costs in the
cointegrating equations for CARS and VKM indicates that the long-term
development of both car ownership and vehicle kms has been driven not only
by income growth but also by the decline in car purchase costs, particularly
during the fifties and early sixties.

4 EMPIRICAL RESULTS

Given that we accept the evidence of cointegration suggested above, non-
stationarity is no longer a problem, so we can proceed to estimate the dymamic
relationship, The following error correction model is estimated for each
variable X = CARS, USE, VKM and PETROL.:

*X, =0+BoGDP,, +B.CPC,, +B,P, , +8,X, ,+g,°GDP,+g.*CPC, +g,* PP, (6)

Dummy variables are also included to account for petrol rationing during the
Suez ¢risis in 1956 and 1957 and the Gulf crisis in 1974, Initially, lagged
differences of GDP, CPC, PP and the X variables were included but these were
found to be non-significant, The results of the final specification are presented
in Table 3. The estimated coefficients are all of the expected sign, although
some. of them are not statistically different from zero. In particular, the long-
run impact of car purchase costs is very poorly determined in both the CARS.
and VKM equations. Since this variable proved necessary for cointegration, it
was kept despite its low significance. The poor performance of the variable
may have to do with measurement problems, since the prices of both new and
used cars must be included.

In general the R? values indicate that the models explain the data reasonably
weli, and the DW and LM tests suggest no problems with autcorrelated errors.
The RESET-test for functional misspecification is insignificant for both car
ownership and car use models, but does suggest functional misspecification for
vehicle kms and petrol consumption. Parameter stability over the observation
period was examined by recursive estimation and various Chow tests. The only
significant departures from constancy were indicated for the post-1986 period
for petrol consumption. One explanation of this "structural break” in petrol
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Table3  Estimated Coefficients for the Ervor Correction Modél 1954-1991 _
CARS USE VKM PETROL

constant 0.12 (10.1) .03 (3.04) 0.19 (5.72) 0.91 (5.16)
GDP 0.11 2.35) 0.28 (5.07) 0.27 (1.67) 022 2.13)
CPC -0.04 (0.98) - -0.11 (1.00) «th14 (2.91) “
PP -0.07 (1.79) -0.06 (1.68) -0.11 (1.59) -0.10 (2.80)
X u 0.11 3.40) | 059 G4y | -0.18 @13) | -022 (2.98)
AGDP -0.46 (3.41) -0.02 (©.12) 0.05 (0.16) 0.11 (0.56)
ACPC -0,20 (3.30) - -0.13 (0.86) -0.01 (0.93)
aPp -0.03 (0.41) -0.14 (3.19) -0.17 (2.45) -0.18 (3.91) "
D56 - - -0.04. (1.36) | -0.06 (2.820
DSs7 - -0.11 (5.58) -0.13 (4.19) -0.15 (7.57)
D74 - -0.06 (2.72) -0.08 (2.29) -0.07 (3.20).
R? 0.84 0.74 0.66 081
DWW 2.25 1.66 1.49 1.59
LM Serial 1.14 (1,23} 1.31 (1,28) 0.71 (1,28) 0.47 (1.,28).
Correlation ’
RESET 0.99 (1,29) 1.21 (1,29) 3.42 (3,27)* 3.7 Il
Functional 3,2h*
Form
Chow 126 6,24) | 1.23 6,24) | 1.65 (6,24 | 2.52
Forecast (6,24)*
1986-91

Note:  t-statistics for estimated coefficients shown in parentheses. F-fests foi'_ LM,

RESET and Chow tests with degrees of freedom shown in parentheses. The
test statistics denoted with * are significant at the 5 per cent level.
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demand for the period following the oil price collapse is the irreversible
response fo the oil price shocks of the seventies, particularly in the form of
improved vehicle fuel efficiency (Dargay, 1991).

Judging from the estimated coefficients and diagnostics, the models for car
ownership and use perform "befter” than those for vehicle kms and petrol
consumption. Although VKM is identically equal to CARS plus USE, since
these are all in logarithmic form, the assumptions underlying the model for
VKM are quite different dynamically than those underlying the individuat
models for CARS and USE. In the former, consumers are assumed to adjust
vehicle kms whereas in the latter, car ownership and use are adjusted
separately, with different time structures.

The estimated elasticitiesare displayed in Tables 4 and 5. For car ownership,
we find a short-run income -elasticity of about 0.5 and long-run income
elasticity of very near unity. Adjustment to income changes is quite quick, with
half of the total effect (mean lag) occurring within iwo years. Both car purchase
prices and petrol prices also have a considerable effect on car ownership,
although adjustment to changes in these two price variables is very different.
Car prices seem to affect demand immediately, with more than half of the long-
term effect occurring within the first year following a price change. Petrol
prices, on the other hand, appear to have little or no immediate impact on car
ownership, but a relatively large effect over time. The adjustment is quite sfow,
however, with a mean lag of seven years compared to less than one year for
purchase costs, After six years following a price increase the elasticily with
respect to petrol prices surpasses that with respect to car purchase prices.
However, as mentioned earlier, this latter elasncity is rather poorly deter mmed

Car use also responds to changes in income and petrol pr:ces, although the
effects are considerably smaller than those for car ownership, and the
adjustment far more rapid. The long-run income and price elasticities of car use
appear to be around 0.4 and -0.1 respectively. The dynamics of the response
. of car use to petrol prices and to income changes are somewhat different: the
total effect of petrol price changes appears to occur within one year, whereas
the response to income changes occurs only more slowly over time, but still
with a mean lag of two years.
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Table 4 Estimated Elasticities
Car Ownership Car Use Ownership + Use
Short Long Short Long Short Long
Run Run Run Run Run Run
{{ Income 0.46 1.05 0 0.41 0.46 1.46
Petrol -0.03 -0.63 <0.14 0,11 -0,47 -0.74
Price
Car -0.20 -0.36 - - -0,20 -0.36
Price

As stated above the elasticities for vehicle kms can be obtained by adding
together the car ownership and car use elasticities. These are presented in the
final two columns of the table. For both price and income variables, we find
that the short-run elasticities are significantly smaller than the long-run
elasticities. The effects of income on traffic or vehicle kms is chiefly through
its effects on car ownership. Of the total fong-run effect, 70 per cent is due to
changes in car ownership. Changes in petrol and car prices also have their
greatest effect on car ownership, although in the short-run the primary impact
of petrol prices changes is on car use.

The elasticities resulting from the vehicle ki and petrol equations are shown
in Table 5. Although those for vehicle kms are rather similar to those abtained
from the ownership and use models, there are some notable differences.
Particularly, the short-run income elasticily is considerably smaller and the
long-run purchase price elasticity is larger than those derived from the
individual models. It would appear that the aggregate model underestimates the
short-run income elasticity. Little could be said about the long-term impact of
car purchase costs, however, since the coefficients are poorly determined in
both cases.

Finally the elasticities estimated on the basis of petrol consumption are
reported in the next two columns. These appear to be of a reasonable
magnitude and not vastly different from those reported in other studies.
However, we recall that the estimated equations showed signs of instability and
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" Table 5 Estimated Elasticities "

S Vehicle Km Petrol Estimated fuel/km Petrol

. : Short Long Short Long Long
. Run Run . Run Run - Ruit

I tncome | 0.05 1.47 0.10 1.00 + about
i.5

Petrol -0.17 -0.63 0.7 -0.45 - about
Price -1.4

car |03 | -062 0.00 | -0.66 . about
Price -0.4

incorrect functional specification, so the elasticities estimates are also
questionable.

Given the identity in equation (1), the elasticities for fuel use in private cars
will be the sum of the elasticities for car ownership, use and fuel/km. Although
we do not as yet have sufficient data to estimate the last of these, we would
expect the income and price elasticities to be of normal signs, as shown in the
next column. Fuel/km should inerease with increasing income as larger and
more powerful cars are chosen, but we would expect the effects to be rather
small. The fuel price should have a negative impact, in the shor! ran as
households choose smaller, more fuel-efficient cars and in the longer term by
inducing a technological development towards greater fuel efficiency. We
would expect this effect to be relatively small in the short run, but probably
equally as great as the car ownership and use elasticities in the long run. The
final variable, car purchase costs should also have a negative impact, since cars
are complementary goods. The effect, however, is most likely insubstantial
even in the fong run.

Using the "guesstimates” the long-run elasticities for fuel consumption in
private cars should be in the region of those shown in the final colurnn of the
table. At first glance, the estimated elasticities do not at all appear consistent
with these results. The income and petrol price elasticities are much lower and
car purchase price elasticily larger. However, we recall that the measure of
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petrol consumption employed relates to all road vehicles rather than the private
cars (or cars and taxis) on which the rest of the analysis is based. Given the
earlier discussion concerning the petrol variable’s underestimation of the growth
rate of fuel consumption in private cars, we might expect an underestimation
of the income elasticity as well as a biased price elasticity. The lower price and
income elasticities for total petrol demand are also consistent with the
proposition that the demand for goods transport is less elastic than the demand
for private car transpost,

4 CONCLUSIONS

In the preceding sections, we have seen how the determinants of the demand
for fuel use in private cars could be derived on the basis of a structural model
describing car ownership use and specific fuel consumption. As data on fuel
efficiency are not yet available, only some preliminary results for car
ownership and use models are reported. On the basis of the estimated price and
income elasticities for these components of fuel consumption, likely values of
the elasticities for fuel demand are derived. Although the study is stiil
incomplete, the results obtained thus far are rather encouraging.

The main conclusions could be summarised as follows:

@ Fuel demand is highly sensitive to both price and income.

L Fuel prices affect demand through the effects on car ownership
and car use. limpact is greatest on car ownership, but this
occurs slowly over time. Effects on car use are predominantly
short run and small. - '

@ Car prices affect fuel demand through their effects on car
ownership. :
@ Income affects both car ownership and use per car. _

Based on the estimates for car ownership and car use, and assumptions
concerning the effects of income and prices on fuel use per km, the following
elasticities for fuel demand for private cars can be derived: oo

Income around 1.5

Fuel Price -0.7 to -1.4
Car Price around -0.4
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Although these results should be treated with caution, there is reasonable
evidence that fuel consumption for private cars and total car use are both price
and income elastic. This has clear policy implications. On the one hand, fuel
consumption as well as car use increases more rapidly than income, so that ali
else being equal we can expect increasing levels of traffic and fuel use and
pollution. On the other hand, however, total car use and fuel consumption are
relatively sensitive to fuel prices, so that petrol prices can provide an effective
instrument for reducing both traffic levels and fuel demand. This will be
extremely relevant for the possibility of attaining environmental or traffic-
reduction goals.
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ELECTRICITY LOAD AND TEMPERATURE: Issues in Dynamie
Specification

John Peirson and Andrew Henley!

1 INTRODUCTION

The subject of this paper is the econometric modelling of the relationship
between electricity load and air temperature. Temperature, and more generally
natural conditions, are the most important causes of changes in electricity load
in the short term. The effect of changes in natural conditions on electricity toad
can be significant.? In order to manage the generation and supply of electricity,
it is important to understand and be able to predict the effects of natural
variables on load. When generation and distribution of electricity are
undertaken by separate commercial companies, as in the British Electricity
Supply Industry, it is particularly important for these companies to be able to
predict the effects of the climate on load. The development of methods for
appropriate normalisation of actual load to given weather conditions is of
importance to academic and commercial energy economists engaged in the
energy demand modelfing.

This paper considers four topics that are of importance to understanding the
relationship between electricity load and air temperature. Firstly, the use of
commonly adopted general-to-specific time-series modelling methodologies on
highly autoregressive load data of a high periodicity (typically monthly or daily
observations) may yield complex and unwieldy dynamic specifications (section

' Acknowledgements

This paper reports on part of a study of the relationship between electricity
load and temperature (Peirson and Henley 1992), The work was funded by Electricity
Association Services Ltd. The views expressed are those of the authors and do not
necessarily reflect those of the Electricity Association. The results should not be quoted
without permission, We are grateful for the comments and suggestions of Steve Allera
and Alan Curruth,
2 For example, during the winter, a fall in temperature of one degree Celsius
would result in an increase of 3% in average load during the half-hour 17.00-17.30 for
British unrestricted domestic consumers in the year 1990/91, see Peirson and Henley
(1992).
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2). The use of autoregressive error representations are found to provide a good
explanation of present load even in the absence of any dynamics in the causal
relation between load and temperature. Secondly, it is shown that ignoring
dynamic specification has an important impact on the estimated effects of
temperature on {oad. The use of static models to predict the effect on load of
a marginal change in temperature may be overstated due to serial correlation
bias (section 3). Thirdly, the use of imposed declining lag structures on daily
temperature data (the effective temperature concept) as a means of modelling
dynamics is shown to be unduly restrictive. The assumptions underlying the
concept of effective temperature and its empirical validity are investigated. In
particular, it is found that the structure of the dynamic relationship between
load and temperature may vary over the day (section 4). It is found that for
time periods before noon the particular declining lag structure of noon effective
temperature cannot be accepted statistically. Finally, the paper shows that there
are theoretical reasons for believing that heating load is a non-linear function
of temperature. Furtherinore, empirical evidence is shown to suggest that these
non-finearities exist and are of imporiance,

2 SERIAL CORRELATION AND DYNAMIC SPECIFICATION
Serial eorrelation

Particularly in the industrial literature, dynamic specification is often ignored
in the modelling of short term energy demand, e.g. see the reviews by
Williams (1985) and Granger (1987). In econometric studies of load, as distinet
from time series and state space studies (see the previously mentioned reviews),
it is common to ignore dynamic specification, e.g. see the discussion in
Ramanathan, Granger and Engle ({985), DRI (1981) and QUERI (1981).
Sensible applied econometric practice suggests that time series models of
energy demand should be subject to the now conventional array of diagnostic
tests.' The effect of serial correlation on the estimated effects of air temperature
on load should be investigated as the presence of serial correlation will yield
inefficient estimates of the regression coefficients. Furthermore, the failure to
reject the presence of significant serial correlation in time series models may

! Hendry (1992) gives an a good account of the importance of diagnostic testing

in the practice of applied econometrics.
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indicate the possibility of dynamic misspecification (Hendry and Mizon 1978).
If the vaderlying model structure is dynamic then OLS estimation of a static
representation, which is autocorrelated, is very likely to produce biased
coefficient estimates. Importantly, prediction of the effects of temperature
change on load using an autocorrelated regression may be unreliable. This is
because prediction can be improved if information about the previous period’s
residual is intvoduced into the caiculation,

Dynamic specification: the appropriateness of an antoregressive structure

A commoniy used method to introduce dynamlcs into an econometr;c regression
is to incorporate a number of lags on the dependent variable. This procedurs
has been followed in econometric, Box-Jenkins, State Space and other
approaches to explaining electricity consumption and load, see Granger (1987)
and Bonn and Farmer (1985a). In the case of econometric models, there are
two possible problems with this procedure. Firstly, in the presence of other
explanatory variables, a common dynamic structure is imposed on all the
independent explanatory variables, including temperature and other natural
variables. Secondly, it may appear that the lagged dependent variables, rather
than the other explanatory variables, are explaining load.

The problem of & common lag structure for explanatory variables is rarely
explicitly stated. This problem is obviously reduced when there are few
variables, With regard to this problem, the validity of the specification of
fagged dependent variables depends on _]udgemsnt about the relative merit of
parsimony and the cost of any induced errors, both of which are d:fﬁcult to
ASSESY, However, it should be remembered that thete are physical reasons for
behevmg that past temperature affects the heatmg load (sce below), but fess
reason to believe that other natural variables such as illumination and rainfall
have a similar lagged effect on electricity load. ~

The second problem concerning the specification of lagged dependent variables
is that they may serve to model the data rather than represent actual dynamic
behaviour, This poss:bxhty is analyzed here in terms of a simple model. The
only variables are load for a particular hatf-hour d on day 1, Q,,, and air
temperature, §, Assume the true static relation between these variables is a
linear relationship with a serially correlated error term, e,
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Qa o 8+ ey, n

€44 = pyean ToEgy

whete ¢ is white noise. Assume that the relation between temperature on
successive days is given by

6, = b4 + v @

where v, is an undefined random term. If load is specified as a function of the
lagged dependent variable and temperature, the following rearrangement is
helpful, where w, is a further error term assumed to be independently normally
distributed

Qi = NQu Fom b oy,
= Nlog 8y + ey - oy, +oegy - eyl
+ w8+ ou,

= )\d[th - v, + Cay " 3‘11}
+ w0, + 3

Equatlon (3) shows that if the error term e is strongly semily correlated (so
e, - &, is small) and the random temperature component v is smail relative to
0, then a regression of the form of (3) is likely to give a quantitatively
important and statistically significasit estimate of . This estimate is obtained
in spite of the absence of any dynamics in the causal relation given in equation
(1). The problem is complicated further by the presence of higher order serial
correlation in e and higher orders to the random temperature component.

Evidence for an autoregressive structure
The evidence for the assumpt:ons underlymg this analysm is strong. Column !

of Table 1 provides estimates of equation (1) using, for illustrative purposes,
daily observations on domestic e_lectr;c:ly consumption for the half-hour 12.30
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to 13.00 hours for the winter period 1st November 1990 to 28th March 1991,
The data used is from the Electricity Association Load Research programme,
see Peirson and Henley (1992) for details about the Load Research programme
and the calculation of the variables. This continuing survey measures the
consumption in each half hour of the year for stratified random samples of

Table I: Estimates of equatlions (I) and (2}

Equation | Equation 2
Dependent variable Q 0,
constant 0.835 6.042
{10,188)* (3.272)*
8, -0,007
(-3.670)*
Oy 0.861
(20.442)*
R-squared 0.084 0.741
Durbin-Watson 1.396 2.318
Regression standard error © 0141 . 3.187
Mean of dep. variable 0.537 © o 43.4088
[st order autocorrelation ¢ (1) 13.222% ST S £ 1L
7il order autogorrelation x® (7 93.974% B 9.784

Note: Sample Residential consumers on unrestricted tariff, 1/1/90 to 28/3/91, n = 148; t-siatistics
in brackets: * indicates sugmﬁcance at 5%

consumers. The 1991/2 consumplion data for unrestricted domestic consumers
was averaged, using the appropriate population weights, to give the dependent

! The sample period ends on 28th March as that déte corresponds to the switch

from Greenwich Mean Time to British Summer Time.
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variable Q in equation (1). 6 is measured as actual noon temperature in
Fahrenheit averaged over 13 weather stations across the UK. The results of
Lagrange multiplier test statistics for autocorrelation indicate significant 1st and
Tth order autocorrelation. Column 2 of Table 1 reports estimates of equation
(2) for the same time period. It shows that the current and previous day’s
temperatures are very highly correlated. This is confirmed by Figure 1 which
graphs a straightforward antocorrelation function for noon temperature. The
first order autocorrelation coefficient is 0,853 with a standard error of 0.082.
Column 2 of Table 1 also shows that standard error of the residuals from the
regression is only 7.3 percent of the mean daily temperature for the peried in
question, confirming that v , is small relative to 8,

Figure I+t Autocorrelation function for average noon temperature in Great Brituia

firtocorrelation function of tenperature 11,90 - 28,39

1.6000 \

.57043[ N

. 14087

-.2a87e| 1 . i " .
0 13 26 34 419

Order of lags

However, in terms of allowing for the effect of temperature, a specification
of the form of equation (3) may still be appropriate. The size of the A
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parameter will be balanced by a smaller parameter for 7. Thus, using the right
hand side of equation (3) to calculate the artificial equilibrium effect of
temperature on load may give an adequate measure of the actual effect, The
suggestion that an autoregressive structure may not be part of a dynamic causal
process but may just be explaining the data in terms of itself can be applied to
dynamic econometric methodology more genetally, as long as the two
assumptions hold approximately.

3 ASSESSING THE EXTENT OF SERIAL CORRELATION BIAS IN
STATIC LOAD MODELS

Time series modelling in the presence of serial correlation

Modelling strategy in the presence of serial correlation can follow various lines,
If OLS bias can be ruled out @ priori then increased estimation efficiency can
be obtained by using a form of gcnerahsed least squares (Newey and West
1987). If dynamic misspecification is suspected and there is the additional
presence of heteroscedasticity or functional form misspecification then a full
scale investigation of model dynamics through estimation of an autoregressive
distributed lag (ADL) model is warranted, Bvidence of significant higher order
autocorrelation would, in the present context where load data is typically of a
daily frequency, make full scale dynamic modelling highly complex General
(high-order ADL specifications) to simple modelling strategies may lead to,
complex and unwieldy dynamic specifications, which are inefficient to
implement for frequent and repetitive exercises in normalising electricity load
for weather conditions,

A traditional solution to autocorrelation is to be found in the uge of
autoregressive least squares, where a simple (possibly static) specification is
preserved but omitted dynamics are captured through an autoregressive
representation of the error structure, e.g. see QUERI (1981) and Engle,
Mustafa and Rice (1992). Dave!opments in direct forms of maximum likelihood
estimation and improvements in computing technology now allow easier use of
higher order autoregressive (AR) estimation. AR estimation with an
autoregressive error structure of order i is observationally equivalent to a full .
scale ADL(, i) model if a series of *common factor" restrictions between the
ADL coefficients are accepted by the data. Thus, in Hendry and Mizon’s
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{1978) terminology, AR estimation can form a "convenient simplification". In
the present context, where daily data is under investigation, the results in
column 1 of Table | suggest that an initial general ADL(, i) specification
would require i to be at least seven. Without considerable simplification such
a model would be heavily over-parameterised. On the other hand, an adequate
but parsimonious representation of the data generating process may be difficult
to obtain.

The difficultiesassociated with parsimonious mmodelling of and prediction from
the dynamic structure of daily observation data provides a justification for
direct consideration of higher order AR estimation, To assess the bias induced
by serial correlation in static models of the relation between electricity demand
and air temperature, AR estimation of models of electricity load data is
undertaken. For prediction and normalisation purposes, models obtained in this
way may be used in e’xactly the same way as static ones, since the dynamic
behaviour of the data is captured through the error process, wnthout the
inclusion of lagged dependent or explanatory variables.

Evidence of serial correlation bias
Table 2 reports a comparison of results of a typical load normalisation equation
in which electricity load is regressed on temperature, sunset and dummy
variables for days of the week and public holidays. The est:matlng equauon
takes the following form
Qv = ag0 + 850 + 8,8 + Eioinaser ba Dy
+ byg XMAS, + b,, BOXD,

t by NEWY, + ¢, B )]
S is sunset time measured as number of minutes after 6 p.m. at which sunset
occurs in Birmingham on day t. D, are day dummy variables with Tuesday
omitted as base day. XMAS, BOXD and NEWY are public holiday dummy

variables for Christmas Day, Boxing Day and New Year's Day respectively.
Table 2 reports results for two half-hour periods, 12.30 to 13.00 hours and
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Table 2: Hiustration of Sevial Corvelation Bias

12.30-13.00 17.00-17.30
QLS AR(7) OLS AR(T)
constant 0.768 (.563 i1.664 1.403
(21.534)* (0.737)* (33.419) (20.179)*
0, -0.0075 -0.0028 -(L0066 ~0.0051
(-10.264)* (-2.528)* (-10.057y* (-4.861)*
S, -0,0004 -0.0003 ~0.0016 -0.0015
{-0.534) {-1.067) (-21.808)y* (-8.030y*
Sunday 0.368 0.359 -0.020 -0.020
(21.775)* (26.247y* (-1.289) {(-1.177)
Menday 0.065 0.054 -0.011 -0.009
(3.833) (4.179) (-0.743) (-0.575)
Wednesday 0.017 0.009 -0,002 0.004
(1.018) (0.711) {-0.150) (0.003)
Thursday 6.008 0.024 -0.025 -0.021
(0.482) ©.177) (-1.661) (-1.262)
Friday 0.008 -0.002 -0.213 -0.017
(0.458) (-0.152) (-1.409) {-0.905)
Saturday 0.131 0121 -0.020 -0.012
' C{71.732)* (8.354)* (-1.352) (-0.624)
P S 0.449 0.201
(4.933)* (2.210)%
P 0.093 0.197
(0.914) (2.149)*%
) 0.020 0.040
(0.200) (0.424)
Py 0.139 0110
(1.367) (-1.174}
Ps 0.092 0.047
{0.932) (0.511)
A -0.078 0.103
(-0.790) (1.139)
Py 0.131 0.191
(1.454) (2.008)*
R-squared 0.879 ©0.923 0.847 0.875
Regression std. error 0.0534 © (.0441 0.0476 0.0453
Fk,n-k-1} §9.536* 80.923* 68.493* 47.258*%
Durbin- Walson L .2.025 1.529 L9790
ist order autoco. ¥* (1) 30.290* L 7.776*
7th order auloco, x* (7). 36.462% 18.939%

Note:  Sample: Residentinl consumers on unrestricted tariff, 1/1/90 1o 28/3/91, n = 148; Repressions
include dummy variables for Christmas Day, Boxing Day and New Years Day, coefficients

not reporied; {-stalistics in brackets; * indicates significance at 5%, + at 10%.
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17.00 to §17.30 hours, estimated by table OLS and by AR(7) estimation.' In the
more general AR(7) case, the error term is assumed to be determined by the
following process

€41 = Py F PazCe t PinCa T Pyaia
+ PasCis T Pagtars T Pa7Cawa (&)

The results show that the coefficient on temperature is reduced (in absolute
magnitude) by a quantitatively significant amount once the autocorrelation
structure is taken into account. For the period 12.30-13.30, the coefficient falls
from 0.0075 to 0.0028 and, for the period 17.00-17.30, it falls from 0.0066 to
0.0051. Thus, in thése cases estimation of a static specification by OLS is
likely to lead to an upward bias in the estimate of the effect of marginal change
in temperature on consumption,

The extent of the potential bias was investigated by estimating equations such
as those in Table 2 for all 48 half hours using unrestricted domestic consumers’
demand in the winter period. The absolute values of the marginal temperature
effects for the OLS and AR(7) models are plotted in Figure 2. The OLS
coefficients are typically twice as large as those obtained using AR(T)
estimation. The differences are greatest in the morning and early-afternoon, and
least in the early evening. In only one half-hour period (16.00 to 16.30 hours)
does AR(7) estimation give a temperature coefficient below the corresponding
figure 2 OLS coefficient. Therefore this evidence suggests that static

! Estimation is performed by the Gauss-Newton iterative method for models

with serially correlated errors using MICROFIT 3 (Pesaran and Pesaran 1991). The
method is one of "successive substitution” with each iteration involving two steps in
which firstly the autocorrelation coefficients, p, and secondly the coefficient vector are
held fixed. It is therefore not an exact maximum-likelihood method. Exact maximums-
likelihood estimation for orders of serial correlation above two is extremely complicated
and time-consuming, with the problem increasing exponentially in complexity as the
order increases. However a comparison with exact maximum-likelihood estimates with
a moving average error structure, yielded very similar coefficient estimates to those
obtained by AR(7) and reported here. ' ‘ : ' '
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Fipure 2: Comparison of marginal effect on tempernture estimated by OLS and AR(7)
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specifications may seriously overpredict the effect of changes in temperature on
demand.’

4 TEMPERATURE DYNAMICS
The potential importance of temperature dynamics

We now go on to assess the importance of dynamics in the causal relationship
between temperature and load. Past air temperature may affect current load in
three ways:

n The thermal capacities of buildings act as barriers between outside and
internal temperatures. Thus, changes in outside temperatures do not
instantaneously establish new equilibrivm thermal gradients in

buildings. '

@ Consumers may only adjust with a lag to changes in air temperatures.

3) Consumer behaviour may be habitual. For example, consumers may
onty close down electric central heating systems at certain times of the
year, paying little attention to perceived transitory movements in
outside temperature. So conswmers may respond to-cold "snaps” in
summer months by short term use of gas or electric fires rather than
switching on central heating systoms.

In considering the effect of past values of temperature on electricity load and
consumption, it should be noted that it is generally considered that past
temperature only has an effect for a few days and at most a week. Thus, it is
only relevant fo consider such effects for relatively short periods.

! Though there are considerable differences in the estimated marginal effects

of the two models, differences in the other estimated coefficients of the models,
particularly the intercept terin, compensate. Thus, close to the mean temperature, both
models predict nearly the same load, Further from the mean, the two models begin to
give more radically different predictions of load.
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A number of past econometric studies have modelled the effects of lagged
temperature responses through the imposition of restrictive lag structures on a
temperature variable. In the QUERI study (1981) of hourly load for different
American regions, the two lagged temperature variables employed were a
moving average of hourly temperatures over the last 24 hours and a moving
average of midnight temperatures over the last five days. The latter variable
was found to be statistically insignificant. In a related study, Ramanathan ef al.
(1985) found a moving average of past air temperatures to be a statistically
significant variable in explaining hourly domestic consumption. These studies
use variables which impose specific lag structures on the effects of past
femperatures on demand.

Th.e effective temperature concept

An important method that specifies the effects of past temperatures on load is-
the effective temperature construct. This approach was developed by Davies
(1958) and has been followed by the Electricity Council/Electricity Association
(see Boggis, 1973, Skinner, 1984 and Electricity Association 1990) and British
Gas (see Lyness, 1984), and was followed by the Central Electricity Generating
Board (see Baker, 1985 and CEGB 1986). The effective temperature approach
attempts to allow for the thermal capacity of buildings by considering the
relationship between the internal and outside temperature of an unheated
building.

Effective tempesature analysis considers the dynamic relation between internal
and. outside temperatures, respectively T and 6, for an unhreated building
through the following equation . :

ATt = B - ) o ®

This simple continuous time equation states that the rate of decrease in the
internal temperature is proportional to the difference between the internal and
outside temperatures. As an approximation this is physically correct, see Kreith
(1972) or Gebhart (1971). Davies (1958) shows that, in discrete time, the
effective internal temperature (ET) can be approximated by a distributed lag
formulation of the following form

EL = B0 + v6, ++*0, + .....) )
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Thus, Davies (1958) and subsequent researchers have suggested that the
effective temperature given by equation (7) should be used to model the effect
of past and present outside temperatures.

However, space heating increases the internal temperature of a building, The
usefulness of equation (6) is that it forms the physical basis of the demand for
space heating. In equilibrium, the demand for space heating is equal to the heat
loss through the building structure, When the outside temperature changes,
thermal disequilibrium occurs as the thermal gradients in the building change.
The desired equilibrium temperature may change. The time taken for thermal
equilibrium to be restored depends on the extent of the change in the outside
temperalure, the internal teinperature, the thermat properties of the building and
the capacity and use of space heating to establish new equilibrium thermal
gradients. These relationships are not modelled by the differential equation (6)
and its solution (7). These equations represent a quite different occurrence,
namely the cooling of an unheated building.

Equilibrium and dynamic effects of temperature on load may alternatively be
modeiled by the linear specification

Ql = 60 (Tt - 9,) -+ 61 (Tt-l - 81-!)
+ 8T, - 0, + ... &)

The first term of equation (8) is a linear approximation to the equilibrium state
and the remaining terms are linear approximations to dynamic effects. There
is no reason to expect to observe the simple relationship between the
parameters of this equation as imposed by the construction of an effective
temperature measure. Given that § is generally unmeasured, an empirical
implementation of equation (8) would include present and past outside
temperature variables and allow free estimation of their lag structure.! A
similar, but more complicated speciﬁcatmn was used by Schneider, Takcnawa
and Schiffman (1985)

! Allowance for non-linearity in the temperatuce effects may be desirable. This

would complicate the specification. A parsimonious specification could be to allow the
present temperature variable to enter the specification in a non-inear manner.
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Noon effective temperature variable - empirical evidence

The noon effective temperature variable construct assumes that the effect of
past lemperature can be represented by a fixed lag structure, as given in
equation (7), on actual midday temperature. The fixed lag structure used by the
Electricity Association {1990}, following Davies (1958), is

ET, = 0.576, + 0286, + 0.150, ()

where t denotes daily observations. Apart from the Electricity Association
(1990), there appears to have been little subsequent assessment of whether this
is an appropriate lag formulation.

An evaluation of noon effective temperature can be made by freely estimating
equation (4) augmented with Ist and 2nd order lags on actual noon temperature.
Table 3 presents AR(7) regression resulls of such an exercise for five
representative half-hours. The same sample data as earlier is used. An
inspection of the coefficients on 6, , 8,, and 6, reveals that a declining weight
lag structure is not always observed, For example for 02,30 to 03.00 hours and
for 12,30 to 13.00 hours the coefficient on 6, is larger (in absolute magnitude)
as that on 8, , and for 08.00 to 08.30 hours the coefficient on 0, is larger than
that on both 8, and 8., . An anomaly is apparent in the 02.00 to 02.30 half hour
when consumption is "backward-looking", as indicated by the larger and more
significant response arising from the previous day’s noon temperature level than
from the corrent day’s noon temperature. A similar effect ocours for the 1230
to 1300 half hour. Thus, consumers are not as forward looking as is implicit
in implementations which use noon effective temperature. This effect could be
explained by lagged lemperature being more important in explaining thermal
gradients fhan is predicted by the noon effective temperature consiruct, the
present noon temperature not yet having occurred and the lagged temperature
being used by consumers to predict the current day’s temperature. It is only by
the late afternocon and evening half-hours that the Iag structure on temperaiuvre
appears to conform to the declining structure implied by the noon effective
temperature construct. Thus, the structure of the dynamic relationship between
Joad and current and past actual femperature varies considerably over the day
and need not conform o any fixed distributed lag structure, -
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Table 3: Hiustration of Temperature Dynamics

02.30 08.00 i2.30 17.00 21,30
10 03.00 to 08.30 to 13.00 to 17.30 to 22.00
constant 0.214 0.831 0.665 1.051 0.916
(11.097)* {16.945)* (9.501) (18.014)* (26.373)*
9, -0.00051 -0.0025 -0.0019 -0.0035 ~0.0023
-1.813)}+ {-2.510)* {-1.547) (-2.787)* (-3.022)*
8, -0.00072 ~0.00065 -0.0021 -0,0025 -0.0017
(-2.531)* {-0.694) (-1.688)+ (-L784)+ (-.041)*
9,5 0.00014 -0.0027 -0.0012 ~0.00022 -0.00i2
' (0.487) (-2.799)* (-1.045) (-0.184) (-1.537)
S, i -0.000005 -0.00019 -0.00028 -0.0016 -0.00023
(-0.086) (-1.551) (-1.115) (-10.052)* {-1.436)
R-squared 0.792 0.852 0.926 0.879 0.758
Regresston std.
ercor 0.0103 0.0347 0.0436 0.0449 0.0270
F(20,120) 22.790* 34.406* 74.901* 43,544* 18.809*
Durbin-Watson 2.009 1.966 2.022 1.982 2.021
Wald ¢* () 7.156* 26.602* 2.206 0.310 1.866

Notes: Sample: Residential consumers on unrestricted tariff, 171790 to 28/3/91, n = 148; AR()
Estimation, p, ; coefficients not reported; regressions include dummy variables for day-of-the-

week, Christmas Day, Boxing Day and New Years Day, coefficients not reported; t-statistics
in brackets; * indicates significance at 5%, + at 10%,

This evidence suggests that merely measuring temperature at one time during
the day is inefficient. For loads at times before midday, it would appear
sensible either to define and use temperature variables for times closer to the
load observations or to allow free estimation of lagged temperature responses
or both, The Wald tests reported beneath each regression in Table 3 are tests
of the imposition of the net effective temperature restriction against a free lag
structure, as reported. They confirm the suggestion that the noon effective
temperature construct may be particularly inappropriate before midday. For the
first two half-hours reported in the table the Wald tests reject statistically the
imposition of the fixed lag structure implied by noon effective temperature.
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5 NON-LINEARITY IN THE RELATION BETWEEN LOAD AND
TEMPERATURE :

In applied time-series econometric analysis, it has been conunon to assume that
a relationship between demand and independent variables can be approximated
by a linear specification, see for example Judge et al. (1985). Thus, the effect
of air temperature on load has usually been specified in a linear form.
However, consideration ought to be given to whether a linear specification is
adequate on a priori grounds, to the empirical evidence on non-linearities and
to the specification of non-linear relationships.

To maintain a system at a given temperature depends on the difference between
the desired temperature and the ouiside air temperature. This relation is
typically assumed to be linear, e.g. see Dubin (1985) and Parti and Parti
(1980). Engle et al. (1986) appeal to the theory of thermodynamics in disputing
this assumption,

The non-linearity of the response of electricity Joad and consumption to
temperature variables has been discussed and investigated in the literature, see,
for example, QUERI (1981) and DRI (1981), Train et al (1983), Baker (1985),
Ramanathan ef al. (1985), Engle et al. (1986), Ander and Hayslip (1985),
Gregory and Wordley (1985), Brown (1987), Hagan and Behr (1987}, Reddy
(1990}, Central Electricity Generating Board {1986), Electricity Association
(1991), Peirson and Henley (1992) and Engle et al. (1992). With only the
exception of the Central Electricity Generating Board study, all the ciled studies
found evidence that electricity load responded to temperature in a non-linear
manner, The CEGB study found linearity for the winter period, but this finding
is not inconsistent with possible non-linearities over the wider temperature rang
observed over a full year, '

Theoretical considerations
In Peirson and Henley (1992a), a theoretical model is developed to examine the

relation between electricity load, Q, and air temperature, ¢, and the chosen
level of theymal comfort, T.

Q = f(T-0) (10)
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The function f is a technical relation that gives the energy necessary to support
a chosen temperature difference (T - 8). The economic aspect of this function
enters through the choice of T.

An increase in 0 increases real income and, as {" is positive, reduces the price
of thermal comfort. This ensures that 0 < dT/df < 1. It can be shown that the
effect of an increase in air temperature on heating load is negative.

o (T »
do f(da 1) b

The shape of the function f can be mvestlgated through by con31dersng the
second derivative of (9)

4°Q e (dT Y, d 12
do> f('dﬂ )fd92 _()

and considering two effects:

( i) . Convection, conduction and radiation heat {osses ensure that 2 and £
are positive, see Gebhart (1971) :

) A satiation effect is likely to exist and eventualiy give a negative
d*T/dé’.

The first term of the right hand side of equation (12) is positive. This suggests
that f is a convex function of 8. The second term contains the term d*T/d@?, the
sign of which is determined by the income and price effects stated above. If
thermal comfort is a luxury service, a lowering of price and an increase in
income would give a positive d*T/d?, but a satiation effect for thermal comfort
may give a negative value. Thus, satiation suggests that f is a concave function
of 6. The sum of these effects is likely to give a non-linear heating energy load
function. The non-linear function may contain convex and concave elements.
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A formal microeconomic analysis of this model is given in Peirson and Henley
(1992a),

Other more practical causes of non-linearities are fixed thermostat settings, the
limited power of heating systems, air-conditioning and use of freezers/fridges.

Empirical evidence

It is important to consider the existence and extent of non-linearities in the load
function. This is achieved though considering the literature and reporting on
work carried out for the Electricity Association. There are two major
approaches to modelling non-linear relationships between load and air
temperature. The first approach is to specify an alternative functional form to
the slandard linear specification, e.g. a quadratic or Jog-linear specification.
This approach has the advantage of simplicity and was used in Baker (1985),
Ramanathan ez al. (1985), Train et al. (1983), Engle et al. (1987), Gregory and
Wordley (1985), Brown (1987), Central Electricity Generating Board (1986),
Electricity Association (1991) and Peirson et al. (1991).

The s'g}cond approach is to use semi- or non-parametric regression to describe
the non-linear relationship between load and air temperature without a prior
restriction on the functional form of the relationship,! This approach is the
preferred when describing and testing for non-linear functions, but it is less
convenient to use in forecasting. Non-parametric estimation is complicated to
mplement but it essentially consists of approximating the true function by a
continuously varying parametric form, see Hardle (1991). There are only two
past studies - Engle et al, (1986) and Peirson and Henley (1992a) ~ that have
considered semi- or non-parametric estimation of the response of electricity
load to air temperature. Both studies found non-linear responses to be
statnsttcally szgmﬁcant and quantitatively important.

Peirson and Henley {1992a) allowed the response to vary linearly within each
ofa pumbé;l‘_of temperature intervals, through the use of a piece-wise linear

! The practice adopted, for example, by Electricity Association (1991) of

dividing the year into several seasonal sub-periods and fitting a linear temperature-load
relationship can be seen as a gsemi-parametric approach in that the annual relationship
is being captured by a piece-wise linear relationship.
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spline function. The model was estimated on panel houschold data from a
Time-of-Use electricity pricing experiment and assumed a fixed household
effect. The large number of households and observations justified not using the
smoothing techniques of more complicated non-parametric estimation
techniques. A non-linear response function was found for most estimation
periods and most types of consumers; the non-linearity being greatest for night-
time consumption and houscholds with off-peak electric storage heating. The
last result emphasises the importance of allowing for differences in the non-
linear responses of different types of consumers and making air temperature
responses conditional on the ownership of heating equipment.

In Peirson and Henley (1992a), the data used to estimate these non-linear
response functions were daily observations on a sample of domestic consumers
over two month periods. Thus, the results showed that statistically and
quantitatively significant non-linear responses can be detected over relatively
limited tempetature ranges. '

The more statistically sophisticated non-parametric study by Engle er al.
(1986} used "a cubic smoothing spline” function that was fitted to the data on
the basis of the goodness of fit and smoothness of the function. The dependent
variable used by Engle er al. was average monthly sales per residential
consumer. The differences in Englé et al.’s procedure from that of Peirson and
Henley (1992a) was necessitated by the considerably fewer number of
observations and the greater number of regressors. Though it was not possible
to test simply for non-linearity, the reported and graphical evidence strongly
suggests that the non-parametric estimates are statisticaily superior to those
obtained under the assumption of linearity.

The practical importance of the non-linearity in the relationship betweén load
and outside air temperature should be considered. Engle et al. (1986) give
convincing graphical evidence of the importance of the differences in- the
estimated non-parametric response of Utility monthly consumption to
temperature and the estimated linear specification of heating and cooling degree
days. Peirson and Henley (1992a) estimated that the use of a linear specification
of domestic night-time consumption in forecasting the effect of a fall in
temperature from 8 to 6 degrees Celsius overpredicts the magnitude of the
change by 23%. The DRI (1981) and QUERI (1981) studies estimated
statistically significant non-linear effects which are of a moderate size.
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The data from the Electricity Association Load Research Programme was used
to investigate the existence of non-linearities in the relationship between load
and temperature, This relationship may vary considerably between the same
half hour of different days of the week, between different half hours and
between different types of consumer. The variability of this relationship will
arise becanse of variations between consumers in electricity use (for heating,
lighting or other temperature-independent purposes) and because of variations
in habitual paiterns of behaviour across the day and across the week. For the
different types of consumers, half howsrs and days of the week, smoothed cubic
spline functions were fitted to the data on average load and air temperature.
Full details of the estimation and data are given in Peirson and Henley {1992a).

The cubic spline function is fitted between data for foad on day d and actual
noon temperature on day d. This follows the common practice of only using the
temperature at one time of the day and not using the temperature variables for
different times of the day, Any functional relationship can be approximated
using a polynomial function of a sufficiently high order. Thus, this approach
allows a graphical presentation of the relationship between the two variables,
which allows the data to dictate the form of the relationship. It allows one to
investigate the extent to which the relationship changes over the range of the
data. Although this form of non-parametric data investigation is rather technical
in implementation, it produces very easily comprehended results, which can
provide a very useful basis for exploratory data analysis. It also has the
important advantage that the fitted relationship is one that places little weight
on outlier observations. The principal drawback is that it is not possible to
contro! for the effects of variation in other factors.

By illustration, Figures 3 and 4 present the cubic spline relationship for
unrestricted domestic consumers in the yoar 1990/91 for the periods 02.00-
02.30 and 17.00-17.30, The panels show scatter plots for 52 observations (53
in the case of Sunday). Load is plotted in the vertical direction and actual
temperatare in degrees Celsius in the horizontal. The panels show that for the
average domestic unrestricted consumer the relationship between load and
temperature exhibits clear non-finearities for most days and times of the day.
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Figure 3: Smoothed cubic spline function for temperature and load: 02.00 to 02.30 hours
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Figure 4: Smoothed cubic spline function for temperature and load: 17.00 to 17.30 hours
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For the later half hour, a general pattern is for the effect on load of a additional
degree rise in temperature to be smaller at higher temperatures. The cubic
spline indicates a possible threshold effect at about 10 degrees Celsius. The
panels also show that there are significant differences between the seven days
of the week. For the early night-time half hour, there is a clear U-shaped
relationship. This is commonly observed in the United States. In the British
context, this may be due to the relative importance at night of the consumption
of refrigerators and freezers. In the daytime, this consumption is relatively less
important and the U-shape disappears. The panels also suggest the possible
existence of convex and concave non-linearities in the relationship between load
and temperature. More pronounced non-linearities are likely to be observed, as
here, over a full year. It may be argued that linearity could represent an
adequate specification over shorter periods of time, however this assumption
was only supported by some of the sub-period data investigated in Peirson and
Henley (1992).

These results are very similar for those for other types of domestic consumess
and half hours. The response of commercial load to temperature is less marked,
though there is still evidence of non-linearities, There Is [ittle evidence of any
systematic relation between industrial load and temperature. These results are
presented and discussed in Peirson and Henley (1992).

6 CONCLUSION

This study shows the importance of appropriate specification in modelling the

relationship between electricity load and temperature. Simple static

specifications of load appear to suffer badly from serial correlation, and with

daily data the extent of this autocorrelation may extend beyond the first order.

Serial correlation appears to bias upwards the estimates of the marginal

response of load to temperature, and may result in serious overprediction of
- load when temperature departs significantly from average.

Even if there is no dynamic causal relationship between past natural variables
and load, it is possible that the autoregressive specifications will provide good
statistical explanations of load which can be easily used for normalisation
purposes. This outcome requires the true static relationship to involve a
strongly serfally correlated error term and a high correlation between past and
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lagged temperature. Both of these are confirmed by empirical analysis of daily
data.

The paper has also investigated the assumptions underlying the effective
temperature construct. It is shown that allowmg the coefficients of lagged
temperature variables to vary freely can give quite different lag structures than
that imposed by the noon effective temperature construct. Noon effective
temperature may be particularly mappropnate when modelling before midday |
electricity load. Overall, the results in the paper suggest that the impact of
temperature on electricity load cannot be accurately predlcted by s1mply
specifying lagged temperature variables which are estimated either freely or
with an imposed restriction, whilst ignoring the highly autoregressive nature of
observed data on both electricity load and temperature.

Finally, the paper shows that there are theoretical reasons for believing that
heating load is a non-linear function of temperature and that empirical evidence
suggests that these non-linearities do exist and are of unporiance There are
likely to be of greatest importance over a full year when summer cooling load
causes an upward relationship between load and temperature and leads to a
slight U-shaped proﬁle for the full year. There is also evidence of a less
pronounced curvature in the negat:ve relationship between load and temperature
at other times of the year.
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