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Abstract 
 

Artificial Neural Networks (ANNs) are a form of Artificial Intelligence, which are mathematical 

models, inspired from the brains of certain information-processing characteristics, producing 

meaningful solutions, which fall beyond the reach of conventional digital computers.  

In recent years, the use of ANNs has increased in many areas of engineering. In particular, ANNs 

have been applied to many geotechnical engineering problems and have demonstrated some degree 

of success. 

In this study,ANNs are used for soil classification prediction in a specified locations at different 

depths, based on the available site investigation data from a specific area in Sudan.  

Regarding the large number of the data and considerable variations in soil layers  in Sudan, hundred 

of boreholes were selected for this study . Seven Networks are developed to predict the soil 

layering in specified locations in Khartoum city.In this study ,area of about 165 square kilometers 

of Khartoum concentrating on Blue Nile region is considered and the results are then compared 

with  data of actual boreholes to check the ANN model’s validity . 

The results indicate that Artificial Neural Networks are a useful technique for predicting 

relationships between the input parameters of the three dimensional coordinates and the resulting 

soil classification and soil parameters output. So, Artificial Neural Networks can be considered as 

an effective tool for predicting the soil classification in Khartoum. 
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 ملخص البحث
 

لاشكالمن صناعية هى شكل لالشبكات العصبية ا  نماذج تمثلى ت الو ،صناعيلذكاء ا ا

نتج حلولاً ذات ت التي و البشرياغملد للمعلوماتامعالج خصائص رياضية مستوحاة من 

ل معنى تقليدية حاسباتتفوق امكانيات ا ل   . الرقمية ا

 النواحى عدد من ، كثر استعمال الشبكات العصبية الصناعية فى يرهخفى الاعوام الا

  حققت الهندسة الجيوتقنية ،  وقد فروعوبصفة خاصة تم تطبيقها فى كثير من . الهندسية 

  .درجة مقبولة من النجاح

 لتخمين تصنيف وخصائص الشبكات العصبية الصناعيةتم استخدام ،  الدراسة هذهفي 

لتربة  ددة واعماق مختلفة على اساس بيانات فحص المواقع المتوفرة لتلك في مناطق محا

   . المناطق في السودان 

بيانات  ل تباين المقدر  مع الأخذ فى الاعتبار الكمية الكبيرة من ا ل لتربة فى وا فى طبقات ا

نشاء سبع شبكات تنبؤ لتخمين تصنيف لا الدراسة هلهذتم اختيار مئات المواقع السودان ، 

ا من العاصمة الخرطوم بالتركيز على ١٦٥لتربة في مساحة وخصائص ا كيلومتر تقريب

لنيل الازرق ل.شريط ا ا تنبؤ ب ل نتائج المستخلصة من شبكات ا ل يةفبيانات الوتمت مقارنة ا  عل

تنبؤلمواقع  ل    . للتحقق من كفاءة تلك الشبكات لم يتم تعريفها في شبكات ا

ل نتائج تشير الى ان الشبكات العصبية ا ل  بين ات علاقلاقامةتقنية مفيدة تعتبر اعية صنا

ي لتربةوتصنيف  لاي موقع الابعاد ةالاحداثيات الكارتيزية ثلاث في المنطقة  وخصائص ا

تنبؤ المنشأةلذلك يمكن اعتبار . موضوع الدراسة ل  فعالة لتخمين نوع ادوات شبكات ا

لتربةو  .خرطوم فى الخصائص ا
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       Chapter One 
Introduction 

 
1.1 General: 

Over the past three decades, there has been an increased interest in a new 

class of computational intelligence systems known as Artificial Neural 

Networks (ANNs). This type of networks (i.e., ANNs) have been found to 

be powerful and versatile computational tools for organizing and correlating 

information in ways that have proved useful for solving certain types of 

problems too complex, too poorly understood, or too resource-intensive to 

tackle using more-traditional computational methods. ANNs have been 

successfully used for many tasks including pattern recognition, function 

approximation, optimization, forecasting, data retrieval, and automatic 

control. This research provides an introduction to ANNs and their 

applications in the design and analysis of geotechnical systems. As ANNs 

can be a useful complement to more-traditional numerical and statistical 

methods, their use merits continued investigation. 

Geotechnical engineering is known as an 'imprecise' area of engineering due 

to the fact that the soil is a material produced by nature (the ground). In 

many circumstances, our fundamental understanding of soil behaviour still 

falls short of being able to predict how the ground will behave. Under these 

circumstances, expert judgement plays an important role, and empirical 

approaches to design are widely used. Since artificial intelligence (AI) 

techniques can make use of heuristic knowledge (rules of thumb) or pattern 

matching techniques, as opposed to solving a set of mathematical equations, 

they should be ideally suited for application in the field of geotechnical 

engineering. 

A variety of classification systems have been developed for soils. These 

systems group soils according to their general behavior under given physical 

conditions. Soil classification systems have been developed to provide 

engineers, scientists and resource managers with generalized information 

about the nature of a soil found in a particular location. In general, 

environments that share comparable soil forming factors produce similar 
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types of soils. This phenomenon makes classification possible. Numerous 

classification systems are in use worldwide. The Unified System of Soil 

Classification, will be examined in this study. 

Soil classification information can become increasingly more valuable for 

decision making when coupled to artificial intelligence (AI). Artificial 

intelligence has evolved in recent years to the point that many applications 

can be run using desktop computing. When linked to Soil classification, 

artificial intelligence can be useful for evaluating, monitoring and decision-

making. Artificial Neural Networks (ANN), (Fausett 1994; Flood and 

Kartam 1994; Hecht-Nilsen 1990; Maren et al. 1990; Zurada 1992) (1) is a 

form of artificial intelligence, which, in their architecture, attempts to 

simulate the biological structure of the human brain and nervous system. 

ANNs have been applied extensively to many prediction tasks, as they have 

the ability to model the nonlinear relationship between a set of input 

variables and the corresponding outputs. 

In recent times, ANNs have been applied to many geotechnical engineering 

problems and have demonstrated some degree of success. For example, 

ANNs have been used in pile bearing capacity prediction (Lee and Lee (2) 

1996), stress-strain modeling of sands (Ellis et al. (3) 1995), interpretation of 

site investigation (Zhou and Wu (4) 1994) and seismic liquefaction 

assessment (Goh (5) 1994). A comprehensive list of the applications of 

ANNs in geotechnical engineering is given by Shahin et al.(4) (2001) who 

have presented the state-of the art report on the different applications 

(liquefaction prediction, soil classification, compaction, pile capacity, 

settlement analysis etc.) of ANN in geotechnical engineering. ANNs have 

been also used for site characterization, based on SPT (Itani and Najjar, 

2000; Das and Basudhar, 2004) (4) and CPT (Juang et al., 2001) (4) results. In 

the majority of these applications, the data are divided into the subsets 

needed to develop ANN models (e.g. training, testing and validation) on an 

arbitrary basis. However, recent studies have shown that the way the data 
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are divided can have a significant impact on the results obtained (Tokar and 

Johnson 1999) (6). 

 In this study,ANNs are used for soil classification prediction in a specified 

locations at different depths, based on the available site investigation data 

from actual borehole logs investigated in Khartoum state . 

 The results indicate that Artificial Neural Networks are a useful technique 

for predicting relationships between the input parameters of the three 

dimensional coordinates and the resulting soil classification and soil 

parameters output.   

1.2. Scope and Objectives of the Study:                                             

Khartoum, the capital, has population of more than 8 millions, is the largest 

and the most important city in Sudan. Accordingly a great development and 

expansion in construction is now taking place. This large urban development 

has occurred over a considerable area mostly of Nile silts and clays 

.Therefore it is necessary to establish engineering design guidelines which 

are requested by the construction industry in Khartoum city.  

To satisfy such needs, pertinent geotechnical information and soil 

parameters should be compiled to serve as a data base to develop powerful 

networks capable of predicting the soil profile and relative soil parameters. 

The main objectives of the present study can be summarized as follows: 

1. To build up a powerful network capable of predicting the soil 

classification and soil parameters, based on previously 

investigated site conditions. 

2. To test the ability of Artificial Neural Network method for 

generation of accepted results of the field of geotechnical 

application.  
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1.3. Methodology:  

 In the present research, data from hundreds of investigated boreholes drilled 

in the region were used (depth range between 5m to 50m.). It was collected 

from Building and Road Research Institute (B.R.R.I.) of (U.of.K). The data 

includes mainly: location ,depth, soil groups and soil parameters: Liquid 

Limit (L.L),Plastic Limit (P.L.), Plasticity Index (P.I), Natural Moisture  

Content (N.M.C), Bulk Density(B.D.) , Dry Density (D.D.),Standard 

Penetration Test values (S.P.T.-N),shear strength parameter (cohesion C and 

angle of internal friction Ф), the percentage passing No. 200sieve (.075mm.) 

and the ground water table (GWL) depth ; consolidation test  results.   

To locate the investigated borehole sites, a digital map of Khartoum city was 

used as a reference map. Global positioning system (GPS) has been used to 

get the exact EN co-ordinates of the sites studied (at the center point of the 

sites) and their respective altitudes. 

Parameters used as input and output data are: location of each borehole (E, 

N), depth, soil group according to (U.S.C.S.), liquid limit (L.L.), plasticity 

index (P.I.) and standard penetration test values (N). 

Available data to predict the profile was used as a general soil data base. 

Five sets were used for classification network as follows:   

1. Global classification network: classify the soil as clay/silt or 

sand. 

2.  Sand classification network: classify sands as clayey sand or 

silty sand. 

3. Sand grading classification network: classify the grading of 

sands as poor graded sand or well graded sand. 

4. Clay classification network: classify clay as clays of low 

plasticity or clay of high plasticity. 

5. Silt classification network: classify silts as silt of low 

plasticity or silt of high plasticity. 
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Two sets were used to predict the soil parameter as follows: 

1. Atterberg limit network: used to predict the liquid limit and 

plasticity limit of fine-grained soils (silt/clay). 

2. Standard penetration test network: used to predict the N-value for 

sands. 

 A multi-layer artificial neural network (ANN) with a back propagation 

algorithm is used to predict soil classification and soil parameters from raw 

data. For this purpose a neural network program is used (Neuroshell- 

version 2). 

1.4. Outline of thesis: 

Chapter (I) is an introductory chapter. 

Chapter (II) presents a general summary of the literature pertaining to the 

subject of this thesis. A general introduction to soil classification is given 

including historical perspective. Then the Unified Soil Classification System 

is discussed followed by other classification systems, followed by the 

Atterberg limits and the grain size distribution. Finally the engineering soil 

properties and correlations are discussed. 

Chapter (III) is concerned with artificial intelligence methods used in 

engineering mainly:Expert systems ,Artificial Neural Networks 

,Evolutionary Althogrithms and Hybrid systems ,discussing learning and 

techniques of each method.  

Chapter (IV) deals with the Artificial Intelligence Applications in several 

domains concentrating on Geotechnical Engineering and discussing the 

degree of success of Artificial Intelligence in each domain. 

Chapter (V) is concerned with the soil profile and parameters  prediced  by 

the Artificial  Neural Networks. In order to meet the objectives set out 

previously, seven modeling approaches are constructed to predict the soil 

classification and soil parameters, including the training and testing phases 

and it’s results. The various forms of data representation are descibed. 

Special emphasis is placed on the relational data model, which is adopted by 

the software package used to process the information contained in the soil 
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reports.Each of the seven models are described through : training process 

,architecture used and the performance of the model . 

In chapter (VI) the whole system is eventually tested for efficiency using  

data of new three sites investigated in the second half of year 2006, 

distributed over the study area. Then results and discussion for all models in 

the prediction phase are presented. 

Chapter (VII) concludes this study by giving a general overview to the 

subjects discussed throughout the thesis.The conclusions concerning the 

various topics and proposed methods are mentioned; moreover, 

recommendations for further improvement and research are proposed. 
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Chapter Two 
Classification of soils 

 
2.1 Introduction: 

The term soil, as used by the civil engineer, is regarded as natural aggregate of 

mineral grains, with or without organic constituents, which can be separated by gentle 

mechanical means such as agitation in water. 

In all branches of civil engineering and especially in foundation engineering, 

experience is a priceless asset. Indeed, the accumulated experience of generations of 

foundation engineers (7). 

In a general way, it has been found that soils can be classified into groups within each 

of which the significant engineering properties are somewhat similar. Consequently, 

proper classification of subsurface materials is an important step in connection with 

any foundation job, because it provides the first clue to the experiences that may be 

anticipated during and after construction. 

The detail with which samples are described, tested, and evaluated depends on the 

type of structure to be built, on consideration of economy, on the nature of the earth 

materials, and to some extent on the method of sampling. The samples should be 

described first on the basis of a visual inspection and certain simple tests that can be 

performed in the field as in the laboratory. 

The identification and classification of the products of nature constitute an artificial 

procedure, because these materials are infinitely varied and do not lend themselves to 

separation into distinct categories. As a result, various arbitrary systems of 

classification have been developed, each with certain advantages and disadvantages 

for a particular purpose. 
2.2 Description and Identification of Soils: 
2.2.1 Principal types of Soil: 

The principal terms used by civil engineers to describe soils are gravel, sand, silt, and 

clay. Most natural soils consist of a mixture of two or more of these constituents, and 

many contain an admixture of organic material in a partly or fully decomposed state. 

The mixture is given the name of the constituent that appears to have the most 

influence on its behavior, and the other constituents are indicated by adjectives. Thus 

silty clay has predominantly the properties of clay but contains a significant amount 
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of silt, and organic silt is composed primarily of silt-sized mineral matter   but 

contains a significant amount of organic material. 

Gravels and sands are known as course- grained soils, and silts and clays as fine-

grained soils. The distinction is based on whether the individual particles can be 

differentiated by the naked eye. The methods of describing coarse-grained soils differ 

from those appropriate for fine-grained soils; therefore, the procedures are discussed 

under separate headings. 

2.2.2 Coarse-grained Soil materials: 

The coarse-grained soil materials are mineral fragments that may be identified 

primarily on the basis of particle size. 

Particles having a diameter greater than about 5mm are classified as gravel. However 

if the diameter exceeds about 200mm (8in) the term boulder is usually applied. 

If the grains are visible to the naked eye, but are less than about 5mm in size, the soil 

is described as sand. This name is usually further modified as coarse, medium, or fine. 

The definitions of these terms must be chosen arbitrarily. In the United States the 

ASTM classification of size limits given in Table 2.1 has been adopted as standard for 

engineering purposes. 

Table 2.1 Particle size limits of soil 
Constituents, ASTM Classification 

(in Millimeters) 

 
Larger than 4.75 Gravel 

4.75 to 2.00 Coarse sand 

2.00 to 0.425 Medium sand 

0.425 to 0.075 Fine sand 

Smaller than 0.075 Fines (combined silt and clay) 
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A complete verbal description of a coarse-grained soil includes more than an estimate 

of the quantity of material in each size range. The gradation, particle shape, and 

mineralogical composition should also be noted whenever possible. The gradation 

may be described as well- graded, fairly well-graded, fairly uniform, uniform, or gap-

graded. Well-graded soils contain a good representation of all particle sizes ranging 

from coarse to fine. The particles of uniform soils are all approximately the same size. 

Gap-graded soils consist of mixtures of uniform coarse-sized particles and uniform 

fine-sized particles, with a break in gradation between the two sizes. Any soil not 

well-graded may be characterized as poorly graded. 

The shape of the coarse-grained particles in a soil has an influence on the density and 

stability of the soil deposit. The usual terms describing grain shape are rounded, 

angular, sub-rounded and sub-angular (7). 

2.2.3 Fine-grained soil materials: 

Inorganic silt, which constitutes the coarser portion of the microscopic soil fraction, 

possesses little or no plasticity or cohesion. The least plastic varieties consisting 

primarily of very fine rounded quartz grains are called rock flour. The most plastic 

varieties containing an appreciable quantity of flake-shaped particles are called plastic 

silt. 
Clay is predominantly an aggregate of microscopic and submicroscopic flake-shaped 

crystalline minerals. It is characterized by the typical colloidal properties of plasticity, 

cohesion, and the ability to adsorb ions. These properties are exhibited over a wide 

range of water content. 

The distinction between silt and clay cannot be based on particle size because the 

significant physical properties of the two materials are related only indirectly to the 

size of the particles. Furthermore, since both are microscopic, physical properties 

other than particle size must be used as criteria for field identification. 

2.2.4 Organic Soil Materials: 

Very small quantities of organic matter often have a significant influence on the 

physical properties of soils. Most organic soils are weaker and more compressible 

than soils having the same mineral composition but lacking in organic matter. The 

presence of an appreciable quantity of organic material can usually be recognized by 

the dark gray to black color and the odor of decaying vegetation that it lends to the 

soil. 
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Organic silt is a fine-grained, more or less plastic soil containing mineral particles of 

silt and finely divided particles of organic matter. Shells and visible fragments of 

partly decayed vegetable matter may also be present. 

Organic clay is a clay soil that owes some of its significant physical properties to the 

presence of finely divided organic matter. 

Highly organic soil deposits such as peat or muck may be distinguished by a dark-

brown to black color, by the presence of fibrous particles of vegetable matter in 

varying states of decay, and by the characteristic organic odor. 

Combinations of organic and mineral soil materials are not always easily recognized, 

particularly if the organic content is small. Nevertheless, the presence of organic 

matter should always be suspected if the soil has a dark-brown, dark-gray, or black 

color. If the organic odor cannot be distinguished, it can sometimes be brought out by 

a slight amount of heat. 

2.3 Index Properties of Soils: 

There must be procedures leading to quantitative results that may be related to the 

physical properties with which the engineer is directly concerned. The tests required 

for this purpose are known as classification tests, and the results as the index 

properties of the soils. 

Index properties may be divided into two general types, soil grain properties and soil 

aggregate properties. The soil grain properties are the individual particles of which 

the soil is composed, without reference to the manner in which these particles are 

arranged in a soil deposit. Thus, it is possible to determine the grain of any soil 

sample, whether disturbed or undisturbed. Soil aggregate properties, on the other 

hand, depend on the structure and arrangement of the particles in the soil mass. 

Although soil grain properties are commonly used for identification purposes, the 

engineer should realize that the soil aggregate properties have a greater influence on 

the engineering behavior of a soil. 

2.3.1 Soil Grain Properties: 

2.3.1.1 Size of Grains: 

The most important grain property of coarse-grained soil is the particle-size 

distribution. This is determined by performing a mechanical analysis. The size of 

coarse-grained constituents can be determined by means of a set of sieves. The finest 

sieve commonly used in the field or in the laboratory is the No.200 U.S. Standard 

sieve in which the width of the opening is 0.075mm. For this reason 0.075mm has 
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been accepted as the standard boundary between coarse-grained and fine-grained 

materials(7). 

The results of a mechanical analysis are usually presented in the form of a particle-

size distribution curve. The percentage P of material finer than a given size is plotted 

as the ordinate to a natural scale, and the corresponding particle diameter DP, in 

millimeters, is plotted as the abscissa to a logarithmic scale. A plot of this type has the 

advantage that materials of equal uniformity are represented by curves of identical 

shape whether the soil is coarse-grained or fine-grained moreover, the shape of the 

curve is indicative of the grading. Uniform soils are represented by nearly vertical 

lines, and well-graded soils by S-shaped curves that extend across several cycles of 

the logarithmic scale. 

The particle-size characteristics of soils can be compared most conveniently by a 

study of certain significant numerical values derived from distribution curves. The 

two most commonly used by engineers are designated as D10, The effective grain size, 

and Cu = D60 /D10 the uniformity coefficient. The effective size is the diameter of the 

particle corresponding to P =10per cent on the particle-size plot. Hence, 10per cent of 

the particles are finer and 90per cent are coarser than the effective size. It is possible 

to have a gap-graded soil with a large uniformity coefficient which is actually 

composed of two uniformly graded fractions. The coefficient of curvature, 

CZ  = (D30)2 ⁄ (D10*D60), is a value that can be used to identify such soils as poorly 

graded. In well- graded gravels, Cu is greater than 4 and CZ is between 1 and 3. In 

well-graded sands, Cu is greater than 6 and CZ is between 1 and 3. (See ASTM, 

Designation D-2487, Classification of Soils for Engineering Purposes.) 

2.3.1.2 Mineralogical Composition: 

The most important grain property of fine-grained soil materials is the mineralogical 

composition. If the soil particles are smaller than about 0.002mm, the influence of the 

force of gravity on each particle is insignificant compared with that of the electrical 

forces acting at the surface of the particle. A material in which the influence of the 

surface charges is predominant is said to be in the colloidal state.  The colloidal 

particles of soil consist primarily of clay minerals that were derived from      rock 

minerals by weathering, but that have crystal structures differing from those of the 

parent minerals. 

The three most important groups of clay minerals are smectite, illite, and Kaolinite. 

They are all crystalline hydrous alumino silicates. The result of studies using the 
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electron microscope and X-ray diffraction techniques show that the clay minerals 

have a lattice structure in which the atoms are arranged in several sheets, similar to 

the pages of a book. The arrangement and the chemical composition of these sheets 

determine the type of clay mineral. 

The basic building blocks of the clay minerals are the silica tetrahedron and the 

alumina octahedron. These blocks combine into tetrahedral and octahedral to produce 

the various types of clay. Two- layer minerals have single tetrahedral sheet joined to a 

single octahedral sheet to form what is called a 1:1 lattice structure. Kaolinite is a 

typical two-layer mineral. In three-layer minerals a single octahedral sheet is 

sandwiched between two tetrahedral sheets to give a 2:1lattice structure.      

2.4 Structure and Consistency of Soil Aggregate: 

2.4.1 Primary and Secondary Structure: 

The primary structure of a soil refers to the arrangement of the grains. This 

arrangement is usually developed during the processes of sedimentation or rock 

weathering. In addition, various discontinuities may arise subsequent to the deposition 

or formation of the soil. These constitute the secondary structure of the deposit. They 

correspond to such phenomena as the development of systems of joints in 

sedimentary rocks. 

The primary structure of a soil may be described as single-grained, flocculated, or 

dispersed. In a single-grained structure (Fig.2.1), each grain touches several of its 

neighbors in such a way that the aggregate is stable even if there are no forces of 

adhesion at the points of contact between the grains. The arrangement may be dense 

or loose, and the properties of the aggregate are greatly influenced by the denseness or 

looseness. 

 

 

 

 

 

Figure2.1: Diagram illustrating (a) dense single-grained structure, (b) a flocculated 

structure, and (c) a dispersed structure 
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Figures 2.1b and 2.1c represent concepts of the structure of fine-grained soils. The 

oval-shaped particles represent silt grains whereas the flat-sided particles represent 

clay mineral platelets. In the flocculated structure (Fig. 2.1b), the edge or corner of 

one clay platelet tends to be attracted to the flat face of another. Consequently, the 

particles assume a loose but fairly stable structure that can be maintained as long as 

the electrical charges on the edges of the platelets remain opposite in sign to those on 

the faces. The degree of looseness of this arrangement depends at least in part on the 

nature and amount of electrolytes present during sedimentation. In the dispersed 

structure (Fig.2.1c), the edges, corners, and faces of the clay platelets have like 

electrical charges. Thus, the particles repel each other and assume nearly parallel 

positions. Even though the dispersed structure may be quite loose at the time of 

sedimentation, pressure can force the adjacent platelets into a dense state more readily 

than if they possessed the flocculated structure (Fig. 2.1b). 

The principal types of secondary structure are cracks, joints, slickensides, and 

concretion. Cracks and joints are commonly formed as a result of desiccation 

sometime after the deposition of the material. Slickensides are polished surfaces in 

stiff clays that have experienced differential movement or expansion. Concretions are 

accumulations of carbonates or iron compounds. All these features disrupt the 

continuity of the soil mass and may impart to it properties significantly different from 

those of intact samples taken from the deposit. 

2.4.2 Consistency and Sensitivity: 

Undoubtedly the most significant index property of fine-grained soils in the natural 

state is the consistency. The consistency of natural cohesive soil deposits is expressed 

qualitatively by terms such as soft, medium, stiff, and hard. The meaning of these 

terms, however, varies widely in different parts of the world, depending on whether 

the local soils are generally hard or generally soft. Rather than rely on such vague 

terms, the engineer should develop his ability to estimate the compressive strength of 

soil. 
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2.4.2.1 Atterberg limits: 

If the water content of a thick suspension of clay is gradually reduced, the clay-water 

mixture passes from a liquid state a plastic state and finally into a solid state. 

It has been found that the water contents corresponding to the transitions from one 

state to another usually differ for clays having different physical properties in the 

remolded state, and are approximately equal for clays having similar physical 

properties. Therefore, the limiting water contents may serve as index properties useful 

in the classification of clays. 

The significance of the limiting water contents for each physical state was first 

suggested by A. Atterberg in 1911.Hence, these limits are commonly known as the 

Atterberg limits, and the tests required to determine them are the Atterberg-limit tests. 

Actually, as the soil-water mixture passes from one state to another, there is no abrupt 

change in the physical properties. The limit tests, therefore, are arbitrary tests that 

have been adopted to define the limiting values. 

Above the liquid limit wL; the soil-water system is a suspension. Below the liquid 

limit and above the plastic limit wP, the soil-water system is said to be in a plastic 

state. In this state the soil may be deformed or remolded without the formation of 

cracks and without change in volume. The range of water content over which the soil-

water system acts as plastic material is frequently referred to as the plastic range, and 

the numerical difference between the liquid limit and the plastic limit is called the 

plasticity index IP (often designated PI) : 

Plasticity index, IP = wL – wP                                 eqn 2.1 

The plastic limit is the empirically established moisture content at which a soil 

becomes too dry to be plastic .It’s used together with the liquid limit to determine the 

plasticity index which when plotted against the liquid limit on the plasticity chart 

provides a mean of classifying cohesive soils (8). 

Somewhat below the plastic limit the soil-water system reaches the shrinkage limit 

wS. Reduction of the water content by drying below the shrinkage limit is not 

accompanied by decrease in volume; instead, air enters the voids of the system and 

the material becomes unsaturated. 

The Atterberg limits vary with the amount of clay present in a soil, on the type of clay 

mineral, and on the nature of the ions adsorbed on the clay surface. 

The liquid limit and the plasticity index together constitute of the plasticity of a soil. 

Soils possessing large values of wL and IP are said to be highly plastic or fat. Those 
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with low values are described as slightly plastic or lean. The interpretation of liquid 

and plastic limit tests is greatly facilitated by the use of the plasticity chart developed 

by A. Casagrande. In this chart (Fig. 2.2) the ordinates represent values of the 

plasticity index, and the abscissas represent values of the liquid limits. The chart is 

divided into six regions by the inclined line A having the equation IP = 0.73(wL – 20), 

and the two vertical lines wL = 30 and wL = 50. All soils represented by points above 

line A are inorganic clays; the plasticity ranges from low (wL < 30) to high (wL > 50) 

with increasing values of the liquid limit. Soils represented by points below line A 

may be inorganic silts, organic silts, or organic clays. If they are inorganic, they are 

said to be of low, medium, or high compressibility, depending on whether the liquid 

limit is below 30, between 30 and 50, or above 50. They are organic silts, they are 

represented by points in the region corresponding to a liquid limit between 30 and 50 

and, if they are organic clays, to a liquid limit greater than 50. 
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Figure 2.2: Plasticity chart (after A. Casagrande, 1948). 

 
The distinction between organic and inorganic soils can usually be made by 

performing two liquid-limit tests on the same material, one starting with moist or air- 

dried soil, and the other with oven-dried soil. Oven-drying produces irreversible 

changes in organic constituents that significantly lower the liquid limit. If the liquid 

limit of the oven-dried sample is less than about 0.75 times that for the undrained 

sample, the soil may usually be classed as organic. A few inorganic clay minerals and 

other fine-grained soil constituents also experience irreversible changes on oven-
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drying; hence, the identification cannot always be based on the results of the limit 

tests. 

The natural water content of clay is itself a useful index property of even greater 

significance, is the relation of the water content to the liquid and plastic limits. Those 

deposits having water contents close to the liquid limit are usually much softer than 

those with moisture contents close to the plastic limit. One of the most important 

index properties of natural clay deposits is, therefore, the liquidity index, defined the 

equation: 

Liquidity index, 

IL = (w- wP) / (wL- wP) = (w-   wP)/ IP                                 eqn2.2 
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Figure 2.3:  Diagram of the soil-moisture scale showing Atterberg limits, 

corresponding physical state, and approximate consistency of remolded soil. 

 
It may be seen that IL is negative for soils having water contents less than the plastic 

limit. As the water content increases from the plastic limit to the liquid limit, the 

value of IL increases from 0 to 1.0. If the water content is greater than the liquid limit, 

the liquidity index is greater than 1.0. The consistency of clay in the remolded state 

may be estimated when the natural water content and limit values are known. The 

relationships are illustrated in Fig.2.3. 

None of the Atterberg-limit tests is difficult to perform, although a certain amount of 

experience is required to develop the technique necessary to obtain reproducible 

results. The liquid-limit test is commonly made by means of the mechanical apparatus 
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designed by A. Casagrande. A mixture of soil and water is plastic in the cup, and a 

groove 2 mm wide at its base and 8mm high is made in the center of the soil pat. The 

operator then turns the crank which lifts the cup to a height such that the point of 

contact between cup and base is 1cm above the base. The cup then falls freely from 

this position. The soil is at the liquid limit if 25 blows are required to cause the lower 

edges of the groove to come into contact with each other for a length of about 1/2in. 

The water content at this number of blows is the liquid limit. 

The plastic limit test is performed by rolling a sample of plastic soil into a thread with 

a diameter of 1/8 in. If the soil does not crumble, the thread is picked up, remolded, 

and rolled out again. This process is repeated until the thread just begins to crumble 

when it reaches the diameter of 1/8 in. The water content at which crumbling takes 

place is defined as the plastic limit. 

The shrinkage limit of a soil is determined by preparing a sample of known volume at 

a moisture content above the liquid limit and by drying the sample in an oven .The 

weight and volume of the oven-dry sample are measured. From these data and the 

initial water content, a computation is made of the water content at which the dried 

sample would be just saturated. This water content is considered to be the shrinkage 

limit. 

2.5 Soil-Classification Systems: 

2.5.1 Introduction: 

Because the soil deposits of the world are infinitely varied, it has not been found 

possible to create a universal system of soil classification for dividing soils into 

various groups and subgroups on the basis of their important index properties. 

However, useful systems based on one or two index properties have been devised. 

Some of these systems are in such common use by workers in various fields involving 

soils that the engineer must have at least a general knowledge of them. At the same 

time it is essential to keep in mind that no system can adequately describe any soil for 

all engineering purposes. Indeed, many systems ignore the properties that are the most 

important from the standpoint of the foundation engineer (7). 
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Grain Size, mm Classification 
System       

Gravel Sand Silt Clay Bureau of 
Soils, 1890-95  

Gravel Coarse 
Sand 

Fine 
Sand 

Silt Clay 
Atterberg, 1905 

 
Gravel Sand Silt Clay MIT, 1931  
Gravel Sand Silt Clay U.S. Dept. Agr. 

1938  
Gravel Sand Silt Clay         Colloids 

AASHTO, 1970  
Gravel Sand Fines (silt & clays) Unified 1953 

ASTM, 1967  

100 10 1 0.1 0.0 0.00 1 1 0.0001

1 0.05  0.005  

2 0.2 0.02 0.002 

2 0.06 0.002 

2 0.05 0.002 

2 0.075 0.002 0.001 75 

4.75 0.07575 

 
Figure 2.4: Comparison of several common textural classification systems. 

 
2.5.2 Textural Systems 

Since the particle size is probably the most obvious characteristic of a soil, it is 

natural that the earliest classification systems should have been based on texture 

alone. Indeed, many such systems have been suggested. Several of the more common 

are shown in Fig. 2.4 the MIT and Unified systems are commonly used by engineers, 

the AASHO system by highway engineers, and the Unified system by engineers 

charged with the design of dams and airfields. 

To classify a soil according to a particular textural system, the particle-size 

distribution curve is usually plotted and the percentages by weight are calculated of 

the particles contained within each of the ranges of size specified in the system. Thus, 

a mixed-grained soil might be described as 3 percent gravel, 46 percent clay, 

according to the MIT classification. 

In the textural method of classification used by soil scientists of the U.S. department 

of Agriculture, only three ranges of particle size are specified and material coarser 

than 2.0mm is excluded. Hence the percentages of sand-, silt-, and clay-size particles 

can be represented by a triangular chart (Fig. 2.5). After these percentages have been 

determined for a given sample, the point representing this mechanical composition is 

located on the triangular chart and the soil is given the name assigned to the area in 

which the point is located. If the soil contains a significant quantity of material 

coarser than 2.0mm, an appropriate adjective, such as gravelly or stony, is added to 
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the textural name. Although the triangular chart does not reveal any properties of the 

soil other than particle-size distribution, it is widely used in various modified forms 

by workers in the fields of agriculture and highway engineering. Unfortunately the 

textural name derived from the chart does not always correctly express the physical 

characteristics of the soil. For example, since some clay-size particles are much less 

active than others, a soil described as clay on the basis of a textural system may have 

physical properties more typical of silt. 
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Figure 2.5: Triangular textural classification chart used by the U.S. Department of 

Agriculture. 
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2.5.3.AASHO System: 

About 1928 the Bureau of Public Roads introduced a soil-classification system still 

widely used by highway engineers. All soils were divided into eight groups 

designated by the symbols A-1 through A-8. Since it was believed that the soil best 

suited for the sub grade of a highway is a well-graded material composed largely of 

sand and gravel, but containing a small amount of excellent clay binder, such a 

material was given the designation A-1. All other soils were grouped roughly in 

decreasing order of stability. The system has undergone many revisions. In the 

beginning, neither the percentages of the various size fractions nor the plasticity 

characteristics of the clay fraction were definitely specified. 

In 1945 a committee of highway engineers for the Highway Research Board made an 

extensive revision of the Public Roads system. In 1949 and again in 1966 the 

American Association of state Highway Officials adopted revisions and the method 

are now known as the AASHO system. The characteristics of the various groups and 

subgroups and the classification procedure are given in Table 1.8. In the AASHO 

system the inorganic soils are classified in 7 groups corresponding to A-1 through A-

7. These in turn are divided into a total of 12 subgroups. Highly organic soils are 

classified as A-8. Any soil containing fine –grained material is further identified by its 

group index; the higher the index, the less suitable the soil. 

The group index is calculated from the formula 

   Group index = (F- 35)[0.2 + 0.005(wL – 40)] +0.01(F – 15)(IP – 10)             eqn 2.3 

In which 

F = percentage passing No. 200 sieve, expressed as a whole number 

wL = liquid limit 

IP = plasticity index 

 

The group index is always reported to the nearest whole number unless its calculated 

value is negative whereupon it is reported as zero. The group index is appended to the 

group and subgroup classification. For example, a clay soil having a group index of 

25 might be classified as A-7-6(25). 

2.5.4. Unified System: 

The soil-classification system most widely used by foundation engineers in North 

America today was developed by Arthur Casagrande for the Corps of Engineers, U.S. 

Army. First designated as the Anfield classification (AC) system, it was originated to 
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assist in the design and construction of military airfields during World War II. After 

the war it was adopted with minor revisions by the Corps and by the U.S. Bureau of 

Reclamation as the Unified system. In 1969, the Unified system was adopted by the 

American Society for Testing and Materials as a Standard Method for Classification 

of Soils for Engineering purposes, ASTMD-2487. 

According to the Unified system the coarse-grained soils are divided into: 

1-   Gravel and gravelly soils; symbol G. 

2-   Sands and sandy soils; symbol S. 

The gravels and sands are each subdivided into four groups: 

a.   Well-graded, fairly clean materials; symbol W. 

b.   Well-graded material with excellent clay binder; symbol C. 

c.    Poorly graded, fairly clean material; symbol P. 

d.   Coarse materials containing fines not included in preceding groups; symbol M. 

Fine-grained soils are divided into three groups: 

1.    Inorganic silty and very fine sandy soils; symbol M. 

2.    Inorganic clays; symbol C. 

3.    Organic silts and clays; symbol O. 

Each of these three groups of fine-grained soils is subdivided according to its liquid 

limit into 

a.    Fine-grained soils having liquid limits of 50 or less; that is, of low 

to medium compressibility; symbol L. 

b.    Fine-grained soils having liquid limits greater than 50; that is of 

High compressibility; symbol H. 

High organic soils, usually fibrous, such as peat and swamp soils of very high 

compressibility, are not subdivided and are placed in one group, symbol Pt, on the 

basis of visual identification. The pertinent characteristics of the various groups are 

given in Table 2.2. 
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                                          Table 2.2 Unified Systems 

Classification of Soils for Engineering Purposes 

ASTM Designation D-2487 
Major 

Definitions 
Group 

Symbols 
Typical Names  Classification Criteria 

GW 
Well-graded gravel and 
gravel-sand mixtures, 
little or no fines 

Cu = D60/D10 > Greater than 4 
C2 = (D30)2/(D10xD60) 
Between 1 and 3 

C
le

an
 G

ra
ve

ls
 

GP 

Poorly graded gravels 
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plasticity index 
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classification 
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of dual 
symbols. 

SW 
Well-graded sands and 
gravelly sand, little or 
no fines 

Cu = D60/D10 Greater than 6 
C2 = (D30)2/(D10xD60) 
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SP 
Poorly-graded sands 
and gravelly sand, little 
or no fines 

Not meeting both criteria for SW 

SM 
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2.6. Shortcomings of Engineering Classification: 

The various textural systems, the AASHTO system, and the Unified system are based 

on the properties either of the grains themselves or of remolded material; they do not 

take into consideration the properties of the intact material as found in nature. It is 

primarily the properties of the intact material that determine the behavior of the soil 

during and after construction. Hence, non of the system of classification can serve as 

more than a starting point for adequate description of soils in the conditions under 

which they are encountered in the field. Nevertheless, even with these limitations, 

much information concerning the general characteristics of a soil can be inferred as a 

consequence of its proper classification according to one of the system described 

under the preceding subheadings. The engineer who deals with soils and foundations 

should commit to memory the details of at least the engineering classification system 

that seems most appropriate to his area of activity. He should constantly train himself 

to identify and classify soils in the field correctly by comparing his field descriptions 

of soil samples with the corresponding laboratory test results. Since all systems of soil 

classification just described are in common use, it is advantageous to be thoroughly 

familiar with each. 

Still further useful information can be obtained from sources outside the field of civil 

engineering, particularly geology and petrology. The foundation engineer should 

possess knowledge of at least the descriptive terminology of these two sciences. 

2.7. Engineering Properties of Soils: 

To the civil engineer engaged in the design and construction of foundations, some of 

the important physical and engineering properties of soil are: 

♦ Permeability, 

♦ Elasticity, 

♦ Plasticity, 

♦ Cohesion, 

♦ Angle of internal friction (Ø), 

♦ Moisture content , 

♦ Density , 

♦ Shrink/swell potential , 

♦ Compressibility ,and 

♦ Grain size distribution. 
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2.7.1. Permeability: 

Permeability is a property indicating the ease with which water flows or passes 

through a material. This water movement is called percolation. The knowledge and 

extent of this condition is especially important in the design and construction of 

underground excavations. Soil texture, gradation, degree of compaction, and primary 

strongly influence the relative permeability of soil. Generally coarse-grained soils are 

much more permeable than fine grained soils (9). 

2.7.2. Elasticity: 

Elasticity is a property indicating ability of a material to return to its original shape or 

form after having been deformed by a load for a short period of time. Any load 

applied that exceeds the shear strength of a soil will also exceed the elastic limit of the 

soil, and it will not return to its original shape or form by plastic deformation. 

2.7.3. Plasticity:

Plasticity is a property indicating the ability of a material to be deformed permanently 

without cracking or crumbling (9). 

2.7.4. Cohesion:  

Cohesion is a very important property contributing to the shear strength of a soil , and 

is the capacity to resist shearing stresses .Cohesion varies depending on water content 

, density and plasticity of the soil(9). 

2.7.5. Angle of Internal Friction (Ø): 

The angle of internal fiction is a measure of the natural angle of response of a soil. 

For dry sand, this angle of approximately 30 degrees observed on the side slopes of a 

stock pile. For clayey or clay soil, this is not the case since negative pore pressures 

generated by the low permeability of the soil matrix masks the expression of the 

frictional properties of the soil .Moderate to high plasticity clays exhibits atypical 

friction angle of approximately 15 degrees when pore pressures reach equilibrium. 

The angle of internal friction is also the slope of the shear strength envelope, and 

therefore, represents the effect that increasing effective normal stress has on the shear 

strength of the soil .Refer to figure 2.6 for a graph of internal friction versus SPT (N-

value) (9).  
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2.7.6. Moisture Content: 

Moisture Content is the ratio of the weight of water to the weight of solids in a given 

volume of soil. Moisture Content can range from a few percent for rocks to several 

hundred percent for very soft highly organic coastal clays .The consistency of clay 

may be very soft or very hard depending upon the water content. Between these 

extremes, the clay may be molded and formed without cracking or rupturing the soil 

mass. 

:Density. .77.2  
Dry density is the unit weight of the solid particles of soil or rock per unit volume. 

Wet density is the unit weight of solid particles and the natural moisture and is used in 

computations for determining design values for foundations above the water table. 

Submerged density is wet density less the unit weight of water and is used when the 

foundation is below the water table. Typical values for wet density of soil range from 

19.2 to 21.6 KN/m3. 

 :Swell Potential/Shrink. .87.2
  
Shrinking /Swelling is a property of fine grained soils, especially clays , resulting 

from buildup and release of capillary tensile stresses within the soil’s pore water and 

the varying degree of affinity for water that certain clay minerals exhibits. 

 :Compressibility. .97.2
  

Compressibility is a property greatly influenced by soil structure and load history of 

the deposit. Drilled shafts or footings should not bear in a material that is susceptible 

to a high degree of compression (consolidation). 

 : Soil Compact ability. .107.2
  
While the compactability is indirectly influenced by permeability, it is also directly 

influenced by grain size distribution. Soils consisting solely of particles within a 

narrow size range (Uniformly or Poorly Graded) may be difficult to compact due to 

lack of other particles to interlock with the predominate particle size. 

Figure 2.7 is a grain size distribution chart showing some typical gradations. Well 

graded refers to the size of the particles being distributed over a wide range of sizes. 

Uniformly graded refers to the size of the particles being distributed over a narrow 

range of sizes. Gap graded refers to several distinct size ranges within a sample(9). 
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Chapter Three 
Artificial Intelligence Methods in Engineering 

 
3.1. Expert System:  
3.1.1. Definition:  
 
 McCarthy (2000) at Stanford University defines expert system as: 

A” knowledge engineer” interviews expert in a center domain and tries to 

embody their knowledge in a computer program for carrying out some 

task.” (MCCARTHY, 2000) (10).  

The “knowledge acquisition” it will not only be the “knowledge” of expert 

that will be cloned and built into these system, but also their intuition and 

the way that they reason, so that the best options can be selected under any 

given set of circumstances (10).  

An expert system can be developed by: Expert system shell software that 

has been specifically designed to enable quick development, AI languages, 

such as LISP and Prolog or through the conventional languages, such as 

Fortran, C++, Java, etc. 

While the Expert System concept may sound futuristic, one of the first 

commercial Expert System, called Mycin, was already in business use 1974 

(MIT, Applications of AI,2001). Mycin, which was created by Edward H. 

Shorliffe at Stanford University, is one of the most famous Expert system. 

Mycin was designed as a medical diagnosis tool. Given information 

concerning a patient’s symptoms and test results, Mycin attempted to 

identify the cause of the patient’s infection and suggested treatments (MIT, 

Applications of AI, 2001). According to McCarthy (2000), it did better than 

medical students or practicing doctors, provided its limitation was observed. 

Another example of an Expert System is Dendral, a computerized chemist. 

According to the Massachusetts Institute of Technology, the success of 

Dendral helped to convince computer science researchers that system-using 

heuristics were capable of mimicking the way human expert solve problem 

(MIT, Timeline of AI, 2001) (10). 
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3.1.2. Potential Applications for an Expert System: 
 
 Expert System have been developed for a variety of reasons, including: the 

archiving of rare skills, preserving the knowledge of retiring personnel, and 

to aggregate all of the available knowledge in a specific domain form 

several expert, (when no single expert has complete knowledge of the 

domain). Perhaps an expert’s knowledge is needed more frequently than the 

expert can handle, or in places that the expert cannot travel to. The Expert 

System can train new employees or eliminate large amounts of the 

monotonous work humans do, thereby saving the expert’s time for situations 

requiring his or her expertise. The only limit on the possible application of 

stored knowledge in an Expert System is what the mind can imagine. 

The Expert System is an AI application that makes decisions based on 

knowledge and interface (the ability to react the knowledge), as defined by 

expert in a certain domain and to solve problem in that domain. The Expert 

System normally falls under the definition of Weak AI, and is one of the AI 

techniques that have been easiest for companies to embrace. Commercial 

Expert System was developed during the 1970s, and continues to be used by 

companies.  One advantage of an Expert System is that it can explain the 

logic behind a particular decision, why particular questions were asked, 

and/or why an alternative was eliminated. That is not the case with other AI 

methods. 
3.2. Artificial Neural Network: 
 
Sometime the following distinction is made between the terms “neural 

network” and “Artificial Neural Network”. “Neural Network” indicates 

networks that are hardware based and “Artificial Neural Network” normally 

refers to those which are software-based. In the following paragraphs, 

“Artificial Neural Network” is sometimes referred to as “Neural Network” 

or “Neural Computing”. Neural network are an approach, which is inspired 

by the architecture of the human brain. In the human brain a Neural 

Network exists which is comprised of over 10 billion neurons; each neurons 
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then builds hundreds and even thousands of connection with other neurons 

(KIMBALL, 2001) (10). 

3.2.1. Definition: 
 
 Aleksandra and Morton (1995) (10), in their book “An Introduction to Neural 

Computing,” define Neural Computing as: 

“Neural Computing is the study of network of adaptable nodes which, 

through a process of learning from task examples, store experimental 

knowledge and make it available for use.” (ALEKSANDER, MORTON, 

1995) (10). 

3.2.2. Learning: 
 
As a Neural Network (NN) is designed, rather than begin programmed, the 

system learn to recognize patterns (HENGL, 2001) (10). Learning is achieved 

through repeated minor modification to selected neuron weights (the weight 

is equal to the importance of the neuron). ANN typically starts out with 

randomized weights for all their neurons. This means that they do not 

“know” anything, and must be trained. Once a NN has been trained 

correctly, it should be able to find the desired output to a given input; 

however, it cannot be guaranteed that a NN will product the correct output 

pattern. NN learns by either a supervised or an unsupervised learning 

process (Kay, 2001) (10).  
3.2.2.1. The Supervised Learning Process: 
 
A supervised learning process has a target pattern (desired output). While 

learning different input patterns, the weight values are changed dynamically 

until their values are balanced, so that each input will lead to the desired 

output. There are two supervised learning algorithms: forward, and Back-

propagation, learning Algorithms.  
3.2.2.2. The Unsupervised Learning Process: 
 
An unsupervised Neural Network has no target outputs. During the learning 

process, the neural cells organize themselves in groups, according to input 

pattern. The incoming data is not only received by a single neural cell, but 
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also influences other cells in its neighbourhood.  The goal is to group neural 

cells with similar function close together. Self-organization Learning 

Algorithms tends to discover patterns and relationships in that data (Kay, 

2001) (10). 
3.2.3. Artificial Neural Network Techniques:   
 
According to Sarle (1999) (10), there are many kinds of Artificial Neural 

Network. No one knows exactly how many. This dissertation only describes 

the most common ones. 
3.2.3.1. Perceptron: 
 
Frank Rosenblatt introduced the perceptron in 1959 (MIT, Timeline of AI, 

2001) (10) Figure 3.1 has been devised by the author and is a very simple 

structure with two neuron layers that accept only binary input and values (0 

or 1). The learning process is supervised and the net is able to learn basic 

logical operations such as AND or OR. It is also used for pattern 

classification purposes. 

Bias

A
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Rosenblatt
Input

Output

 
Figure 3.1: Rosenblatt Perceptron 
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3.2.3.2. Multi-Layer-Perceptron: 
 
Marvin Musky and Seymour Paper first introduced the Multi-Layer-

Percetron in 1969 (BUCHANAN, 2001) (10). It is an extended perceptron 

and has one more hidden neuron layer between its input and output layers. 

Due to   its extended structure, a Multi-Layer-Percetron is able to learn 

every logical operation. The Multi-Layer-Percetron is showed in the figure 

3.2 (FROHLICH, 1996). 

Input values

Output values

Input layer

w eight matrix 1

Hidden layer

w eight matrix 2

output layer

 
Figure 3.2:Multi-layer Perceptron (FROHLICH, 1996). 

3.2.3.3. Back propagation Net: 
   
G.E Hinton, E. Rum hart and R.J. Williams’s first intro-duce the Back 

propagation Net in 1986. It has the same structure as the Multi-Layer-

Percetron, but uses the back propagation-learning algorithm.  

 
3.2.3.4. Hopfield Net: 
 
Physicist J.J. Hopfield first introduced the Hopfield Net in 1982. It consists 

of a neuron, where each neuron is connected to every other neuron. There is 

no difference between input and output neuron. The main application of a 

Hopfield Net is the storage and recognition of patterns, e.g. image files 

(FROHLICH, 1996) (10). Three nodes Hopfield Network is showed in the 

figure 3.3. 
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23
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Figure 3.3: Hopfield Network (Perry 2001) 

3.2.3.5. Kohonen Feature Map:  
 
Finnish Professor Teuvo Kohonen, at the University of Helsinki, introduced 

the Kohonen feature Map (is showed in the figure 3.4) in 1982. Kohonen 

Net whose neurons compete with each other and the neuron and its 

neighhourhood with the smallest distance is winning. 

 

 
Figure 3.4: Kohonen Feature Map (NAVELLAB, 1997) 
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3.2.4. ANN as Method of Forecasting: 
 
“Forecasting is essential to engineering”, (TANLER, 2001) (10).ANN over 

traditional statistical forecasting methods are that ANN do not have to fulfill 

any statistical assumptions and the ability to handle non-linearity, further 

advantages, according to Jiang et al., are that ANN is easy to learn and use, 

and normally requires less data preparation. Jiang et al. summarize ANN’s 

forecasting advantage over conventional statistical methods in the Journal of 

“Decision sciences”:  

“Researchers believe that Neural Network approach can generalize and ’see 

through’ noise and distortion better the conventional statistical models” 

(JIANG et al., 2001) (10). 

ANN is inspired by the architecture of the human brain, and learns to 

recognize patterns through repeated minor modifications to selected neuron 

weights. There is much kind of ANN techniques that are good at solving 

problem involving patterns, pattern mapping, pattern completion, and 

pattern classification. 

ANN pattern recognition capability makes it useful to forecast time series in 

engineering. A Neural Network can easily recognize patterns that have too 

many variables for humans to see. They have several advantages over 

conventional statistical models: they handle noisy data better, do not have to 

fulfill any statistical assumptions, and are generally better at handling large 

amounts of data with many variables. 

According to Stottler (2001) (10) a problem with Neural Network is that it is 

very difficult to understand their internal reasoning process. In my opinion, 

however, this is not entirely accurate. It is possible to get an idea about the 

learned ANN variables’ elasticity. By changing one variable at a time, and 

during that time looking at the changes in the output pattern, at least some 

information regarding the importance of the different variables will be 

visible. In my opinion, Neural Networks can be very flexible systems for 

problem solving.  
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3.3. Evolutionary Algorithms:   
3.3.1. Definition: 
 
After reading several Evolutionary Algorithms (EA) definitions. Howe’s 

(1993) at the University of Pittsburgh stands out as being quite 

understandable and complete,  

“An algorithm that maintains a population of structures (usually randomly 

generated initially) that evolves according to rules of selection, 

recombination, mutation and survival referred to as genetic operators. A 

shared “environment” determines the fitness or performance of each 

individual in the population. It also tells us that the fittest individuals are 

more likely to be selected for reproduction (retention or duplication), while 

recombination and mutations modify those individuals, yielding potentially 

superior ones”. (HOWE, 1993) (10). 
3.3.2. Branches of Evolutionary Algorithms: 
 
There are currently four main paradigms in Evolutionary Algorithms (EA) 

research: Genetic Algorithm (GA), with two sub-classes and Genetic 

programming (GP), Evolutionary programming, and Evolution Strategy. 
3.3.2.1. Genetic Algorithm:  
 
A good definition of Genetic Algorithm (GA) is made by Obitko (1998) at 

the Technical University in Prague’s web under the headline “Introduction 

to Genetic Algorithm”. 

“Genetic algorithms are inspired by Darwin’s theory about evolution. 

Solution to a problem solved by genetic algorithm is evolved. Algorithm is 

started with a set of solution (represented by chromosomes) called 

population. Solution from one population are taken and used to form a new 

population. This is motivated by a hope, that the new population will be 

better than the old one. Solutions are selected to form new solutions 

(offspring) are selected according to their fitness- the more suitable they are 

the more chances they have to reproduce. This is repeated until some 

condition (for example number of population or improvement of the best 

solution) is satisfied.” (OBITKO, 1998) (10). 
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3.3.2.2. Genetic Programming: 
 
Genetic programming (GP) is a programming technique that extends the 

Genetic Algorithm to the domain of whole computer programs. In GP, 

populations of programs are genetically introduced to solve problems 

(HOEW, 1993) (10). 

 
3.3.2.3. Evolutionary Programming & Evolution Strategy: 
 
Evolution programming uses mutations to evolve population. Is a stochastic 

optimization strategy similar to Genetic Algorithm, but instead places 

emphasis on the behavioral linkage between parents and their offspring, 

rather than seeking to emulate specific Genetic Operators as observed in 

nature. Evolutionary Programming is very similar to Evolution Strategies, 

although the two approaches developed independently (BEASLEY, 

HEITKOETTER, 2001) (10). 

 
3.3.3. Advantage and Disadvantages: 
 
Examples of problems where EA have been quite successful are: 

Timetabling and Job-Shop Scheduling Problem (JSSP), finding the most 

beneficial locations for offices, etc., and typical Operational Research (OR) 

problems with many constraints (HEITKOTTER, BEASLEY, 2001) (10). 

Weisman and Pollack (1995), at Ben-Gurion University, claim that GA has 

proven to be well suited to optimization of specific non-linear multivariable 

system. They explain that GA is used in a variety of application including 

scheduling, resource allocation, training ANNs, and selecting rules for fuzzy 

systems. Heitkotter and Beasley (2001) explain that,  

“Gas should be used when there is no other known problem solving strategy, 

and the problem domain is NP-complete. That is where Gas comes into 

play, heuristically finding solutions where all else fails.” (BEASLEY, 

HEITKIETTER, 2001) (10). 
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Several universities agree (HOWE, 1993) (WEISMAN, Pollack, 1995) (5) 

that EAs are especially ill suited for problems where efficient ways of 

solving them are already known. 

The EA tries to mimic the process of biological evolution, complete with 

natural selection and survival of the fittest. EV is a useful method of 

optimization when other techniques are not possible. EAs seem to offer an 

economic combination of simplicity and flexibility, and may be the better 

method for finding quick solutions than the more expensive and time 

consuming (but higher quality)OR methods. In my opinion a hybrid system 

between OR and EA should be able to perform quite well(WEISMAN, 

Pollack, 1995) (10). 

If a backward Evolutionary Algorithm is used on an accepted OR solution 

may be then the human eye could easily rearrange the first string in a more 

effective way. If EA then were to run the string through the normal forward 

process, the end result could be better than using EA on an unperfected start 

string. 
3.4. Hybrid System: 
3.4.1. Definition: 
 
Gray and Kilgour at the University of Otego made a simple definition of a 

Hybrid system discovered during this research: 

“One that uses more than one problem-solving technique in order to solve a 

problem” (GRAY, KILGOUR, 1997) (10). 

There is a huge amount of interest (GRAY, KILGOUR, 1997) in Hybrid 

system, for example: neural-fuzzy, neural-genetic, and fuzzy-genetic hybrid 

system. Researchers believe they can capture the best of the methods 

involved, and outperform the solitary methods. 

“Fuzzy logic &fuzzy Expert system” and “Data Mining” are deliberately 

placed under the heading of Hybrid system. Fuzzy logic is a method that is 

combined with other AI techniques (Hybrid System) to represent knowledge 

and reality in a better way. Data Mining, does not have to be a Hybrid 

System, but usually is, for example: IBM’s DBS (Data Mining tool), which 



Chapter Three                                     Artificial Intelligence Methods in Engineering 

 38

contains technique (IBM, 2001) such as Statistics, ANN, GA, and Model 

quality graphics, etc. Let us now take a closer look at the methods. 

3.4.2. Fuzzy Logic& Fuzzy Expert System: 
 
Withagen at the University of Bergen explains that Lotfi Zadeh introduced 

fuzzy logic. He further explains that fuzzy logic resembles human 

reasoning, but uses estimated information and vagueness in a better way 

(WITHAGEN, 2001) (10). The answers to real-world problems are rarely 

black or white, true or false, or start or stop. By using Fuzzy logic, 

knowledge can be expressed in a more natural way (fuzzy logic instead of 

Boolean “Crisp” logic). 

3.4.2.1. Definitions: 
 
Withagen definition of fuzzy logic is: 

“It is a departure from classical two-valued sets and logic that uses “soft” 

linguistic (e.g. large, hot, tall) system variables and a continuous range of 

truth values in the interval [0, 1] rather than strict binary (True or False) 

decisions and assignments.”(WITHAGEN, 2001) (10). 

Fuzzy logic is ideal for controlling non-linear system and for modeling 

complex systems where an inexact model exists, or in systems where 

ambiguity or vagueness is common. There are over two thousand 

commercially available products using fuzzy logic today, ranging from 

washing machines to high-speed trains. 

3.4.2.2. Fuzzy Expert System: 
 
Often  fuzzy logic is combined with Expert System, as the so-called Fuzzy 

Expert System are the most common use of fuzzy logic (KANTROWITZ et 

al., 2001), (HORSTKOTTE, 2000) (10). These systems are also called “Fuzzy 

System” and use Fuzzy Logic instead of Boolean (crisp) logic, 

Fuzzy Expert System is used in several wide-ranging fields, including: 

“Linear and Non-linear Control Pattern Recognition”, “Operation 

Research”,”Data Analysis”, “Pattern Recognition.”etc… 
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3.4.3. Data Mining: 
 
Data Mining is also known as Knowledge Discovery in Data bases (KDD), 

Data Archaeology, Data Segmentation, or Information Discovery. Port 

defines Data Mining.  

“Data Mining harnesses Artificial Intelligence and slick statistical tricks to 

unearth insights hiding inside mountains of data. The software is so 

thorough, and so clever at spotting relationships and associations, that it 

regularly makes fresh discoveries.” (PORT, 2001) (10). 
Data Mining always includes AI, or that it is always a Hybrid System with 

different techniques gathered together. Yet that is not always true, (WELGE, 

2000). Expanding our definition of Data Mining to include the process of 

searching for and revealing expected and unforeseen structures in data, this 

encompasses the issues discussed above. Port (2001) claims that data mining 

has taken strong root in industry. Harry R. Kola, head of strategy at IBM’s 

BI unit, explains that data mining has become very important for companies 

today.  

3.4.4. Conclusion: 
 
A Hybrid System uses more than one technique, such as neural-fuzzy, 

neural-genetic, fuzzy expert system, data mining (most often), etc., to solve 

a problem. Fuzzy logic is incorporated into computer system so that they 

represent reality better by using “non-crop” knowledge. Often fuzzy logic is 

combined with Expert System, so-called Fuzzy Expert System or more 

simply, “Fuzzy System.” 

Data mining software most often uses various techniques, including Neural 

Networks, statistical and visualization techniques, etc., to turn what are 

often mountains of data into useful information. Data Mining does not 

always contain AI techniques. In my opinion it is quite possible that data 

mining will become a very useful tool companies in the competition for 

market shares. 
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Chapter Four 

Artificial Intelligence in Geotechnical Engineering 
 

4.1. Introduction:  
                                                                                                              
Artificial Neural Networks (ANNs) were started about 50 years ago .There early 

capabilities were exaggerated, casting doubt on the field as a whole. There is a recent 

renewed interest in the field, however, because of new techniques and better 

theoretical understanding of their capabilities.  

Artificial Neural Networks (ANNs) is able to capture and represent complex 

input/output relationships .The motivation for the development of neural networks 

technology is held by scientists who are challenged to use machines more effectively 

for tasks currently solved by humans. 

Artificial Neural Networks (ANNs) a rapidly growing facet of Artificial Intelligence 

(AI) , using a collection of simple processing units that are massively interconnected 

in order to produce meaningful behavior . 

4.2. Artificial Intelligence Applications in several domains: 

 Artificial Intelligence techniques are used extensively in various fields such as:               

4.2.1 Machine learning applications:   

Which are used for:  

 A. Optimization: Given a set of constraints and cost function and the problem is to 

find an optimal solution.                                                                                                            
B. Classification: Grouping patterns into classes.                                                                 

C. Associate memory: Recalling a memory based on a partial match.                                 

D. Regression: Function mapping.                          
4.2.2 Cognitive science Applications:  

 
Which are used for:  

A. Modeling higher level reasoning such as: language. 

B. Modeling lower level reasoning such as: speech generation, audition speech 

recognition, vision…etc. 
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4.2.3 Neurobiology Applications: 

 
 Which are used for modeling models of how the brain works. 

 
4.2.4 Mathematics Applications: 

 
 Which are used for nonparametric analysis and regression. 
4.2.5 Philosophy Applications: 

 Which are used for modeling human soul behavior in terms of symbols like neurally                

based models.     

4.2.6 Signal processing Applications: 

Which are used for suppresses line noise, with adaptive echo canceling, blind source 

separation...etc.                                           
4.2.7 Control Applications:  

 
Which are used for backing up a truck, cab position, rear position, match with the 

dock get converted to steering instruction, manufacturing plant for controlling 

automated machines. 

 

4.2.8 Medicine Applications: 

 
Which are used for storing medical records based on case information. 

4.2.9 Financial Application: 

 
Which are used for time series analysis, stock market prediction ...etc. 
4.2.10 Game playing Application: 

  
Such as: back gammon, chess, goes… etc.  
4.3 Artificial Intelligence in Geotechnical Engineering:  

 
 In recent years, artificial neural networks (ANNs) have been applied to many 

geotechnical engineering fields with some degree of success .This article describes 

some of these applications as follows: 
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4.3.1 Data Division For Developing Neural Networks Applied To Geotechnical 

Engineering: 

  
 In the majority of geotechnical engineering applications, data division is carried out 

on an arbitrary basis. However, the way the data are divided can have a significant 

effect on model performance, so the issue of data division and its impact on ANN 

model performance is investigated by Mohammed A. Shahin (2004) (11).             

A case study of predicting the settlement of shallow foundation on granular soils was 

used for such scope of work. Four data division methods are investigated:  

 

(1) Random data division.  

(2) Data division to ensure statistical consistency of the subsets needed for ANN 

model development. 

(3) Data division self-organizing maps (SOMs); and  

(4) Anew data division method using fuzzy clustering. 

The results indicate that the statistical properties of the data in the training, testing and 

validation sets need to be taken into account to ensure that the optimal model 

performance is achieved. It is also apparent from the results that the SOM and fuzzy 

clustering methods are suitable approaches for data division.   

 
4.3.2 Prediction of coefficient of lateral Earth pressure using Artificial Neural 

Networks:  

Prediction of lateral earth pressure ratio (K0) based or dilatometer test results was 

introduced by Sarat K.Das (12) (2001) .Feed forward back propagation Neural 

networks have been used and the best model is chosen based on different statistical 

parameters. The best fit line for predicted K0 (K0p) and observed K0 (K0obs) , 

correlation coefficient , coefficient of determination , the mean and standard deviation 

of the ratio K0p/K0obs  are used to compare different ANN models.                                    

The importance of using different statistical criteria for the evaluations of the ANN 

model is discussed .Using sensitivity analysis, the parameter influencing the value of 

K0are identified.   

The result was presented with a high value correlation coefficient for both training 

and testing data. The performances of the models were governed by the input 

parameters. It was observed that the models should be evaluated based on different 

statistical parameters. A high predictactability performance of the chosen ANN model 
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was also observed. Based on sensitivity analysis, Kd obtained from dilameter test 

results found to be the most important parameter for determination of K0value.        

4.3.3 Machine Learning Classifier for seismic liquefaction potential Evaluation:  

Liquefaction potential assessment has been a very important problem from the point 

of view of geotechnical engineering. It's well known that many factors such as soil 

parameters and seismic characteristics influence this problem. Various researchers 

have attempted to solve this problem using artificial neural networks (ANN), a sub-

branch of machine learning (ML). However, many authors have missed important 

 issues such as proper data modeling, ANN model selection, and performance 

evaluation of ANN for liquefaction potential assessment. Covering these aspects 

sudhirkumar V. Barai (2002) (13), intends to provide systematic steps to model 

liquefaction potential data using ML classifier (13).  

Liquefaction is a phenomenon in which the strength of soil is reduced by earthquake 

shaking or other rapid loading. Liquefaction and related phenomena have been 

responsible for tremendous amount of damage in historical earthquake around the 

world. Determination of liquefaction potential due to an earthquake is a complex 

problem in the geotechnical engineering field. It is well known that factors such as 

soil parameters and seismic characteristic influence this problem. Recently such 

phenomenon has been modeled by various researchers using (ANN).  This modeling 

was feasible since ANNs can successfully replace existing equation –based models. 

For seismic liquefaction potential, ANN models provide significant improvements in 

prediction accuracy over their statistical counterpart. 

Tung et al. (1993) (13) carried out study using back prorogation based neural networks 

with inputs as ground shaking intensity, ground water level, depth liquefiable soil 

deposit and soil penetration resistance and output as liquefaction occurrence. The 

study was trained with a selected set of data and tested of the same domain test data 

and other city test data.    

Goli (1994) (13) has used neural networks to model the complex relationship between 

seismic and soil parameters in order to investigate liquefaction potential. The 

networks used the standard penetration test (S.P.T.) value, fines content, grain size, 

dynamic shear stress, overburden stress, earthquakes magnitude, and horizontal 

acceleration at the ground surface as input. Goli (1996) (6) has also extended neural 

network study to assess liquefaction potential from cone penetration test (CPT) data.  

Ural and Saba (1998) (6) used back- propagation learning algorithm to train network 

using actual soil records. The performance of the network model was investigated by 



otechnical Engineeringin Ge                                           Artificial Intelligence FourChapter  

 - 44 -

changing the soil and seismic variables including earthquake magnitude, initial 

confining pressure, seismic coefficient, relative density, shear modulus, friction angle, 

shear wave velocity and electrical characteristic of the soil. The most efficient and 

global model for assessing liquefaction potential and the most significant input 

parameters affecting liquefaction were summarized. A forecast study was performed 

for the city of Izmir, Turkey. Comparisons between ANN’s results and convential 

dynamic stress methods were made.  

Above mentioned papers have missed some important issues from civil engineers 

perspective:  

Firstly: proper data modeling issue was not well addressed.  

Secondly: The basis for selection of ANN model was not clearly defined.   

Last but not the least: The reliability of performance of ANN model was not well 

discussed. Sudhirkumar V.Barai (2002) (13) aims to discuss these aspects and to 

provide systematic steps to model seismic liquefaction potential data using ML 

classifier for civil engineering problems. 
4.3.3.1 Data Modeling for Machine Learning Classifier:  

 
In this phase the following two steps are involved: 

Step (1): Data collection:   
‘Raw’ data consist of the collected (measured, sensed, polled, observed….etc) 

attribute values describing objects and relations between objects in the application 

domain. 

Data coming from systems include the results of manipulating independent or control 

variables. These data need to be modeled property for ML classifier. The data model 

represents a set of data in mathematical form. The model behaves in similar ways as 

the system. The data model helps in making prediction, classifying new data, trying 

out (what if) situations, learning about relationships in the data and optimizing the 

system from which it came. In achieving this goals 'raw' data must be processed 

before training the network.  

Step (2): Preliminary Data Analysis: 
Preliminary data analysis is one of essential parts in the ML data modeling. One 

should not forget the old saying ''Garbage in-Garage out''. Data can be online or off 

Line, continuous or discrete, coming from static or dynamic systems. 

Great care is expected in presenting input, removing outliers from the data and use of 

prior knowledge in finding relevant inputs. The step of preliminary data analysis 
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involves identification of methods of preprocessing and post-processing. It is general 

practice in ML applications to present pre-processed input data to a ML model and to 

obtain the required output values from post-processed outputs of a ML model. The 

preprocessing is the selection of appropriate data subsets for performance as well as 

consistency reason and the transformation of complex data for better meaningful 

representation.                                    
 4.3.3.2 Neural Networks As Machine Learning (ML) Classifier:  
In this phase, varieties of neural network, models, such as Hopfield net, Hamming net, 

carpenter, Grossberg net, single-layer perception, multi-layer network…etc. can be 

used as ML model. The single-layer Hopfield and Hamming nets are used with binary 

input and output under supervised learning. The carpenter / Grossberg net, however, 

use unsupervised learning. The single-layer perception can be used with multi -value 

input and output in addition to binary data. A serious disadvantage of the single-layer 

networks may have open or closed convex decision regions (Lippman, 1987) (13). One 

can select the model depending upon the application domain. The multi-layer network 

is very a popular ANN architecture and has performed well in variety of applications 

in several domains including applications.        

In multilayer perception, the training input vectors of all the connection are adjusted 

to make the output layer best represent the desired output, the process is repeated 

many times until a predefined error is obtained or observed. By iterating through the 

training data many times, the neural networks are able to generalize the rules implicit 

in the data. The method of adjusting weights is called learning rule. The weights are 

adjusted to minimize the error between input and output vectors and the process is 

known as delta-rule learning. The most commonly used type of neural network is 

back-prorogation.             
4.3.3.3Machine Learning Model Performance Evaluation:  

 
 Both qualitative and statistical criteria can be used for reliable ML model evaluation. 

These are several methods that have been used to evaluate the performance of ML: 

Re-substitution (R), Hold-out (H), cross validation such as leave-one-out (L) and k-

fold cross validation (k), and Bootstrap (B). Bootstrap being computationally 

exhaustive. 

Reich and Barai (1999) (13) have given qualitative nature of these basic evaluation 

methods. They give an idea about the reliability of these evaluation methods for given 

data in particular ANN   model. However, they do not include any distinction between 
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different types of errors (e.g., false positive or negative in classification); although 

different types of errors might be very different in terms of cost or severeness for the 

particular engineering application, however, there is growing interest in ML 

community in understanding the properties of these tests. Such properties are derived 

empirically from many tests on artificial and real data base.   

In general, it is common to evaluate the predictive accuracy of models by cross-

validation. Either K or L is acceptable. The selection of cross-validation methods is 

based on the size of the data. This method provides reliable estimates of the true error 

rate, as nearly all the cases are used for training, and all the cases are used for testing.  

The estimates obtained from this test are nearly unbiased. In general K found to be 

more stable than L, and given its reasonable computation requirement, K is the 

recommended test for absolute evaluation. For small data bases one has to use L or B 

although there are cases where both fail. When better estimations are required and if 

computational resources are available one may carry out K exercise I times, which 

can be denoted as KI. In order to get most out of the evaluation process, Rich and 

Barri (1999) (13) recommend executing all the evaluation methods.         

An important aspect when solving practical problem is obtaining the best possible 

performance out of the data. Therefore it is natural to wish to optimize ML program 

parameters. However this requires special attention related to evaluation, and finally 

estimating the performance of the ML model. In the first step, the data is subdivided 

into data for model learning and model testing. In the second step, the data for model 

learning is used to select the best model (i.e. learning approach) and operation 

parameters. In the third step, a model is created from the complete model learning set 

by the best approach and best operational parameters. The model is validated on the 

testing set.   
4.3.4 Site characterization:  

 Systems have been developed for planning site investigation, interpreting site 

investigation data to generate a model of the ground conditions, classification of soil 

and rock, and the interpretation of geotechnical parameters. 

                                                                                                                                             

4.3.4.1. Site Investigation planning:  
SOILCON (wharry and Ashley, 1986, siller, 1987) (14) was one of the earliest 

researchers whose interest to address the problem of determining the required level of 

geotechnical investigation.This is based on the requirements of proposed structure and 

the level of information known about the site. 
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Smith and Oliphant (1991) (15) describe a system to assist with the planning stages of a 

site investigation.               

The system provides suggestion as to the next stage of the site investigation.   The 

information obtained from the subsoil exploration stage is also used to create   a 2-D 

visual representation of the soil layers.      
4.3.4.2. Interpreting Ground Conditions:  
One of the earliest geotechnical knowledge-based systems (KBSs) was SITECHAR 

(Norkin, 1985, Rehak et al, 1985) (16). This is a KBS which uses geometrical 

reasoning to develop inferences about the depositional patterns of the subsurface 

materials and their physical properties. It uses field and laboratory data but also takes 

into account existing experience of geology and geomorphology at a specific site or at 

similar ones. The same rule-based approach was further developed as LOGS (lok, 

1987, Adams et al, 1987) (17). LOGS treats information from several boring logs and 

provides the user with two dimensional subsurface profiles.              

Another system which uses the integration of different types of data is described by 

kovalevsley and kharchenko (1992) (11).Their system is used for classifying seabed 

soils based on an integration of geophysical and geotechnical data e.g. compress ional 

and shear wave velocity section, and borehole profiles.   

Toll et al (1992) (11), Toll (1994) (11), Toll (1995) (11) describe SIGMA, a KBS for 

interpreting ground condition of design parameters from laboratory or field test 

results. The approach used for correlating soil layers between boreholes (based on soil 

descriptions) is described by Vaptismas and Toll (1993) (11). A similar approach was 

also used by Oliphant et al (1996) (15). Their system (ASSIST) can also generate 

graphical representations of the ground conditions.      

Kinnicut et al (1994) (11) describe a system called NOMAD which can be used for 

three dimensional stratigraphic characterization NOMAD can use the functionality of 

KRIB(kinnicutt, 1995) (11) to create ground profile from borehole data. This is done by 

combining geostatistical and knowledge. Based approaches.    

Adams and Bosscher (1995) (11) describe the integration of geographical information 

systems (GIS) and knowledge-based systems for subsurface characterization. 

Thomagg and Altschaeffl (1994) (11), in their sketchy outline of Geosys, also suggest 

that a combination of tools is necessary to support the site investigation process. 

These developments are the logical extension of the idea of a' geotechnical site 

characterization work bench' suggested by Rehak et al (1995) (11).   



otechnical Engineeringin Ge                                           Artificial Intelligence FourChapter  

 - 48 -

The methods so far described for analysis and interpretation of geotechnical site 

investigation data make use of either geometrical reasoning or statistical techniques. 

Zhou and WA (1994) (11) describe the use of ANN for this purpose. Their ANN 

system is used to characterize the spatial distribution of rock head elevations. Similar 

applications relevant to ground water characterization are described by Rizzo and 

Dougherty (1994) (18) and Basheer et al (1996) (18). Basheer et al (1996) (18) describe 

how ANNs can be used to map the variation of permeability in order to identify 

boundaries of a landfill.                                         
4.3.4.3. Classification and parameter Assessment of soils: 
CONE (Mullarkey, 1986, Mullarkey and fenves, 1986) (11) is a KBS that interprets 

raw data from the cone penetrometer (CPT) in order to check the validity of the raw 

data and to classify the soil types (to generate profiling). It represents an early use of 

fuzzy sets in geotechnical engineering. The classification is used to inter values for 

the shear strength of sands and clays.      

Alin and Munro (1987) (11) present a very simple proto-type KBS for soil 

identification that uses rather simplistic text book knowledge. It provide judgment 

concerning the most likely foundation type under given soil and loading conditions, 

based on visual and physical observation of soil characteristics.    

 A KBS was developed by Davey-Wilson (1991) (11) for soil shear strength analysis. 

The system uses descriptions as input in order to enter values for friction angle (Ø). 

Similarly, Gillette (1991) (11) describes CASS computerized Adviser on soil strength), 

a KBS to assist in the selection of shear strength parameters (C and Ø) for use in 

stability analysis.  

Agrawal et al (1994) (11) use ANN approach for predicting c' and Ø' for silty clay from 

dry density and water content. Davey- Wilson (1994) (11)  earlier work has been much 

extended by Davey-wilsor and Mistry (1995) (11) which uses a case-based approach to 

the estimation of geotechnical parameters.                                                                                                    

 An object-oriented approach to the same problem is described by Toll and Giolas 

(1995) (11). The KBS makes use of a knowledge base which is structured to represent 

the typical range of values for a number of geotechnical design parameters.     

 Neural network approach to soil classification is described by Cal (1995) (11) that use 

three main factors (P.L., L.L and clay content) to generate a quantitative soil 

classification. Goli (1995) (11) has used ANNS for modeling soil correlations.  

The stress-strain behavior of soils has also been modeled using ANNS. Penumadn et 

al (1994) (11) have attempted to model the stress-strain behavior of clays, incorporating 
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rate dependant behavior. Ellis et al (1995) (11) have used grain size distribution and 

stress history as input parameters in order to simulate stress strain behavior for sand.                                  

4.3.4.4. Classification and Parameter Assessment of Rocks: 
Rock mass classification systems make use of a set of reasonably well defined rules 

and are therefore ideally situated for implementation as knowledge-based systems. A 

number of systems have been developed, some of which have been reviewed by 

Coulthard (1995) (11). These include Zhang et al (1988) (11) based on Glis qualitative 

classification scheme; Juang and Lee (1989) (11) and Madlu et al (1995) (11) based 

mainly on Bieniausskits Rock Mass Rating (RMR) system, and using fuzzy logic.    

Classification systems have been developed for specific purposes have also been 

implemented as KBSs. Bearman et al (1990) (11) describe the development of KBS for 

predicting crushing requirements based on a communicating index. Koczanowski et al 

(1991) (11) describes a KBS for rock rip ability assessment.         

ANNs have been used for rock classification. Millar and Hudson (1994) (11) describe 

the use of ANN method for performance monitoring of rock masses for mining 

geomechanics. They describe an application for the collection of data relating to the 

condition and subsequent classification of rock masses. They have also used ANNS to 

predict likely future performance of rock masses; particularly when they have been 

perturbed from their natural condition by mining engineering activity. CAI (1995) (11) 

has used ANNs to classify rocks for the purposes of blast design and Yi and 

Lindqvisl. (1995) (11) have used ANN model for predicting rock quality parameters.   

Zhang et al (1991)(11); Millar and Clarici (1994) (11)and Millar and 

Calderbank(1995)(11) have used ANNS for modeling rock deformability behavior. 

Input parameters include mineralogy, particle size and shape, grain 

compressibility….etc.  

4.3.5. Foundations:   

AI techniques have been used in a range of systems relating to foundations. 

Developers have particularly focused on conceptual design (i.e. selecting appropriate 

foundation types). However, there are also systems for detailed design, for 

foundations problems and construction. The prediction of pile capacity from site 

driving data is an area which has been found to be well suited to ANN Approaches.                                  

4.3.5.1. Conceptual Design of Foundations:   
A number of KBS have been developed to address the problem of selecting an 

appropriate type of foundation. Such a system for building foundations provide a list 



otechnical Engineeringin Ge                                           Artificial Intelligence FourChapter  

 - 50 -

of all feasible  foundation alternatives, based on soil conditions, water table location, 

depth of bedrock and the imposed loading conditions from the structure.      

The system described by Stuckrath and Grivas (1990) (11) focused on the selection of 

bridge foundation. The system presents preliminary design options including shallow 

and deep foundation and ground improvement.  

FOUNDATION (Rashed et al (1991) (11) also provides a preliminary module for 

selection of the most appropriate foundation system. In addition it has a detailed 

design module for performing the final design. CONCFOUND (Toll and Barr, 1995) 

(11) is a computer-aided learning package for preliminarily (conceptual) foundation 

design. The system offers a range of foundation types. 

A number of KBSs have been developed specially for pile selection. PILE (Santa 

marina and Chmean, 1987) (11) provides a list of the most promising alternatives on 

technical constraints. It is then up to the user to consider additional factors (e.g. 

economical), in order to reach a final decision. PILEX (Elton and Brown, 1991) (11) 

consider timber, concrete and steel piles and takes into account geotechnical, 

geological, structural and environmental factors that influence the pile selection. 

Suppile(Wong et al, 1991) (11) evaluates of suitability of different types of piles and 

can estimate the required pile size and length. The selection of a pile type is 

performed by generating a suitability score depending on the number of problems that 

would exist if that pile type was used.                                    

4.3.5.2. Detailed Design:  

Yehia and Elhaj (1987) (11) are developing aKBS to assist in the selection and design 

of spread footings. It uses a database of previous designs and tries to match a new 

problem to one of the existing cases in the database. Its main purpose is the structural 

design of foundation and no real geotechnical design is included. A KBS 

(GEOTECH) has been developed by Parikgg and Rameswara Rao, (1991) (11) as an 

aid in shallow foundation design by calculating bearing capacity and settlement. The 

out put is in the form of a list of the most promising alternatives with corresponding 

confidence factors.   
4.3.5.3. Pile Driving:  

Chow et al (1995) (11) present ANN approach to the prediction of pile capacity. A 

stress wave matching technique is used which makes it feasible to determine the static 

pile capacity in real time in the field. Chan et al (1995) (11) have used ANNs as an 

alternative to pile driving formulas. Similarly, Goli (1996) and Lee (1996) (11)have 

both used ANNs to estimate the load capacity of driven piles based on the hammer 
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characteristics, the properties of the pile, and soil, and the pile set. All these authors 

suggest that ANNs provide better prediction than conventional pile driving based on 

the geometry and the dynamic characteristics of the ground.   

4.3.5.4. Foundation Construction: 

 Kato et al (1995) (11) outline a KBS for the planning and progress the foundation 

work. It selects an appropriate method of construction (for pile or slab) and 

incorporates these into the construction plan. Yeh et al (1991) (11) describe diagnostic 

Knowledge. Based system PCPILE (Prestress concrete pile) for diagnosing the 

damage to a pile during the construction process. Fisler et al (1993) (11), Fisler et al 

(1995) (11) describe a decision support system called D52 which can suggest an 

appropriate construction method for constructing a drilled shaft based on geotechnical 

information. It can also prepare a preliminary cost estimate, and suggest key 

specification items.  
4.3.5.5. Foundation Problems:  

Hadipriono et al (1991) (11) described a KBS which was under development for 

determining the causes of foundation failures. The system contains knowledge on 

possible causes for foundation failure such as soil settlement, expansive soil, soil 

erosion, bearing capacity failure, soil instability and foundation corrosion.  

Wiseman et al (1992) (11) describe a KBS for foundations on expansive soil, extending 

their system for heave prediction. The system requires input about the soil and profile, 

the building environment (changes in drainage, vegetation) and details of existing and 

proposed buildings and attempts to quality the amount of heave expected.   

4.3.6. Earth Retaining Structures: 
Artificial intelligence systems have been developed for retaining structures, for 

predicting movements and analyzing failure. Hutchinson et al (1987) (11) present 

RETWALL, a KBS for the selection and preliminary design of earth retaining 

structure. the system evaluates applicability of the nine wall types that are included in 

its knowledge base(brick wall, block work wall, crib wall, gabions, gravity wall, 

railway sleeper wall, reinforced earth, reinforced concrete wall, sheet piling).Oliphant 

and Blockley (1989) (11) developed a KBS with a knowledge base comprising three 

parts, the construction process, the design process and environmental impact. The 

system includes 11 case studies of retaining structures and provides a narrative of the 

history of each one in terms of why it was selected or considered as an alternative, 

allowing the user to compare these with a proposed retaining wall. 
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A KBS for retaining wall selection and design is presented by Arockiasamy et al 

(1991) (11). The system has knowledge about ten wall types including concrete gravity, 

cantilever, counter fort, gabions, reinforced-earth, crib, slurry, sheet-pile, tieback, and 

soil nailed walls. Amer & Abdel Rahman (1994) (11) describes a KBS for sheet pile 

selection, with links to programs for detailed design. 

WADI (Chahine and Janson, 1987) (11) is a KBS developed for the preliminary 

diagnosis of retaining wall failures. WADI is applicable to two types’ retaining walls: 

cantilever reinforced concrete wall sand gravity concrete or rubble walls, having 

maximum height of 8 meters. RETAIN (Adams et al, 1989) (11) is a KBS that allows 

categorization and organization of knowledge relating to failure and rehabilitation of 

earth retaining walls. Upon solving the failure diagnosis, a table of wall failure modes 

with associated certainties is produced. 

Goh et al (1995) (11) have shown how neural networks can be used to estimate lateral 

wall movements in braced excavations. The neural network was used to synthesize 

data derived from finite element studies on braced excavations in clays. 
4.3.7. Slopes: 

4.3.7.1. Soil slopes: 

Gravis & Regan (1988) (11) describe a KBS (STABCON) for evaluating slope 

instability and recommending appropriate types for treatment for soil slopes. It is 

linked to analytical methods for calculating slope stability. Hirokane et al (1990) (11) 

also describe a KBS for deciding on appropriate slope treatment. It includes 44 

different type of slope protection ranging from vegetation and seeding through to 

concrete crib-work and retaining walls. 

SISYPHE and XPENT (Aste et al, 1995) (11) are two KBSs for slope instability which 

has been developed in parallel .XPENT (Faure et al, 1988; Faure et al, 1991; 

Mascarelli et al, 1992; Faure et al, 1995) (11) is a KBS for assisting in slope stability 

analysis. It assists in diagnosing the type of landslide on the basis of information 

about the geology, vegetation, geomorphology (large and small scale), and 

hydrogeology. It can also advice on methods of stabilization based on the size of the 

slide, the material, accessibility of the site, etc. SISYPHE (Aste` 1992) (11) is a KBS 

for investigating slope instabilities. It can be used in diagnosis of a landslide as well 

as for hazard evaluation. For diagnosis purposes, SISYPHE provides the ability to 

develop three dimensional representations of the ground surface, piezometric surface 

and the slip surface itself. 
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Wang et al (1994) (11) describe a KBS for investigating potential landslides. It contains 

knowledge bases relating to the spatial distribution of an unstable zone, the 

geotechnical properties, method of assessing stability, and methods of treatment. 

Winlock and Bentley (1991) (11) describe the development of a KBS the determination 

of planning application with respect to landslide hazard in south Wales. The system 

attempts to assess the landslide hazard that may affect proposed development sites 

and it produces output in the form of planning response options.  
4.3.7.2. Rock Slopes:     

 Expert Slope Design System (ESDS) presented by kizil & Danby (1990) (11) and 

Danby and kizil (1991) (11) is a KBS to assist geotechnical engineers in the assessment 

of proposed slope design in open cast coal operation in the UK. Ozgenoglu &Coal 

(1994) (11) describe SEVDUR a KBS for slope stability analysis relating to mining 

operation.  

Hao &Zhang (1994) (11) describe a KBS for stability analysis of rock slopes. This uses 

fuzzy sets for representation of joint sets. Zhou (1994) (11) uses a probabilistic 

approach in a KBS for the prediction of slope stability. An approach called 

MAQEFO-Mechanism Analysis and Quantitative Evaluation through Geological 

Processes is used. Moon et al (1995) (11) have also used a neural network integrated 

with a KBS for preliminary design of slopes.   
4.3.8. Tunnels and Underground Openings:  

Many of the system for rock mass classification described above have an application 

in design of tunneling support (Zhang et al, 1988; juang & lee, 1989; Madhu et al, 

1995; Butler &franllin, 1990) (11).In addition; fairhurst & Lin (1985) (11) have 

discussed the use of a fuzzy methodology in the design of tunnel support system. 

Feng & Lin (1992) (11) also present a KBS (OSDES) for tunnel support design. The 

system considers rock mass classification; groundwater; type, span, and service time 

of opening; depth of overburden; dynamic; swelling, and rheological properties of the 

rock. 
Ghosh et al (1987) (11) describe a KBS for deciding on rock bolt and spacing for 

supporting coal mine roofs. Zhang et al (1991) (11) discuss an early application of a 

neural network to coal mine support. Similarly, Deb et al (1994) (11) describes a neural 

network approach to roof stability in long wall mining. This is intended to provide 

real-time monitoring of leg pressure on shields in order to provide early warning of 

possible collapse. King & Signer (1994) (11) also describe a neural network approach 

to selection of roof support in mining. The neural network was used to identify 
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patterns of discontinuities in coal mine roofs. Zhang et al (1995) (11) describe use of a 

neural network for forecasting rock deformation in Chinese colliery roadways. 

Lee & Sterling (1992) (11) describe a neural network for identification of probable 

failure modes for underground openings from prior case history information. The 

neural network form part of a KBS for assisting with tunnel design (Sterling&Lee, 

1992) (11). The neural network is used to identify similar cases to that being designed. 

The case histories can then be extracted for the user to examine. Moon et al (1995) (11) 

have also used a neural network approach integrated with a KBS for preliminary 

design of tunnels.  
Gokay (1993) (11) has made use of Hudson’s (1992) (11) systems approach to rock 

engineering to develop a KBS to assist in rock engineering decisions relating to mine 

excavation. The system deals with rock mass type and structure; in situ stress; hydro-

geology; mining method and assist with excavation stability, location, and orientation.  
SIMSECTION (Halabe & Einstein, 1994) (11) is a KBS that acts as the user interface 

for DAT (Decision Aids for Tunneling) (11). The KBS assists the user with the 

definition of the problem and provides consistency checking before performing an 

analysis. Coulthard & Ciesielski (1991) (11) describe SAGA, a KBS to assist with the 

selection of a stress analysis program for rock excavation design. This can assist with 

choosing between ten different stress analysis packages.  
Zhang et al (1993) (11) present a KBS for prediction of potential disaster due to 

excavation of tunnels or underground structures within carbonate rock areas. It is 

based on the knowledge of Chinese experts in karsts science and in underground 

engineering. 
Although most Al application in tunneling has been developed rock in engineering 

applications, Mi and Jieliang (1989) (11) report on a KBS for soft ground tunneling. It 

has been developed to predict the value of surface settlement and the degree of 

damage to corresponding building caused by shield-driven tunneling. As well as 

estimating settlement, the system can also propose prevention and strengthening 

measures. Russell& Alhammad (1993) (11) describe a KBS framework for selection of 

appropriate construction methods. The approach is illustrated using a prototype KBS, 

called CMSA (Construction Method Selection Assistant), to select a shoring system 

for cut-and-cover tunneling. A KBS has also been developed for providing assistance 

for the planning of support for trenches (Konloly, 1986; siller, 1987) (11). The system 

is based on two soil classification system developed by the US National Bureau of 

Standards in order to increase the safety of this type of excavation. 
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4.3.9. Mining: 

Some of the A.I. systems described in the section on slopes are relevant to opencast 

mining operation (Kizil &Denby, 1990; Denby and Kizil, 1991; Ozgenoglu & Ocal, 

1994) (11). 

Similarly, some of the systems in the section on underground openings relate to deep 

mining operations (Ghosget al, 1987; Zhang et al, 1991; Gokay, 1993; Deb et al, 

1994; King & Signer, 1994; Zhang et al 1995) (11).  

Yao et al (1992) (11), Reddish et al (1994) (11), Reddish (1995) (11) present ESDAS 

(expert structural damage assessment system). This was developed to evaluate 

damage due to mining subsidence. The system uses a risk-assessment technique based 

on certainly factors to predict the likely damage to a particular structure that is subject 

to mining subsidence. 
Yu & Vonpaisal (1996) (11) describe new blast damage criteria that have been 

developed with special reference to mining operation. It can be used for assessing 

damage by incorporating that vibration level, rock proprieties, site characteristic and 

the effect of ground support system .The approach has been used within a ground 

control KBS module. 
4.3.10. Liquefaction: 

SOLES (shyu and hryciw, 1991) (11) is a KBS to assist in the evaluation of the 

liquefaction potential of soil subject to earthquake excitations. SOLES considers four 

aspects: the earthquakes excitations, the soil prosperities, the analysis result and the 

overall evaluation .Chouicha et al (1994) (11) describes a new KBS called LIQUEFY. 

This uses five different methods for liquefaction hazard assessment and groups them 

according to their task. 

Goh (1994) (11) has used a neural network to model the complex relationships between 

seismic and soil parameters in order to investigate liquefaction potential. Network 

uses the standard penetration test (SPT) value, fines content, grain size, dynamic shear 

stress, overburden stress, earthquake managinitude, and horizontal acceleration at the 

ground surface as inputs. GOH (1996a) (11) was also uses neural networks to assess 

liquefaction potential from cone penetration test (CPT) data. 
4.3.11. Ground Improvement: 

IMPROVE (Chameau and Sanntamarina, 1989) (11) is a KBS designed to assist in the 

selection of ground improvement techniques. It contains a case-based system that 

selects case histories that best resemble the project. Similarly, Mohamed et al 

(1991)(11)describe a KBS (ESPGIS) to advice on the selection of ground improvement 
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method. EPSGIS allows the user to define the problem by specifying (with varying 

degrees of certainty) the nature of the ground improvement needed, subsurface 

condition and other relevant parameters.  

Yoon et al (1994) (11) describes what they call a knowledge database for ground 

improvement technologies. This contains information on the current technologies 

available, classified by country of use and application. The knowledge base contains 

information on international/national codes of practice, design method, state of 

practice, and case studies. 
Kotdawala & Hossain (1994) (11) describe a KBS (PACT) for soil compaction. The 

system identifies the lift thickness and molding moisture content to be used in field 

compaction. It has knowledge of the different types of compaction plants, and 

particular problems associated with compaction of particular soils. A neural network 

approach for soil compaction is reported by Basheer &Najjar (1995) (11), Najor et al 

(1996) (11). This is intended for predicting optimum moisture content (OMC) and 

maximum dry density (MDD) based on soil type, grading characteristics, and 

consistency limits. For natural soils, they have based the prediction on only three 

variables: liquid and plastic limit, and specific gravity.  

4.3.12. Geotextiles:  

 
A KBS is described by Maher and Williams (1991) (11) that selects geosynthetic 

materials and performs detailed design for different geotechnical application. The 

knowledge incorporated in the system contains information about material selection 

for five different geosynthetic uses, such as stabilization to reduce erosion, separation 

of soil layers, reinforcement to improve soil strength, drainage material to remove 

water, and filtration to reduce cross plain flow of soil particles.  

Edge Drain by Expert System (EDXES) has been developed by Dim Mick et al 

(1991)(11) to assist in the design and specification of the geotextile component of road 

pavement edge drain. This system considers commercially available geotextiles and 

produces a list of the ten thinnest (lightest) candidate products arranged in ascending 

order. The system described by Dukes et al (1994)(11) for road design also 

incorporates the design of a geotextile layer. 

Mannsbart & Rest (1993)(11) describe a KBS design using polygeotextiles. The basis 

for the design is the design charts in the technical manual ‘Polyfelt Design and 

Practice’ and can be used for the following application: road construction, hydraulic 

construction, drainage system, retaining wall, and geom. embrace protection.   



otechnical Engineeringin Ge                                           Artificial Intelligence FourChapter  

 - 57 -

4.3.13. Ground Water/Dams: 
 Sieh et al (1988) (11) describe a KBS developed to assist in the diagnosis of seepage 

from embankment dams. The system attempts to define the type of problem (point 

source seepage, non-point seepage, sand boils, sinkhole, and drain flow), the 

seriousness of the problem and a recommended course of action. EXSEL (Asian et al, 

1988) (11) is another KBS constructed as a diagnostic tool for seepage problem 

associated with dams, such as earth dams, rock fill dams, concrete dams, and roller 

compacted dams. Ohnishi & Solemn (1995) (11) have used a neural network approach 

to investigate seepage under a concrete dam founded on rock. 

Engel & Beasley (1991) (11) describe a dam site selection (DSS) system. It was 

developed for use in a graduate-level hydrology design course and can assist with 

rating potential reservoir sites. 

Ground water expert (GWX) presented by Davey-Wilson & May (1989) (11) and 

Davey-Wilson (1991) (11), is KBS that has been developed to advise on appropriate 

methods for ground water control in excavations. In its latest version (Davey-Wilson, 

1993) (11), the knowledge base contains information on each of 26 possible methods.  

Gribb& Gribb (1994) (11) and Najjar and Basheer (1996) (11) have both used neural 

network approaches for estimating permeability. Najjar and Basheer use thirteen input 

parameters including classification data (Liquid limit, activity, percent clay etc), 

density, type of compaction, and weight of compactor in order to predict the 

permeability of compacted clay liners. 

4.3.14. Roads and Earthworks:  
Pears et al (1986) (11) describe a KBS begin developed for the evaluation of road 

corridors taking into account finance, safety, and engineering geological criteria. The 

system will give a cost for each potential road corridor and a probability of failure 

with in its design life, as well as a summary of the main advantages and disadvantages 

of each alignment. 

Goh (1993) (11) describes a KBS (PAVEDKB) for deign of flexible road pavements. 

The KBS assists with selection of appropriate soil parameters for the sub grade and 

also for properties of the pavement materials. It is linked to algorithmic routines for 

linear elastic analysis of the pavement structure. 

Dukes et al (1993) (11) describe a KBS (ROAD) for deign of primary and major road 

high ways. It is based on AASHTO deign procedures, and allows the inclusion of 

geotextile layer. It considers the mechanical and filtration properties of the geotextile 

the design.  
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Amirkhanian &Baker (1992) (11) describe a KBS of selecting equipment for 

earthmoving operations. The system interprets information concerning the soil 

condition at a site, operator performance and required earthmoving operation. PACT 

(Kotdawala &Hossain, 1994) (11) is a KBS that focuses on field compaction. It has 

knowledged the different types of compaction plant, and particular problem 

associated with compaction of particular soils.  
4.3.15. Discussion: 
A number of artificial intelligence (AI) systems have been developed for geotechnical 

application. Many of the system developed are simple prototype, i.e. they have been 

developed to show that the techniques could be useful. Relatively few are being used 

commercially at present. However, as the area develops, and more system were 

developed beyond the prototype has, we should see an increase in the use of AI 

system in practice. 
The majority of the earlier systems used simple rule-based technologies. As time has 

progressed more complex form of representation have been adopted, e.g. form-based, 

object oriented. We are now seeing a limited number of case-based systems being 

applied in geotechnical engineering and no doubt this area will develop further. The 

use of neural network has developed rapidly and a considerable number of 

geotechnical applications are now available. Genetic algorithms have yet to be 

exploited as geotechnical engineering tools but they will certainly have application in 

the synthesis (conceptual design) area.  
Knowledge-based system developers identify different intended uses for their system. 

Some authors see their knowledge-based system developing to the stage of becoming 

‘expert system’ where they would be capable of reasoning at the level of a human 

expert. They would see the role of their system as replacing human expertise. This is 

often the case with developers relatively new to the field who do not appreciate the 

enormous difficulties of acquiring the knowledge required for such a system. 
However, as the area of AI has progressed, more seasoned developers now see their 

systems in a support role, as decision support tools or, assistants’. AI tools in this 

way, rather than pretending that such system will replace human expertise. We must 

also convey this change of philosophy to potential users. There is otherwise a danger 

that engineers in practice will see AI system as a threat rather than something that will 

benefit them (Toll, 1990) (11). 
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Developers are also finding that AI technology is good for some aspects of solving 

engineering problem, but that other approaches are still valid for many applications. 

Therefore, we are increasingly seeing the development of hybrid system which mixes 

Knowledge-based, neural network, case based, probabilistic and algorithmic 

approaches. 

4.4. Conclusion: 
 A large number of artificial intelligence (AI) systems have now been developed for 

geotechnical application. Although many of the system described are simple 

prototypes, some systems are progressing beyond the developmental prototype phase. 

Therefore, we should soon start to see an increase in the use of AI systems in 

geotechnical practice. 

It is suggested that AI systems should be developed as decision support tools or 

‘assistants’ rather than pretending that AI systems will develop to the stage where 

they could replace human expertise. It should also be recognized that AI techniques 

are good for some aspects of solving engineering problem, but that other approaches 

are still valid for many application. Therefore, the way forward will be the 

development of hybrid system which mixes Knowledge-based, neural network, case 

based, probabilistic and algorithmic approaches.  
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Soil Profile Prediction Using 
Artificial Neural Networks 

 
5.1. Introduction:  
 
 The geotechnical characteristics including layering and (stratification) and 

engineering properties of underlying soil in the cross-borehole region is a 

human intensive process and is subjected to the presence of statistical and 

systematic errors. Improving of the reliability of soil layering interpolation, 

will lead to cost reduction and improved operation planning.  

In this chapter, Using a multi-layer perceptron Artificial Neural Network 

(ANN) with a back propagation algorithm ,a prototype approach has been 

developed that uses a model system to predict soil properties in specified 

locations in different depths, based on the available site investigation 

produced data from selected sites in Sudan. The results are then compared 

with unused data of actual boreholes to check the ANN model’s validity. 

For this purpose, a neural network program , "Neuroshell 2"(7) used. 

 5.2. Data Collection: 
 
 The recognition of soil layers begins with data collection. The data used in 

this research was collected from borehole logs in the studied area, which 

was executed by Building and Road Research Institute (B.R.R.I.) of 

University of Khartoum (U.of K.). 

To locate the investigated borehole sites, a digital map of Khartoum city was 

used as a base map. Global Positioning System (G.P.S.) has been used to 

read the exact E N co-ordinates of the sites studied and their respective 

altitudes. 

Usually, the boreholes depths range between 5 to 50 m., and the data include 

mainly: Site name and location, borehole number and location(E,N), depth, 

soil group symbol(USCS), and other soil parameters such as liquid limit 

(LL), plasticity index (PI) and standard penetration test N-value (SPT- N). 
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5.3. Data Normalization: 
 
Because the activation function transfers the output of a neuron to values 

between 0 and 1.0, the training set in App.1 would be normalized before 

presenting it to the model. The expression(19)used for normalizing the data is 

given by : 

)()(
)()()(

valueMinimumvalueMaximum
valueMinimumvalueActualvalueNormalized

−
−

=         …eqn(5.1) 

The output must also be normalized. To convert the  normalized output to 

actual values the following equation was used: 

)..()].().([*)()( valueMinvalueMinvalueMaxoutputModelvalueModel +−=                

                …eqn(5.2) 

5.4 Data Base: 
 
The data include 255 borehole logs of 63 sites in an area of more than 165 

square kilometers from center and east of Khartoum .The study area and the 

scatter of the data can be observed in figure (5.1). 
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Figure 5.1: The data scatter in the study area 
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5.5 Artificial Neural Network Modeling: 
 
Artificial neural networks have several advantages when used as classifiers 

of complex data sets. They normally require no assumptions on the data 

distribution and can be trained with relatively small sample sets. Further, 

they are robust classifiers that require little data preparation prior to use; 

however, the selection of a suitable architecture and the subsequent lengthy 

training time of the network have often been perceived as a disadvantage to 

the acceptability of such classifiers. 

 
5.5.1. Selection of input and output parameters: 
 
Regarding the available data and their quality, a decision was made to use 

the sand parameters in “model 1”, the clay/silt parameters in “model 2” and 

the soil classification in “model 3, model 4, model 5, model 6 and model 7”. 

The soil class is determined by the Unified Soil Classification System 

(USCS) according to the particle size analysis and Atterberg limits. In this 

study each group is assigned with a certain number as follows : 

 

 
GW GP GM GC SW SP SM SC ML CL MH CH 
1 2 3 4 5 6 7 8 9 10 11 12 
 

where G, S, M and C respectively represent gravel, sand , silt and clay and 

W, P, L and H stand for well-graded, poor-graded, low plasticity and highly 

plastic. For example GW would represent well-graded gravel, SC would be 

sandy clay and ML would be low plasticity silt. 

The soil type in the study area is limited to the last eight groups of the above 

table. So, in the test oversize grains are excluded which cause soils of the 

same size property may to fall in different categories. Besides, noticing the 

non homogeneity of the soil masses, soil categories can be expected to 

change due to little variations in the amount of fines. Therefore, the 

following two groups were selected in order to represent the data to the 

neural network. 
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SW SP SM SC ML CL MH CH 
Sand Clay/Silt 

2 3 
 
In selection of the above numeric group signs the general particle size has 

been considered. 

5.5.1.1. Standard penetration test (S.P.T.) network” model 1”: 
 
In “model 1” the network inputs include the borehole coordinates (easting 

“E”, and  northing “N”)and soil layer depth in each borehole, and the output 

would be the layer S.P.T. (N-value” blows/ft”) . In “model 1” if the actual 

number of S.P.T (N-value” blows/ft”) is greater than 50 is stated as 51. 

5.5.1.2. Atterberg limits network” model 2”: 
 
In “model 2” the network inputs include the borehole coordinates (easting 

“E”, and  northing “N”)and soil layer depth in each borehole, and the output 

would be the clay/silt layer parameters (liquid limit “L.L.”& Plastic index 

“P.I.”). In “model 2” the plastic limit “P.L.”is neglected since it can be 

calculated from the following equation : 

                                          P.L. = L.L - P.I.                                     …eqn(5.3) 

5.5.1.3. Global classifier network” model 3”: 
 
In “model 3” the network inputs include the borehole coordinates (easting 

“E”, and northing “N”) and soil layers depths in each borehole, and the 

output would be the layer soil classification .In order to classify the layers to 

coarse grained soil or sand and fine grained soils or clay/silt two output 

nodes were used and the soil class representative of the layers would be 0 

and 1 respectively. 

In other words, the output column” node 1” indicates occurrance of sand if 

it’s value is 1,and no occurrence if 0, and “node 2”indicates occurrance of  

clay/silt if it’s value is 1,and no occurrence if 0.In which sand and clay/silt 

classifier units is the final figure of both columns used to classify the soil in 

this network. 
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5.5.1.4. Sand classifier network” model 4”: 
 
In “model 4” the network inputs include the borehole coordinates (easting 

“E”, and northing “N”) and soil layer depth in each borehole, and the output 

would be the layer soil classification as sand “if any”. 

 The output column” node 1” indicates ocurrance of silty sand “SM” if it’s 

value is 1,and no occurrance if 0, and “node 2”indicates ocurrance of  clayey 

sand “SC” if it’s value is 1,and no occurrence if 0.In which sand classifier 

units is the final figure of both columns used to classify the soil in this 

network. 

5.5.5. Sand grading classifier network” model 5”: 
 
In “model 5” the network inputs include the borehole coordinates (easting 

“E”, and northing “N”) and soil layer depth in each borehole, and the output 

would be the layer sand grading “if any”.  

The output column” node 1” indicates ocurrance of  well graded sand 

“SW”if it’s value is 1,and no occurrence if 0, and “node 2”indicates 

ocurrance of  poorly graded sand “SP” if it’s value is 1,and no occurrence if 

0.In which sand grading classifier units is the final figure of both columns 

used to classify the soil in this network. 

5.5.1.6. Clay classifier network” model 6”: 
 
In “model 6” the network inputs include the borehole coordinates (easting 

“E”, and northing “N”) and soil layer depth in each borehole, and the output 

would be the layer classification as clay “if any”.  

The output column” node 1” indicates ocurrance of clay of low 

plasticity”CL” if it’s value is 1,and no occurrence if 0, and “node 

2”indicates ocurrance of  clay of high plasticity ”CH” if it’s value is 1,and 

no occurrence if 0.In which clay  classifier units is the final figure of both 

columns used to classify the soil in this network. 

 

 

 65



Chapter Five                     Soil Profile Prediction Using Artificial Neural Networks 
 
 
 
5.5.1.7Silt classifier network” model 7”: 
 
In “model 7” the network inputs include the borehole coordinates (easting 

“E”, and northing “N”) and soil layer depth in each borehole, and the output 

would be the layer classification as silt “if any”.  

The output column” node 1” indicates ocurrance of silt of low 

plasticity”ML” if it’s value is 1,and no occurrence if 0, and “node 

2”indicates ocurrance of  silt  of high plasticity ”MH” if it’s value is 1,and 

no occurrence if 0.In which clay  classifier units is the final figure of both 

columns used to classify the soil in this network. 

5.5.2 Training, Testing and Verifying Data Sets:  
 
The back propagation neural network software program, "Neuroshell 2", 

based on the back-propagation procedure was utilized for this study. This 

package allows for the generation of networks with arbitrary layers, nodes 

per layer, link connections between layers, and other fundamental network 

design components. Generally, it is preferred that the user conduct several 

experimental runs with the neural network to learn which combinations of 

parameters are adequate to produce meaningful results. The network is 

working to solve an unknown solution space through exploration of that 

space. Each network training session begins by searching random starting 

points, and then proceeds with respect to the user identified parameters. 

Although the user may decide to retain identical network structures and 

parameters in consecutive runs, the network may train to slightly different 

solutions, on the basis of different set of random weights being 

automatically chosen at the network initialization time. Different initial 

conditions may start the network on a path towards a different local 

minimum solution. 

As stated before, although the training data are usually used on a random 

basis, some points should be considered. The most important point is that 

Neural Networks in the generalization and control stages are not capable of 
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predicting cases which does not lie in the range of the training data. In other 

words they are more able to interpolate than extrapolate. Therefore the 

training data should contain the boundary values for each variable. Selection 

of the training, testing and verification data has a vital role in the training 

process and an improper combination may obstruct convergence. 
5.5.2.1 The Network Architecture: 
 
Training the network with any architecture using the backpropagation 

algorithm is a very crucial and usually time-consuming process. 

Nevertheless, this process is what will enable the network to detect, classify 

or identify the features in question. Careful consideration is given to the 

architecture used.  

Ward Nets are the most powerful nets.  Backprop nets are more global than 

the local GRNN and PNN nets, meaning they may not pick up small details 

as well, but consequently could generalize better on noisy data.  The most 

powerful backpropagation nets are the Ward nets, and the one with three 

hidden layer slabs is the default program network. 

All backpropagation algorithms comes with a choice of Momentum weight 

updates. Momentum means that the weight updates not only include the 

change dictated by learning rate, but include a portion of the last weight 

change as well. 

All supervised backpropagation networks include the Calibration feature, 

which prevents overtraining (thereby greatly reducing training time), and 

increases the network's ability to generalize well on new data. 

Up to three hidden layers were tested for each network and using the trial 

and error method, the number of hidden neurons, the suitable training 

method, effective parameters in training process such as rate of learning, 

momentum, and the number of necessary epochs were determined. 

It is recommended that if you do decide to use a three layer net, use the 

Gaussian activation function in the hidden layer.  This is usually the most 

powerful three layer net. For all backprop nets, including Ward nets and 

three layer nets, you may want to try using the linear activation function in 
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the output slab if your output is not categories, i.e., it is a continuous value.  

If the net starts giving wild or huge errors when you do this, reduce the 

number of hidden neurons and possibly the learning rate.  Use of the linear 

activation function in the output layer often gives better accuracy across the 

entire output range, and is very powerful when combined with a Gaussian in 

a hidden slab (which Ward nets have)(20).

5.5.2.2 Modeling learning types:  
 
In order to meet the objectives set out above, three modeling approaches are 

investigated to choose the most powerful one . In order to investigate the 

relationship between the proportion of the data used for training and 

validation and model performance, the available data are divided into their 

respective subsets. A novel approach proposed in this work, which uses a 

self-organizing with output backprop nets with the available data. The data 

patterns are divided equally into training and testing sets. 

Using Ward Nets architecture supervised backpropagation networks include 

the Calibration feature. The first modeling approach was enough and 

satisfied for the most of the networks.  

4.5.2.3 Training the networks: 
 
The changes in the error value can be observed versus the number of epochs 

while the training process is in progress. Besides, the final error values are 

plotted in histograms demonstrating individual errors for each input data. 

When the training has stopped, Root Mean Square error is calculated for 

each of the training, testing and verification phases and compared. Then the 

actual values of each output variable are plotted versus the expected values 

to discuss the network performance. The more the plotted points are close to 

the bisector of the coordinates the more effective is the training and the 

actual and desired sets of data would be well correlated. 
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4.5.2.4 Performance of the trained networks: 
 
After completion of the training process, it is important to check the 

performance and reliability of the selected networks.Training results were 

evaluated by computing the R value, the coefficient of multiple 

determination. It compares the accuracy of the model to the accuracy of a 

trivial benchmark model wherein the prediction is just the mean of all of the 

samples. An R value approaching 1 indicates a good model fit, and an R 

value near 0 indicates a poor fit. Correlation Coefficient r (Pearson’s Linear 

Correlation Coefficient), is a statistical measure of the strength of the 

relationship between the actual vs predicted outputs.  The r coefficient can 

range from -1 to +1.  The closer r is to 1, the stronger the positive linear 

relationship, and the closer r is to -1, the stronger the negative linear 

relationship.  When r is near 0, there is no linear relationship. R is a much 

better measure of the closeness of actual and predicted values than r. 

Comparison of actual to predicted outputs performed on the test data 

confirmed the network's training success. 

Percent within 5%, 10%, 20% and 30% and over 30% - These boxes list the 

percent of network answers that are within the specified percentage of the 

actual answers used to train the network.  If the actual answer is 0, the 

percent cannot be computed and that pattern is not included in a percentage 

group.  For that reason and for rounding, the total computed percentages 

may not add up to 100.  

5.6. Prediction models: 
5.6.1. SPT prediction model: 
 
The SPT prediction model “model 1” is used to estimate the standard 

penetration test (N-value Blows/ft) for sand layers for known borehole 

coordinates and layer depth. The process of selecting the proper number of 

the hidden neurons with the trial and error method ,the network architecture 

characteristics are shown in Figure 5.2 and Table 5.1 , the efficiency of the 

training is stated below: 

Patterns processed:                             2146 

 69



Chapter Five                     Soil Profile Prediction Using Artificial Neural Networks 
 
Output:                                       N-value  

R squared:                                      0.3853  

r squared:                                     0.3856  

Mean squared error:                      120.494  

Mean absolute error:               8.144  

Min. absolute error:                            0  

Max. absolute error:                        45.708  

Correlation coefficient r:           0.6210  

Percent within 5%:                       25.163  

Percent within 5% to 10%:          13.141  

Percent within 10% to 20%:         21.994  

Percent within 20% to 30%:        12.209  

Percent over 30%:                   27.493 

Learning time :                2:19:59 (hhh:mm:ss.) 

 

 

Figure (5.2):A two hidden slab backpropogation architecture used for SPT                    

prediction model. 

 70



Chapter Five                     Soil Profile Prediction Using Artificial Neural Networks 
 

 

 

 

 

 

Table 5.1:SPT model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               2 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              24 

Slab 3 no. of neurons              24 

Slab 4 no. of neurons              1 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Gaussian Complement . 

Slab 2 activation function Logestic 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 

5.6.2. Atterberg limits prediction model: 
 

The Atterberg limits prediction model “model 2” is used to estimate the 

liquid limit and plastic index for clay/silt layers for known borehole 

coordinates and layer depth. The process of selecting the proper number of 

the hidden neurons with the trial and error method ,the network architecture 

characteristics are shown in Figure 5.3 and Table 5.2 , the efficiency of the 

training is stated below: 

Patterns processed:  1915 
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Output:                            L.L.                                     P.L.  

R squared:                          0.5384                        0.5846  

r squared:                         0.5423                        0.5864  

Mean squared error:           254.341                                   201.334  

Mean absolute error:   11.341                         9.685  

Min. absolute error:     0.001                            0  

Max. absolute error:    91.628                       78.264  

Correlation coefficient r:       0.7364                                 0.7657  

Percent within 5%:              14.360                        6.945  

Percent within 5% to 10%:  15.405                     7.154  

Percent within 10% to 20%: 24.961                               13.211  

Percent within 20% to 30%: 16.762                               10.548  

Percent over 30%:            27.572                                44.648  

Learning time(hhh:mm:ss.) :    3:20:00 

 

Figure (5.3):A two hidden slab backpropogation architecture used for 

Atterberg limits prediction model. 
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Table 5.2:Atterberg limits model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               2 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              24 

Slab 3 no. of neurons              24 

Slab 4 no. of neurons              2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Gaussian Complement. 

Slab 2 activation function Logestic 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 

5.6.3. Global classifier prediction model: 
 

The Global classifier prediction model “model 3” is used to estimate the 

layer  general soil classification “coarse grained soils or sand against fine 

grained soils or clay/silt”   for known borehole coordinates and layer depth. 

The process of selecting the proper number of the hidden neurons with the 

trial and error method ,the network architecture characteristics are shown in 

Figure 5.4 and Table 5.3, the efficiency of the training is stated below: 

Patterns processed:  6236 
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Output:                                       Sand               Clay/silt  

R squared:                                 0.4962  0.4861  

r squared:                                      0.5002 0.4899  

Mean squared error:                 0.124             0.126  

Mean absolute error:                         0.226          0.229  

Min. absolute error:                             0               0  

Max. absolute error:                        1.000             1.000  

Correlation coefficient r:            0.7072         0.7000  

Percent within 5%:                       27.245            11.690  

Percent within 5% to 10%:            4.025            4.153  

Percent within 10% to 20%:             5.580              6.591  

Percent within 20% to 30%:             4.410            4.586  

Percent over 30%:                       15.667             15.779 

Learning time(hhh:mm:ss.) :    2:38:00 

  

 

 
 

 Figure (5.4):A two hidden slab backpropogation architecture used for 

Global classifier prediction model. 
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Table 5.3:global classifier model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               2 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              29 

Slab 3 no. of neurons              29 

Slab 4 no. of neurons              2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Gaussian complement 

Slab 4 activation function Logestic 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 
5.6.4. Sand classifier prediction model: 
 

The Global classifier prediction model “model 4” is used to estimate the 

layer  specific soil classification “clayey sand SC against silty sand SM if 

existed”   for known borehole coordinates and layer depth. The process of 

selecting the proper number of the hidden neurons with the trial and error 

method ,the network architecture characteristics are shown in Figure 5.5 and 

Table 5.4, the efficiency of the training is stated below: 

Patterns processed:  6240 
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Output:                                        C1              C2  

R squared:                                0.3445  0.4331  

r squared:                                   0.3524  0.4334  

Mean squared error:                         0.138             0.061  

Mean absolute error:                         0.246             0.117  

Min. absolute error:                         0             0  

Max. absolute error:                         1.000            1.000  

Correlation coefficient r:             0.5937            0.6584  

Percent within 5%:                         4.135              3.397  

Percent within 5% to 10%:             1.490            0.272  

Percent within 10% to 20%:             2.949              0.497  

Percent within 20% to 30%:              2.612             0.304  

Percent over 30%:                       19.119             7.821 

Learning time(hhh:mm:ss.) :    2:12:30 
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 Figure (5.5):A two hidden slab backpropogation architecture used for Sand 

classifier prediction model. 

 

 

 

Table 5.3:global classifier model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               2 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              29 

Slab 3 no. of neurons              29 

Slab 4 no. of neurons              2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Gaussian complement 

Slab 4 activation function Logestic 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 
 

5.6.5. Sand grading classifier prediction model: 
 
The Global classifier prediction model “model 5” is used to estimate the 

layer  specific soil classification “well graded sand Sw against poorly graded 

Sp if existed”   for known borehole coordinates and layer depth. The process 

of selecting the proper number of the hidden neurons with the trial and error 

method ,the network architecture characteristics are shown in Figure 5.6 and 

Table 5.5, the efficiency of the training is stated below: 
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Patterns processed:  6240 

 

 

 

 

Output:                                    SW                  SP  

R squared:                                  0.4298                0.2896  

r squared:                                  0.4327               0.2973  

Mean squared error:                      0.065              0.047  

Mean absolute error:                       0.125              0.099  

Min. absolute error:                         0                          0  

Max. absolute error:                      1.000              1.000  

Correlation coefficient r:          0.6578              0.5452  

Percent within 5%:                      2.708              0.032  

Percent within 5% to 10%:          0.337              0.048  

Percent within 10% to 20%:          0.689              0.208  

Percent within 20% to 30%:           1.026              0.304  

Percent over 30%:                      8.269              6.554  

Learning time(hhh:mm:ss.) :    3:58:00 
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Figure (5.6):A three hidden slab backpropogation architecture used for sand 

grading classifier prediction model. 

 

 

Table 5.5:Sand grading classifier model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               3 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              25 

Slab 3 no. of neurons              25 

Slab 4 no. of neurons              25 

Slab 5 no. of neurons               2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Hyperbolic Tangential 
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Slab 4 activation function Gaussian complement 

Slab 5 activation function Logestic. 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 
5.6.6. Clay classifier prediction model: 
 

The Clay classifier prediction model “model 6” is used to estimate the layer  

specific soil classification “Clay of low plasticity CL against Clay of high 

plasticity CH if existed”   for known borehole coordinates and layer depth. 

The process of selecting the proper number of the hidden neurons with the 

trial and error method ,the network architecture characteristics are shown in 

Figure 5.7 and Table 5.6, the efficiency of the training is stated below:  

Patterns processed:  6235 

 

 

 

Output:                                 CL           CH  

R squared:                                0.3109        0.4113  

r squared:                                0.3135        0.4124  

Mean squared error:                    0.078        0.072  

Mean absolute error:                      0.153       0.133  

Min. absolute error:                        0                    0  

Max. absolute error:                      1.000        1.000  

Correlation coefficient r:        0.5599       0.6422  

Percent within 5%:                   0.770        1.315  

Percent within 5% to 10%:       0.321       0.449  

Percent within 10% to 20%:       0.850       1.171  

Percent within 20% to 30%:        1.139       0.497  

Percent over 30%:                  9.976     10.778 

Learning time(hhh:mm:ss.) :    4:50:15 
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Figure (5.7):A three hidden slab backpropogation architecture used for Clay 

classifier prediction model. 

 

 

Table 5.6:Clay classifier model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               3 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              25 

Slab 3 no. of neurons              25 

Slab 4 no. of neurons              25 

Slab 5 no. of neurons               2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Hyperbolic Tangential 
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Slab 4 activation function Gaussian complement 

Slab 5 activation function Logestic. 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 

 
5.6.7. Silt classifier prediction model: 
 

The Clay classifier prediction model “model 7” is used to estimate the layer  

specific soil classification “Silt of low plasticity ML against Silt of high 

plasticity MH if existed”   for known borehole coordinates and layer depth. 

The process of selecting the proper number of the hidden neurons with the 

trial and error method ,the network architecture characteristics are shown in 

Figure 5.8 and Table 5.7, the efficiency of the training is stated below:  

Patterns processed:  6236 

 

 

 

Output:                                               ML             MH  

R squared:                                 0.2875           0.0561  

r squared:                                0.2924           0.0576  

Mean squared error:                    0.105           0.031  

Mean absolute error:                    0.192            0.060  

Min. absolute error:                    0                        0  

Max. absolute error:                   1.000          1.000  

Correlation coefficient r:       0.5407         0.2399  

Percent within 5%:                   1.042          0  

Percent within 5% to 10%:           0.401          0  

Percent within 10% to 20%:         1.106         0  

Percent within 20% to 30%:       1.235        0  

Percent over 30%:                       14.144        3.368 

Learning time(hhh:mm:ss.) :    3:24:15  
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Figure (5.8):A three hidden slab backpropogation architecture used for Silt 

classifier prediction model. 

 

Table 5.7:Silt classifier model architecture parameters: 

Parameter Selected option 

Architecture Multiple hidden slab with different 

activation functions (Ward nets) 

No. of hidden layers               3 

Slab 1 no. of neurons               3 

Slab 2 no. of neurons              25 

Slab 3 no. of neurons              25 

Slab 4 no. of neurons              25 

Slab 5 no. of neurons               2 

Slab 1 scale function Linear [-1,1] 

Slab 2 activation function Gaussian 

Slab 3 activation function Hyperbolic Tangential 
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Slab 4 activation function Gaussian complement 

Slab 5 activation function Logestic. 

Learning rate            0.1 

Momentum            0.1 

Initial weight            0.3 
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Chapter Six 
Discussion of the Results 

 
6.1. Introduction:  
 
 ANN expert systems consisting of Multi-layer Perceptron have been developed to predict 

soil classification and soil parameters based on the available site investigation data from 

580 square kilometers area of Khartoum and results of soil classification and characteristics 

as outputs of these systems are compared with actual data investigated in the second half of 

year 2006 by B.R.R.I. of U. of K. to check the ANN models validity. 

6.2. Area of Study: 
 
The soil classification and soil parameters assessment ANN model results are compared 

with actual values for three investigated sites in the second half of year 2006 namely 

Areeba co., Alneelain University and Hassan &Alaabid co. sites with known Boreholes 

coordinates and depths to perform ANN models accuracy.  

6.3 Models Validation: 
 
Upon completion of the learning and verification stage successfully, a prediction study is 

investigated. The purpose of the model validation phase is to ensure that the model has the 

ability to generalize within the limits set by the training data, rather than simply having 

memorized the input–output relationships that are contained in the training data. Once the 

training, testing and validation phases are successfully accomplished, the neural network 

obtained can be used as a practical model for soil classification and parameters prediction. 

For this purpose, a data set separate from the training phase is used. After making 

necessary computations, the input data set (see the attached CD) is prepared. This data used 

for the trained networks. 

 

 

 

6.4. Results and discussion: 
6.4.1. First case study: 
Areeba building in Burri: 
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 After a completion of the learning stage with a satisfactory degree of success for each 

model (see input data in attached CD), the actual data and ANN predicted data are 

presented in appendix (A),these data set are presented in Figures (6.1,6.2,6.3 and 6.4) . 

Figure (6.1-a) shows that the ANN predicted layer is clayey sand of thickness varies from 

(0.0 to 4.5) m., where the actual top layer of clayey sand of thickness varies from (0.0 to 

2.5) m. (which  falls within the range of predicted layer) .The relatively low plastic index 

indicates that the fines content  liquid limit may be clay of low plasticity .The second layer 

of borehole no.1 is clay of low plasticity of thickness varying from (2.5 to 7.5) m. which is 

the same as the predicted but of thickness varies from (4.5 to 9.0) m. The final layer is clay 

of high plasticity of thickness varying from (7.5 to 10.0) m. predicted as clay and silt of 

high plasticity of thickness varying from (9.0 to 10.0) m .Generally the ANN predicted 

borehole no. 1 stratification is of no major difference of investigated soil classification. 

Figure (6.1-b) shows that the second borehole consists of a one layer of clay of low 

plasticity; ANN prediction gives one layer of clay and silt of low plasticity, which is slight 

differ from the actual. 

Figure (6.2-a) shows that the actual SPT values ranging from 38 to over 50 blows/ft. in 

borehole no. 1,where the predicted values shows that SPT values ranging from 38 to over 

46 blows/ft. within the range of the actual values. Figure (6.2-b) shows a same actual and 

predicted SPT lines with depth have the same trend line with slight difference in values. 

Figures (6.3-a,b) shows that the results of liquid limits are in the range of 47 to 56 % and 

47 to 58 % respectively ,where the actual results are 43 to 50 % and 45 to 51 % 

respectively . Figures (6.4-a,b) shows that the results of predicted plastic index values are 

approaching actual values with same trend lines , i.e. Atterberg limits model demonstrates 

some degree of success especially for plastic index. 

   

 86



Chapter Six                                                                           Discussion of the Results 

 
 

 

 

Figure 6.1:Comparison between actual and ANN predicted soil classification results for 

Areeba co. site : 

(a) Borehole no.1, 

(b) Borehole no.2. 
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Areeba site (B.H.#2.)
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Figure 6.2:Comparison between actual and ANN predicted SPT for Areeba co. site. 

(a)Borehole no.1, 

(b)Borehole no.2. 
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Areeba site (B.H.#1.)
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Areeba site (B.H.#2.)
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Figure 6.3:Comparison between actual and ANN predictedliquid limit (L.L.) for Areeba 

co. site. 

(a)Borehole no.1, 

(b)Borehole no.2. 
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Areeba site (B.H.#1.)
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                                             (a) 

Areeba site (B.H.#2.)
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Figure 6.4:Comparison between actual and ANN predicted plastic index (P.I.) for 

Areeba co. site. 

(a)Borehole no.1, 

(b)Borehole no.2. 
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6.4.2. Second case study: 
Elneelain University in Elmogran: 
 
For known boreholes coordinates and depths which entered as inputs and the ANN 

prediction results were listed in Appendix (B), and compared with actual values as in 

Figures (6.5,6.6,6.7 and 6.8). 

Figure (6.5) shows that the ANN predicted layer soil classification indicates reliable 

stratum with a little variation in depth of some layers when compared with the actual layers 

for a three boreholes in Elneelain University in Elmogran area. This comparison shows 

acceptable prediction. 

Figure (6.6) shows that the ANN predicted sand parameter (SPT) produces close values to 

actual ones especially in borehole no. 3 .The maximum variation in borehole no. 1 (={46-

12}/46 =73.9%),that is due to limited data in the study area for the SPT . 

Figure (6.7) shows that the ANN predicted clay parameter (liquid limit ) is close to the 

actual values with the same trend lines in specific ranges , beside usually the top layers 

produces a considerable variations ( for example in borehole no. 2 at 1.50 m. depth 

variation =73-37=36%). 

Figure (6.8) shows that the ANN predicted clay parameter (plastic index) almost 

approaching the exact values with considerable differences in the top layers of the three 

boreholes in Elneelain University.   
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 (a)Borehole no.1, 

(b)Borehole no.2, 

(c) Borehole no.3. 
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                              Figure 6.6-a 

Elneileen Universitysite (B.H.#2.)
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                                  Figure 6.6-b 
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Elneileen Universitysite (B.H.#3.)
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                                          Figure 6.6-c 
Figure 6.6:Comparison between actual and ANN predicted SPT for test Elneelain 

University site. 

(a)Borehole no.1, 

(b)Borehole no.2,. 

(c)Borehole no.3. 
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                                  Figure 6.7-a 

Alneelain Uninersity (B.H.#2.)
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                                 Figure 6.7-b 
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Alneelain Uninersity (B.H.#3.)
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                                  Figure 6.7-c 
Figure 6.7:Comparison between actual and ANN predictedliquid limit (L.L.) for 

Elneelain University  site. 

(a)Borehole no.1, 

(b)Borehole no.2, 

(c)Borehole no.3. 
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Alneelain University (B.H.#1.)
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                                 Figure 6.8-a 

Alneelain University (B.H.#2.)
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                                  Figure 6.8-b 
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Elneelain University (B.H.#3.)
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                                Figure 6.8-c 
Figure 6.8:Comparison between actual and ANN predicted plastic index (P.I.) for 

Elneelain University site. 

(a)Borehole no.1, 

(b)Borehole no.2, 

(c)Borehole no.3. 
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6.4.3. Third case study: 
Hassan &Alaabid co. in University near Africa Street: 
 
For known boreholes coordinates and depths which entered as inputs the ANN prediction 

results were listed in Appendix (C) ,and compared with actual values in Figures 

(6.9,6.10,6.11 and 6.12).                                                                          

Figure (6.9) shows that the ANN predicted stratum for the four boreholes in Hassan & 

Alaabid co. site is of the same layer main group (sand or clay ),but of differences in 

subgroups some examples of such differences are shown in table (6.1) below: 

Table (6.1): Some differences in ANN predicted and actual  soil classification in Hassan 

&Alaabid co.site 

 

Borehole No. Actual soil class Predicted soil class 

1 CH CL 

2 SM SC 

3 SC SM 

4 SC/SP SC/SW 

 

Figure (6.10) shows that the ANN predicted N-value are typical to actual values in specific 

locations with slight differences in others .Figures (6.11) and (6.12) present the differences 

of only two points of Atterberg limits which is not enough to study the differences in ANN 

predicted values .Because of nonlinearity of the produced models it’s important to compare 

the predicted values of three or more points with actual values of the same points to 

perform the accuracy of such model. 
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Figure 6.9:Comparison between actual and ANN predicted soil classification results for 

Hassan &Alaabid co. site : 

(a)Borehole no.1, 

(b)Borehole no.2, 

(c) Borehole no.3, 

(d) Borehole no.4. 
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Hassan &Alabid co. site B.H. #1
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                            Figure 6.10-a 

Hassan &Alabid co. site B.H. #2
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                            Figure 6.10-b 
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Hassan &Alabid co. site B.H. #3
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                           Figure 6.10-c 

Hassan &Alabid co. site B.H. #4
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                           Figure 6.10-d 

Figure 6.10:Comparison between actual and ANN predicted SPT for Hassan &Alaabid  

co. site. 

(a)Borehole no.1, 

(b)Borehole no.2l, 

(c) Borehole no.3, 

(d) Borehole no.4. 
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Hassan &Alaabid co. (B.H.#1.)
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                                       Figure 6.11-a 

Hassan &Alaabid co. (B.H.#2.)
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                                        Figure 6.11-b 

 109



Chapter Six                                                                           Discussion of the Results 

Hassan &Alaabid co. (B.H.#3.)
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Hassan &Alaabid co. (B.H.#4.)
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                                      Figure 6.11-d 

Figure 6.11:Comparison between actual and ANN predicted liquid limit (L.L.) for 

Hassan &Alaabid  co. site. 

(a)Borehole no.1, 

(b)Borehole no.2, 

(c) Borehole no.3, 

(d) Borehole no.4. 
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Hassan & Alaabid co. (B.H.#3.)
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Hassan & Alaabid co. (B.H.#4.)
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                                 Figure 6.12-d 

Figure 6.12:Comparison between actual and ANN predicted plastic index (P.I.) for 

Hassan &Alaabid co. site. 

 (a)Borehole no.1, 

 (b)Borehole no.2. 

 (c) Borehole no.3, 

(d) Borehole no.4.  
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6.5. Training of Networks Time factor: 
 
In this study, as the training of the networks are in progress, it has been observed that the 

network powerful statistical indicators (The coefficient of multiple determination R 

squared and Pearson’s linear correlation coefficient r ) are increased as the  training time  is 

increased for the same network architecture characteristics .The correlation coefficient 

against  SPT network training time are plotted in Figure (6.13) and the polynomial equation 

for such relationship has been investigated so it is expected to get  95% correlation factor 

after training the network about 35 hours. 

 
SPT network time factor

y = -6E-05x2 + 0.0117x + 0.6147
R2 = 0.9776
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Figure 6.13:Statisical indicators (r) improvement through time 

For SPT network . 
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Chapter 7 
Conclusion &Recommendations  

for Future Studies 
 

7.1. Conclusions:  
 
Artificial Neural Networks method is an effective tool in solving complex, 

nonlinear and causal problems. Neural networks have been applied in 

solving a wide variety of problems. The consistencies, accuracy, volume of 

learning data, are the factors, which the ability of this method depends on. 

In this study, ANN were used to predict the soil profile and parameters in 

Khartoum city based on raw data carried out during the past decades in 

Sudan. Based on the results obtained, the following conclusions have been 

found: 

1. In spite of the fact that the tested boreholes were presented to the 

network in the training process, it can be stated that the trained ANN 

are capable of predicting variations in the soil profile with an 

acceptable level of confidence. 

2. In case of problems dealing with different variables with different 

ranges and dimensions, the application of separate networks of each 

variable is a good choice. 

3. Constructed Atterberg limits model shows a good performance in 

prediction especially for plasticity index. 

4. Constructed SPT model shows acceptable performance in prediction   

5. ANNs are efficient tools when used as pattern classifier; cases 

concerning decision making based on previous experiments  

6. ANNs are efficient in interpolation more than extrapolation. 

7. Increasing training time leads to reliable results. 

8. Soil profile ANN prediction networks cannot replace site 

investigation, but they can reduce the total number of boreholes, 

which will lead to cost reduction and improved operation planning. 

9. ANNs may be used as a good decision support and source of 

information for soils. 
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7.2. Recommendations for Future Work: 
 
Based on this study, the following recommendations for future work may be 

feasible: 

a. Increasing training process time may lead to better results for 

prediction of soil profile and parameters in the studied area. 

b. Using modern ANN software may decrease training time. 

c. Connect inputs of three dimensional coordinates in Khartoum 

digital map to the outputs of produced networks in the same 

environment.  

d. The soil classification modeling may be spread to all area of Sudan 

if raw data are available.  

e. Other soil parameters can be entered as outputs of the ANNs such 

as: shear parameters (Cohesion C and Friction angle Ф), Relative 

density DR, Cone Penetration Test continuous values qc... etc.  
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Appendix (A): 
Areeba co. site: 
1. Atterberg limits Network results: 
 

ACTUAL PREDICTED ACTUAL PREDICTED
B.H.# E N DEPTH     L.L      L.L     P.I.      P.I. 

1 453112 1725600 1.5 43 56.06184143 24 30.3981563
1 453112 1725600 3 45 31.18198275 7 6.04707677
1 453112 1725600 4.5 45 21.02824137 12 0
1 453112 1725600 6 48 20.84465438 14 0
1 453112 1725600 7.5 46 25.84381549 16 1.14506859
1 453112 1725600 9 50 47.5524251 18 19.59892
2 453160 1725608 1.5 45 55.38355076 29 29.6967136
2 453160 1725608 3 43 31.22274629 15 6.03980496
2 453160 1725608 4.5 41 21.67781335 8 0
2 453160 1725608 6 42 21.35468142 7 0
2 453160 1725608 7.5 43 26.00002244 16 1.25122227
2 453160 1725608 9 51 46.93307039 18 18.9872752

 
2. SPT Network results: 
 

ACTUAL PREDICTED 
B.H.# E N DEPTH N-VALUE N-NALUE 
1 453112 1725600 3 51 44.75028389
1 453112 1725600 7.5 31 44.57818591
1 453112 1725600 9 45 41.75606734
1 453112 1725600 10 38 37.95160661
2 453160 1725608 4.5 51 44.90097733
2 453160 1725608 6 51 45.32201137
2 453160 1725608 7.5 51 44.59568412
2 453160 1725608 9 51 41.81694052
2 453160 1725608 10 36 38.00486425

 
3. Global classifier Network results: 
 
B.H. E N DEPTH SAND SAND(predicted)

CLAY/ 
SILT 

CLAY/ 
SILT(predicted) 

1 453112 1725600 1.5 1 0.70171324 0 0.301268138 
1 453112 1725600 2.5 1 0.78346444 0 0.221819391 
1 453112 1725600 3 0 0.805692428 1 0.200138462 
1 453112 1725600 4.5 0 0.742438114 1 0.261793843 
1 453112 1725600 6 0 0.611670288 1 0.388701114 
1 453112 1725600 7.5 0 0.579265775 1 0.420642015 
1 453112 1725600 8.5 0 0.603840771 1 0.396981615 
1 453112 1725600 9 0 0.62839647 1 0.373050238 
1 453112 1725600 10 0 0.69344086 1 0.309560448 
2 453160 1725608 1.5 0 0.714819705 1 0.288414284 
2 453160 1725608 3 0 0.812950113 1 0.192905028 
2 453160 1725608 4.5 0 0.740829832 1 0.263203791 
2 453160 1725608 6 0 0.613976913 1 0.386399853 
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2 453160 1725608 7.5 0 0.583420442 1 0.416787382 
2 453160 1725608 8.5 0 0.605913373 1 0.39536618 
2 453160 1725608 9 0 0.629285398 1 0.37268285 
2 453160 1725608 10 0 0.693200579 1 0.31039726 

 
4. Sand classifier Network results: 
 
B.H.# E N DEPTH SM SM(PREDICTED) SC SC(PREDICTED)

1 453112 1725600 1.5 0 0 1 0.222972294
1 453112 1725600 2.5 0 0 1 0.277783237
1 453112 1725600 3 0 0 0 0.295974501
1 453112 1725600 4.5 0 0 0 0.271220952
1 453112 1725600 6 0 0 0 0.160348989
1 453112 1725600 7.5 0 0 0 0.078307793
1 453112 1725600 8.5 0 0 0 0.059443016
1 453112 1725600 9 0 0 0 0.0591137
1 453112 1725600 10 0 0.017515617 0 0.073420492
2 453160 1725608 1.5 0 0 0 0.242089665
2 453160 1725608 3 0 0 0 0.306948871
2 453160 1725608 4.5 0 0 0 0.261254347
2 453160 1725608 6 0 0 0 0.145529821
2 453160 1725608 7.5 0 0 0 0.070904728
2 453160 1725608 8.5 0 0 0 0.055865768
2 453160 1725608 9 0 0 0 0.056827191
2 453160 1725608 10 0 0.014269781 0 0.072986365

 
5. Sand grading classifier Network results: 
 
B.H.# E N DEPTH SW SW(PRED.) SP SP(PRED.) 

1 453112 1725600 1.5 0 0 0 0.02088621 
1 453112 1725600 2.5 0 0 0 0.01658217 
1 453112 1725600 3 0 0 0 0.01266568 
1 453112 1725600 4.5 0 0 0 0.00015801 
1 453112 1725600 6 0 0 0 0 
1 453112 1725600 7.5 0 0 0 0 
1 453112 1725600 8.5 0 0 0 0 
1 453112 1725600 9 0 0 0 0.00042932 
1 453112 1725600 10 0 0 0 0.00533637 
2 453160 1725608 1.5 0 0 0 0.02514312 
2 453160 1725608 3 0 0 0 0.01386454 
2 453160 1725608 4.5 0 0 0 0.00097485 
2 453160 1725608 6 0 0 0 0 
2 453160 1725608 7.5 0 0 0 0 
2 453160 1725608 8.5 0 0 0 0.00100048 
2 453160 1725608 9 0 0 0 0.00336041 
2 453160 1725608 10 0 0 0 0.00823349 
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6. Clay classifier Network results: 
 
B.H.# E N DEPTH CL CL(PRED.) CH CH(PRED) 

1 453112 1725600 1.5 0 0.009225561 0 0.408623036 
1 453112 1725600 2.5 0 0.032476327 0 0.289527699 
1 453112 1725600 3 1 0.041317913 0 0.262656844 
1 453112 1725600 4.5 1 0.062657401 0 0.294805244 
1 453112 1725600 6 1 0.12134123 0 0.282115787 
1 453112 1725600 7.5 1 0.263931378 0 0.02920257 
1 453112 1725600 8.5 1 0.335992613 0 0 
1 453112 1725600 9 0 0.34464881 1 0 
1 453112 1725600 10 0 0.308881104 1 0 
2 453160 1725608 1.5 1 0.015021926 0 0.39330371 
2 453160 1725608 3 1 0.052064109 0 0.237016192 
2 453160 1725608 4.5 1 0.0767878 0 0.247634797 
2 453160 1725608 6 1 0.136472634 0 0.22156324 
2 453160 1725608 7.5 1 0.283773131 0 0 
2 453160 1725608 8.5 1 0.364387969 0 0 
2 453160 1725608 9 0 0.378126169 1 0 
2 453160 1725608 10 0 0.35053231 1 0 

 
7. Silt classifier Network results: 
 
B.H.# E N DEPTH ML ML(PRED.) MH MH(PRED.) 

1 453112 1725600 1.5 0 0 0 0.03671977 
1 453112 1725600 2.5 0 0 0 0.0483822 
1 453112 1725600 3 0 0 0 0.05188792 
1 453112 1725600 4.5 0 0.14131501 0 0.04937307 
1 453112 1725600 6 0 0.32646846 0 0.05736449 
1 453112 1725600 7.5 0 0.32834768 0 0.07485136 
1 453112 1725600 8.5 0 0.3851093 0 0.08297119 
1 453112 1725600 9 0 0.47314883 0 0.08584543 
1 453112 1725600 10 0 0.77589189 0 0.08819166 
2 453160 1725608 1.5 0 0 0 0.04017602 
2 453160 1725608 3 0 0 0 0.05465037 
2 453160 1725608 4.5 0 0.15897566 0 0.05091555 
2 453160 1725608 6 0 0.3409281 0 0.0584153 
2 453160 1725608 7.5 0 0.35583366 0 0.07545426 
2 453160 1725608 8.5 0 0.42786412 0 0.08351882 
2 453160 1725608 9 0 0.52512531 0 0.08635626 
2 453160 1725608 10 0 0.83078911 0 0.08838321 
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Appendix (B): 
Elneelain University site: 
1. Atterberg limits Network results: 
 

ACTUAL PREDICTED ACTUAL PREDICTED 
B.H.# E N DEPTH     L.L      L.L     P.I.      P.I. 

1 447869 1724767 1.5 66 37.46321712 39 13.3687938
1 447869 1724767 3 80 48.35836691 54 21.5039884
1 447869 1724767 4.5 91 55.55060902 60 26.9749786
1 447869 1724767 6 52 58.35905842 23 27.4448599
1 447869 1724767 7.5 44 47.4526486 18 18.1481241
1 447869 1724767 9 49 49.8610265 21 20.0181416
2 447832 1724786 1.5 73 37.88111748 24 13.833518
2 447832 1724786 3 84 48.6263804 51 21.8216269
2 447832 1724786 4.5 78 55.73800168 49 27.1459691
2 447832 1724786 6 71 58.66157461 43 27.6409604
2 447832 1724786 7.5 33 47.70115695 12 18.2980919
2 447832 1724786 9 36 49.68813388 11 19.88628
2 447832 1724786 10.5 40 56.87019991 17 25.1948895
2 447832 1724786 12 58 47.5823314 26 19.4135257
2 447832 1724786 13.5 52 55.8040988 30 28.0321074
3 447798 1724804 1.5 68 38.25488991 41 14.2516673
3 447798 1724804 3 92 48.85120775 61 22.089781
3 447798 1724804 4.5 92 55.88697637 60 27.2780987
3 447798 1724804 6 55 58.91934094 27 27.8029882
3 447798 1724804 7.5 39 47.90933415 14 18.4222463
3 447798 1724804 9 42 49.50761215 23 19.7494377
3 447798 1724804 10.5 60 56.84329076 26 25.2222676
3 447798 1724804 12 62 48.05583295 29 19.8102102
3 447798 1724804 13.5 51 56.13717876 23 28.2268561

 
2. SPT Network results: 
 

ACTUAL PREDICTED 
B.H.# E N DEPTH N-VALUE N-NALUE 

1 447869 1724767 7.5 51 41.79917581
1 447869 1724767 9 23 44.83600797
1 447869 1724767 10.5 24 46.22934817
1 447869 1724767 11.5 12 45.56640219
1 447869 1724767 13.5 12 39.4605489
1 447869 1724767 15 51 31.22972357
1 447869 1724767 16.5 51 28.66816516
2 447832 1724786 7.5 51 39.48235139
2 447832 1724786 9 46 43.57878727
2 447832 1724786 10.5 31 45.63147012
2 447832 1724786 18 51 38.09034372
2 447832 1724786 19.5 51 47.49633471
3 447798 1724804 9 31 42.76446881
3 447798 1724804 10.5 50 45.28368178
3 447798 1724804 12 46 44.3583101
3 447798 1724804 13.5 46 39.55074518



                                                                     123 
 

3 447798 1724804 15 12 31.83141669
3 447798 1724804 16.5 41 29.79348665
3 447798 1724804 18 51 38.73568197

 
3. Global classifier Network results: 
 
B.H. E N DEPTH SAND SAND(predicted)

CLAY/ 
SILT 

CLAY/ 
SILT(predicted) 

1 447869 1724767 1.5 0 0.083958407 1 0.919812304 
1 447869 1724767 3 0 0.079645917 1 0.923015085 
1 447869 1724767 4.5 0 0.08072573 1 0.920883921 
1 447869 1724767 6 0 0.102781051 1 0.897574183 
1 447869 1724767 7 0 0.144090555 1 0.854920129 
1 447869 1724767 7.5 0 0.174010932 1 0.824085677 
1 447869 1724767 9 0 0.268740169 1 0.726452446 
1 447869 1724767 10 0 0.321590827 1 0.672810648 
1 447869 1724767 10.5 0 0.354906136 1 0.639820669 
1 447869 1724767 12 0 0.537764326 1 0.461865371 
1 447869 1724767 13 0 0.668426429 1 0.334628486 
1 447869 1724767 13.5 1 0.684630175 0 0.318584331 
1 447869 1724767 15 1 0.596984448 0 0.4028504 
1 447869 1724767 16 1 0.564297931 0 0.434252922 
1 447869 1724767 16.5 0 0.568585591 1 0.430077319 
1 447869 1724767 18 0 0.610451373 1 0.389830361 
1 447869 1724767 19.5 0 0.620177361 1 0.3814609 
2 447832 1724786 1.5 0 0.067695335 1 0.935996828 
2 447832 1724786 3 0 0.062717732 1 0.93992552 
2 447832 1724786 4.5 0 0.062910237 1 0.938748402 
2 447832 1724786 6 0 0.082844917 1 0.917661992 
2 447832 1724786 7 0 0.121083571 1 0.878186356 
2 447832 1724786 7.5 0 0.148897856 1 0.849523599 
2 447832 1724786 9 0 0.236745438 1 0.758911945 
2 447832 1724786 10 0 0.284520052 1 0.710308006 
2 447832 1724786 11.5 0 0.415692259 1 0.58181596 
2 447832 1724786 12 0 0.490574917 1 0.509120493 
2 447832 1724786 13.5 0 0.649440933 1 0.354274588 
2 447832 1724786 15 0 0.561666534 1 0.438651522 
2 447832 1724786 16.5 0 0.527771681 1 0.471168837 
2 447832 1724786 17.5 0 0.555086926 1 0.444816467 
2 447832 1724786 18 0 0.569839673 1 0.430676979 
2 447832 1724786 19 0 0.585245388 1 0.416312967 
2 447832 1724786 20 0 0.570359276 1 0.431751464 
2 447832 1724786 20.5 1 0.549762145 0 0.452409168 
2 447832 1724786 22 1 0.442523216 0 0.559058459 
2 447832 1724786 23.5 1 0.304837525 0 0.695714181 
2 447832 1724786 25 1 0.184471008 0 0.815558264 
3 447798 1724804 1.5 0 0.052322067 1 0.95127335 
3 447798 1724804 3 0 0.046944722 1 0.955659656 
3 447798 1724804 4.5 0 0.046530544 1 0.95515555 
3 447798 1724804 6 0 0.064669356 1 0.935957489 
3 447798 1724804 7 0 0.100127415 1 0.899368879 
3 447798 1724804 7.5 0 0.126009615 1 0.872699972 
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3 447798 1724804 9 0 0.207639781 1 0.788456403 
3 447798 1724804 10 0 0.251039787 1 0.744208596 
3 447798 1724804 11.5 0 0.372885207 1 0.624739575 
3 447798 1724804 13 0 0.591347264 1 0.412387516 
3 447798 1724804 14.5 0 0.567596824 1 0.434596729 
3 447798 1724804 16 0 0.489371015 1 0.509832844 
3 447798 1724804 17.5 0 0.518292755 1 0.481819256 
3 447798 1724804 18 0 0.533646241 1 0.467074817 
3 447798 1724804 19 0 0.550917134 1 0.450858292 
3 447798 1724804 19.5 1 0.548802734 0 0.453322349 
3 447798 1724804 20 1 0.538065478 0 0.464270716 

 
4. Sand classifier Network results: 
 
B.H.# E N DEPTH SM SM(PREDICTED) SC SC(PREDICTED) 

1 447869 1724767 1.5 0 0 0 0.2922244 
1 447869 1724767 3 0 0 0 0.33242643 
1 447869 1724767 4.5 0 0 0 0.312776939 
1 447869 1724767 6 0 0 0 0.243801696 
1 447869 1724767 7 0 0 0 0.19179817 
1 447869 1724767 7.5 0 0 0 0.167751606 
1 447869 1724767 9 0 0.136065199 0 0.105694396 
1 447869 1724767 10 0 0.184788589 0 0.075210978 
1 447869 1724767 10.5 0 0.190720331 0 0.064552251 
1 447869 1724767 12 0 0.214918551 0 0.048945855 
1 447869 1724767 13 0 0.238608046 0 0.045242004 
1 447869 1724767 13.5 1 0.244413389 0 0.043865229 
1 447869 1724767 15 1 0.24586547 0 0.046278324 
1 447869 1724767 16 1 0.289699435 0 0.061429974 
1 447869 1724767 16.5 0 0.344727004 0 0.073782497 
1 447869 1724767 18 0 0.589487376 0 0.111696137 
1 447869 1724767 19.5 0 0.599181624 0 0.124660259 
2 447832 1724786 1.5 0 0 0 0.287642516 
2 447832 1724786 3 0 0 0 0.321089626 
2 447832 1724786 4.5 0 0 0 0.29479757 
2 447832 1724786 6 0 0 0 0.222107132 
2 447832 1724786 7 0 0 0 0.169556696 
2 447832 1724786 7.5 0 0 0 0.145573816 
2 447832 1724786 9 0 0.181150265 0 0.08475493 
2 447832 1724786 10 0 0.22978585 0 0.056026813 
2 447832 1724786 11.5 0 0.248804165 0 0.035744208 
2 447832 1724786 12 0 0.261691696 0 0.033535707 
2 447832 1724786 13.5 0 0.291888714 0 0.031335383 
2 447832 1724786 15 0 0.287350304 0 0.036776412 
2 447832 1724786 16.5 0 0.378533791 0 0.067639325 
2 447832 1724786 17.5 0 0.540181592 0 0.098658794 
2 447832 1724786 18 0 0.615596148 0 0.111666614 
2 447832 1724786 19 0 0.663802151 0 0.127089167 
2 447832 1724786 20 0 0.55394669 0 0.135133802 
2 447832 1724786 20.5 1 0.469686953 0 0.139510329 
2 447832 1724786 22 1 0.34180198 0 0.143731232 
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2 447832 1724786 23.5 1 0.49940352 0 0.088596989 
2 447832 1724786 25 1 0.792474204 0 0 
3 447798 1724804 1.5 0 0 0 0.282137468 
3 447798 1724804 3 0 0 0 0.309328251 
3 447798 1724804 4.5 0 0 0 0.277249142 
3 447798 1724804 6 0 0 0 0.201862451 
3 447798 1724804 7 0 0 0 0.149337365 
3 447798 1724804 7.5 0 0.021535531 0 0.125657557 
3 447798 1724804 9 0 0.226168928 0 0.066584714 
3 447798 1724804 10 0 0.273505784 0 0.039666678 
3 447798 1724804 11.5 0 0.292944796 0 0.021996154 
3 447798 1724804 13 0 0.332797655 0 0.02030613 
3 447798 1724804 14.5 0 0.330446997 0 0.024267771 
3 447798 1724804 16 0 0.361057969 0 0.047855686 
3 447798 1724804 17.5 0 0.566949816 0 0.09714057 
3 447798 1724804 18 0 0.640073467 0 0.112335807 
3 447798 1724804 19 0 0.687558105 0 0.132119427 
3 447798 1724804 19.5 0 0.650127951 1 0.138086169 
3 447798 1724804 20 0 0.579103948 1 0.143429092 

 
5. Sand grading classifier Network results: 
 
B.H.# E N DEPTH SW SW(PRED.) SP SP(PRED.) 

1 447869 1724767 1.5 0 0 0 0 
1 447869 1724767 3 0 0 0 0 
1 447869 1724767 4.5 0 0 0 0 
1 447869 1724767 6 0 0 0 0 
1 447869 1724767 7 0 0.0190239 0 0 
1 447869 1724767 7.5 0 0.0330275 0 0 
1 447869 1724767 9 0 0.0240989 0 0 
1 447869 1724767 10 0 0 0 0.04356136 
1 447869 1724767 10.5 0 0 0 0.07487501 
1 447869 1724767 12 0 0 0 0.11945068 
1 447869 1724767 13 0 0 0 0.09495274 
1 447869 1724767 13.5 0 0 0 0.07607979 
1 447869 1724767 15 0 0 0 0.02275374 
1 447869 1724767 16 0 0 0 0 
1 447869 1724767 16.5 0 0.0109525 0 0 
1 447869 1724767 18 0 0.1629874 0 0 
1 447869 1724767 19.5 0 0.287354 0 0 
2 447832 1724786 1.5 0 0 0 0 
2 447832 1724786 3 0 0 0 0 
2 447832 1724786 4.5 0 0 0 0 
2 447832 1724786 6 0 0 0 0 
2 447832 1724786 7 0 0.0200558 0 0 
2 447832 1724786 7.5 0 0.033494 0 0 
2 447832 1724786 9 0 0.0206572 0 0 
2 447832 1724786 10 0 0 0 0.04391694 
2 447832 1724786 11.5 0 0 0 0.1138368 
2 447832 1724786 12 0 0 0 0.1152192 
2 447832 1724786 13.5 0 0 0 0.07045523 
2 447832 1724786 15 0 0 0 0.01799088 
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2 447832 1724786 16.5 0 0.0133384 0 0 
2 447832 1724786 17.5 0 0.1105589 0 0 
2 447832 1724786 18 0 0.1639854 0 0 
2 447832 1724786 19 0 0.2527599 0 0 
2 447832 1724786 20 0 0.2950792 0 0 
2 447832 1724786 20.5 0 0.2985948 0 0 
2 447832 1724786 22 0 0.2696683 0 0 
2 447832 1724786 23.5 0 0.2493508 0 0.03424271 
2 447832 1724786 25 0 0.3130857 0 0.06606437 
3 447798 1724804 1.5 0 0 0 0 
3 447798 1724804 3 0 0 0 0 
3 447798 1724804 4.5 0 0 0 0 
3 447798 1724804 6 0 0 0 0 
3 447798 1724804 7 0 0.0210061 0 0 
3 447798 1724804 7.5 0 0.033887 0 0 
3 447798 1724804 9 0 0.0175521 0 0 
3 447798 1724804 10 0 0 0 0.04420006 
3 447798 1724804 11.5 0 0 0 0.11112751 
3 447798 1724804 13 0 0 0 0.08451361 
3 447798 1724804 14.5 0 0 0 0.02975455 
3 447798 1724804 16 0 0 0 0 
3 447798 1724804 17.5 0 0.1125216 0 0 
3 447798 1724804 18 0 0.1646615 0 0 
3 447798 1724804 19 0 0.2486991 0 0 
3 447798 1724804 19.5 0 0.273321 0 0 
3 447798 1724804 20 0 0.2853532 0 0 

 
6. Clay classifier Network results: 
 
B.H.# E N DEPTH CL CL(PRED.) CH CH(PRED) 

1 447869 1724767 1.5 0 0.476715347 1 0.509119152 
1 447869 1724767 3 0 0.218179596 1 0.418788646 
1 447869 1724767 4.5 0 0.092056182 1 0.275799482 
1 447869 1724767 6 0 0.032020333 1 0.087560763 
1 447869 1724767 7 0 0 1 0.007843515 
1 447869 1724767 7.5 1 0 0 0 
1 447869 1724767 9 1 0 0 0 
1 447869 1724767 10 1 0 0 0 
1 447869 1724767 10.5 0 0 0 0 
1 447869 1724767 12 0 0 0 0.115307154 
1 447869 1724767 13 0 0 0 0.175425351 
1 447869 1724767 13.5 0 0.003115824 0 0.1849216 
1 447869 1724767 15 0 0.03922864 0 0.153317224 
1 447869 1724767 16 0 0.067791 0 0.114915011 
1 447869 1724767 16.5 1 0.083820571 0 0.095494383 
1 447869 1724767 18 1 0.111809945 0 0.03534292 
1 447869 1724767 19.5 1 0.072414719 0 0 
2 447832 1724786 1.5 0 0.484667873 1 0.499408959 
2 447832 1724786 3 0 0.223438514 1 0.418248628 
2 447832 1724786 4.5 0 0.093085517 1 0.286355987 
2 447832 1724786 6 0 0.029449706 1 0.102140767 
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2 447832 1724786 7 0 0 1 0.021311027 
2 447832 1724786 7.5 1 0 0 0 
2 447832 1724786 9 1 0 0 0 
2 447832 1724786 10 1 0 0 0 
2 447832 1724786 11.5 1 0 0 0.07731694 
2 447832 1724786 12 0 0 1 0.117421834 
2 447832 1724786 13.5 0 0.007366827 1 0.173567884 
2 447832 1724786 15 0 0.052575424 1 0.133909261 
2 447832 1724786 16.5 0 0.09995648 1 0.079237085 
2 447832 1724786 17.5 0 0.123442462 1 0.0448393 
2 447832 1724786 18 1 0.124887279 0 0.02669694 
2 447832 1724786 19 1 0.1008732 0 0 
2 447832 1724786 20 1 0.052544411 0 0 
2 447832 1724786 20.5 0 0.027050489 0 0 
2 447832 1724786 22 0 0 0 0 
2 447832 1724786 23.5 0 0 0 0 
2 447832 1724786 25 0 0.077813615 0 0 
3 447798 1724804 1.5 0 0.491478747 1 0.490725307 
3 447798 1724804 3 0 0.227429939 1 0.419159089 
3 447798 1724804 4.5 0 0.092962974 1 0.298265964 
3 447798 1724804 6 0 0.025993251 1 0.118380426 
3 447798 1724804 7 0 0 1 0.036315127 
3 447798 1724804 7.5 1 0 0 0.007793485 
3 447798 1724804 9 1 0 0 0 
3 447798 1724804 10 1 0 0 0 
3 447798 1724804 11.5 0 0 1 0.078069468 
3 447798 1724804 13 0 0 1 0.157820373 
3 447798 1724804 14.5 0 0.049832791 1 0.134186274 
3 447798 1724804 16 0 0.098544055 1 0.081409954 
3 447798 1724804 17.5 0 0.135920248 1 0.036288678 
3 447798 1724804 18 1 0.13571694 0 0.020221128 
3 447798 1724804 19 1 0.107577083 0 0 
3 447798 1724804 19.5 0 0.082840317 0 0 
3 447798 1724804 20 0 0.055314835 0 0 

 
7. Silt classifier Network results: 
 
B.H.# E N DEPTH ML ML(PRED.) MH MH(PRED.) 

1 447869 1724767 1.5 0 0.17111292 0 0.04302652 
1 447869 1724767 3 0 0.10243419 0 0.0558312 
1 447869 1724767 4.5 0 0.22856094 0 0.06363384 
1 447869 1724767 6 0 0.52319084 0 0.06287129 
1 447869 1724767 7 0 0.56734634 0 0.06785722 
1 447869 1724767 7.5 0 0.49914353 0 0.0769731 
1 447869 1724767 9 0 0.31059861 0 0.11624915 
1 447869 1724767 10 0 0.31546481 0 0.14233548 
1 447869 1724767 10.5 1 0.3262395 0 0.15524577 
1 447869 1724767 12 1 0.3145979 0 0.17972633 
1 447869 1724767 13 1 0.25440689 0 0.17205165 
1 447869 1724767 13.5 0 0.21432925 0 0.16126597 
1 447869 1724767 15 0 0.10093092 0 0.11950207 
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1 447869 1724767 16 0 0.04434488 0 0.09437564 
1 447869 1724767 16.5 0 0.01980941 0 0.08304763 
1 447869 1724767 18 0 0 0 0.05801578 
1 447869 1724767 19.5 0 0 0 0.06555599 
2 447832 1724786 1.5 0 0.15348315 0 0.04317482 
2 447832 1724786 3 0 0.09652988 0 0.05596911 
2 447832 1724786 4.5 0 0.22494312 0 0.06374947 
2 447832 1724786 6 0 0.52614239 0 0.06274891 
2 447832 1724786 7 0 0.57028067 0 0.06785221 
2 447832 1724786 7.5 0 0.50046538 0 0.07708798 
2 447832 1724786 9 0 0.31076729 0 0.11645818 
2 447832 1724786 10 0 0.31606041 0 0.14255916 
2 447832 1724786 11.5 0 0.32946747 0 0.17571047 
2 447832 1724786 12 0 0.31507734 0 0.17986709 
2 447832 1724786 13.5 0 0.21441675 0 0.16126932 
2 447832 1724786 15 0 0.10134914 0 0.11964321 
2 447832 1724786 16.5 0 0.02145194 0 0.08378876 
2 447832 1724786 17.5 0 0 0 0.06495611 
2 447832 1724786 18 0 0 0 0.05920672 
2 447832 1724786 19 0 0 0 0.06049824 
2 447832 1724786 20 0 0.01157341 0 0.07725324 
2 447832 1724786 20.5 0 0.03882955 0 0.08734958 
2 447832 1724786 22 0 0.10201573 0 0.10281937 
2 447832 1724786 23.5 0 0.08549427 0 0.08338263 
2 447832 1724786 25 0 0.00612638 0 0.03723364 
3 447798 1724804 1.5 0 0.13883169 0 0.04330711 
3 447798 1724804 3 0 0.09194455 0 0.05609158 
3 447798 1724804 4.5 0 0.22180229 0 0.06385098 
3 447798 1724804 6 0 0.52889836 0 0.06262717 
3 447798 1724804 7 0 0.57301541 0 0.0678431 
3 447798 1724804 7.5 0 0.50170575 0 0.07719013 
3 447798 1724804 9 0 0.31092987 0 0.11663798 
3 447798 1724804 10 0 0.31659763 0 0.14274952 
3 447798 1724804 11.5 0 0.33002608 0 0.17587566 
3 447798 1724804 13 0 0.25478911 0 0.17212608 
3 447798 1724804 14.5 0 0.13529369 0 0.13358509 
3 447798 1724804 16 0 0.04662796 0 0.09531952 
3 447798 1724804 17.5 0 0 0 0.06588317 
3 447798 1724804 18 0 0 0 0.0601875 
3 447798 1724804 19 0 0 0 0.06168238 
3 447798 1724804 19.5 0 0 0 0.06914678 
3 447798 1724804 20 0 0.01594213 0 0.07950601 
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Appendix(C): 
Hassan & Alaabid co. site : 
1. Atterberg limits Network results: 
 
B.H.# E N DEPTH ACTUAL PREDICTED ACTUAL PREDICTED 

        L.L      L.L     P.I.      P.I. 
1 447869 1724767 1.5 58 37.46321712 35 13.3687938 
1 447869 1724767 3 33 48.35836691 14 21.5039884 
2 452348 1719407 1.5 33 53.68786554 13 30.8008502 
2 452348 1719407 3 44 85.92400969 26 61.5477015 
3 452334 1719340 1.5 44 53.58665562 26 30.6172085 
3 452334 1719340 3 32 81.82134445 14 57.3021363 
4 452359 1719282 1.5 56 52.74179239 36 29.6963745 
4 452359 1719282 3 61 77.61241679 39 52.8268884 

 
2. SPT Network results: 
 

ACTUAL PREDICTED
B.H.# E N DEPTH N-VALUE N-NALUE 

1 447869 1724767 1.5 50 51
1 447869 1724767 3 50 48.42425828
1 447869 1724767 4.5 24 43.22899099
1 447869 1724767 6 51 40.50133648
1 447869 1724767 7.5 51 41.79917581
1 447869 1724767 9 42 44.83600797
1 447869 1724767 10.5 51 46.22934817
1 447869 1724767 12 44 44.69758117
1 447869 1724767 13.5 51 39.4605489
1 447869 1724767 15 51 31.22972357
1 447869 1724767 16.5 51 28.66816516
1 447869 1724767 18 51 37.39668735
2 452348 1719407 1.5 33 50.89131979
2 452348 1719407 3 51 49.52274652
2 452348 1719407 4.5 51 45.06234931
2 452348 1719407 6 33 39.84883175
2 452348 1719407 7.5 51 38.11104002
2 452348 1719407 9 51 40.93034383
2 452348 1719407 10.5 51 44.88366166
2 452348 1719407 12 42 46.16927816
2 452348 1719407 13.5 38 44.6595838
2 452348 1719407 15 29 44.68922452
2 452348 1719407 16.5 51 47.67708506
2 452348 1719407 18 51 49.20446746
2 452348 1719407 19.5 51 48.11599698
3 452334 1719340 1.5 51 51
3 452334 1719340 3 51 49.0906287
3 452334 1719340 4.5 25 43.86049276
3 452334 1719340 6 43 38.46388835
3 452334 1719340 7.5 51 37.42710203
3 452334 1719340 9 32 41.04360942
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3 452334 1719340 10.5 51 45.32562199
3 452334 1719340 12 38 46.64178826
3 452334 1719340 13.5 47 45.0420546
3 452334 1719340 15 51 44.77218495
3 452334 1719340 16.5 51 47.44530039
3 452334 1719340 18 51 48.74740383
3 452334 1719340 19.5 51 47.36919249
4 452359 1719282 1.5 51 51
4 452359 1719282 3 51 48.44716331
4 452359 1719282 4.5 25 42.58810306
4 452359 1719282 6 43 37.4779173
4 452359 1719282 7.5 22 37.43549884
4 452359 1719282 9 51 41.6732785
4 452359 1719282 12 51 46.80307992
4 452359 1719282 15 29 44.48346995
4 452359 1719282 16.5 51 47.14201511
4 452359 1719282 18 51 48.37759761

 
3. Global classifier Network results: 
 
B.H. E N DEPTH SAND SAND 

(predicted) 
CLAY/ 
SILT 

CLAY/ SILT 
(predicted) 

1 447869 1724767 1 0 0.085657102 1 0.91850726 
1 447869 1724767 2.5 0 0.080835589 1 0.922183005 
1 447869 1724767 3 1 0.079645917 0 0.923015085 
1 447869 1724767 4 1 0.079159711 0 0.922801552 
1 447869 1724767 4.5 1 0.08072573 0 0.920883921 
1 447869 1724767 6 1 0.102781051 0 0.897574183 
1 447869 1724767 7.5 1 0.174010932 0 0.824085677 
1 447869 1724767 9 1 0.268740169 0 0.726452446 
1 447869 1724767 10.5 1 0.354906136 0 0.639820669 
1 447869 1724767 12 1 0.537764326 0 0.461865371 
1 447869 1724767 13.5 1 0.684630175 0 0.318584331 
1 447869 1724767 15 1 0.596984448 0 0.4028504 
1 447869 1724767 16.5 1 0.568585591 0 0.430077319 
1 447869 1724767 18 1 0.610451373 0 0.389830361 
1 447869 1724767 19.5 1 0.620177361 0 0.3814609 
1 447869 1724767 20 1 0.607672381 0 0.394166823 
2 452348 1719407 1.5 1 0.407684672 0 0.591330873 
2 452348 1719407 3 1 0.475958927 0 0.525074348 
2 452348 1719407 4 1 0.570136355 0 0.434036371 
2 452348 1719407 4.5 1 0.605078014 0 0.400186669 
2 452348 1719407 6 1 0.560198472 0 0.443095979 
2 452348 1719407 7 1 0.472766055 0 0.526530787 
2 452348 1719407 8.5 1 0.473677373 0 0.521962315 
2 452348 1719407 9 0 0.513197228 1 0.481856807 
2 452348 1719407 10 0 0.616255227 1 0.378524105 
2 452348 1719407 10.5 1 0.666389961 0 0.328810328 
2 452348 1719407 12 1 0.802410075 0 0.196631883 
2 452348 1719407 13.5 1 0.880557876 0 0.123122217 
2 452348 1719407 15 1 0.854649524 0 0.153110116 
2 452348 1719407 16.5 1 0.787454226 0 0.22382736 
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2 452348 1719407 18 1 0.727841309 0 0.283877104 
2 452348 1719407 19.5 1 0.711813396 0 0.297478959 
2 452348 1719407 20 1 0.714891753 0 0.29343389 
3 452334 1719340 1.5 1 0.403173048 0 0.595807703 
3 452334 1719340 3 1 0.469431249 0 0.531484082 
3 452334 1719340 3.5 1 0.515606522 0 0.486856109 
3 452334 1719340 4 1 0.563664184 0 0.440395367 
3 452334 1719340 5.5 1 0.597213628 0 0.40765379 
3 452334 1719340 7 1 0.4721072 0 0.527242392 
3 452334 1719340 8.5 1 0.471495656 0 0.524109647 
3 452334 1719340 10 1 0.614128607 0 0.380562733 
3 452334 1719340 11.5 1 0.755533032 0 0.241705215 
3 452334 1719340 13 1 0.869887378 0 0.132320723 
3 452334 1719340 14.5 1 0.870667901 0 0.135552226 
3 452334 1719340 16 1 0.81174759 0 0.198492666 
3 452334 1719340 17.5 1 0.741635836 0 0.270389094 
3 452334 1719340 18 1 0.724944598 0 0.28684441 
3 452334 1719340 19 1 0.708150392 0 0.302226544 
3 452334 1719340 20 1 0.710528916 0 0.297917836 
3 452334 1719340 21 1 0.72188226 0 0.284922868 
3 452334 1719340 22 1 0.731574348 0 0.274285115 
3 452334 1719340 23 1 0.733063719 0 0.272570177 
3 452334 1719340 24 1 0.723805106 0 0.282152742 
3 452334 1719340 25 1 0.703236287 0 0.30338943 
4 452359 1719282 1 0 0.407401215 1 0.591725977 
4 452359 1719282 2 0 0.421127271 1 0.578134553 
4 452359 1719282 2.5 0 0.443573077 1 0.556347267 
4 452359 1719282 3 1 0.479693381 0 0.521405756 
4 452359 1719282 4 1 0.573801146 0 0.430434313 
4 452359 1719282 4.5 1 0.60806756 0 0.397235419 
4 452359 1719282 6 1 0.560844065 0 0.442417902 
4 452359 1719282 7.5 1 0.451800977 0 0.545875028 
4 452359 1719282 9 1 0.514671549 0 0.480418844 
4 452359 1719282 10.5 1 0.66771542 0 0.327546635 
4 452359 1719282 12 1 0.803223157 0 0.195886899 
4 452359 1719282 13.5 1 0.880720671 0 0.123023199 
4 452359 1719282 15 1 0.854543428 0 0.153280418 
4 452359 1719282 16.5 1 0.787842252 0 0.223457289 
4 452359 1719282 18 1 0.729385665 0 0.282283797 
4 452359 1719282 19.5 1 0.714099905 0 0.295117013 
4 452359 1719282 20 1 0.71720933 0 0.291044786 

4. Sand classifier Network results: 
 
B.H.# E N DEPTH SM SM(PREDIC

TED) 
SC SC(PREDIC

TED) 
1 447869 1724767 1 0 0 0 0.269468426 
1 447869 1724767 2.5 0 0 0 0.324908608 
1 447869 1724767 3 1 0 0 0.33242643 
1 447869 1724767 4 1 0 0 0.326308907 
1 447869 1724767 4.5 0 0 1 0.312776939 
1 447869 1724767 6 0 0 1 0.243801696 
1 447869 1724767 7.5 0 0 1 0.167751606 
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1 447869 1724767 9 0 0.136065199 1 0.105694396 
1 447869 1724767 10.5 0 0.190720331 1 0.064552251 
1 447869 1724767 12 0 0.214918551 1 0.048945855 
1 447869 1724767 13.5 0 0.244413389 1 0.043865229 
1 447869 1724767 15 0 0.24586547 1 0.046278324 
1 447869 1724767 16.5 0 0.344727004 1 0.073782497 
1 447869 1724767 18 0 0.589487376 1 0.111696137 
1 447869 1724767 19.5 0 0.599181624 1 0.124660259 
1 447869 1724767 20 0 0.527892977 1 0.126965395 
2 447869 1719407 1.5 1 0.359732213 0 0.255081056 
2 447869 1719407 3 1 0.66129205 0 0.15593668 
2 447869 1719407 4 1 0.749056838 0 0.048301063 
2 447869 1719407 4.5 0 0.757209562 1 0.005641161 
2 447869 1719407 6 0 0.648538146 1 0 
2 447869 1719407 7 0 0.475347309 1 0 
2 447869 1719407 8.5 0 0.195097808 1 0 
2 447869 1719407 9 0 0.13018304 0 0 
2 447869 1719407 10 0 0.055989448 0 0.074086499 
2 447869 1719407 10.5 0 0.043471094 1 0.13301087 
2 447869 1719407 12 0 0.083106209 1 0.363610464 
2 447869 1719407 13.5 0 0.110491546 1 0.618705872 
2 447869 1719407 15 0 0.016128552 1 0.82132248 
2 447869 1719407 16.5 0 0.023428808 1 0.927169157 
2 447869 1719407 18 0 0.25831323 1 0.948597325 
2 447869 1719407 19.5 0 0.494790195 1 0.837873945 
2 447869 1719407 20 0 0.506374135 1 0.752518005 
3 447869 1719340 1.5 1 0.40598296 0 0.227078831 
3 447869 1719340 3 1 0.704479342 0 0.138084735 
3 447869 1719340 3.5 1 0.753870584 0 0.088608575 
3 447869 1719340 4 0 0.777667441 1 0.042194735 
3 447869 1719340 5.5 0 0.708706057 1 0 
3 447869 1719340 7 0 0.446426799 1 0 
3 447869 1719340 8.5 0 0.165675521 1 0 
3 447869 1719340 10 0 0.041941489 1 0.100478636 
3 447869 1719340 11.5 0 0.053825147 1 0.315239467 
3 447869 1719340 13 0 0.111560648 1 0.569329382 
3 447869 1719340 14.5 0 0.035203203 1 0.787875109 
3 447869 1719340 16 0 0 1 0.91185635 
3 447869 1719340 17.5 0 0.154907122 1 0.954232423 
3 447869 1719340 18 0 0.270800255 0 0.949909149 
3 447869 1719340 19 0 0.482280372 0 0.896365252 
3 447869 1719340 20 0 0.540065065 0 0.750863008 
3 447869 1719340 21 0 0.470959289 1 0.521587774 
3 447869 1719340 22 0 0.353650825 1 0.311615542 
3 447869 1719340 23 0 0.246327704 1 0.180176269 
3 447869 1719340 24 0 0.173980478 1 0.107232419 
3 447869 1719340 25 0 0.134319546 1 0.066100147 
4 447869 1719282 1 0 0.319736489 0 0.195897256 
4 447869 1719282 2 0 0.568406181 0 0.190443431 
4 447869 1719282 2.5 0 0.66753668 0 0.162478346 
4 447869 1719282 3 1 0.738488636 0 0.12296678 
4 447869 1719282 4 1 0.798235142 0 0.037921603 
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4 447869 1719282 4.5 0 0.79127548 1 0.003998103 
4 447869 1719282 6 0 0.626863885 1 0 
4 447869 1719282 7.5 0 0.311330185 1 0 
4 447869 1719282 9 0 0.087507547 1 0.02844371 
4 447869 1719282 10.5 0 0.025253762 1 0.190606747 
4 447869 1719282 12 0 0.07433913 1 0.430306722 
4 447869 1719282 13.5 0 0.092069351 1 0.676934247 
4 447869 1719282 15 0 0 1 0.855575557 
4 447869 1719282 16.5 0 0.013143393 1 0.939608348 
4 447869 1719282 18 0 0.281405225 1 0.950596018 
4 447869 1719282 19.5 0 0.561951445 1 0.835770199 
4 447869 1719282 20 0 0.567688019 1 0.748908571 

 
5. Sand grading classifier Network results: 
 
B.H.# E N DEPTH SW SW(PRED.) SP SP(PRED.) 

1 4447869 1724767 1 0 0.7203012 0 0 
1 4447869 1724767 2.5 0 0.891345 0 0 
1 4447869 1724767 3 0 0.9176961 0 0 
1 4447869 1724767 4 0 0.9140501 0 0 
1 4447869 1724767 4.5 0 0.8837251 0 0 
1 4447869 1724767 6 0 0.7002299 0 0 
1 4447869 1724767 7.5 0 0.5368266 0 0 
1 4447869 1724767 9 0 0.494068 1 0 
1 4447869 1724767 10.5 0 0.5132144 0 0 
1 4447869 1724767 12 0 0.5587561 1 0 
1 4447869 1724767 13.5 0 0.6177683 1 0 
1 4447869 1724767 15 0 0.660133 1 0 
1 4447869 1724767 16.5 0 0.6534629 0 0.00450629 
1 4447869 1724767 18 0 0.6035883 0 0 
1 4447869 1724767 19.5 0 0.5626747 1 0 
1 4447869 1724767 20 0 0.5605741 0 0 
2 452348 1719407 1.5 0 0 0 0 
2 452348 1719407 3 0 0 0 0 
2 452348 1719407 4 0 0.0441951 0 0 
2 452348 1719407 4.5 0 0.0832936 0 0 
2 452348 1719407 6 0 0.2618794 1 0 
2 452348 1719407 7 0 0.4412792 0 0 
2 452348 1719407 8.5 0 0.738961 0 0 
2 452348 1719407 9 0 0.8135811 0 0 
2 452348 1719407 10 0 0.8997891 0 0 
2 452348 1719407 10.5 0 0.9135356 0 0 
2 452348 1719407 12 0 0.8562609 1 0 
2 452348 1719407 13.5 0 0.7173344 0 0.03237548 
2 452348 1719407 15 0 0.6828471 1 0 
2 452348 1719407 16.5 0 0.8089162 0 0 
2 452348 1719407 18 0 0.9446894 0 0 
2 452348 1719407 19.5 0 0.9524965 0 0 
2 452348 1719407 20 0 0.9167243 0 0 
3 452334 1719340 1.5 0 0 0 0 
3 452334 1719340 3 0 0.0008911 0 0 
3 452334 1719340 3.5 0 0.0298794 0 0 
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3 452334 1719340 4 0 0.065961 0 0 
3 452334 1719340 5.5 0 0.2260306 1 0 
3 452334 1719340 7 0 0.4824705 1 0 
3 452334 1719340 8.5 0 0.7655023 0 0 
3 452334 1719340 10 0 0.9029203 0 0 
3 452334 1719340 11.5 0 0.8760159 0 0 
3 452334 1719340 13 0 0.7393808 1 0.04336112 
3 452334 1719340 14.5 0 0.6657506 1 0.0268955 
3 452334 1719340 16 0 0.7633415 1 0 
3 452334 1719340 17.5 0 0.9249959 1 0 
3 452334 1719340 18 0 0.9604511 1 0 
3 452334 1719340 19 0 0.9871209 1 0 
3 452334 1719340 20 0 0.9494202 1 0 
3 452334 1719340 21 0 0.8230061 0 0 
3 452334 1719340 22 0 0.6068768 0 0 
3 452334 1719340 23 0 0.3747685 0 0 
3 452334 1719340 24 0 0.180222 0 0 
3 452334 1719340 25 0 0.0325795 0 0 
4 452359 1719282 1 0 0 0 0 
4 452359 1719282 2 0 0 0 0 
4 452359 1719282 2.5 0 0 0 0 
4 452359 1719282 3 0 0.0049853 0 0 
4 452359 1719282 4 0 0.070187 0 0 
4 452359 1719282 4.5 0 0.1134174 1 0 
4 452359 1719282 6 0 0.297728 1 0 
4 452359 1719282 7.5 0 0.5739275 1 0 
4 452359 1719282 9 0 0.819151 0 0 
4 452359 1719282 10.5 0 0.8933272 0 0 
4 452359 1719282 12 0 0.8094057 1 0.02512653 
4 452359 1719282 13.5 0 0.6659106 1 0.07903525 
4 452359 1719282 15 0 0.6621755 1 0.0293324 
4 452359 1719282 16.5 0 0.8209697 1 0 
4 452359 1719282 18 0 0.9686731 1 0 
4 452359 1719282 19.5 0 0.9875241 1 0 
4 452359 1719282 20 0 0.9614121 1 0 

 
6. Clay classifier Network results: 
 
B.H.# E N DEPTH CL CL(PRED.) CH CH(PRED) 

1 4447869 1724767 1 0 0.887113419 1 0 
1 4447869 1724767 2.5 0 0.659034524 1 0 
1 4447869 1724767 3 0 0.498757443 0 0 
1 4447869 1724767 4 0 0.156792733 0 0 
1 4447869 1724767 4.5 0 0.049676664 0 0 
1 4447869 1724767 6 0 0 0 0 
1 4447869 1724767 7.5 0 0 0 0 
1 4447869 1724767 9 0 0 0 0 
1 4447869 1724767 10.5 0 0.12155929 0 0 
1 4447869 1724767 12 0 0.270685888 0 0 
1 4447869 1724767 13.5 0 0.26468519 0 0 
1 4447869 1724767 15 0 0.176321227 0 0 
1 4447869 1724767 16.5 0 0.096828801 0 0 
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1 4447869 1724767 18 0 0.06557259 0 0.135684921 
1 4447869 1724767 19.5 0 0.086746638 0 0.212578324 
1 4447869 1724767 20 0 0.098226306 0 0.250733866 
2 452348 1719407 1.5 0 0.132877226 0 0.310906321 
2 452348 1719407 3 0 0.021406748 0 0.215153878 
2 452348 1719407 4 0 0 0 0.201524903 
2 452348 1719407 4.5 0 0 0 0.171190664 
2 452348 1719407 6 0 0.062019073 0 0.01278542 
2 452348 1719407 7 0 0.116273774 0 0 
2 452348 1719407 8.5 0 0.065023501 0 0.091466376 
2 452348 1719407 9 0 0.035890128 0 0.178021561 
2 452348 1719407 10 0 0.005202349 0 0.268242321 
2 452348 1719407 10.5 0 0.002284087 0 0.241041815 
2 452348 1719407 12 0 0.001291279 0 0.103515939 
2 452348 1719407 13.5 0 0 0 0.101381367 
2 452348 1719407 15 0 0 0 0.071460933 
2 452348 1719407 16.5 0 0 0 0 
2 452348 1719407 18 0 0 0 0 
2 452348 1719407 19.5 0 0.000197031 0 0.031985129 
2 452348 1719407 20 0 0.003725877 0 0.055255696 
3 452334 1719340 1.5 0 0.167553607 0 0.227823442 
3 452334 1719340 3 0 0.047863714 0 0.17269123 
3 452334 1719340 3.5 0 0.022983142 0 0.182649452 
3 452334 1719340 4 0 0.008735275 0 0.1843233 
3 452334 1719340 5.5 0 0.036280259 0 0.059082054 
3 452334 1719340 7 0 0.121158132 0 0 
3 452334 1719340 8.5 0 0.066970021 0 0.04249408 
3 452334 1719340 10 0 0 0 0.217896921 
3 452334 1719340 11.5 0 0 0 0.111422924 
3 452334 1719340 13 0 0 0 0.061987612 
3 452334 1719340 14.5 0 0 0 0.077155784 
3 452334 1719340 16 0 0 0 0 
3 452334 1719340 17.5 0 0 0 0 
3 452334 1719340 18 0 0.00197514 0 0 
3 452334 1719340 19 0 0.006264039 0 0 
3 452334 1719340 20 0 0.012293961 0 0.037427462 
3 452334 1719340 21 0 0.024033832 0 0.070110273 
3 452334 1719340 22 0 0.043955698 0 0.075430602 
3 452334 1719340 23 0 0.069303766 0 0.054115031 
3 452334 1719340 24 0 0.086343654 0 0.030800859 
3 452334 1719340 25 0 0.074306179 0 0.035759649 
4 452359 1719282 1 0 0.250839403 1 0.233596412 
4 452359 1719282 2 0 0.152934282 1 0.147941369 
4 452359 1719282 2.5 0 0.105636933 1 0.146806831 
4 452359 1719282 3 0 0.064381093 0 0.163000539 
4 452359 1719282 4 0 0.013524788 0 0.1964673 
4 452359 1719282 4.5 0 0.006682445 0 0.180431005 
4 452359 1719282 6 0 0.056851871 0 0.008080062 
4 452359 1719282 7.5 0 0.101885883 0 0 
4 452359 1719282 9 0 0.014146679 0 0.099840884 
4 452359 1719282 10.5 0 0 0 0.205395591 
4 452359 1719282 12 0 0 0 0.07202293 
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4 452359 1719282 13.5 0 0 0 0.05287395 
4 452359 1719282 15 0 0 0 0.047505676 
4 452359 1719282 16.5 0 0 0 0 
4 452359 1719282 18 0 0.005132482 0 0 
4 452359 1719282 19.5 0 0.014703507 0 0.00226506 
4 452359 1719282 20 0 0.01961249 0 0.018706527 

 
7. Silt classifier Network results: 
 
B.H.# E N DEPTH ML ML(PRED.) MH MH(PRED.) 

1 4447869 1724767 1 0 0 0 0.06835439 
1 4447869 1724767 2.5 0 0 0 0.04639673 
1 4447869 1724767 3 0 0 0 0.03597089 
1 4447869 1724767 4 0 0 0 0.0173412 
1 4447869 1724767 4.5 0 0 0 0.01349331 
1 4447869 1724767 6 0 0 0 0.02414298 
1 4447869 1724767 7.5 0 0 0 0.03034714 
1 4447869 1724767 9 0 0 0 0.02876539 
1 4447869 1724767 10.5 0 0 0 0.03211417 
1 4447869 1724767 12 0 0 0 0.01009584 
1 4447869 1724767 13.5 0 0 0 0 
1 4447869 1724767 15 0 0 0 0 
1 4447869 1724767 16.5 0 0 0 0 
1 4447869 1724767 18 0 0 0 0 
1 4447869 1724767 19.5 0 0 0 0 
1 4447869 1724767 20 0 0 0 0 
2 452348 1719407 1.5 0 0 0 0.0013357 
2 452348 1719407 3 0 0 0 0 
2 452348 1719407 4 0 0 0 0 
2 452348 1719407 4.5 0 0 0 0 
2 452348 1719407 6 0 0.01228564 0 0 
2 452348 1719407 7 0 0.02142959 0 0.00736794 
2 452348 1719407 8.5 0 0.03442583 0 0.02690476 
2 452348 1719407 9 1 0.03465123 0 0.03123653 
2 452348 1719407 10 1 0.02907455 0 0.02699522 
2 452348 1719407 10.5 0 0.02758467 0 0.01643548 
2 452348 1719407 12 0 0 0 0 
2 452348 1719407 13.5 0 0 0 0 
2 452348 1719407 15 0 0.09349478 0 0 
2 452348 1719407 16.5 0 0 0 0 
2 452348 1719407 18 0 0 0 0.00449597 
2 452348 1719407 19.5 0 0 0 0 
2 452348 1719407 20 0 0 0 0 
3 452334 1719340 1.5 0 0 0 0.00313836 
3 452334 1719340 3 0 0 0 0 
3 452334 1719340 3.5 0 0 0 0 
3 452334 1719340 4 0 0 0 0 
3 452334 1719340 5.5 0 0.01014377 0 0 
3 452334 1719340 7 0 0.02146902 0 0.00779325 
3 452334 1719340 8.5 0 0.0312072 0 0.02570224 
3 452334 1719340 10 0 0.01926079 0 0.02362399 
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3 452334 1719340 11.5 0 0.00358763 0 0 
3 452334 1719340 13 0 0 0 0 
3 452334 1719340 14.5 0 0.05381259 0 0 
3 452334 1719340 16 0 0.02084741 0 0 
3 452334 1719340 17.5 0 0 0 0.00266406 
3 452334 1719340 18 0 0 0 0.00553429 
3 452334 1719340 19 0 0 0 0.00181734 
3 452334 1719340 20 0 0 0 0 
3 452334 1719340 21 0 0 0 0 
3 452334 1719340 22 0 0.00387222 0 0 
3 452334 1719340 23 0 0.04141524 0 0 
3 452334 1719340 24 0 0.0662426 0 0 
3 452334 1719340 25 0 0.08968474 0 0.00998135 
4 452359 1719282 1 0 0 0 0.00386546 
4 452359 1719282 2 0 0 0 0.00192317 
4 452359 1719282 2.5 0 0 0 0.00067791 
4 452359 1719282 3 0 0 0 0 
4 452359 1719282 4 0 0 0 0 
4 452359 1719282 4.5 0 0.00221523 0 0 
4 452359 1719282 6 0 0.01269335 0 0 
4 452359 1719282 7.5 0 0.02316066 0 0.01277327 
4 452359 1719282 9 0 0.02407201 0 0.02671607 
4 452359 1719282 10.5 0 0.00395441 0 0.00911308 
4 452359 1719282 12 0 0 0 0 
4 452359 1719282 13.5 0 0 0 0 
4 452359 1719282 15 0 0.06659185 0 0 
4 452359 1719282 16.5 0 0 0 0 
4 452359 1719282 18 0 0 0 0.00526015 
4 452359 1719282 19.5 0 0 0 0 
4 452359 1719282 20 0 0 0 0 
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