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Abstract

Contrasting two approaches in real options valuation: contingent claims versus

dynamic programming

This paper compares two well-known approaches for valuing a risky investment using real

options theory: contingent claims (CC) with risk neutral valuation and dynamic program-

ming (DP) using a constant risk adjusted discount rate. Both approaches have been used in

valuing forest assets. A proof is presented which shows that, except under certain restrictive

assumptions, DP using a constant discount rate and CC will not yield the same answers

for investment value. A few special cases are considered for which CC and DP with a con-

stant discount rate are consistent with each other. An optimal tree harvesting example is

presented to illustrate that the values obtained using the two approaches can differ when

we depart from these special cases to a more realistic scenario. Further, the implied risk

adjusted discount rate calculated from CC is found to vary with the stochastic state variable

and stand age. We conclude that for real options problems the CC approach should be used.

Keywords: optimal tree harvesting, real options, contingent claims, dynamic programming
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1 Introduction

Over the past two decades, developments in the theory and methodology of financial eco-

nomics have been applied to advantage to general problems of investment under uncertainty.

The well known book by Dixit and Pindyck [1994] draws the analogy between valuing finan-

cial options and investments in real assets or real options which involve irreversible expendi-

tures and uncertain future payoffs depending on one or more stochastic underlying variables.

Natural resource investments, including forestry, provide a good application of real options

theory as their value depends on volatile commodity prices and they entail decisions about

the timing of large irreversible expenditures.1

Two particular approaches used in the real options literature are dynamic programming

(DP) and contingent claims (CC). DP is an older approach developed by Bellman and

others in the 1950’s and used extensively in management science. DP involves formulating

the investment problem in terms of a Hamilton-Jacobi-Bellman equation and solving for the

value of the asset by backward induction using a discount rate which reflects the opportunity

cost of capital for investments of similar risk. In practice dynamic programming typically

involves adopting an exogenous constant discount rate.

The contingent claims approach has its origins in the seminal papers of Black and Scholes

[1973] and [Merton, 1971, 1973] and is now standard in many finance texts.2 This approach

assumes the existence of a sufficiently rich set of markets in risky assets so that the stochastic

component of the risky project under consideration can be exactly replicated. Through

appropriate long and short positions, a riskless portfolio can be constructed consisting of

the risky project and investment assets which track the project’s uncertainty. In equilibrium

1Examples of applications of real options theory to natural resources include Paddock et al. [1988],

Brennan and Schwartz [1985], Schwartz [1997], Slade [2001] and references therein, Harchaoui and Lasserre

[2001], Mackie-Mason [1990], Saphores [2000], and papers contained in Schwartz and Trigeorgis [2001]. A

review of the empirical significance of real options in valuing mineral assets is contained in Davis [1996].
2See Hull [2006] and Ingersoll [1987] for example. Dixit and Pindyck [1994] and Trigeorgis [1996] present

contingent claims in a real options context.
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with no arbitrage opportunities, this portfolio must earn the risk free rate of interest, which

allows the value of the risky project to be determined. The no-arbitrage assumption avoids

the necessity of determining the appropriate risk adjusted discount rate. However if a portion

of the return from holding the risky asset is due to an unobservable convenience yield, it is

still necessary to estimate either that convenience yield or a market price of risk, which is

often problematic.3

Both CC and DP have been used in the natural resources literature. For example Slade

[2001] and Harchaoui and Lasserre [2001] use a contingent claims approach to value mining

investments. In the forestry economics literature, the DP approach has generally dominated.

An exception is Morck et al. [1989] who use a CC approach along with an assumed conve-

nience yield for an application in forestry. In those forestry papers that use a DP approach,

there is rarely much discussion of the choice of discount rate. Sometimes a risk neutral

setting is explicitly assumed allowing use of a riskfree discount rate; other times a rate is

adopted without explanation. A selection of papers that use the dynamic programming

approach include Clarke and Reed [1989], Haight and Holmes [1991], Thomson [1992], Yin

and Newman [1997], Plantinga [1998], Gong [1999], Insley [2002], and Insley and Rollins

[2005]. Alvarez and Koskela [2006] and Alvarez and Koskela [2007] deal with risk aversion

by explicitly modelling the decision maker’s subjective utility function.

One reason for the persistence of the DP approach in the forestry literature is likely

the difficulty in estimating the convenience yield. In theory futures prices could be used to

obtain an estimate. Futures markets do exist for lumber, however currently the maturity

of futures contracts is less than one year, while the typical optimal harvesting problem is

applied to a very long lived investment, with stands of trees maturing over 40 to 70 years.4

3Dixit and Pindyck [1994] discusses the convenience yield in detail. It represents a return that accrues to

the holder of the physical asset but not the holder of an option on the asset. For commodities such as copper,

oil, or lumber the convenience yield represents the the benefits of holding inventory rather than having to

purchase the commodity in the spot market.
4There have been papers addressing this issue for other commodities including Gibson and Schwartz

[1990] and Schwartz and Smith [2000]. Another difficulty with estimating a convenience yield from a timber
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In comparing the two approaches, Dixit and Pindyck [1994] note that each has advantages

and disadvantages, but that CC provides a better treatment of risk. They point out that

one problem with the investment rule derived from DP is that

“(...)it is based on an arbitrary and constant discount rate, ρ. It is not clear

where this discount rate should come from, or even that it should be constant

over time” (page 147).

On the other hand, a disadvantage of CC is that it requires a sufficiently rich set of risky

assets so that the risky components of the uncertain investment can be exactly replicated.

This is not required of dynamic programming;

“(...) if risk cannot be traded in markets, the objective function can simply

reflect the decision maker’s subjective valuation of risk. The objective function is

usually assumed to have the form of the present value of a flow ‘utility’ function

calculated using a constant discount rate, ρ. This is restrictive in its own way, but

it too can be generalized. Of course we have no objective or observable knowledge

of private preferences, so testing the theory can be harder” (page 121).

In a review of Dixit’s and Pindyck’s book, Schwartz [1994] disagrees with the common

practice of using a discount rate that simply reflects the decision-maker’s subjective evalua-

tion of risk. Schwartz states that

“(...) there is only one way to deal with the problem, which is firmly based

on arbitrage or equilibrium in financial markets. If what the decision-maker is

trying to get is the market value of the project, then, obviously, a subjective

discount rate will not do the job” [Schwartz, 1994, page 1927].

Schwartz notes that when the risk of an investment is not spanned by existing assets the

value of the option should be estimated by adjusting the drift of the stochastic process for

the state variable using an equilibrium model of asset prices.

investment is that a stand of trees produces several different products such as lumber and paper whereas

futures are traded in lumber only.
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An intuitive explanation for why the results of CC and DP with a constant discount

rate will differ is provided in Ingersoll [1987, pages 311-313]. Trigeorgis [1996, chap 2] shows

that using a constant risk adjusted discount rate implies that the market risk born per

period is constant or, in other words, the total risk increases at a constant rate through

time. Trigeorgis [1996] draws on the work of an earlier paper by Fama [1977] which deals

with the valuation of multi-period cash flows using a Capital Asset Pricing Model (CAPM)

framework. Fama [1977] shows that the correct risk adjusted discount rates implied by the

CAPM model will not in general be constant, but must evolve deterministically through

time. However Fama notes that the use of a constant risk adjusted discount rate may be a

reasonable approximation in certain cases for “an investment project of a given type or for

a firm whose activities are not anticipated to change much in nature through time” [Fama,

1977, page 23]. As is pointed out by Trigeorgis [1996], it is questionable whether this will be

the case when a decision maker is faced with choices such as the potential to delay, expand,

or contract an investment - i.e. in the presence of embedded options.

Although CC is judged preferable because of its better treatment of risk, it may be asked

whether the DP approach is good enough in practical applications, particularly when it is

difficult to obtain a reliable estimate of the convenience yield or market price of risk. In this

paper we derive the condition that must hold for CC and DP, with a constant risk adjusted

discount rate, to give the same result. We show that this condition will hold for certain

simple cases, one of which is of particular interest because of its appearance in the literature

in stylized real options models. This special case is an infinitely-lived American option with

zero exercise cost and underlying state variable(s) that follows geometric Brownian motion.

We argue that in more realistic real options problems, it is unwise to assume that the DP

approach will give an adequate result. To demonstrate this point, we provide an example

where the use of DP or CC makes a significant difference to the estimated value ofa a

real option. The example is an optimal tree harvesting problem which has been examined

previously in the literature. In this problem, the value and optimal harvest time of a stand

of trees depend on the price of timber, which is assumed to be stochastic and mean reverting,
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and on the age of the stand.

In summary, the contributions of this paper to the literature are as follows.

• We present a proof of the conditions which must hold in order for the CC and DP

approaches to give identical results. Although this proof is developed in the context of

an optimal harvesting problem, it applies to a large class of real options problems in

which the underlying stochastic variable follows a fairly general Ito process.

• We show that the condition for the equivalence of CC and DP will hold for some simple

cases.

• We provide an example of the empirical significance of using DP versus CC in an

optimal tree harvesting problem.5 We show numerically how the risk adjusted discount

rate, implied by the CC approach, changes with the stochastic state variable.

In the next section we derive the condition which must hold for CC and DP to be consis-

tent and examine several cases for which the condition is met. In Section 3 we present the

empirical example of the optimal tree harvesting problem to demonstrate that the difference

between CC and DP may be significant. In Section 4 we discuss the results and lastly in

Section 5 we provide some concluding comments.

2 CC and DP approaches to a real options problem

For concreteness, we use an optimal tree harvesting problem to compare the CC and DP

approaches. However the resulting partial differential equations that describe the value of

the option can be easily adapted to the valuation of other investment problems that depend

on a single stochastic state variable. The extension to additional stochastic state variables

is also straight forward.

5The particular harvesting problem presented was analyzed in Insley and Lei [2007].
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2.1 Dynamic Programming

In this section we describe the optimal tree harvesting model using the dynamic programming

approach. The objective is to value the right to harvest a stand of trees on land that will be

harvested over an infinite number of future rotations. We are using the model presented in

Insley and Rollins [2005] and reproduce the details here for the convenience of the reader.

We denote the value of this asset as W , which depends on the price of timber (P ), the

age of the stand (α), and time (t). The price of timber is assumed to follow a known Ito

process:

dP = a(P, t)dt+ b(P, t)dz. (1)

In Equation (1), a(P, t) and b(P, t) represent known functions and dz is the increment of a

Wiener process.

The age of the stand, or time since the last harvest, α, is given as

α = t− th (2)

where t is the current time and th is the time of the last harvest. Wood volume is assumed

to be a deterministic function of age:

Q = g(α). (3)

Age is used as a state variable, along with price, P . It follows that:

dα = dt. (4)

Using the dynamic programming approach the decision to harvest the stand of trees is

formulated as an optimal stopping problem where the owner must decide in each period

whether it is better to harvest immediately or delay until the next period. This decision

process can be expressed as a Hamilton-Jacobi-Bellman equation:

W (P, t, α) =max
{

(P − C)Q+W (P, t, 0);

A(Q)∆t+ (1 + ρ∆t)−1E[W (P + ∆P, t+ ∆t, α + ∆α)]
}

(5)
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where

E = expectation operator

W = value of the opportunity to harvest using DP

P = price of timber

C = per unit harvesting cost

Q = current volume of timber

α = age of stand

A(Q) = per period amenity value of standing forest less any management costs

ρ = risk adjusted annual discount rate

t = time.

The first expression in the curly brackets represents the return if harvesting occurs in the

current period, t. It includes the net revenue from harvesting the trees plus the value of the

land after harvesting, W (P, t, 0). This is the value that could be attained if the land were

sold subsequent to the harvest, assuming that the land will remain in forestry.

The second expression in the curly brackets is the value of continuing to hold the asset

(the continuation region) by delaying the decision to harvest for another period. It includes

any amenity value of the standing forest, such as its value as a recreation area, less any forest

management costs, A(Q). In this paper amenity benefits are set to zero so that A(Q) reflects

only management costs. The value in the continuation region also includes the expected value

of the option to harvest in the next period, discounted to the current period. The discount

rate is set exogenously, but is intended to reflect the return required by an investor to hold

the asset over ∆t.

Following standard arguments (Dixit and Pindyck [1994], Wilmott et al. [1993]), we can

derive the following partial differential equation that describes W (P, t, α) in the continuation

region. We denote W (P, t, α) as W when there is no confusion. Subscripts t, P and α indicate
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partial derivatives with respect to those variables.

Wt +
1

2
b2(P, t)WPP + a(P, t)WP − ρW + A(Q) +Wα = 0. (6)

2.2 Contingent Claims

We start with the assumption that markets are sufficiently complete that project risk can

be eliminated through hedging with another risky asset. We also assume that there are no

arbitrage opportunities in the economy. Denoting our project of interest as V1, we can find

a traded asset, V2, that also depends on the stochastic underlying variable P . V2 is not the

physical commodity, lumber, but rather it is a traded contract that depends on the price of

lumber - perhaps the shares of a firm with harvesting rights to nearby stands of trees. By

Ito’s lemma we know that V1 and V2 will follow stochastic processes as follows:

dVj
Vj

= µjdt+ sjdz, j = 1, 2 (7)

where µj and sj are functions of P , t and α. In particular,

µj =

[
(Vj)t + a(P, t)(Vj)P + (Vj)α +

1

2
b2(P, t)(Vj)PP

]
1

Vj

sj =
b(P, t)

Vj
(Vj)P (8)

where

(Vj)P ≡
∂Vj
∂P

; (Vj)PP ≡
∂2Vj
∂P 2

; (Vj)t ≡
∂Vj
∂t

; (Vj)α ≡
∂Vj
∂α

. (9)

Note that sj is the volatility of asset j.

We can form an instantaneously riskless portfolio of V1 and V2 which under our no-

arbitrage assumption must earn the riskfree rate of interest. Following standard arguments

(presented in Appendix A) the following relationship will hold:

µ1 + A(Q)
V1
− r

s1

=
µ2 − r
s2

≡ λ. (10)

µj is the capital gain on the contingent claim Vj. We also introduce the notation µT to refer

to the total return on an asset from all sources. For our tree stand, µT1 = µ1 + A(Q)
V

. λ, called
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the market price of risk of P, represents the excess total return over the risk free rate per

unit of variability. By the no arbitrage assumption, it must be the same for all contingent

claims that depend on P and t. λsj is the risk premium for contingent claim j. Dropping

the j subscript for our forest stand of interest,

µ+ A(Q)
V
− r

s
= λ. (11)

Substituting for µ and s from Equation (8), we rearrange Equation (11) to get the partial

differential equation that must be satisfied the contingent claim if it is to be held by a willing

investor.

Vt +
1

2
b2(P, t)VPP + [a(P, t)− λb(P, t)]VP − rV + A(Q) + Vα = 0. (12)

According to Equation (12), we are able to value our contingent claim using the risk free

rate as the discount rate, and reducing the drift rate a(P, t) of the stochastic state variable

by a factor λb(P, t) that reflects the extra return required to compensate for risk. Any asset

dependent on P can be valued by reducing the expected growth rate of P by λb(P, t) to

[a(P, t)−λb(P, t)] and discounting the resulting net benefits by the risk free rate. This result

called equivalent risk neutral valuation is due to Cox et al. [1985].

The adjustment of the drift term a(P, t) by λ results from the fact that we have hedged

the price risk in V1 with another contract, V2. If, instead, we were able to trade lumber in

financial markets then we could hedge price risk directly by buying and selling timber, and

our hedging asset, which we will call V3, would be V3 = P . The return from holding lumber,

µT3 , would be the sum of the capital gain, a(P,t)
P

, and any convenience yield that results from

holding an inventory of lumber, δ. In this case, instead of Equation (12), the fundamental

partial differential equation is of the alternate form (see Appendix A):

Vt +
1

2
b2(P, t)VPP + (r − δ)PVP − rV + A(Q) + Vα = 0. (13)

If the convenience yield is zero then we are left with the riskless rate associated with the

term VP . This is the well known result that if the underlying stochastic variable can be
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traded in financial markets represents and the convenience yield is zero then a(P, t) can be

replaced by the riskfree rate and there is no need to estimate a market price of risk.

In general, however, we would not expect the convenience yield to be zero, particularly

for a storable commodity. Thus with the CC approach it is required to estimate either

the market price of risk or the convenience yield, which can be problematic. Both of these

parameters may be non-constant. For some natural resource investments it is possible to

estimate the market price of risk from futures contracts on underlying traded commodities.6

2.3 Comparing CC and DP

In this section we derive a necessary and sufficient condition for CC and DP to yield the same

result. Let τ be defined as time remaining in the option’s life, i.e. τ ≡ T − t. Subtracting

ρV from both sides of Equation (12), converting from t to τ , and rearranging terms, we get

−Vτ +
1

2
b2(P, τ)VPP + a(P, τ)VP − ρV + Vα + A(Q) = λb(P, τ)VP − (ρ− r)V. (14)

Let Z = V −W where V is the known solution to Equation (14). Recall that V refers to

the value of the investment using CC and W refers to the value using DP. Subtract Equation

(6) (expressed in terms of τ) from Equation (14):

−Zτ +
1

2
b2(P, τ)ZPP + a(P, τ)ZP − ρZ + Zα = λb(P, τ)VP − (ρ− r)V. (15)

It is obvious that if Z = 0, the left hand side of Equation (15) will be zero implying on the

right hand side λb(P, τ)VP − (ρ − r)V = 0. If the right hand side is zero, the risk adjusted

discount rate can be expressed as

ρ = r +
λb(P, t)VP

V
= r + λs. (16)

Equation (16) provides a sufficient condition for DP and CC to give the same result. What is

not obvious is that Equation (16) is also a necessary condition. A proof is given in Appendix

6Eduardo Schwartz has done extensive work in this area. See for example Schwartz and Smith [2000],

Schwartz [1998], and Schwartz [1997].
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B that Z = 0 if and only if Equation (16) holds. We conclude that the risk adjusted

discount rate, ρ, will be constant if the volatility of the asset s (as defined in Equation (8))

is constant. The asset’s volatility depends on V , VP , and b(P, t) and we would not expect it

to be constant except in special cases.

2.4 Special cases where the risk adjusted discount rate, ρ is con-

stant

We derive special cases in which ρ will be constant so that with the appropriate choice of ρ

CC and DP will give the same result. These cases are simplistic and generally not realistic

for most applied real options problems. However these have been used in the literature in

stylized real options problems because an analytical solution can be obtained.

From Equation (16) we can observe that in the trivial case when the market price of

risk, λ, is zero,then ρ = r and CC and DP will give the same result. From Equation (10),

we observe that λ = 0 implies that the total asset’s total return from all sources equals the

riskless rate µT = r.7

If λ 6= 0, then for a constant ρ we require that

λb(P, t)VP
V

= K1 (17)

for some constant K1. If we assume that λ is constant then we can derive a more general

expression of the form that the solution to V must take to imply a constant ρ. For Equation

(17) to hold, the variance rate b(P, t) will need to be time invariant, so we rewrite b(P, t) as

b(P ) and write Equation (17) as:

dV

V
= K1

dP

b(P )
. (18)

7Knudsen et al. [1999] showed the equivalence of CC and DP when ρ = r.
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It follows that: ∫
dV

V
= K1

∫
dP

b(P )

or

V = eK1

∫
dP

b(P )
+K2 (19)

with constants K1 and K2. When b(P ) takes the simple form used in this paper b(P ) = σP ,

V will have a solution of the form

V = K3P
K4 (20)

with constants K3 and K4.

An example of a solution of this form is V as a simple linear function of P . K4 = 1 and

V = K3P . Substituting for V , VP and b(P ) into Equation (16) gives

ρ = r +
λσPg

gP

= r + λσ (21)

In this case, DP with a constant discount rate as specified in Equation (21) will be consistent

with the CC approach.

Equation (20) is the form of the solution for the problem presented in Dixit and Pindyck

[1994, pages 136-144] which asks at what point it is optimal to pay a sunk cost I in return

for a project with a value V that evolves according to geometric Brownian motion and is

infinitely lived.8 The problem presented in Dixit and Pindyck [1994] is a variation of the

example in the much cited work by McDonald and Siegel [1986] which addresses a similar

question, but both project value and investment cost evolve according to geometric Brownian

motion. We briefly review the McDonald and Siegel [1986] example here as it demonstrates

the extension of condition in Equation (16) to two stochastic variables.

Let the value of an investment project be denoted by P and investment cost by C and

8Dixit and Pindyck denote V as the stochastic variable, and the value of the option as F .
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assume, as in McDonald and Siegel [1986], that these factors behave according to:

dP = αPPdt+ σPPdzP

dC = αCCdt+ σCCdzC (22)

The firm has the opportunity to pay Ct to install an investment project with present value Pt.

For an infinitely lived investment opportunity the problem is to find the boundary B∗ = Pt

Ct

at which the investment should occur to maximize

E0[(Pt − Ct)e−ρt] (23)

where ρ is the appropriate discount rate, which will be specified below, and E0 refers to the

expectation at time zero. The value of this investment opportunity can be solved analytically

as shown in McDonald and Siegel [1986] to obtain the following expression:

V (P,C) =
(B∗ − 1)

B∗β
P βC1−β. (24)

where

β =

√(
αP − αC

σ2
− 1

2

)2

+
2(ρ− αC)

σ2
+

(
1

2
− αP − αC

σ2

)
B∗ =

β

β − 1

σ2 = σ2
P + σ2

C − 2%PCσPσC (25)

where %PC refers to the correlation between the rates of increase of P and C.9

It can be shown using arguments similar to those in the previous section that for the case

of two stochastic factors which follow GBM, as in Equation (22), the condition for DP and

CC to give the same answer is:

ρ = r +
λPσPPVP + λCσCCVC

V
. (26)

9Equation (24) is equivalent to Equation (4) in McDonald and Siegel [1986], while Equation (25) is

equivalent to Equation (5).

13



where λP refers to the market price of risk for assets dependent on P and λC refers to the

market price of risk for assets dependent on C. This condition is similar to the condition

with one stochastic factor, Equation (16).

We derive expressions for VP and VC from Equation (24) and substitute, along with the

expression for V , into Equation (26). Denoting D = (B∗ − 1)/B∗β, we get

ρ = r +
λPσPPDβP

β−1C1−β + λCσCCDP
β(1− β)C−β

DP βC(1−β)

= r + λPσPβ + λCσC(1− β) (27)

This last expression agrees with the expression for the discount rate in Equation (10)(page

716) of McDonald and Siegel. Thus we see that an infinitely lived American option type

problem with two stochastic variables following geometric Brownian motion is another special

case where the DP and CC approaches will give the same result, if the risk adjusted discount

rate satisfies Equation (27). Note that Equation (27) does not represent an explicit solution

for ρ since β also depends on ρ.

3 Empirical Example: Comparing CC and DP in an

optimal harvesting problem

In this section we consider an optimal harvesting problem that was addressed in Insley

and Lei [2007] using a CC approach.10 We solve that problem using DP with a constant

ρ and compare the results for asset value and optimal harvest age. We also calculate the

(non-constant) values of ρ that would ensure consistency between CC and DP.

The typical tree harvesting problem will not have a simple solution such as given by

Equation (20), which represents an infinitely lived asset whose value evolves according to

GBM. Factors which may cause the tree harvesting problem to depart from the simple case

include the presence of fixed management costs to maintain the stand, and the separate

10Note that the example in Insley and Lei [2007] is similar to the case studied in Insley and Rollins [2005]

with updated timber yield estimates and cost estimates.
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modelling of price and quantity of timber. In addition it is generally agreed that commod-

ity prices, such as timber, are better characterized by a process that exhibits some mean

reversion, as many commodity prices have been fairly flat in real terms over the long term

[Schwartz, 1997]. So if we depart from the assumption of GBM prices and include other

realistic characteristics, such as management costs, we would not expect that DP and CC

would give the same result.

The empirical example that will be analyzed is the valuation of a stand of Jack Pine in

Ontario’s boreal forest. It is assumed that timber prices follow a mean reverting process of

a very simple form:

dP = η(P̄ − P )dt+ σPdz. (28)

where P̄ is the long run average price of timber, η is the constant speed of mean reversion

and σP is the variance rate.

3.1 Formulating the Linear Complementarity Problem

The tree harvesting problem is akin to an American option which can be exercised at any

time. The problem can be solved using a linear complementarity approach as in Insley [2002]

and Insley and Rollins [2005]. We set up the linear complementarity problem (LCP) for the

CC version of our problem, but the LCP for the dynamic programming approach would be

expressed in a parallel fashion.11 T denotes the terminal time. Rearranging Equation (12)

and substituting τ for t, we define an expression, HV , as follows:

HV ≡ rV −
[

1

2
σ2P 2VPP + [a(P, τ)− λb(P, τ)]VP + A(Q) + Vα − Vτ

]
(29)

In Equation (29), rV represents the return required on the investment opportunity for the

risk neutral investor to continue to hold the option. The expression within square brackets

represents the (certainty equivalent) return over the infinitesimal time interval dτ .12

11See Wilmott et al. [1993] and Tavella [2002] for further discussion on the linear complementarity problem.
12The certainty equivalent return refers to the return on an investment when the growth rate of cash flows
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Then the LCP is given as:

(i) HV ≥ 0 (30)

(ii) V (P, τ, α)− [(P − C)Q+ V (P, τ, 0)] ≥ 0

(iii) HV

[
V (P, τ, α)− [(P − C)Q+ V (P, τ, 0)]

]
= 0

As noted in Insley and Rollins [2005], the LCP expresses the rational individual’s strategy

with regards to holding versus exercising the option to harvest the stand of trees. Part (i)

of Equation (30) states that the certainty equivalent return from holding the asset will be

no more than the riskfree return. As long as the asset is earning the riskfree rate, it is

worthwhile continuing to hold, which means delaying the harvest of the stand of trees. As

the trees age and their growth rate slows, the certainty equivalent return will slip below the

risk free rate, at which point it would be optimal to harvest the stand. Hence when part (i)

holds as a strict equality, harvesting is delayed. When it holds as an inequality, harvesting

is optimal.

Part (ii) states that the value of the option, V , must be at least as great as the return

from harvesting immediately. The return from harvesting immediately is the sum of the

net revenue from selling the logs, (P − C)Q, plus the value of the land immediately after

harvesting, V (P, t, 0). When trees are young and growing rapidly we expect V to exceed

the value of harvesting immediately (Part (ii) holds as an inequality) and it is optimal to

delay harvesting the stand. As the trees age, their growth rate falls and V approaches

[(P − C)Q+ V (P, τ, 0)]. Harvesting is optimal when (ii) holds as a strict equality.

Part (iii) states that at least one of statements (i) or (ii) must hold as a strict equality. If

both expressions hold as strict equalities then the investor is indifferent between harvesting

and continuing to hold the asset.

The LCP is solved numerically which involves discretizing the relevant partial differential

equation including a penalty term that enforces the American constraint (Equation (30), ii).

(a(P, τ)) has been reduced by an appropriate risk premium, (λb(P, τ)). After this adjustment is made we

can value the resulting cash flows as if investors are risk neutral.
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Using a fully implicit numerical scheme, we are left with a series of nonlinear algebraic

equations which must be solved iteratively.

Boundary conditions can then be specified as folows.

1. As P → 0, we observe from Equation(28) no special boundary conditions are needed

to prevent negative prices.

2. As P → ∞, we follow Wilmott [1998] and set VPP = 0.

3. As α → 0, we require no boundary condition since the PDE is first order hyperbolic

in the α direction, with outgoing characteristic in the negative α direction.

4. As α → ∞, we assume Vα → 0. This means that as stand age gets very large, the

value of the option to harvest, V , does not change with α. In essence we are presuming

the wood volume in the stand has reached some sort of steady state.

5. Terminal condition. As T gets large it is assumed that V = 0. T is made large

enough that this assumption has a negligible effect on V today.

3.2 Parameter Values: drift, diffusion, and market price of risk

We use the same values for the drift and diffusion terms of the price process as in Insley

and Lei [2007]. We provide some details here (not given in Insley and Lei [2007]) on their

estimation.

The historical price series used for parameter estimation is the price of spruce-pine-fir

random length 2X4’s in Toronto.13 The deflated lumber price series is shown in Figure 1.14

A discrete time approximation of Equation (28) is as follows:

Pt − Pt−1 = ηP̄∆t− η∆tPt−1 + σPt−1

√
∆tεt (31)

13Data was obtained from Madison’s Canadian Lumber Reporter.
14The original data is weekly and quoted in U.S. $ per mbf (thousand board feet). It is converted to

Canadian $ per cubic metre and deflated by the Canadian consumer price index (CPI). The monthly CPI

was interpolated using a cubic spline procedure to generate a weekly index.
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where εt is N(0, 1). We have weekly data, so ∆t = (1/52)year. We performed ordinary least

squares on the following equation:

Pt − Pt−1

Pt−1

= c(1) + c(2)
1

Pt−1

. (32)

Our estimation results are given in Table 1.15

The contingent claims approach requires an estimate of the market price of risk of the

project, which is not directly observable. Ideally this estimate would be derived from futures

markets, but lumber futures markets trade in only very short term contracts. An analysis

using lumber futures is beyond the scope of this paper, and is the subject of future research.

For the purposes of this paper, we will solve for stand value using a reasonable range of

different values for the market price of risk.

To get a sense of what would be a reasonable value for the market price of risk, we appeal

to the approach of Hull [2006, pages 716-77] which is based on the knowledge that all assets

depending on the same stochastic underlying variable(s) will have the same market price of

risk. An estimate can be obtained for the market price of risk for a hypothetical contract

that depends linearly on the stochastic underlying variable, P . This approach is detailed in

Insley and Lei [2007] and the resulting estimate for λ on the hypothetical contract is 0.01.

For this paper, we use λ = 0.01 as a base case, and also consider the impact of λ = 0.03 and

λ = 0.05.

3.3 Risk Adjusted Discount Rate

As noted above, the correct risk adjusted discount rate will, in general, change with the value

of the investment. However we wish to consider the impact of a constant discount rate as is

standard practice in DP applications. One way to choose a constant discount rate would be

15The estimates of η σ and P̄ are calculated from the OLS coefficients as follows:

η̂ =
−c(1)
1/52

; σ̂ =
se√
1/52

; ˆ̄P =
c(2)

η̂(1/52)
(33)
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to use a risk premium consistent with Capital Asset Pricing Model. This amounts to using

the expected return on the hypothetical contract, used to calculate the market price of risk

for the project. The value of this contract depends linearly on price. From Equation (21)

ρ ≡ µT = r + λσ = 0.03 + 0.01× 0.27 = 0.0327. (34)

Note the assumption here that the volatility of this asset is constant, hence s = σ. Similarly,

for λ = 0.03 and 0.05, the risk adjusted discount rates are 0.0381 and 0.0435 respectively.

3.4 Timber Yield, Product Prices, and Silviculture and Harvest-

ing Costs

The empirical example used in this paper is for a stand of Jack Pine in Ontario’s boreal

forest. We include a so-called basic level of silvicultural investment which represents the

current level of spending on many stands in Ontario’s boreal forest. Silvicultural costs16 (in

$/hectare) are $200 for site preparation and $360 to purchase nursery stock in year 1, $360

for planting in year 2, $120 for tending in year 5, and finally $10 for monitoring in year 35.

Amenity value is assumed to be zero, so that A in Equation (29) reflects only silvicultural

costs. The timber yield curves for Jack Pine saw logs and pulp under basic management in

the boreal forest are provided in Table 2.17

Assumptions for harvesting costs and the different log prices are given in Table 3. These

prices are considered representative for 2003 prices at the millgate in Ontario’s boreal forest.

Average delivered wood costs to the mill for 2003 are reported as $55 per cubic meter in a

recent Ontario government report [Ontario Ministry of Natural Resources, May, 2005]. From

this is subtracted $8 per cubic meter as an average stumpage charge in 2003 giving $47 per

cubic metre.18 It will be noted the lower valued items (SPF3 and poplar/birch) are harvested

16Kindly provided by Tembec Inc.
17Timber yield curves were estimated by M. Penner of Forest Analysis Ltd., Huntsville,Ontario, for Tembec.
18This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation. Average

stumpage charges are available from the Canadian Council of Forest Ministers. Land value is estimated

before any stumpage charges.
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at a loss. These items must be harvested according to Ontario government regulation. The

price for poplar/birch is at roadside, so there is no transportation cost to the mill. In the

empirical application SPF1 is modelled as the key stochastic variable, with the prices of

other products maintaining the same relationship with SPF1 as is shown in Table 3.

4 Empirical Results

4.1 Bare Land Value

Using the parameters described in the previous section, the linear complementarity problem,

Equation (30), plus boundary conditions were solved using a fully implicit finite difference

approach as describe in Insley and Rollins [2005]. We estimate the value of a stand of trees

at the beginning of the first rotation (bare land value) using the CC approach and compare

it with the value estimated using a DP approach with our naive risk adjusted discount rate.

The results are given in Figure 2 for the three values of the market price of risk. We report

values for an initial price of $60 per cubic metre for SPF1 logs.19 20

We observe from Figure 2 that, consistent with the theoretical discussions in Section 2,

CC and DP with a constant discount rate do not give the same land values. The differences

are quite significant with DP 16% below the CC value for λ = 0.01 and 55% below for

λ = 0.05. Also notice that for CC, land value is quite insensitive to the tripling of the

market price of risk.

If we compare the PDE’s which hold in the continuation region for CC and DP, it is

evident why the value computed using CC is so much larger than for DP value in the mean

reverting model and also why the CC value is fairly insensitive to λ. We rewrite these PDE’s

19For the mean reverting price model, land value is very insensitive to the initial price.
20The accuracy of these results was checked by successive refinement of the solution grid. In addition a

Richardson extrapolation was used to improve accuracy. (See Wilmott [1998] for an explanation of Richard-

son extrapolation.) The results indicate a numerical error of less that 1% of the value of the stand or

approximatly $5 for the value of the bare land.
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for convenience. For DP the relevant PDE is:

Wt +
1

2
b2(P, t)WPP + a(P, t)WP − ρW + A+Wα = 0 (35)

while for CC:

Vt +
1

2
b2(P, t)VPP + [a(P, t)− λb(P, t)]VP − rV + A+ Vα = 0. (36)

Going from Equation (35) to Equation (36) the required return associated with V is reduced

from ρ to the risk free rate r, which will raise the value of V , certeris paribus. However

this is offset by the reduction of the drift rate of the stochastic price by a risk premium,

which will tend to lower V . For the mean reverting model we have a(P, t) ≡ η(P̄ − P ) and

b(P, t) = σP , so that the term associated with VP is [η(P̄ −P )−λσP ]. If the speed of mean

reversion η is large relative to λσ then the risk premium will not have a large impact on the

drift term when P deviates from P̄ . The biggest effect of going from DP to CC in this case

is the reduction in the discount rate to the risk free rate. Hence going from DP to CC we

observe an increase in V .

4.2 Critical Harvesting Prices

Besides the value of the bare land, it is also of interest to estimate critical harvesting prices,

which are determined at the point where the value of continuing to hold the option to harvest

the stand of trees equals the value from harvesting immediately. Smooth pasting and value

matching conditions hold at the critical points, although these do not need to be imposed

explicitly in the numerical solution. If the current price of timber equals or exceeds the

critical price for a particular stand age, then it is optimal to harvest the stand.

Critical prices for λ = 0.01 and 0.05 are given in Figure 3. Interestingly the critical prices

track quite closely for DP and CC, remaining within 2% of each other even for the higher

value of λ. So in this example, the apparent optimal action is basically unchanged whether

CC or DP is used.
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4.3 Implied Risk Adjusted Discount Rates

We can use our numerical results for the CC analysis to estimate the implied risk adjusted

discount rate as determined by Equation (16). Figure 4 (left hand graph) shows implied

discount rates versus price for λ = 0.03. We observe that ρ varies with both price and stand

age, with different curves shown for stands of different ages. The largest variation in ρ is for

a stand of 50 years where ρ ranges from is from 3 % to about 4.7% . The comparable figure

for the case where λ = 0.01 has a similar shape, but with a much smaller variation in ρ -

from 3% to 3.5%. For λ = 0.5, ρ varies from 3% to 6.9%.

Further intuition may be gained from the right hand graph in Figure 4 which shows VP/V

for stands of age 35 and 50 (vertical left hand axis) and λσP (vertical right hand axis). Since

λσP increases with P , a constant ρ would require VP/V to decrease with P at an offsetting

rate. Beyond a price of about $150 the the two are offsetting and we see that the implied

risk adjusted discount rate settles at around 4 %. This makes sense since at very high prices

it is optimal to harvest immediately and the ability to delay harvesting the stand has no

value.

5 Summary and Concluding Remarks

Use of a constant risk adjusted discount rate with a dynamic programming approach is a

common practice in problems of investment under uncertainty in forestry. However we have

shown that a constant risk adjusted discount rate implies the value of the risky investment in

question has a constant volatility over its lifetime. We presented a theorem and proof which

specifies a necessary and sufficient condition for CC and DP, with a constant risk adjusted

discount rate, to yield the same answer. We argued that this condition is too restrictive for

most practical problems of investment under uncertainty.

We presented several special cases for which the risk adjusted discount rate will be con-

stant. One that has appeared in the literature is the case of an infinitely lived simple

American-type option in which investment payoff follows GBM.
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For illustrative purposes, we examined the extent of the difference between CC and DP

estimates of option value for an optimal harvesting problem with the stochastic underlying

variable following a simple mean reverting process. We compared investment values for CC

and DP using a constant discount rate equal to ρ = r+ λσ and found non-trivial differences

ranging from 16% to 55% of land value, depending on the assumed market price of risk.

However, critical harvesting prices were quite close using the two approaches.

Lastly, we calculated the risk adjusted discount rates that are implied by contingent

claims analysis for the forestry example. We found that the implied discount rates vary

with price and stand age. This variation increases with the assumed market price of risk

ranging from 0.5% point for the the lowest market price of risk (λ = 0.01) to 3.9% points

for λ = 0.05.

We conclude that real options-type problems should be analyzed using contingent claims

analysis. Some might suggest that given the difficulty of estimating the market price of risk

it does not matter whether CC or DP is used. However, we would argue that it is preferable

to use CC and put some effort into determining a reasonable market price of risk rather than

adopting DP with a constant risk adjusted discount rate, which we know is incorrect except

under special assumptions. In addition we observed that with mean reverting prices the

value of the investment calculated using CC was quite insensitive to a tripling of the market

price of risk. This is encouraging for real options problems that deal with commodities with

mean reverting prices.

6 Appendix A: Contingent Claims Arguments

This appendix presents the steps for deriving Equation (10). This is now standard in finance

texts, but we summarize the arguments used in Hull [2006] for the convenience of readers.

We can form an instantaneously riskless portfolio by purchasing n1 = (s2V2) of V1 and

n2 = −(s1V1) of V2. These amounts are constant over the hedging interval, dt. The value of
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this riskless portfolio is:

Π = n1V1 + n2V2. (37)

In our forestry example there is a cashflow each period that represents amenity benefits less

management costs of the forest, A(Q). We assume that there is no such cashflow involved

with V2. The change in value of the portfolio over the interval is then any capital gains in

V1 or V2 plus the cashflow term:

dΠ = n1dV1 + n1A(Q)dt+ n2dV2. (38)

Substituting for dV1 and dV2 from Equation (7) and for n1 and n2 as defined above into

Equation (38), we find that

dΠ = [(s2V1V2µ1)− (s1V1V2µ2) + s2V2A(Q)]dt (39)

We know that our portfolio is riskless as we have eliminated the stochastic component

dz. Our portfolio must therefore earn the riskless rate of return, r, which implies that

dΠ = rΠdt (40)

Substituting from Equations (37) and (39) into Equation (40)

[(s2V1V2µ1) + s2V2A(Q)− (s1V1V2µ2)] dt = r [(s2V2)V1 − (s1V1)V2] dt (41)

This simplifies to

µ1 − A(Q)
V1
− r

s1

=
µ2 − r
s2

≡ λ (42)

which is Equation (11).

Equation (13) uses the assumption that the underlying stochastic asset can be traded in

financial markets. The return from holding timber would be that due to the capital gain,

a(P,t)
P

, plus any convenience yield that results from holding a physical inventory of timber.,

δ. In this case the hedging asset V3 = P and µ3 ≡ a(P, t)/P . From Equation (10),

λ =
µ3 + δ − r

s2

(43)

=
a(P, t)/P + δ − r

b(P, t)/P
.
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where the convenience yield is added in as another component of the total return. Substi-

tuting for λ in Equation (12) gives Equation (13).

7 Appendix B: Theorem and Proof regarding the Equiv-

alence of CC and DP

Let Z = V −W where V is the known solution to Equation (14). Recall that V refers to the

value of the investment using CC and W refers to the value using DP. Subtract Equation

(6) (expressed in terms of τ) from Equation (14):

−Zτ +
1

2
b2(P, τ)ZPP + a(P, τ)ZP − ρZ + Zα = λb(P, τ)VP − (ρ− r)V (44)

Let

1

2
b2(P, τ)ZPP + a(P, τ)ZP − ρZ ≡ LZ. (45)

Let

λb(P, τ)VP − (ρ− r)V ≡ f(P, τ, α). (46)

Equation (44) can then be expressed as

−Zτ + Zα + LZ = f(P, τ, α). (47)

We assume that the boundary conditions are the same for V and W so that:

V (0, τ, α) = W (0, τ, α)

V (P →∞, τ, α) = W (P →∞, τ, α)

V (P, 0, α) = W (P, 0, α) (48)

Equation (47) is therefore completely specified in the domain [0,∞]× [0, T ]. Following from

Equation (48), boundary conditions for Z are

Z(0, τ, α) = 0

Z(P →∞, τ, α) = 0

Z(P, τ = 0, α) = 0. (49)

25



We can use a Green’s Function to write the unique solution to Equation (47), but we

must first go through some steps to deal with the term Zα which does not contain a second

derivative with respect to α.21

Define an arbitrary function M(P, τ, θ) that satisfies

−Mτ + LM = f(P, τ, θ − eτ) (50)

where e is a constant, P and τ are as previously defined and θ is an arbitrary variable. The

solution to Equation (50) can be written in terms of the Green’s function, G:

M(P, τ, θ) =

∫ ∞
0

∫ τ

0

G(P, τ, P ′, τ ′)f(P ′, τ ′, θ − eτ)dτ ′dP ′. (51)

We shift the function M by an amount eτ along the θ axis. Let x = θ − eτ . It follows

that M(P, τ, x) satisfies

−Mτ + eMx + LM = f(P, τ, θ). (52)

Again using the Green’s Function, the solution to (52) may be written as:

M(P, τ, x) =

∫ ∞
0

∫ τ

0

G(P, τ, P ′, τ ′)f(P ′, τ ′, θ − e(τ − τ ′))dτ ′dP ′. (53)

Noting the similarity between Equation (52) and Equation (47), we assume:

Z(P, τ, α) = M(P, τ, x). (54)

It then follows from Equation (53) that Z can be expressed using the Green’s Function as:

Z(P, τ, α) =

∫ ∞
0

∫ τ

0

G(P, τ, P ′, τ ′)f(P ′, τ ′, α− e(τ − τ ′))dτ ′dP ′. (55)

Theorem: Equivalence of DP and CC. W in Equation (6) (DP approach) and V

in Equation (12) (CC approach) will be the same value (and hence Z = 0) if and only if

f(P, τ, α) = 0 in [0,∞]× [0, T ]

Proof. From Equation (47) we have that if Z = 0 then f(P, τ, α) = 0. Conversely from

Equation (55), if f(P ′, τ ′, α− e(τ − τ ′)) = 0 then Z = 0.

21See Garroni and Menaldi [1992] for an explanation of the Green’s Function.
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From the definition of f in Equation (46) our theorem implies that Z = 0 so that V = W

if and only if λb(P, τ)VP − (ρ − r)V = 0. For given values of λ, b(P, t) and V , this implies

that

ρ = r +
λb(P, t)VP

V
. (56)
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Parameter Estimates (t-statistic) Parameter Estimates

c(1) -.0147 (-2.71) η̂ 0.8

c(2) 3.5089 (2.82) ˆ̄P $230*

se of regression 0.0369 σ̂ 0.27

Table 1: Parameter Estimates for Mean Reverting Price Process, Sample: weekly obser-

vations from January 1980 to July 2005. *Note that this estimated price is in $ per cubic

metre at Toronto, which had to be translated to a price at the mill gate. Since the price of

$230 dollars was close to the actual Toronto price in 2003, we adopted our estimated 2003

mill gate price of $60 per cubic metre for SPF1 logs as P̄ at the mill gate.
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Table 2: Timber volume estimates for a Jack Pine stand

in Ontario’s boreal forest, m3/ha by product.

Age NMV SPF1 SPF2 SPF3 other22

1 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0

10 0.2 0.0 0.0 0.2 0.0

15 2.4 0.0 0.0 2.3 0.1

20 12.2 0.0 0.0 11.5 0.6

25 40.0 0.0 0.0 37.8 2.2

30 91.4 0.0 26.7 59.4 5.4

35 146.8 0.0 53.0 84.7 9.1

40 190.7 0.0 80.1 98.4 12.2

45 222.4 49.7 80.2 77.8 14.7

50 245.6 63.4 93.0 72.7 16.7

55 264.1 76.9 103.0 66.0 18.2

60 280.3 90.3 110.9 59.4 19.6

65 295.1 103.6 117.2 53.4 20.8

70 308.7 116.4 122.1 48.3 21.9

75 321.3 128.3 125.9 44.2 22.9

80 332.8 139.1 129.0 41.0 23.7

85 343.3 148.7 131.5 38.6 24.4

90 351.8 156.2 133.4 37.1 25.0

95 356.2 160.8 134.1 36.0 25.2

100 358.2 163.5 134.1 35.3 25.3

105 358.7 164.9 133.7 34.8 25.3

Continued on next page
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Table 2 – continued from previous page

Age NMV SPF1 SPF2 SPF3 other

110 357.6 165.2 132.9 34.4 25.1

115 355.2 164.6 131.6 34.1 24.9

120 351.7 163.2 130.1 33.7 24.6

125 347.2 161.3 128.3 33.4 24.3

130 342.0 158.8 126.2 33.0 24.0

135 336.0 156.0 123.9 32.6 23.6

140 329.5 152.7 121.4 32.2 23.2

145 322.4 149.2 118.7 31.7 22.8

150 314.8 145.4 115.8 31.2 22.4

155 306.9 141.4 112.8 30.7 22.0

160 298.7 137.2 109.8 30.2 21.6

165 290.2 132.9 106.6 29.6 21.1

170 281.6 128.5 103.4 29.0 20.7

175 272.8 124.1 100.1 28.3 20.3

180 264.0 119.6 96.8 27.7 19.9

185 255.1 115.2 93.5 27.0 19.5

190 246.3 110.7 90.2 26.3 19.1

195 237.6 106.3 86.9 25.6 18.7

200 228.9 102.0 83.6 24.9 18.3

205 220.4 97.8 80.4 24.2 18.0

210 212.0 93.6 77.3 23.5 17.6

215 203.8 89.6 74.2 22.7 17.3

220 195.8 85.7 71.2 22.0 16.9

225 188.0 81.9 68.2 21.3 16.6

Continued on next page
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Table 2 – continued from previous page

Age NMV SPF1 SPF2 SPF3 other

230 180.4 78.2 65.3 20.6 16.2

235 173.0 74.6 62.6 19.9 15.9

240 165.8 71.2 59.9 19.2 15.6

245 158.9 67.9 57.3 18.5 15.3

250 152.3 64.7 54.7 17.8 15.0

255 145.8 61.7 52.3 17.2 14.7

22NMV is net merchantable volume. SPF refers to spruce, pine, fir logs. SPF1 is greater than 16 cm

diameter at the small end, SPF2 is 12 to 16 cm, and SPF3 is less than 12 cm. ’Other’ refers to poplar and

birch. SPF3 and ’other’ are used for pulp.
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Harvest and transportation cost $47

Price of SPF1 $60

Price of SPF2 $55

Price of SPF3 $30

Price of poplar/birch $20

Table 3: Assumed values for log prices and cost of delivering logs to the mill in $ per

cubic meter
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Figure 1: Real price of softwood lumber, Toronto, Ontario, 2005 Canadian $ per cubic

metre. (Source: Madison’s Canadian Lumber Reporter, weekly data from January 1980

to July 2005, Eastern Spruce-Pine-Fir Std #2&Better, Kiln-dried, Random Length - 2x4,

Deflated by the Canadian consumer price index and converted to Canadian $.)
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Figure 2: Comparison of land values for dynamic programming (DP) and contingent

claims (CC) approaches assuming an initial price of $60 per cubic metre for SPF1 logs.
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Figure 3: Critical Harvesting Prices, Comparing DP and CC for Mean Reverting Process
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