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Abstract

This paper presents a new class of time-deformation (or stochastic volatility) models
for stock returns sampled in transaction time and directed by a generalized duration
process. Stochastic volatility in this model is driven by an observed duration process
and a latent autoregressive process. Parameter estimation in the model is carried out
by using the method of simulated moments (MSM) due to its analytical feasibility and
numerical stability for the proposed model. Simulations are conducted to validate the
choices of the moments used in the formulation of the MSM. Both the simulation and
empirical results obtained in this paper indicate that this approach works well for the
proposed model. The main empirical findings for the IBM transaction return data
can be summarized as follows: (i) the return distribution conditional on the duration
process is not Gaussian, even though the duration process itself can marginally function
as a directing process; (ii) the return process is highly leveraged; (iii) a longer trade
duration tends to be associated with a higher return volatility; and (iv) the proposed
model is capable of reproducing return whose marginal density function is close to that
of the empirical return.
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1 Introduction

Since the seminal paper by Clark (1973), a great deal of research has been devoted to studying

the relationship between the volatility of returns and the measures of market activity such as

volume and the number of trades. The relationship between the stock-price movement and

the stock-trade volume is further investigated by Gallant, Rossi and Tauchen (1992), who

showed that the conditional volatility of returns and the volume are positively correlated.

More recently, Ane and Geman (2000) revisited Clark’s method of dealing with the non-

normality of observed returns by considering a general time change process. They conclude

that in order to recover the normality of returns, the transactions clock is better represented

by the number of trades than the trading volume.

All the above studies appear to have been motivated by the concept that a stock market

is primarily driven by the information flow, which is either private or public, and with

traders, either informed or uninformed (see, for example, Easley and O’Hara, 1992). If the

information flow could be completely retrieved from the market, studying the mechanism of

price process would be relatively straightforward. Therefore, if price process is indexed by

information flow in the stock market, instead of calendar time, the resulting model would be

much simpler to analyze. This motivates the introduction of a so-called time-deformation

model.

Recently, with the availability of high-frequency time series, researchers have come to

recognize that a trade duration (or simply a duration) process, which is defined as the time

interval between two consecutive trades, conveys useful information. This results in the

emergence of new statistical models designed specifically to elicit such information. Most

notably, Engle and Russell (1998) introduce an Autoregressive Conditional Duration (ACD)

model, which can be viewed as an ARMA process with non-Gaussian innovations character-

ized by deterministic GARCH process. This ACD model is recently extended by Bauwens
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and Veredas (2004) by allowing the evolution of the conditional duration process to be driven

by a latent variable, giving rise to a whole class of Stochastic Conditional Duration (SCD)

models. This SCD model, in turn, is further studied using alternative estimation methods

by Feng, Jiang and Song (2004), and more recently by Knight and Ning (2008) and Xu,

Knight and Wirjanto (2008). Another extension of the ACD model focuses on the interde-

pendence between the duration process and the conditional return volatility characterized by

a GARCH process. See, for instance, Ghysels and Jasiak (1998) and Grammig and Wellner

(2002).

In this paper, we follow Engle (2000) and Renault and Weker (2004) in considering the

use of a duration process to capture the information flow in the stock market and formulate a

time-deformation model via a duration process. Due to the complexity of the stock market,

a single stochastic process is unlikely to be able to embrace all the information flow in the

market; as a result, a latent process is introduced in this paper to carry on the remaining

information flow. In other words, we use the duration process and the latent process jointly

to describe the information flow in the stock market. An advantage of this approach is that

we can statistically test whether the duration process itself (or any other process) is able to

share a significant amount of the information flow in the stock market.

It is important to stress that we are not the first to go down this route. Our proposed

model is similar to the model studied by Chernov, Gallant, Ghysels, and Tauchen (2003)

and Huang and Tauchen (2005). Both in our discrete-time model and in their continuous-

time specifications, volatility is driven by two components with one component being highly

persistent, and the other being not. In the above papers both volatility components are

latent, whereas in this paper the persistent component is observed and captured by a duration

process.

The remaining part of this paper is structured as follows. Section 2 proposes a new time-

deformation model and discusses some of its statistical properties. A Monte-Carlo study on
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moment selections is reported in Section 3. Section 4 presents both preliminary and model-

based analyses of the IBM stock return data. Finally we conclude the paper in Section 5.

Proofs of theorems and propositions in this paper are collected in the Appendix.

2 Model Formulation

2.1 Model Specification

A time-deformation model generally consists of two processes: a parent process Xt, which is

usually assumed to be Gaussian N(µs, σ2
0s), and a directing process s = g(t), which maps

the calendar time to the operational time, so that the observed return process Y (t) can be

expressed as Y (t) = X(g(t)).

In both Clark’s (1973) and Ane and Geman’s (2000) models, parameters µ, and σ0 are

assumed to be constant, and g(t) is specified to be the trading volume and the number

of trades respectively. While in both Stock’s (1988) and Ghysels, Gouriéroux and Jasiak’s

(1998) models, g(t) is specified as a logistic function of variables with lags. One potential

drawback of Stock’s (1988) operational-time scale function, g(t), is that it is only a determin-

istic function of a small numbers of variables; as such it may not be ble to fully capture the

information flow in the market and the trading volume in Clark’s (1973) model or the number

of trades in Ane and Geman’s (2000) model. Another possible limitation of the above models

is that the observed sequence of prices is assumed to be equally spaced. Consequently, an

irregular spaced time series will be forced to aggregate in order to be equally spaced (see

Ane and Geman, 2000). This aggregation typically results in information loss, and more

seriously, in a possible change in the underlying stochastic structure of the original data. To

overcome some of these limitations, we present a new time-deformation model below via a

duration process for irregularly spaced, high frequency time series of stock return.

The cumulative duration process may embrace a good deal of information flow in the
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stock market. As for high-frequency financial data, the observed series is typically irregularly

spaced; so it is necessary to index the series sequentially by trades. By convention, trades

that occur at the same time are treated as a single trade. Let N be the total number of trades

occurred within time interval [0, T ]. In order to establish a time-deformation framework, we

first define a correspondence between the return at trade k and the duration at trade k,

k = 1, 2, · · · , N , following Ane and Geman (2000). By definition, the duration dk at trade

k is dk = tk − tk−1. Then, the cumulative duration up to the time of trade k is Dk =
∑

j≤k

dk.

Let pk be the asset price at trade k. The return process Rk at trade k, is defined as the

difference between the logarithmic prices between two adjacent trades, k and k − 1,

Rk = ln(pk) − ln(pk−1), k = 1, . . . , N.

The primary objective of this paper is to study the time-deformation model of the return

process with Dk being the directing process. That is, conditional on the cumulative dura-

tion Dk, the logarithm of asset-price process is assumed to be Gaussian and distributed as

N(µDk, σ
2
0Dk). It follows that

ln(pk) = µDk + zk

√

σ2
0Dk,

with parameters µ, and σ0, and zk is the standard Gaussian, N(0, 1), random variable. So,

the return can be expressed as

Rk = µ(Dk −Dk−1) + zk

√

σ2
0Dk − zk−1

√

σ2
0Dk−1.

Next we postulate another standard Gaussian random variable ǫk, such that

ǫk
√

Dk −Dk−1 = zk

√

Dk − zk−1

√

Dk−1

and {ǫk} are mutually independent, (actually zk can be constructed recursively from the

sequence {ǫk} and an initial state z0), we obtain

Rk = µdk + ǫk

√

σ2
0dk. (1)
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In the real market, generally Dk or dk is not expected to be able to embrace the entire

information flow. Thus, we let an additional term exp(Vk) to carry on the remaining infor-

mation flow in the market. Note that at least, in the short term, it is more important to

incorporate the remaining information flow in the volatility process rather than the drift pro-

cess. Therefore, we allow this remaining information flow to enter the volatility component

of the model. As a result, the model in (1) is extended to be of the following form:

Rk = µdk + ǫk

√

σ2
0 exp(Vk)dk. (2)

To capture the dynamics of the information flow, the Vk is assumed to follow a first-order

Markov process,

Vk = β0 + β1Vk−1 + ηk, (3)

where the innovation ηk is assumed to be Gaussian N(0, σ2), and β0, β1 and σ are the

unknown parameters of the model with a stationarity restriction, |β1| < 1.

Lastly, extending the model in (2) to allow for a power transformation on dk, together

with (3), we obtain a time-deformation return model directed by a duration process:

Rk = α0 + α1dk + exp[α2 + α3 ln(dk) + Vk]ǫk,

Vk = β1Vk−1 + ηk,
(4)

where α0, α1, α2, α3, and β1 are the unknown parameters with a restriction on the volatility

process, |β1| < 1. The innovations (ǫk, ηk) are assumed to follow a bivariate Gaussian,

BV N(0, 0; 1, σ2; ρ); that is, corr(ǫk, ηk) = ρ. In addition, we also assume that the process

{dk} is independent of the innovations, ǫk and ηk.

The salient feature of our model in (4) is the presence of correlation (ρ) between the

return innovation process (ǫk) and the volatility innovation process (ηk). It is designed to

capture the so-called leverage effect, that has come to characterize many of the empirical

return processes. Moreover, when β1 = 0 and σ = 0, Vk will degenerate to a constant zero.

This means that the remaining information flow is not present in addition to what has been
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captured by the duration process. Consequently, Rk is distributed as Gaussian conditional

on dk, which effectively reduces our model to Clark’s (1973) and Ane and Geman’s (2000)

models. When α0 = α1 = α3 = 0, the model in (4) becomes a simple stochastic-volatility

model with correlated errors,

Rk = exp(α2 + Vk)ǫk,

Vk = β1Vk−1 + ηk.
(5)

2.2 Statistical Properties

In this section, we present some statistical properties of the time-deformation model of stock

return in (4). Denote the complex unit i =
√
−1.

Theorem 1. If |β1| < 1, and V0 has the distribution N(0, σ2

1−β2

1

), the process Rk satisfying

the model in (4) is stationary and geometrically ergodic, provided that the duration process

dk is stationary and geometrically ergodic.

Proof: See Appendix.

Initially,we investigate the statistical properties of the model in (4) by setting α0 = α1 =

0. Denoting Xk = ln |Rk|, and taking the logarithmic transformation on both sides of the

return equation in (4) yields,

Xk = α2 + Vk + α3 ln(dk) + ζk,

Vk = β1Vk−1 + ηk,

where ζk = ln | ǫk |.

It is well-known that the characteristic function and the distribution function are a one-

to-one correspondence. Specifically the characteristic function of Xk is given by
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Proposition 1.

Ψk(u) ≡ E{exp(iuXk)}

= exp

{

iu[α2 +
1

2
ln(2 − 2ρ2)]

}

Ψld(α3u) exp

[

− σ2

2(1 − β2
1)
β2

1u
2

]

×
∞

∑

h=0

[

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
Ih(u)

]

,

where Ih(u) =
√

2
π

1
σ

∞
∫

0

[exp(−aξ2)(cξ)2h cos(uξ)]dξ with c = |ρ|

σ
√

2(1−ρ2)
, and a = 1

2σ2(1−ρ2)
,

Ψld(·) is the characteristic function of ln(dk), and Γ(·) is the generalized gamma function.

Proof: See Appendix.

Therefore, the r-th original moments of Xk can be obtained as

E(Xr
k) = i−r d

r[Ψk(u)]

dur

∣

∣

∣

∣

u=0

.

Now we turn to the model in (4) and derive the unconditional moments of the return

process Rk.

Theorem 2. The r-th unconditional moment of Rk is given by:

mRk
(r) ≡ ERr

k

=
∑

j+h+l=r,
0≤j,h,l≤r

r!
j!h!l!

(α0)
j(α1)

h exp(lα2)md(h+ lα3) exp
(

1
2

σ2

1−β2

1

l2
)

×
[

l
∑

j1=0

l!
j1!(l−j1)!

(lρσ)l−j1mN (j1)

]

.

Especially, the unconditional mean of Rk is given by:

mRk
(1) = α0 + α1md(1) + exp(α2)md(α3)ρσ exp

[

σ2

2(1 − β2
1)

]

,

where md(j) and mN (j) are j-th moments of the duration process dk and of the standard

normal variable, respectively.

Proof: See Appendix.
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Proposition 2. For the model in (5), when α2 = 0, the first four moments are given by:

mRk
(1) = ρσA,

mRk
(2) = (1 + 4ρ2σ2)A4,

mRk
(3) = 9ρσ(1 + 3ρ2σ2)A9,

mRk
(4) = [3 + 6(4ρσ)2 + (4ρσ)4]A16,

respectively, where A = exp[ σ2

2(1−β2

1
)
]. Moreover, the third and fourth unconditional central

moments of Rk, denoted by MRk
(3) and MR(4), are given by:

MRk
(3) = ρσA3[3A2(3A4 − 1) + 3(ρσA)2(9A4 − 4) + 2ρ2σ2],

MRk
(4) = 3A16 + (ρσ)2A8(96A8 − 36A2) + (ρσ)4A8(44A8 − 108A2)

+6(ρσ)2A6 + (ρσ)4A4(24A2 − 3),

respectively, where A = exp[ σ2

2(1−β2

1
)
].

Proof: See Appendix.

For the simple volatility model in (5), we can draw on Proposition 2, to make the following

remarks: (1) both the mean and the third moment of Rk are zero if and only if the correlation

ρ is zero. Therefore it is not possible to fit the simple volatility model with correlated errors

for the zero-mean series. Moreover, this model implies that the signs of the mean and the

third moment of Rk are determined by the sign of the correlation ρ; (2) the sign of the

skewness coefficient is the same as the sign of the third central moment. Because A > 1, Rk

has negative skewness (being skewed to the left) if the correlation is negative. In particular,

the Rk has zero skewness (being symmetric) if the correlation is zero; and (3) the kurtosis

of Rk is larger than three regardless of whether the correlation is positive, negative or zero.4

3 Monte-Carlo Based Moment Selection

As mentioned in the introduction, we propose the MSM as our preferred method for the pa-

rameter estimation of the model in (4) because its log-likelihood function proves intractable.5

4This simply re-affirms the fact that the volatility model is useful to describe the leptokurtic (or heavy
tailed) feature of the return data.

5The MSM is proposed by McFadden (1989), and has its genesis in generalized method of moments
introduced by Hansen (1982). See also Gouriéroux et al. (1993) and Gouriéroux and Monfort (1996).
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A critical element in implementing the MSM is to decide which and how many moment con-

ditions are used in the estimation. The key to the selection of the moments in effect boils

down to a sensible trade-off between estimation efficiency and computational feasibility.

In this section we propose a simulation-based technique for a parsimonious selection of the

moments. In many applications, selecting moment conditions is done via Akaike information

criterion (AIC). However, as mentioned above, the log-likelihood of our model in (4) is hard

to compute; so we will base our decision on the performance of point estimation and standard

error estimation among a few candidate settings of moment conditions.

To reiterate, our model in (4) has several distinctive features: (1) the two innovation

terms from the return process and the volatility process, ǫk and ηk, are allowed to be corre-

lated; (2) the volatility is jointly modeled by two stochastic processes, which are the observed

duration process {dk}, and the latent process {Vk}; (3) a drift term, α1dk, is included in the

model; and (4) the drift and volatility terms are also allowed to be correlated as both are

dependent on the duration process. These features of our model provide a great deal of

flexibility in modeling the return process, but unfortunately it comes at a cost of making

statistical inference somewhat less straightforward.6 When the drift term is absent and the

volatility term is fully latent (α1 = α3 = 0), which is a setting postulated in many prior

research, there have been several estimation methods developed to estimate the resulting

model with and without the presence of the correlation between ǫk and ηk. When there is

no correlation between the two innovation processes, Anderson and Sørensen (1996) use a

generalized method of moments (GMM) to estimate the model. When there is correlation in

the model, Harvey and Shephard (1996) suggest a transformation on the model that leads to

uncorrelated innovations, and then use a quasi-maximum likelihood to estimate their model.

6Strictly speaking the additional, explicit dependence of volatility on an unobservable latent process
moves us away from the traditional time-deformation literature and more toward the stochastic volatility
literature. In addition,we should also point out that working with a stochastic volatility model, and hence
departing from the GARCH-type specification may actually constrains our ability to address the number of
economic questions compared to the ACD-type model proposed by Engle (2000).
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When a drift term appears in the model, a two-stage least squares (2SLS) method can be

used to estimate the drift parameters (θ1 = (α0, α1)
′) in the mean part, and the volatility

parameters (θ2 = (α2, α3, σ, ρ))′ in the variance part. See Hamilton (1994), and Gouriéroux

and Monfort (1996). That is, the parameter vector θ2 is first estimated consistently and

then the parameter vector θ1 is estimated by least-squares. However, in the classical setting

the application of the 2SLS method requires the condition that instrumental variables (or

exogenous explanatory variables) are only related to the drift term but not to the volatility

term. Unfortunately, there is no such instrumental variable available for the model in (4),

and consequently the 2SLS is not applicable to this model. Theoretically, if the parameter

vector θ2 is fixed, or can be separately estimated consistently, weighted least squares can still

be applied to estimate the parameter vector θ1, and vice versa. In this paper, we develop a

full MSM estimation for the parameters of the model in (4). Our choice of the MSM method

is largely driven by its analytical feasibility and numerical stability in estimating the volatil-

ity and correlation parameters of the proposed model. Unfortunately, estimating these key

parameters of interest in the study of return processes by other more efficient methods (such

as maximum likelihood estimation) has proven to be very intricate.

In the next three sub-sections we proceed with the discussion of the parameter estimation

in three stages:

Model A:
Rk = exp[α2 + α3 ln(dk) + Vk]ǫk,
Vk = β1Vk−1 + ηk.

Model B: Model A with nonzero ρ = corr(ǫk, ηk).

Model C: Model given by (4).

3.1 Moment Selection in Model A

We begin the analysis by noting that Model A is very similar to the classic log-normal

stochastic volatility model in (5) studied in Andersen and Sørensen (1996). The main differ-
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ence between the model in (5) and Model A is the inclusion of the duration process in the

volatility, which is observed, stationary and exponentially ergodic, in Model A. Andersen

and Sørensen (1996) use the GMM to estimate the parameters of the model in (5). In

particular they were interested in the absolute value of the return, |Rk| instead of the return,

Rk, itself, and perform the GMM estimation based on the first four moments of |Rk|, and

certain auto-covariances of |Rk|. For small sample size, they report that the GMM estima-

tion based on nine moments yields most satisfactory results. These nine moments are the

first four moments of |Rk| and the first, third, fifth and seventh auto-covariances of |Rk|.

When the sample size is larger than 2000, they found that the GMM estimation based on

fourteen moments produces better results. These fourteen moments include the first, third,

fifth and seventh auto-covariances of R2
k in addition to the previous nine moments.

Our approach is based on the logarithm of the absolute return denoted as Zk = ln(|Rk|).

There are two major advantages to using Zk: (1) it lends itself to a model transforma-

tion from a non-linear model to a linear model which parameters are much easier to es-

timate; and (2) with this specification, the GMM objective function does not accumulate

due to the positivity of |Rk|; so the range of the function would be much more reason-

able. As a result, calibration would not be required in our estimation procedure. When

the return is zero, a negligibly small non-zero number, say exp(−40), is assigned to the

observation to allow us to validly take the logarithm of the observation. This modifi-

cation will have little effect on the estimation results. Following Andersen and Sørensen

(1996), we first use nine moments to perform the MSM estimation, and these moments are

EZk,EZ
2
k ,EZ

3
k ,EZ

4
k ,E(ZkZk−1),E(ZkZk−3),E(ZkZk−5), and E(ZkZk−7). Since the presence

of ln(dk) in Model A is related to Zk (since the sample correlation coefficient of the IBM stock

return data considered in this paper is 0.23), we use the first four cross-covariances between

Zk and ln dk, E(Zk ln dk), E(Zk ln dk−1), E(Zk ln dk−2), and E(Zk ln dk−3) to perform the MSM

estimation. As a result, our initial MSM estimation is based on thirteen moments. But the
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MSM estimation based on these thirteen moments did not yield more superior estimation

results than that based on a subset of these thirteen moments. This means that there is still

a scope for simplification from the thirteen-moment based MSM. So we conduct simulations

to identify those moments which are central to the formulation of the MSM estimation.

Note that there are four parameters, α2, α3, β1, and σ, involved in the design of the

simulations. In selecting benchmark (or ”true”) values for the parameters, we take the

following three facts into consideration: (1) as stated earlier, we want to confirm whether the

duration process is a directing process, and if so, α3 should be 0.5. Because of this, we choose

the benchmark values for α3 to be around 0.5; (2) we run a simple linear regression of ln |Rk|

on ln dk. Note that if Model A fits the data well, ln |Rk| should be a linear function of ln dk.

The estimates of α2 and α3 are found to equal 0.46,and 0.21, respectively. The estimated

standard deviation of the error term in the regression model equals 0.92. Therefore, we

choose values around 0.9 as the benchmark values for σ; and (3) if the duration process

adequately captures the information flow in the stock market, the remaining information

(Vk) should be relatively immaterial. Given that the duration process dk is highly persistent,

it is likely that Vk would have small persistence, and, for this reason, the benchmark values of

β1 is chosen to be around 0. In summary the benchmark values for the simulation exercises

are chosen to be:
β1 : −0.3, −0.1, 0.1, 0.3;
σ : 0.9, 1.2, 1.6;
α2 : −0.3, −0.1, 0.1, 0.3, 0.6;
α3 : 0.3, 0.6, 0.9.

Thus we end up with eight settings of the parameter values, as shown in Table 1. In the

first row of Table 1, where α2 = 0.3, α3 = 0.6, β1 = 0.3 and σ = 1.2, we first simulate

a return series based on Model A, then carry out the MSM estimation of the parameters

by using the simulated returns. We find that the MSM estimation based on the following

seven moments produces a reasonable result. These moments are EZk, EZ2
k , EZ3

k , EZ4
k ,

E(ZkZk−1), E[Zk ln(dk)], and E[Zk ln(dk−1)].
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Next a Monte-Carlo simulation is conducted to check the performance of the MSM with

the chosen seven moments. Specifically, 1, 000 simulations are carried out under each of

eight parameter settings. The simulation results are reported in Table 1, including the

averages of estimates over 1000 simulations and the sample standard deviations reported in

the parentheses.7 We note that the 95% confidence intervals easily include the benchmark

value of each parameter. This indicates that the MSM based on the selected seven moments

worked reasonably well, at least for the eight selected parameter settings. All of the estimates

of σ are very close to their benchmark values. In general the bias associated with the MSM

estimate tends to increase with the benchmark value of σ. But the estimates of β have

little bias except for β = −0.1, and the estimates of α2 and α3 are reasonably close to

their benchmark values, except in case #6 in which there is some evidence of biases. In

summary, the MSM estimation procedure formed by the selected seven moments appears to

work reasonably well for all of the parameters of the model.

3.2 Moment Selection in Model B

When the correlation between the return innovation process and the volatility innovation

process, ρ, is treated as a free parameter in the model, the mean of the return process is no

longer zero. In this case, the logarithmic transformation on the absolute return |Rk|, (Zk) or

the innovation, |ǫk|, would lead to loss of information on the sign of the correlation between

the original, untransformed innovations ǫk and ηk (See Harvey and Shephard, 1996). In order

to estimate the sign of the correlation, some odd-order moments of the return process (and

not Zk) would need to be included in the MSM estimation, in addition to the previously

chosen seven moments. Specifically the moments used are selected from two different (but

related) sources; one is from the return process, Rk, and another is from the process Zk.

7Note that after the first simulation, the parameter estimates are used as new starting values in the next
simulation, so the remaining simulations will take less time than the previous ones.
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The odd-order moments of Ri is known to contain information about the correlation

between the return innovation process and the volatility innovation process, ρ. Importantly,

these moments can be used to determine the sign of Rk . In effect, we add the following

additional moments: the second, third, and fourth moments of Rk, as well as the first-order

auto-covariance of Rk, namely , ER2
k, ER3

k, ER4
k, and E(RkRk−1). Note that the first moment

of Rk is reserved for estimation of the constant drift, α0, in the model in (4). To specify the

benchmark values in the Monte-Carlo simulation, due to our focus on the correlation ρ, we

choose six different values of ρ in the range of (−1, 1): −0.9,−0.4,−0.1, 0, 0.1, 0.4, and 0.9.

The benchmark values for α2, α3, β1, and σ remain the same as in the previous simulation

exercise (see Table 1). Again, there are 8 cases under investigation, as shown in Table 2.

At each parameter setting, the MSM is applied to obtain the parameter estimates of

the model. Interestingly, we find that the second and third moments of Rk seem to be the

key contributors to the estimation of ρ. So we decide to use the following nine moments:

EZk, EZ2
k , EZ3

k , EZ4
k , and E(ZkZk−1), E(Zk ln(dk)), E(Zk ln(dk−1)), ER2

k, ER3
k as a basis

for the MSM estimation. As in the previous section, a simulation is used to examine the

appropriateness of the chosen nine moments. For each parameter setting, the simulation is

replicated 1,000 times.

Table 2 presents the simulation results. Once again, the MSM formed from the selected

nine moments seems to provide satisfactory estimates of the model parameters, as every

benchmark parameter falls within the corresponding 95% confidence interval. In particular

the estimates of the correlation ρ are very close to their benchmark values with the correct

expected signs. When ρ = 0, the estimate of ρ is 0.03 with only 1% bias and the correspond-

ing 95% confidence interval contains 0. The estimates of α2, α3, β1, and σ are reasonably

close to their benchmark values, especially when the value of β1 is not too small at, say, −0.1

(case #5), the value of σ is around 1, and the value of α3 ranges from 0.3 to 0.9.
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3.3 Moment Selection in Model C

When a drift term is included in the model, as discussed earlier, the 2SLS method is no

longer applicable. From a regression model’s point of view, the drift term, α0 + α1dk, of the

model in (4) can be treated as a linear function of the duration dk, while the volatility term,

exp(α2 +α3 ln dk +Vk)ǫk, can be regarded as a non-Gaussian error term. In this case we can

use two moments to estimate the two drift parameters α0, and α1: one is the mean of the

returns, ERk, and another is the cross-covariance between Rk and dk, E(Rkdk). Note that

these two moments have not been used so far in the MSM estimation. Therefore, a total of

eleven moments are now used in estimation.

Again we employ a Monte-Carlo simulation to assess the appropriateness of the selected

eleven moments. As before, we begin with one parameter setting, where α0 = 0.5, α1 = 1,

α2 = 0.6, α3 = 1, β1 = 0.2, σ = 0.9, ρ = −0.3. For estimation, we first remove the drift

term from Rk, and the residuals Rk − α̂0 − α̂1dk are used to fit Model A considered in the

previous section. We find that the following ten moments yield reasonable estimation results:

Zk, EZk, EZ2
k , EZ3

k , EZ4
k , and E(ZkZk−1), E[Zk ln(dk)],E[Zk ln(dk−1)], ER2

k, ERk, E(Rkdk).

In other words the third moment of Rk, ER3
k, is found to have little contribution for the

estimation and is, thus, excluded from the above eleven moments.

Next a Monte-Carlo simulation is carried out to examine the performance of the selected

ten moments in the MSM. Initially we attempt to run 1, 000 replications as in the previous

two simulation studies. However, the computation involved turns out to be too time inten-

sive; so we are forced to consider only four parameter settings, as shown in Table 3, and only

100 replications are run at each parameter setting. The simulation results are reported in

Table 3. The estimates are reasonably close to their benchmark values, except β1 which is

marginally insignificant at the 95% level (case#3).

Clearly, the means of the estimates of α3, β1, σ and ρ are close to their benchmark values,
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and each parameter (except β1 in case#3) is included within the 95% confidence interval.

But there is a relatively large bias in case #3, especially for α3. The mean of the estimates of

α3 is 0.25. Fortunately, even in this worst case, the signs of all of the parameters are correctly

estimated, especially the sign of β1 which reflects the interpretation of the Markovian nature

of the latent process Vk. For each of of the parameters, α3, β1, σ and ρ, we plot the histograms

of the simulation estimates in order to assess how far the estimate of each simulation is from

its benchmark value. These are shown in Figure 1 (with the term ”true” value used in place

of ”benchmark” value in each histogram).

The first column in Figure 1 shows the histograms for the parameter α3. The histograms

appear to be skewed, but the benchmark values are situated around the middle points of the

histograms, and the range in each histogram is narrow, except for case #3. Therefore, we

are reasonably confident in the estimate of α3. For the parameter β1, the histograms shown

in the second column in Figure 1 appear to resemble that of a Gaussian, but the benchmark

parameters are a little farther away from the middle points. This indicates that the MSM

has more chance of overestimating the parameters of the model. But the sign is consistent

with that of the benchmark value in each case. For the parameter ρ, the histograms, shown

in the third column of Figure 1, seems more skewed. But the benchmark value of the

parameter resides in the area with the largest frequency in the histogram. The histogram

for the estimate of σ is shown in the last column in Figure 1. These four histograms are

slightly centralized and symmetric around the middle range. The benchmark value is very

close to the middle range of each histogram, and the spread is small as well, suggesting

that the MSM produces a reasonable estimate for the parameter ρ, which is one of the key

parameters in the model.

The estimates of α2 are very close to the benchmark value, and the sample standard

deviations are also relatively small. The estimates of α0, and α1 seem to have a larger

bias than those of the other five parameters. Nevertheless the 95% confidence intervals still
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include the benchmark value of each parameter. In case #1, the estimate of α0 is 1.12, which

is quite far from the benchmark value of 0.5, but the sample standard deviation is as large

as 0.40. The same situation arises in the estimate of α1. Overall the evidence conform to

our prior expectation and suggest that the MSM estimates of the model’s parameters are

not fully efficient.

In conclusion, we have arrived at ten moments based upon which the MSM estimation is

performed in the next section. These selected ten moments are: Zk, EZk, EZ2
k , EZ3

k , EZ4
k ,

and E(ZkZk−1), E(Zk ln(dk)),E(Zk ln(dk−1)), ER2
k, ERk, E(Rkdk).

4 Application: IBM Stock Return Data Analysis

4.1 Preliminary Analysis

We are now in the position to analyze the IBM stock return data that consist of the original

trade data and the original quote data from March 1, 2001 to March 31 of 2001. For the

analysis in this paper, we rely on the marginal moments of the data. The data contain tick-

by-tick trading records including the day, time of a trade, a trade price, bid price and ask

price. Table 4 shows a selected fragment of the data. To avoid both the market opening and

closing effects, all records occurred before 10:00 am and after 3:45 pm are excluded from our

analysis. If multiple trades occur at the same time, for simplicity, only the last one is used

as a representative observation at that time. When one record happens to be incomplete,

we use the nearest-neighbor record to replace it. For example, in Table 4, the four trading

records all occur at 10:57:24, on March 1. Only the last one is kept in our data set, and

the other three are discarded. There is a missing value of ‘ask price’ in this one, which is

imputed by the nearest-neighbor one as 98.61.

After the data cleaning-up process, we end up with 66,678 trading records. To avoid

the bouncing problem, we take the average of bid price and ask price as the trading price.
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Moreover the return is defined by8

Rk = ln

(

Askk + Bidk

2

)

− ln

(

Askk−1 + Bidk−1

2

)

.

We note that for all observations, we multiply the values of the return, Rk, by 10,000 times

as they are very close to 0.

Duration data typically display two seasonality effects: the day-of-week effect and the

time-of-day effect. As to the first effect, duration usually remains high between Monday

and Wednesday, then decreases steadily afterwards and eventually reaches the shortest on

Friday. This effect is caused by trades that appear relatively inactive during the early part

of the week and become substantially more active at the end of the week, In principle this

effect can be removed by taking the average sample duration for a week day. However, in

this paper, we will ignore the day-of-week effect due to the short-time period of our data

set. As to the time-of-day effect, duration first appears short in the morning, increases

substantially around noon, and then decreases toward the closing of the market. As this

second effect appears quite visible on our duration data,9 as shown in Figure 2, we remove

it by using a nonparametric method described in Engle and Russell (1998). The resulting

adjusted duration data are then used for model estimation.

In the analysis, we use the last 10,000 observations of the total of 66,678 observations.10

Figure 3 and Figure 4 show the duration data and the return data respectively.

8An alternative definition of the return is given by

Rk =
1

2
[ln(Askk) − ln(Askk−1) + ln(Bidk) − ln(Bidk−1)].

This definition is particularly useful for the analysis of currency exchange data (see for example Dacorogna
et al., 1993, and Ghysels, Gouriéroux and Jasiak (1998). However these two definitions are equivalent if the
ratio of Askk to Askk−1 is the same as (or close to) the ratio of Bidk to Bidk−1.

9The time-of-day pattern in Figure 2 shows that the duration tends to increase in the morning, in
particular from 11:00 onwards, and reaches a maximum at around 12:30 pm, then decreases (except during
the interval [13:00, 14:00]) toward the closing of the market in an average trading day.

10This is based on the view that if the return process is stationary and exponentially ergodic, using many
more observations need not lead to tangible efficiency gains in the estimation of the model’ parameters,
except, perhaps, to raise the required computing time substantially.
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Table 5 presents the basic statistics for the duration data, the return data and the

adjusted duration data.

From Table 5 we make the following remarks: [i] although the duration and adjusted

duration show little differences in terms of their values of skewness and kurtosis, each displays

large skewness and kurtosis values, suggesting that the duration’s unconditional distribution

is both asymmetric and leptokurtic; while [ii] the return data is approximately symmetric

around zero, suggesting no strong drift occurring over the sequence of the trades. But the

large value of kurtosis indicates that the return’s unconditional distribution is leptokurtic.

The autocorrelation function (ACF) and the partial autocorrelation function (PACF) of

the duration series, shown respectively in Figure 5 and Figure 6, indicate that the duration

process has long memory in its dependence structure. However both the ACF and PACF

plots of the return series in Figure 7 and Figure 8 show that the returns resemble a process

of independent increments. If the returns were truly independent, the absolute values of the

returns would be independent. Figure 9 shows that the ACF of the absolute return series

decays very slowly, suggesting that the volatility of the return process is highly persistent

and, therefore, appropriately modeling the return series will have to account for the time

varying variance of the series.

To inspect the association between the absolute return series and the duration series, we

use the sample cross correlation (CC) function. The CC function between the durations and

the returns at leads is shown in Figure 10 and the difference of two CC functions between

leads and lags is plotted in Figure 11. The CC function decays sharply at the first order

then slowly in both cases, and the difference between the CC function at leads and the CC

function at lags is not significant, suggesting symmetry in leads versus lags. However, it is

clear that both the durations and returns are positively correlated at both leads and lags;

in other words, a longer duration tends to have a larger volatility.
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4.2 Model-based Analysis

In this subsection we fit the adjusted durations and returns to the time-deformation model in

(4) in the presence of both the drift term and the correlation coefficient ρ. The MSM formed

from the chosen ten moments is employed in the parameter estimation, and the results are

reported in Table 6. All parameters are estimated to be significantly different from zero,

except for β1, which is marginally insignificant from zero at the 95% level.

As mentioned earlier, the MSM has its advantages and disadvantages compared to other

methods, in particular, compared to Monte-Carlo maximum-likelihood (MCML) proposed

by Durbin and Koopman (1997).11 One advantage of the MSM is its simplicity as only

moments are required for estimation. Another advantage of the MSM is that computation

time is relatively low compared to the MCML approach. However one well-known limitation

of the MSM relative to the MCML is the apparent lack of efficiency, although, unlike the

MCML, it affords robustness with respect to the distributional assumption relative to the

MCML approach. Another disadvantage of the MSM relative to the MCML is that the

estimates of the error terms are not available for analysis. Therefore, the assumptions about

the error terms can not be empirically verified; so we can not directly check the empirical

validity of the normality assumption of the innovations ǫk and ηk. However, once all of the

parameters in the model in (4) have been estimated, the statistical properties of the return

process Rk defined by the model can be derived. That is, given its stationarity and ergodicity,

we can compare the marginal distribution of the process to the empirical distribution of the

observed returns. However since this marginal distribution is a mixture of dk, ǫk, and ηk,

there is no closed-form expression available. So, to tackle this problem, we resort to the

Monte-Carlo technique to simulate a path of the return process with the length equal to

11The idea of MCML estimation is to reformulate an intractable likelihood function of non-Gaussian
distribution into one of Gaussian (treated as the importance) distribution for which the EM algorithm, with
the E-step being the Kalman filter, can then be applied. Feng. Jiang and Song (2004) use this method to
estimate stochastic duration models.
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10, 000, then compare the estimated marginal density based on the simulated data to the

empirical one. To minimize the initial value effect of the simulation, the first 1000 simulated

returns are discarded. Because β1 is marginally significant at the 95% level, two different

paths are generated, one with the parameter β1 included in the model, and another with the

parameter β1 set equal to zero in the model.

The smoothing spline method is used to obtain the marginal density functions of the

empirical and simulated data. Figure 12 shows the empirical and simulated-based densities

for the model with the parameter β1 included in the model. Figure 13 shows these two

density functions for the model with the parameter β1 set equal to zero in the model. A

simple comparison indicates that the two density functions in Figure 12 are closer to each

other than those in Figure 13. This points to the importance of the effect of β1 on the model

estimation. The two curves in Figure 12 are very similar except that the simulated return

process has a relatively higher probability of having zero returns, and a relatively lower

probability of having returns in intervals (−8,−7) and (6, 7). We also use the Kolmogorov-

Smirnov statistic to formally test that the two smoothed density functions are not statistically

different from each other. We find that both density functions are indeed not different from

each other with a probability of 0.19. We take this as evidence that the model is adequate

for the purpose of describing the marginal property of the return process.

It is important to note that the first case in Table 3 is intentionally set up, so that the

benchmark parameters are close to the estimates obtained from the data analysis. This is

because in doing so, we can examine whether the chosen ten moments lead to a proper MSM

estimation. Apparently, the simulation results support our selection of these moments for

estimation. In this case the 95% confidence intervals always include the benchmark values.

So, we conclude tentatively that no additional moment is needed for the MSM estimation.

For the latent process of the model in (4), Vk = β1Vk−1 + ηk, the variance σ of ηk

is estimated at 0.788 with standard error of 0.024 (which suggests that σ is statistically
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significantly different from 0). This implies that the innovation ηk plays a role in explaining

the return process in the model. We conclude that the return is not Gaussian conditional on

the duration process.12 Furthermore, β1 is marginally different from 0, and there are some

evidence to suggest that Vk is an AR(1) process. In other words, the duration process dk can

be used marginally as a directing process. Lastly, β̂1 equals to 0.2, which points to evidence

of lack of persistency (evidence of high persistency is usually characterized by 1.0 > β̂ > 0.9),

so the informational effect represented by the latent process Vk resides in the market only

for a short while, although an AR(1) structure of Vk still remains a relevant process.

The estimated parameter α̂3 is positive at 0.998; so the volatility of the return process has

a positive relationship with exp(α̂3 ln dk) = dα̂3

k ≈ dk. This means that a longer duration, di,

tends to be associated with a higher volatility of the return. One explanation for this result

can be offered at this time by reasoning that IBM not only is one of the most heavily traded

stock, but it is a relatively large company. In such a company, it makes sense to assume that

uninformed investors tend to dominate informed investors. This is because investors often

like to trade large companies’ stocks for reasons other than the companies own news. This

suggests that investor trading intensity may be less sensitive to the large company specific

news.

The estimated correlation between the two innovations ǫk and ηk is −0.25. This shows a

pronounced leverage effect in the IBM stock returns. Recall that the leverage effect refers to

an asymmetric effect between positive returns and negative returns on volatility. When there

exists a leverage effect, negative return sequences are always associated with an increase in

volatility, and positive returns are associated with a decrease in volatility. This phenomenon

is common for equities and represents a well-known stylized fact in the literature (e.g. Black

1976 or Nelson 1991).

12WQe note that this evidence does not necessarily invalidate the time-deformation literature. An and
Geman (2000), among others, could simply argue that we are using an insufficient economic clock in our
analysis.

22



The estimated coefficient α̂1 is recorded at 1.148. This means that a longer duration leads

to a larger return. Following Engle (2000), we argue that during a slow trading activity, more

informed trades are active in the market, and the spread is high; as a result the return Rk

must be higher in order to compensate for acquiring new information and high spread.

Next the estimated intercept term, α̂0, is calculated at 0.584. This estimate represents

a long-term average return offset by the mean of the duration process and the mean of

exp(α2 + α3 ln dk + Vk)ǫk. Lastly the estimated constant α̂2 equals to 0.645, which, along

with the duration process, captures the long-term volatility of the return.

5 Conclusion

The focus of the paper has been on modeling returns in the time-deformation framework. We

assumed that the duration process is a possible directing process and proposed a bivariate

stochastic time-deformation model. The method of simulated moments (MSM) was applied

to estimate the parameters of this model. An advantage of the MSM, as shown in this

paper, is that it is flexible enough to be adapted for estimation of different specifications

nested within our proposed model. In addition, in comparison to other methods, such as

the maximum-likelihood monte-carlo (MCML) proposed by Durbin and Koopman (2004),

the MSM is likely to take much less computational time to estimate the model presented

in this paper. In particular our MSM, via Monte-Carlo study, selected a relatively small

number of moments, which yield satisfactory estimation results of the model although it

obviously lacks efficiency vis-a-vis the MCML approach. Our main findings in this paper

can be summarized as follows: (1) there was evidence that the duration process is marginally

a proper directing process for the IBM stock return; (2) there was a pronounced leverage

effect in the IBM stock-return process; (3) a longer duration tends to be associated with a

higher volatile return; and lastly (4) the proposed model is capable of reproducing the return
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whose marginal density function is close to that of the empirical return.
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Appendix A: Proofs of Theorems and Propositions

Proof of theorem 1: To proceed with the proof, we first introduce the following lemma

(Tong,1990).

Lemma 1. Assume that (1) Xk is aperiodic and irreducible, (2) there exists a small set

C (see Meyn and Tweedie, 1993), a non-negative measurable function g, and constants

a < 1, γ > 0 and b > 0 such that

E(g(Xk+1)|Xk = x) < ag(x) − γ, x 6∈ C;

and

E(g(Xk+1)|Xk = x) < b, x ∈ C.

Then Xk is geometrically ergodic.
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Let Xk = ln |Rk − α0 − α1dk|, ζk = ln |ǫk|, and Yk = Xk − α3 ln dk. Without the loss of

generality, assume that the means of Yk, ln dk, and Vk are all zero (because a constant mean

does not have any impact on ergodicity and stationarity), and assume that the mean of ζk

is zero (otherwise use ζ̂k = ζk − E(ζk) to replace ζk ). The model in (4) can be rewritten as

Yk = β1Vk−1 + ηk + ζk,
Vk = β1Vk−1 + ηk.

Let Yk = (Yk, Vk)
′, uk = (ζk, ηk)

′, and

A =

(

0 β1

0 β1

)

, B =

(

1 1
0 1

)

.

Thus, the model takes the form of a linear VAR(1) model

Yk = AYk−1 +Buk. (6)

Let Uk = Bkk. So {U′
k} are i.i.d..

Since (ǫk, ηk) is BV N(0, 0; 1, σ2, ρ) and independent of (ǫk, ηk), the mean and variance

and covariance matrix of uk are respectively given by,

E(ζk) = 0, E(ηk) = 0,

var(ζk) =
1

4

1

4
ψ1(

1

2
) =

1

32
π2, var(ηk) = σ2,

cov(ζk, ηk) = 0,

where ψ is digamma function.

It follows that the mean and the variance-covariance matrix of Uk are,

EUk = (0, 0)′;

and

var(Uk) =

(

1
32
π2 0
0 σ2

)

.
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Given model (6), because the spectral norm of A is less than 1, i.e. |β1| < 1, there must

exist a matrix norm || · ||m, which is induced by a vector norm || · ||v, and a positive real

number λ < 1, such that

||Ay||v ≤ ||A||m||y||v ≤ λ||y||v, for any y ∈ R2.

(For more detail of this, see An and Huang, 1996)

Now we prove that the conditions of Lemma 1 are satisfied by the model in (6). Let the

Euclidean norm || · ||e be the test function g. First define a small set C ⊆ R2 in the following

way,

C = {y ∈ R2 : g(y) ≤ c},

where c is a positive number and will be decided later. So,

E[g(Yk+1)|Yk = y] = E(||Yk+1||e|Yk = y)
= E(||Ay + Uk||e|Yk = y)}
≤ E(||Ay||e|Yk = y) + E(||Uk||e|Yk = y)
≤ λ||y||e + E(||Uk||e).

Because E{||Uk||e} is a positive constant, and λ < 1, there must exist a positive number

λ < a < 1, and a positive number c such that

a− λ >
2E(||Uk||e)

c
.

Let γ = E(||Uk||e), and b = ac+ E(||Uk||e),

Thus,

λ||y||e + E(||Uk||e) ≤ [a− 2E(||Uk||e)
c

]||y||e + E(||Uk||e)
≤ a||y|| − γ, when y 6∈ C;

and

λ||y||e + E(||Uk||e) ≤ b, when y ∈ C.

That is, for the above chosen γ, and b, we have that

E[g(Yk+1)|Yk = y] ≤
{

a||y||e − γ, when y 6∈ C;
b, when y ∈ C.
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Therefore, Yk is geometrically ergodic. The stationarity is simply due to the stationarity

of dk and Vk.

If ln dk is stationary, geometrically ergodic and independent of (ζk, ξk), then the geometric

ergodicity of Yk implies that Xk = ln |Rk − α0 − α1dk| is geometrically ergodic.

Next we discuss the geometric ergodicity of {Rk − α0 − α1dk}. Denote this process as

Wk = Rk − α0 + α1dk. Therefore,

Wk =

{

exp(Xk), Wk ≥ 0;
− exp(Xk), Wk < 0;

then we define a function g̃ as:

g̃(wk, vk) =

{

g(exp(xk

2
), vk), wk ≥ 0;

g(− exp(xk

2
), vk), wk < 0;

where xk = 2 ln |wk|.

It is clear that g̃ is measurable, and because g̃(w, v) = g(x), the two conditions listed in

Lemma 1 hold for new process {Wk, Vk}, so the process {Wk} is geometrically ergodic and

stationary.

Moreover if dk is stationary and geometrically ergodic, then the process Rk is stationary

and geometrically ergodic.

Proof of Proposition 1: The following Lemma is originally due to Bennett (1954).

Lemma 2. Let Y1, · · · .Yn be i.i.d. N(δ, 1).
n
∑

h=1

Y 2
h is a non-central χ2 with n degree freedom.

Let Y = ln(χ2/n). Then the characteristic function (CF) of Y is given by:

ΨY (u) = E[exp(iuY )]

= exp[−λ− iu ln(
n

2
)]

Γ(n
2

+ iu)

Γ(1
2
n)

F (
n

2
+ iu,

1

2
n, λ),

where λ = 1
2
nδ2, F (α, β, x) =

∞
∑

h=0

Γ(α+h)Γ(β)
Γ(α)Γ(β+h)

xh

h!
, and Γ(·) is the gamma function.
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Let Ψ(u) ≡ E[exp(iuXk)] be the CF of Xk. Let ΨZ(u) denote the CF of Zk. ΨZ(u) =

E[exp(iuZk)].

To proceed with the proof of Proposition 1, the following two lemmas, Lemma 3 and

Lemma 4, are introduced first.

Lemma 3.

E[exp(iuζ)|η] = exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

[

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
exp(−c2η2)(c2η2)h

]

. (7)

Proof. The following generic notation is used. For any random variable X, X̃ is denoted

X|η, X conditional on η.

Since (ǫ, η) is BV N(0, 0, ; 1, σ2; ρ), ǫ|η ∼ N( ρ

σ
η, 1 − ρ2), i.e. ǫ̃ ∼ N( ρ

σ
η, 1 − ρ2), and

furthermore, ǫ̃new ≡ 1√
1−ρ2

ǫ̃ ∼ N( ρ

σ
√

1−ρ2
η, 1).

By Lemma 2, the CF of ln(ǫ̃2new) is

E[exp(iu ln ǫ̃2new)]

=
1√
π

exp[−λ0 + iu ln 2]Γ(
1

2
+ iu)F (

1

2
+ iu,

1

2
, λ0), (8)

where λ0 = 1
2

(

ρ

σ
√

1−ρ2
η

)2

≡ c2η2, with c = |ρ|

σ
√

2(1−ρ2)
.

It follows from (8) that

E[exp(iuζ)|η] = E[exp(iuζ̃)]

= E
{

exp
[

i
u

2
ln(

√

1 − ρ2ǫ̃new)2
]}

= exp
[

i
u

2
ln(1 − ρ2)

] 1√
π

exp(−λ0 + i
u

2
ln 2)Γ(

1

2
+ i

u

2
)F (

1

2
+ i

u

2
,
1

2
, λ0)

=
1√
π

exp
[

i
u

2
ln(2 − 2ρ2)

]

Γ(
1

2
+ i

u

2
) exp(−c2η2)

×
∞

∑

h=0

Γ(1
2

+ iu
2

+ h)Γ(1
2
)

Γ(1
2

+ iu
2
)Γ(1

2
+ h)

(c2η2)h

h!

= exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

[

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
exp(−c2η2)(c2η2)h

]

.
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Lemma 4.

E{exp(iuη)E[exp(iuζ) | η]} = exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
Ih(u), (9)

where Ih(u) = E[(cη)2h exp(−c2η2) exp(iuη)].

Proof. Applying (7), we have,

E {exp(iuη)E [exp(iuζ | η)]}

= E

{

exp(iuη) exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

[

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
exp(−c2η2)(c2η2)h

]

}

= exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

{

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
E

[

exp(iuη) exp(−c2η2)(c2η2)h
]

}

= exp
[

i
u

2
ln(2 − 2ρ2)

]

∞
∑

h=0

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
Ih(u).

Finally we turn to the proof of Proposition 1.

Proof. By noting Vk−1 ∼ N(0, σ2

1−β2

1

), we have

Ψ(u) = E[exp(iuXk)]

= E{exp[iu(α2 + α3 ln dk + β1Vk−1 + ηk + ζk)]}

= exp(iuα2)Ψld(α3u)E{exp[iu(β1Vk−1)]}E{exp[iu(ηk + ζk)]}

= exp(iuα2)Ψld(α3u) exp

[

−1

2

σ2

1 − β2
1

(β1u)
2

]

E{exp[iu(η + ζ)]}

= exp(iuα2)Ψld(α3u) exp(−1

2

σ2

1 − β2
1

β2
1u

2)E{exp(iuη)E[exp(iuζ |)η]}. (10)

Plugging (9) into (10), we obtain the marginal characteristic function of Xk as:

Ψ(u) = E[exp(iuXk)]

= exp

{

iu

[

α2 +
1

2
ln(2 − 2ρ2)

]}

Ψld(α3u) exp

[

− σ2

2(1 − β2
1)
β2

1u
2

]

×
∞

∑

h=0

[

1

h!

Γ(1
2

+ iu
2

+ h)

Γ(1
2

+ h)
Ih(u)

]

.
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Now we focus on the calculation of Ih(u). Because η ∼ N(0, σ2), we have that

Ih(u) = E[(cη)2h exp(−c2η2) exp(iuη)]

=
1√
2πσ

∞
∫

−∞

{

(cη)2h exp

[

(−c2 − 1

2σ2
)η2

]

cos(uη)

}

dη

=

√

2

π

1

σ

∞
∫

0

[

exp(−aη2)(cη)2h cos(uη)
]

dη,

where a = c2 + 1
2σ2 = 1

2σ2(1−ρ2)
. To carry the above calculation further, let

Jh(u) =

√

2

π

1

σ

∞
∫

0

[

exp(−aη2)(cη)2h+1 sin(uη)
]

dη,

Applying integration by part, when h ≥ 1, we obtain

Ih(u) =

√

2

π

1

σ

(

− c

2a

)

∞
∫

0

[(cη)2h−1 cos(uη)]d
[

exp(−aη2)
]

=

√

2

π

1

σ

c

2a

∞
∫

0

exp(−aη2)d[(cη)2h−1 cos(uη)]

=
(2h− 1)c2

2a
Ih−1(u) −

√

2

π

1

σ

cu

2a

∞
∫

0

[

exp(−aη2)(cη)2h−1 sin(uη)
]

dη

=
(2h− 1)ρ2

2
Ih−1(u) −

|ρ|u
2
√
a
Jh−1(u). (11)

Similarly,

Jh(u) = ρ2Jh−1(u) +
|ρ|u
2
√
a
Ih(u). (12)

It is easy to obtain the initial values for the recursive formulas in(11) and (12) with h = 0

and h = 1 respectively.

I0(u) =
√

1 − ρ2 exp(− 1

4a
u2), (13)

J0(u) =
|ρ|u
2
√
a
I0(u). (14)
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By direct calculation, we can show that the mean of Xk is given by:

E(Xk) = α2 + α3E(ln dk) + E(ηk + ζk)
= α2 + α3E(ln dk) − 1

2
ln(2) + 1

2
ψ(1

2
)

≈ α2 + α3E(ln dk) − 0.6354,

where ψ(u) = d ln Γ(u)
du

.

Proofs of Theorem 2 and Proposition 2: Let mX(r) be the r-th moment of a random

variable X, namely mX(r) = E(Xr). ¿From the model in (4), the r-th moment of Rk is

mRk
(r) = E[α0 + α1dk + exp(α2 + Vk + α3 ln dk)ǫk]

r

=
∑

j+h+l=r,
0≤j,h,l≤r

r!

j!h!l!
(α0)

jE{(α1dk)
h[exp(α2 + Vk + α3 ln dk)ǫk]

l}

=
∑

j+h+l=r,
0≤j,h,l≤r

r!

j!h!l!
(α0)

jαh
1 exp(lα2)mdk

(h+ lα3)E[exp(lβ1Vk−1)]E[exp(lηk)ǫ
l
k]

=
∑

j+h+l=r,
0≤j,h,l≤r

r!

j!h!l!
(α0)

j(α1)
h exp(lα2)md(h+ lα3) exp

(

1

2

σ2

1 − β2
1

l2β2
1

)

E[exp(lη)ǫl].(15)

(16)

Note that we have removed the subscript k in the last equation above due to stationarity.

In the mean time, because η|ǫ ∼ N(ρσǫ, σ2(1 − ρ2)), we have

E{exp(lη)ǫl} = E{E[exp(lη)ǫl|ǫ]}

= E{ǫl exp

[

lρσǫ+
1

2
l2σ2(1 − ρ2)

]

}

= exp

[

1

2
l2σ2(1 − ρ2)

]
∫ ∞

−∞

[

xl exp(lρσx− 1

2
x2)

]

dx/
√

2π

= exp

(

1

2
l2σ2

) l
∑

j1=0

Cj1
l (lρσ)l−j1m(j1), (17)

where y = x− lρσ, and m(j1) is the j1-th moment of the standard normal distribution with
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m(1) = m(3) = 0, m(2) = 1, and m(4) = 3. In particular,

E{exp(lη)ǫl}

=























1, l = 0;
ρσ exp(1

2
σ2), l = 1;

(1 + 4ρ2σ2) exp(2σ2), l = 2;
9ρσ(1 + 3ρ2σ2) exp(9

2
σ2), l = 3;

(3 + 96ρ2σ2 + 44ρ4σ4) exp(8σ2), l = 4.

Plugging (17) into (16), unconditional moments of Rk can be expressed as:

mR(r) =
∑

j+h+l=r,
0≤j,h,l≤r

r!

j!h!l!
(α0)

j(α1)
h exp(lα2)md(h+ lα3) exp

(

1

2

σ2

1 − β2
1

l2
)

×
[

l
∑

j1=0

C
(j1)
l (lρσ)l−j1m(j1)

]

. (18)

The expectation of Rk is

mR(1) = α0 + α1md(1) + exp(α2)md(α3)ρσ exp

[

σ2

2(1 − β2
1)

]

.

So, the proof of Theorem 2 is complete.

For the model in (5), if α2 = 0, (18) leads to

mR(1) = ρσA,

mR(2) = (1 + 4ρ2σ2)A4,

mR(3) = 9ρσ(1 + 3ρ2σ2)A9,

mR(4) = [3 + 6(4ρσ)2 + (4ρσ)4]A16,

where A = exp
[

σ2

2(1−β2

1
)

]

. Therefore, the variance of Rk is

var(Rk) = mR(2) −mR(1)2

= (1 + 4ρ2σ2)A4 − (ρσA)2

= (ρσA)2(4A2 − 1) + A4.
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The third central moment, MR(3), of Rk is

MR(3) = mR(3) − 3mR(1)mR(2) + 2mR(1)3

= 9ρσ(1 + 3ρ2σ2)A9 − 3(1 + 4ρ2σ2)A4ρσA + 2(ρσA)3

= ρσA3[3A2(3A4 − 1) + 3(ρσA)2(9A4 − 4) + 2ρ2σ2],

and the fourth central moment, MR(4), of Rk is

MR(4) = mR(4) − 4mR(1)mR(3) + 6mR(1)2mR(2) − 3mR(1)4

= [3 + 6(4ρσ)2 + (4ρσ)4]A16 − 4ρσA[9ρσ(1 + 3ρ2σ2)A9]

+6(ρσA)2(1 + 4ρ2σ2)A4 − 3(ρσA)4

= 3A16 + 96(ρσ)2A16 + (4ρσ)4A16 − 36(ρσ)2A10 − 108(ρσ)4A10

+6(ρσ)2A6 + 24(ρσ)4A6 − 3(ρσA)4

= 3A16 + (ρσ)2A8(96A8 − 36A2) + (ρσ)4A8(44A8 − 108A2)

+6(ρσ)2A6 + (ρσ)4A4(24A2 − 3).

Because A > 1, we have that A8 > 1, 96A8 − 36A2 > 24, 44A8 − 108A2 > 48, and

24A2 − 3 > 3. Hence,

MR(4) ≥ 3A8 + 24(ρσ)2A8 + 48(ρσ)4A8 − 3(ρσA)4

+3(ρσ)4A4 − 6(ρσ)2A6 − 24(ρσ)4A6

= 3[A4 + 4ρ2σ2A4 − ρ2σ2A2]2

= 3[var(R)]2,

which means that the kurtosis ofRk is larger than 3. It is interesting to know that when ρ = 0,

the kurtosis equals 3A8, which is greater than 3. This concludes the proof of Proposition 2.
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Tables and Figures

Table 1: Simulation result based on 1,000 replications for Model A with ρ = 0.

No. α2 α3 β1 σ
True Mean True Mean True Mean True Mean

1 0.3 0.32 0.6 0.60 0.3 0.32 1.2 1.16
(0.029) (0.029) (0.020) (0.029)

2 −0.1 −0.09 0.6 0.58 −0.1 −0.07 1.2 1.18
(0.022) (0.025) (0.019) (0.030)

3 0.3 0.30 0.9 0.90 −0.1 −0.06 0.9 0.90
(0.016) (0.019) (0.027) (0.017)

4 0.6 0.60 0.3 0.30 −0.3 −0.27 0.9 0.91
(0.015) (0.018) (0.024) (0.015)

5 −0.3 −0.19 0.6 0.51 0.1 0.11 1.6 1.38
(0.096) (0.081) (0.022) (0.201)

6 0.1 0.21 0.9 0.71 −0.1 −0.06 1.6 1.30
(0.100) (0.136) (0.020) (0.293)

7 0.3 0.31 0.9 0.90 0.1 0.14 0.9 0.89
(0.016) (0.020) (0.027) (0.016)

8 0.1 0.11 0.6 0.59 0.1 0.12 1.2 1.17
(0.023) (0.026) (0.019) (0.027)
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Table 2: Simulation results based on 1,000 replications for Model B.

No. α2 α3 β1 σ ρ
True Mean True Mean True estimate True Mean True Mean

1 0.3 0.28 0.6 0.59 ) 0.3 0.32 0.9 0.89 −0.1 −0.08
(0.017) (0.019) (0.024) (0.016) (0.018)

2 0.3 0.28 0.6 0.59 0.1 0.12 1.2 1.20 −0.4 −0.36
(0.020) (0.022) (0.018) (0.015) (0.016)

3 −0.3 −0.29 0.3 0.33 −0.3 −0.29 0.9 0.91 0.9 0.90
(0.015) (0.020) (0.025) (0.017) (0.079)

4 0.1 0.08 0.9 0.89 0.3 0.31 1.2 1.20 0.1 0.12
(0.021) (0.021) (0.018) (0.017) (0.019)

5 0.3 0.29 0.9 0.90 −0.1 −0.07 0.9 0.91 0.1 0.12
(0.015) (0.019) (0.026) (0.015) (0.020)

6 −0.3 −0.31 0.6 0.61 0.1 0.11 1.2 1.20 0.4 0.41
(0.021) (0.022) (0.018) (0.016) (0.017)

7 −0.3 −0.31 0.9 0.88 −0.1 −0.09 1.2 1.20 −0.9 −0.89
(0.018) (0.022) (0.023) (0.018) (0.029)

8 0.3 0.28 0.9 0.90 0.1 0.12 1.2 1.20 0.0 0 .03
(0.018) (0.021) (0.018) (0.016) (0.018)
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Table 3: Simulation results based on 100 replications for the complete model in (4).

No. α0 α1 α2 α3 β1 σ ρ

True 0.5 1 0.6 1 0.2 0.9 0.3

1 Mean 1.12 0.79 0.63 1.00 0.22 0.86 −0.26

SE 0.40 0.25 0.06 0.05 0.03 0.06 0.06

True 0.4 0.6 0.3 1 0.2 0.6 −0.2

2 Mean 0.57 0.54 0.30 1.00 0.26 0.59 −0.18

SE 0.19 0.12 0.02 0.02 0.05 0.02 0.09

True 0.0 1.5 1.0 0.5 −0.2 0.6 0.9

3 Mean −0.15 1.74 1.19 0.25 −0.11 0.61 0.79

SE 0.11 0.18 0.05 0.07 0.05 0.08 0.14

True 1.2 1 0.6 0.6 0.1 1.2 −0.1

4 Mean 1.36 1.02 0.60 0.62 0.12 1.18 −0.09

SE 0.23 0.16 0.03 0.03 0.02 0.03 0.02

Note: ’SE.’ stands for the estimated standard error.
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Table 4: Illustrative fragment of IBM stock trading data.

Day Hour Min Sec. Price Bid Ask
1 10 57 24 98.60 98.51 98.60
1 10 57 24 98.60 98.50 98.60
1 10 57 24 98.61 98.50 98.61
1 10 57 24 98.61 98.50 .

...
...

...
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Figure 1: Histograms of 100 simulation estimates for α3,β1, σ and ρ.

0.80 0.85 0.90 0.95 1.00 1.05 1.10

0
1
0

2
0

3
0

4
0

5
0

6
0

true value=1

alpha

0.94 0.96 0.98 1.00 1.02 1.04

0
5

1
0

1
5

2
0

true value=1

alpha

0.2 0.3 0.4 0.5

0
1
0

2
0

3
0

true value=0.5

alpha

0.56 0.60 0.64 0.68

0
5

1
0

1
5

2
0

true value=0.6

alpha

-0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30

0
1
0

2
0

3
0

4
0

true value=0.2

beta

0.15 0.20 0.25 0.30 0.35 0.40

0
5

1
0

1
5

2
0

2
5

true value=0.2

beta

-0.20 -0.15 -0.10 -0.05 0.0

0
5

1
0

1
5

true value=-0.1

beta

0.10 0.12 0.14 0.16

0
5

1
0

1
5

2
0

true value=0.1

beta

0.70 0.75 0.80 0.85 0.90

0
1
0

2
0

3
0

4
0

5
0

true value=0.9

sigma

0.52 0.54 0.56 0.58 0.60 0.62 0.64

0
5

1
0

1
5

2
0

true value=0.6

sigma

0.6 0.7 0.8

0
5

1
0

1
5

2
0

true value=0.6

sigma

1.05 1.10 1.15 1.20

0
1
0

2
0

3
0

4
0

true value=1.2

sigma

-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10

0
5

1
0

1
5

2
0

2
5

3
0

true value=-0.3

rho

-0.4 -0.3 -0.2 -0.1 0.0

0
1
0

2
0

3
0

true value=-0.2

rho

0.4 0.5 0.6 0.7 0.8 0.9

0
5

1
0

1
5

2
0

true value=0.9

rho

-0.15 -0.10 -0.05 0.0

0
1
0

2
0

3
0

true value=-0.1

rho

41



Figure 2: Time-of-day effect of trade duration.
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Table 5: Summary statistics of duration, adjusted duration and returns.
Data Min. Median Mean Max. Std. Dev. Skewness Kurtosis

Duration 1 5 6.226 67 5.47 2.67 12.17
Adj. duration 0.12 0.65 0.9 8.98 0.78 2.56 10.91

Return -66.63 0 0 71.26 4.13 0.26 28.47

Note: The unit of Duration and Adj. (adjusted) duration is in second, while the unit of return is

10−5 dollar.
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Figure 3: Trade duration.
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Trade0 2000 4000 6000 8000 10000

Re
tur

n (
10

^-5
 $)

-40
-20

0
20

40
60

43



Figure 5: ACF of adjusted trade duration series.
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Table 6: IBM stock data analysis:
Estimates and their standard errors.

Parameter Estimate Std. err. Lower 95% C.I. Upper 95% C.I
α0 0.584 0.002 0.580 0.588
α1 1.148 0.019 1.110 1.186
α2 0.645 0.024 0.597 0.693
α3 0.998 0.030 0.938 1.058
β1 0.207 0.117 −0.090 0.324
σ 0.788 0.024 0.740 0.836
ρ −0.251 0.037 −0.325 −0.177
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Figure 6: PACF of adjusted trade duration series.
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Figure 7: ACF of trade return series.
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Figure 8: PACF of trade return series.
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Figure 9: ACF of the absolute trade returns series.
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Figure 10: CC function of durations and returns at leads.
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Figure 11: The difference of CC functions between leads and lags.
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Figure 12: Empirical and implied density functions with β1.
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Figure 13: Empirical and implied density functions without β1.
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