University of Khartoum

Faculty of Engineering Department of Agricultural Engineering

Evaluation of Some Standards for Tillage Implement's Draft Requirements in Soba Area , Khartoum State , Sudan.

Mai Muzamel Ahmed

B.Sc. (Honors) in Agricultural Engineering University of Juba (2004)

A thesis

Submitted to the University of Khartoum in Partial fulfillment of the requirement for M. Sc. Agricultural Engineering

Supervisor: Dr. Al Hag Adam Yousif

Department of Agricultural Engineering University of Khartoum

May 2009

University of Khartoum

Faculty of Engineering Department of Agricultural Engineering

Compartive Study between calculated & measured conditions parameters under field

Mai Muzamel Ahmed

B.Sc. (Honors) in Agricultural Engineering University of Juba (2004)

A thesis

Submitted to the University of Khartoum in Partial fulfillment of the requirement for M. Sc. Agricultural Engineering

Supervisor: Dr. Al Hag Adam Yousif

Department of Agricultural Engineering University of Khartoum

May 2009

CONTENTS

Dedica	ation	Ι
Ackno	owledgement	II
List of	f tables	II
List of	f figures	IV
Abstra	act	V
Chapt	ter I	
Intro	luction	
1-1	Introduction	1
1-1-1	Background	2
1-1-2	Primary Tillage	2
1-1-3	Secondary Tillage	3
1-2	Objectives	3
Chapt	ter II	
Litera	ature Review	
2-1	Spread sheet of matching tractor and implement	4
2-2	Matching tractor power and implement size	5
2-3	The validity of application of the draft equation developed by	6
	ASABE in Sudan.	
2-4	Draft and power requirement	8
2-4-1	Draft	8
2-4-2	Factors affecting the draft	8
2-4-3	Calculation of draft and power	9
2-5	Field Capacity and Field efficiency of implements	1:
2-6	Slip	1
Chapt	ter III	
Mater	rial and Methods	
3-1	Description of the field Experiments & field conditions	2
3-2	Climatic Conditions	2
3-3	Tractors & Implements and material used	2
3-4	Soil tests	2
3-4-1	Grain size Analysis	2
3-4-2	liquid and plastic limit test	2

3-4-3	Sieve Analysis test	27
Chapt	er IV	
Result	s & Calculated Results	
4	Results	28
4-1	Ridger	28
4-2	Disc Plow	31
4-3	Rotary hoe	34
4-4	Results of Field efficiency for rotary hoe	35
4-5	Results of Field efficiency for disc plow	35
4-6	Results of Field efficiency for ridger	35
Calcul	ated Results	
4-7	Ridger	36
4-8	Disc Plow	40
4-9	Rotary Hoe	46
4-10	Field Efficiency and field capacity calculation	48
4-10-1	Rotary hoe	48
4-10-2	Disc Plow	49
4-10-3	Ridger	50
4-11	Comparison	52
4-11-1	Ridger	52
4-11-2	Disc Plow	56
4-11-3	Rotary Hoe	59
4-12	Values of slip measured in the field for different type of tractor	60
4-12-1	Massy Ferguson Tractor – Model MF 290(Gear selected 1-H)	60
4-12-2	New Holland (82 hp)	60

Chapter V

Discussions & Recommendations

5.1	Discussions		61
5-2	Conclusions		61
5-3	Recommendat	ions	62
Refere	nces		

Appendix

List of Tables

No	Description	Page
2-1	Results of analysis for matching implements with tractors	4
2-2	Draft requirements for various implements	5
2-3-а	The comparison between the values measured and the values	7
	calculated by ASABE equation (ridger)	
2-3-b	The result and calculation for (DISC plow)	7
2-4-1	Draft parameters for tillage and seeding implements	9
2-4-2	Rotary power requirements	13
2-5-2	Field efficiency, field speed and repair and maintenance cost	17
	parameters	
3-3	Specifications of tractors used	22
4-1	Result of Estimated draft and drawbar power (ridger)	39
4-2	Result of Estimated draft and drawbar power (disc plow)	44
4-3	Result of estimated draft and drawbar power (Rotary hoe)	47

List of Figures

No	Description	Page
4-1	Draft Vs Depth for ridger	39
4-2	Draft Vs Speed for ridger	40
4-3	Draft Vs Depth for disc plow	44
4-4	Draft Vs Speed for disc plow	45
4-5	Draft Vs Speed for rotary hoe	47
4-6	Draft Vs depth at speed = 6.1 km / hr for ridger	52
4-7	Draft Vs depth at speed = 3.9 km / hr for ridger	53
4-8	Draft Vs depth at speed = $2 \text{ km} / \text{hr for ridger}$	53
4-9	Draft Vs speed at depth (15 cm) ridger	54
4-10	Draft Vs speed at depth (20 cm) ridger	54
4-11	Draft Vs speed at depth (28 cm) ridger	55
4-12	Draft Vs depth at speed (4.1 km/hr) for disc plow	56
4-13	Draft Vs depth at speed (5.7 km/hr) for disc plow	57
4-14	Draft Vs depth at speed (8.2 km/hr) for disc plow	57
4-15	Draft Vs speed at depth (15 cm) for disc plow	58
4-16	Draft Vs speed at depth (20 cm) for disc plow	58
4-17	Draft Vs speed at depth (25 cm) for disc plow	59
4-18	Draft Vs speed at depth (5cm) for rotary hoe	59

Dedication

To my beloved mother who stands to my side giving me the hope to go on and to be who | am now.

To my sísters & husband for being good supporters in my lífe..

To my light's life ... my son ... Awab& Gassan.

Thanks

Acknowledgment

To all staff members

Dr. Elhag Adam Yousíf who helped me a lot giving me

a lot of his presious ... time

All staff in agricultural engineering department -

Faculty of Engineering.....

To all staff of the farm of the agricultural Engineering

Department in Soba..

Thanks ...

ملخص البحث

هذه الدر اسة تهدف إلى المقارنة ما بين بعض القيم التي حسبت بواسطة الجمعية الأمريكية للمهندسين الزراعيين والحيويين مثل الكفاءة الحقلية والمسعة الحقلية وقروة المسحب وقيدرة قمضيب الجرر والانزلاق لأنواع مختلفة من الآليات تعمل في أنواع مختلفة من الترية وقد تمت هذه المقارنة عن طريق إجراء تجارب حقلية في مزرعة قسم الهندسة الزراعية سوبا لثلاثة أنواع من الأليات وهي المحراث القرصى والطراد والكسارة عند سرعات وأعماق مختلفة. وبذلك تمم المصول علمي قميم مقاسمه لقوة المسحب وقمدرة قمضيب الجمر باستخدام جهاز قياس قوة السحب وقدرة قضيب الجر ومن ثم مقارنتها بالقيم المحسوبة بالمعادلات عن نفس الأعماق والسسرعات المستخدمة في التجارب الحقلية. وأيصاً تم حساب قيم الانرزلاق لنوعين من الجرارات لتربية محروثة وذلك في مزرعة وزارة الزراعة والغابات بسوبا. أما الكفاءة الحقلية فقد تم حسابها لنفس الأليات السابق ذكر ها، وذلك عن طريق حسباب المرمن الكلمي والمرمن المفقود والعمق الحقيقي والعمق المقاس وكذلك حسباب السسرعة الحقيقية والسسرعة المتأثرة بواسطة عامل الانزلاق ومن ثم حسابها بالمعادلات ومقارنتها مع قيمة الكفاءة الحقلية الموضوعة بواسطة جداول الجمعية الهندسية الأمريكية عند نفس السرعة وتــشير النتـائج المـي وجـود تطـابق تقريبـي للقـيم المقاسـة والقـيم المحـــسوبة بواسطة المعـادلات والجـداول الموضيوعة بواسطة الجمعية الأمريكية لقوة السحب وقدرة قضيب الجر وتتراوح نسبة الخط_أ بالنيسبة للكيسارة ميا بين 22%-66% وميا بين 38% -55% للمحر إث القرصى أما بالنسبة للطر إد فهي ما بين 7.5% - 30%. أما بالنسبة للكفاءة الحقلية فتشير النتائج إلى انخفاضها بالنسبة للكفاءة الحقلية الموضوعة بو اسطة جداول الجمعبة الهندسبة الأمر بكبة

V

Abstract

The objective of this study is to evaluate some ASABE standards under real working conditions for different soils, implements, and tractors and then to compare these values measured on the field with those calculated by using ASABE 497 equations.

Many experiments were carried out in the Agricultural engineering department farm at Soba. Three types of implements (disc plow, ridger, rotovator) with different speeds and different operating depths were used. The values for draft were measured by using a draw bar dynamometer, and the slip was measured by using two tractors with different loading conditions.

The values of field efficiency were measured by calculating the total time, the time loss during the operation, the real width, implement working width and the speed.

The study showed that:

- The measured draft and drawbar power values were found to be matching with the calculated values using ASABE equations and the error range from 22 to 66% for Rotovator, 38 to 55% for disc plow and 7.5 to 30 % for the ridger.
- The values of slip for two types of tractors on (tilled soil) was found within the range of ASABE standards values.
- The field efficiencies measured in the field for three implements (19% for ridger,23.6% for disc plow,51.9% for rotary hoe) were lower than the standard values(70%-85%).

Chapter (1)

Introduction

1-1 Background:

Tillage may be defined as the mechanical manipulation of soil for nutring crops.

The objectives of tillage are:

- To prepare a desirable seedbed or root bed.
- To control weeds and remove unwanted crop plant.
- To minimize soil erosion.
- To establish specific surface configuration for planting, irrigation, drainage or harvesting operation .
- To incorporate and mix fertilizer, manure, pesticides.

There are two types of tillage:

1-1-1 Primary Tillage:

It is the first operation to be carried out for breaking soil surface Implements used for primary tillage are:

- Moldboard plows.
- Disc plows.
- Chisel plows.
- Subsoiler.
- Heavy disc harrow.
- Rotary tiller and bedders.

1-1-2 Secondary Tillage:

Any tillage operation performed after the primary tillage is called secondary tillage. The main objective of secondary tillage is to break down large clods and to prepare an ideal seedbed for planting.

Implements used in secondary tillage are:

- Disc harrows.
- Cultivators.
- Ridgers.
- Rotary hoes and rotary cultivaters.
- Tandem and offset disc harrows.

A tillage tool is defined as an individual soil engaging element. A tillage implement consist of a single tool or a group of tools, together with associated frame, wheel, hitch, control and protection devices, and any power transmission component.

The performance of the tillage tools is determined by their draft and power requirement's and the quality of work.

The definition of quality of work depends upon the type of tillage tool; no universally accepted method has been developed to quantity of the work. Therefore, only the draft force acting on tillage tools and their power requirements are presented here;

The effects of soil and tool parameters as well as operations conditions on draft force and power requirements are discussed in this study.

Tillage cost represents the largest proportion of agricultural production cost. Therefore, any effort exerted to reduce the draft of tillage implements will automatically reduce the energy required and hence will reduce the overall production cost. This study will focus on some parameters which affect the draft of tillage tools.

1-2 Objectives:

The objectives of this study are:

- Field evaluation of some parameters (constants) used in ASABE standard's for calculating (draft, drawbar power, slip, field efficiency) under different working conditions in Sudan.
- Comparison between the results (values measured in the field) and those calculated by using the equations and tables developed by ASABE 497.

Chapter (II)

Literature Review

Previous Studies

2-1 Spread sheet of matching tractor and implement:

(Robert grisso *et al.*, 2006) suggested spread sheets for matching tractors and implements.

The objective of the study was to demonstrate the use of spread sheet for matching tractor and implement.

It included three tractors of different power levels and configuration and three different implements and two different soils types, they obtained the following results (table 2.1)

Implement	Soil	Depth	Width	Speed	Draft	D.B.P	P.P.T.O	Field
	factor	(mm)	(m)	(km/hr)	(kw)	(Kw)	(kw)	capacity
								(ha/hr)
Moldboard plow	1	203	1.8	8	36.4	81	108	1.25
	3	203	10.8	8	16.4	37	49	1.25
Disc harrow	1	152	6.4	8	42.6	95	127	4.38
tandem	3	152	6.4	8	33.2	74	99	4.38
Field cultivator	1	127	5.5	8	23.1	52	69	3.75
	3	127	5.5	8	15.0	45	45	3.72

[Table (2.1)]: Result of analysis for matching implement with tractor

2-2 Matching tractor power and implement size:

(William Edwards) in (May 2007) also conducted a research work aiming to determine the power requirements for different implement sizes. He concluded that the power needed to pull a certain implement depends on the width of the implement, the ground speed, draft requirement and soil conditions, and obtained the following results table (2.2).

Equipment name	Speed	Draft [average]	Draft [range] (lb.
	(mph)	(lb. per unit of	per unit of width)
		width)	
Tillage			
Moldboard plow (16 in. bottom, 17in. deep)			
Light soil	5.0	320	220-430 per foot
Medium soil	4.5	500	350-650 per foot
Heavy soil	4.5	800	580-1,140 per foot
Clay soil	4.0	1200	1,000-1,400 per foot
Chisel – Plow			
(7-9 in. deep)	5.0	500	200-800 per foot
Disk			
Single gang	5.5	75	50-100 per foot
Tandem	5.5	200	100-300 per foot
Heavy or offset	5.0	325	250-400 per foot
Field cultivator	5.0	300	200-400 per foot
Spring-tooth harrow	5.0	200	70-300 per foot
Spike- tooth harrow	6.0	50	20-60 per foot

[Table (2.2)]: Draft requirement for various implement

Roller packer	5.0	100	20-150 per foot
Cultivator			
Field (3-5 in deep)	5.0	250	60-300 per foot
Row crop	4.5	80	40-120 per foot
Rotary hoe	7.5	84	30-100 per foot
Sub soiler (16 in deep)			
Light soil	4.5	1500	1,100-1,800 per tooth
Medium soil	4.5	2000	1,600-2,600 per tooth
Heavy soil	4.5	2600	2,000-3,000 per tooth
Planting			
Planter only	5.0	150	100-180 per row
Planter with attachment	5.0	350	250-400 per row
Grain drill	5.0	70	30-100 per row
No-till drill	5.0	200	160-240 per row
Applying chemicals			
An hydrousammonia applic	4.5	425	375-450 per shank

2-3 The validity of application of the draft equation developed by ASABE

in Sudan.

With the objective of considering the validity of application of equations developed by the ASABE in standard (D 497) in Sudan,(Rayan Hassan Mohammed, Sarah Adam Salih) in (May 2008), carried out field experiments with two types of machines namely (Ridger & Disc Plow) and two tractors with the same type and using different speeds and operating depths.

The study showed that in general the measured draft and drawbar power values are not matching with the calculated values using ASABE equations.

[Table (2.3.a)] The comparison between the values measured and the values

Width	Depth	Speed	Calculated	Measured	Calculated	Measured
(m)	(cm)	(Km/hr)	draft (KN)	draft	P _{db} (KW)	P _{db} (KW)
				(KN)		
1.81	10	4	5,482,49	4,517.20	6,091.65	5,019.11
1.81	10	6	5,929,56	4,780,31	9,882,60	7,967.18
1.81	10	8	6,376,63	5,192,04	14,170,28	11,537.86
1.81	20	4	10,964.98	7,560.90	12,183.31	8,401.00
1.81	20	6	11,859.12	10,755.10	19,765.20	17,925.16
1.81	20	8	12,753.26	11,703.62	28,340.57	26,008.04
1.81	30	4	16,447.47	13,340.00	18,274.96	14,822.22
1.81	30	6	17,788.68	15,605.65	29,647.80	26,009.42
1.81	30	8	19,129.89	18,087.97	42,150.86	40,195.49

calculated by ASABE equation (ridger)

[Table (2.3.b)] The results for (DISC plow)

Width	Depth	Speed	Calculated	Measured	Calculated	Measured
(m)	(cm)	(Km/hr)	draft (KN)	draft	P _{db} (KW)	P _{db} (KW)
				(KN)		_
1.81	10	4	3,631.32	8,189.98	4,034.80	9,099.97
1.81	10	6	4,136.22	8,423.55	6,893.70	14,039.24
1.81	10	8	4,843.08	8,766.12	10,762.40	19,480.26
1.81	20	4	7,262.64	9,435.85	8,069.60	10,484.27
1.81	20	6	8,272.44	11,202.04	13,787.40	18,670.06
1.81	20	8	9,689.16	11,739.63	21,524.80	26,088.06
1.81	30	4	10,893.96	10,984.75	12,104.40	12,205.27
1.81	30	6	12,408.66	13,520.44	20,681.10	22,534.06
1.81	30	8	14,529.24	14,756.79	32,287.20	32,792.86

2-4 Draft and power requirement:

The primary purpose of agricultural tractors, especially those in the middle to high power ranges is to perform draw bar work, the value of the tractor is measured by the amount of work accomplished relative to the cost incurred in getting the work done/ drawbar work is defined by pull and travel speed, there fore the idle tractor converts all the energy from fuel into useful work at the drawbar in practice most of the potential energy is lost in the conversion of chemical energy to mechanical energy.

2-4-1 Draft:

Is defined as the component of tractor pull acting in the plow parallel to the line of travel,

2-4-2 Factors affecting the draft:

A) Soil types :

Are the most important factors affecting variation of the draft, when the moisture content increases, the draft will be increased up to the plasticity range, in sandy soil the draft increases and in clay soil the draft decreases.

B) The soil condition:

- A dry soil requires excessive power and also accelerates wear of cutting edges.
- The degree of soil compaction and the absence of cover crops increase the draft.
- In fine soil texture the draft is high, but in coarse textured soils draft is low.

C) Tillage depth:

Depth of operation is directly proportional to the draft.

D) Forward speed:

Speed is directly proportional to the draft, when the speed increases the draft also increases.

E)	Design	Factor	and	shape	of	the	Implements:
/	0						1

2-4-3 Calculation of draft and power:

The American society of Agricultural & Biological Engineers (ASABE) in (Feb 2006) issued the standard (497), for estimating the draft requirements for different implements at different working condition as follows:

 $D = F_i [A + B(S) + C(S^2)] wd$

Where:

D = implement draft (N), (Ib)

F = adimension less soil texture adjustment parameter

i = I for fine, 2 for medium and 3 for coarse texture

A, B & C = machine specific parameters [table (2.4.1)]

S = field speed (km/hr), (mil /hr)

W = machine working width, (m), (ft)

d = tillage depth (cm), (in).

[Table (2.4.1)] Draft parameter for tillage and seeding implement

Implement	Width	Α	B	С	F ₁	\mathbf{F}_2	F ₃	Range
	units							<u>+</u> %
Major tillage tools								
Subsoiler/ manure injector								
Narrow point	Tools	226	0.0	1.8	1.0	0.70	0.45	50
30 cm winged point	Tools	294	0.0	2.4	1.0	0.70	0.45	50
Moldboard plow	m	652	0.0	5.1	1.0	0.70	0.45	40
Chisel plow								
5 cm straight point	tools	91	5.4	0.0	1.0	0.85	0.65	50
7.5 cm shovel / 35 cm	tools	107	6.3	0.0	1.0	0.85	0.65	50

Sweep								
10 cm twisted shovel	tools	123	7.3	0.0	1.0	0.85	0.65	50
Sweep plow								
Primary tillage	m	390	19.0	0.0	1.0	0.88	0.65	45
Secondary tillage	m	273	13.3	0.0	1.0	0.88	0.65	35
Disc harrow, tandem								
Primary tillage	m	309	16.0	0.0	1.0	0.88	0.78	50
Secondary tillage	m	216	11.2	0.0	1.0	0.88	0.78	30
Disc harrow, offset								
Primary tillage	m	364	18.8	0.0	1.0	0.88	0.78	50
Secondary tillage	m	254	13.2	0.0	1.0	0.88	0.78	30
Disc gang, single								
Primary tillage	m	124	6.4	0.0	1.0	0.88	0.78	25
Secondary tillage	m	86	4.5	0.0	1.0	0.88	0.78	20
Coulters								
Smooth or ripple	tools	55	27	0.0	1.0	0.88	0.78	25
Bubble or flute	tools	66	3.3	0.0	1.0	0.88	0.65	25
Field cultivator								
Primary tillage	tools	46	28	0.0	1.0	0.85	0.65	30
Secondary tillage	tools	32	1.9	0.0	1.0	0.85	0.65	25
Row crop cultivator								
S – tine	rows	140	7.0	0.0	1.0	0.85	0.65	15
C – Shank	rows	260	13.0	0.0	1.0	0.85	0.65	15
No – till	rows	260	13.0	0.0	1.0	0.85	0.65	15
Rod weeder	m	210	10.7	0.0	1.0	0.85	0.6	25

Disc bedder	rows	185	9.5	0.0	1.0	0.88	0.78	40
Minor Tillage tools								
Rotary hoe	m	600	0.0	0.0	1.0	1.0	1.0	30
Coil tine harrow	m	250	0.0	0.0	1.0	1.0	1.0	20
Spike tooth harrow	m	600	0.0	0.0	1.0	1.0	1.0	30
Spring tooth harrow	m	2000	0.0	0.0	1.0	1.0	1.0	35
Roller packer	m	600	0.0	0.0	1.0	1.0	1.0	50
Roller harrow	m	2600	0.0	0.0	1.0	1.0	1.0	50
Land plane	m	8000	0.0	0.0	1.0	1.0	1.0	45
Seeding implements								
Row crop planter, prepared								
Seedbed								
Mounted								
Seeding only	rows	500	0.0	0.0	1.0	1.0	1.0	25
Drawn								
Seeding only	rows	900	0.0	0.0	1.0	1.0	1.0	25
Seed, fertilizer, herbicides	rows	1.550	0.0	0.0	1.0	1.0	1.0	25
Row crop planter, no-till								
Seed, fertilizer, herbicides								
1 fluted Coulter per row	rows	1,820	0.0	0.0	1.0	0.96	0.92	25
Seed, fertilizer, herbicides								
3 fluted coulters per row	rows	3,400	0.0	0.0	1.0	0.94	0.82	35
Grain drill w/ press wheels								
<2.4m drill width	rows	400	0.0	0.0	1.0	1.0	1.0	25

2.4 to 3.7m drill width	rows	300	0.0	0.0	1.0	1.0	1.0	25
> 3.7 m drill width	rows	200	0.0	0.0	1.0	1.0	1.0	25
Grain drill, no – till								
1 fluted coulter per row	rows	720	0.0	0.0	1.0	0.92	0.79	35
Hoe drill								
primary tillage	m	6,100	0.0	0.0	1.0	1.0	1.0	50
Secondary tillage	m	2,900	0.0	0.0	1.0	1.0	1.0	50
Pneumatic drill	m	3,700	0.0	0.0	1.0	1.0	1.0	50

Drawbar power

$$P_{db} = \frac{D*s}{3.5}$$

Where

 P_{db} = drawbar power (kw)

D = Implement draft (KN)

S = travel speed (km/ hr)

- Power take off (PTO power)

 $P_{PTO} = a + b_W + CC_{mt}$

Where

 $P_{PTO} = PTo power (kw)$

a, b, c = machine specific constant in table (2.4.2)

W = width of machine (m)

 C_{mt} = theoretical field capacity on amalerial basis (kg/ha).

Machine type	a	b	С	Rang
	(kw)	(kw/m)	(kw /)	e <u>+</u> %
Baler, small rectangular	2.0	0	1.0	35
Baler, large rectangular bales	4.0	0	1.3	35
Baler, large round (var. chamber)	4.0	0	1.1	50
Baler, large round (fixed chamber)	2.5	0	1.8	50
Beet harvester	0	4.2	0	50
Beet topper	0	7.3	0	30
Combine, small rains	20.0	0	3.6	50
Combine, corn	35.0	0	1.6	30
Cotton picker	0	9.3	0	20
Cotton stripper	0	1.9	0	20
Feed mixer	0	0	2.3	50
Forage blower	0	0	0.9	20
Flail harvester, direct – cut	10.0	0	1.1	40
Forage harvester, corn silage	6.0	0	3.3	40
Forge harvester, wilted alfalfa	6.0	0	4.0	40
Forage harvester, direct cut	6.0	0	5.7	40
Forage wagon	0	0	0.3	40
Grinder mixer	0	0	4.0	50
Manure spreader	0	0	0.2	50
Mower, cutter bar	0	1.2	0	25
Mower, disc	0	5.0	0	30
		1		1

[Table (2.4.2)] Rotary power requirements

Mower, flail	0	10.0	0	40
Mower- conditioner, cutter bar	0	4.5	0	30
Mower – conditioner, disc	0	8.0	0	30
Potato harvester	0	10.7	0	30
Potato windrower	0	5.1	0	30
Rake, side delivery	0	0.4	0	50
Pake, rotary	0	2.0	0	50
Tedder	0	1.5	0	50
Tub grinder, straw	5.0	0	8.4	50
Tub grinder, alfalfa hay	5.0	0	3.8	50
Windrowe / swather, small grain	0	1.3	0	40

2-5 Field Capacity and Field efficiency:

2-5-1 Field capacity:

Field capacity refers to the amount of area processing that a machine can accomplish per hour of time, field capacity can be expressed on a material or area basis. On a area basis the field capacity is

$$C_a = \frac{VW\eta}{10}$$

On a material basis, the field capacity is:

$$C_m = \frac{VWY}{10}$$

Where

$$C_a$$
 = field capacity, area basis, (ha / hr)

- C_m = field capacity, material basis, (mg/hr)
- W = machine working width, (m)

Y = crop yield,
$$(mg/ha)$$

$$\eta$$
 = field efficiency, (decimal).

The term theoretical field capacity is used to describe the field capacity when the field efficiency is equal to 1.0 Theoretical capacity is achieved when the machine is using 100% of it's width without interruption for turn and other idle time.

For cultivators and other machines that work in rows, the machine working width is equal to the row spacing times the number of rows processed in each pass.

An operator with perfect steering skills would be required to use the full width of machine that does not work in rows. Since operator is not perfect, less than the full width is used in order to ensure coverage of entire land area i.e there is some overlapping of coverage.

2-5-2 Field efficiency:

The theoretical time required to perform a given field operation varies inversely with the theoretical field capacity, and the actual time required to perform the operation will be increased due to overlap, time required for turning at the end of the field, time required for loading or unloading material, etc, such time loses lower field efficiency.

Field efficiency is the ratio between the productivity of machine under field conditions and the theoretical maximum productivity. Field efficiency accounts for failure to utilize the theoretical operating width of the machine, time lost because of operator capability and habits and operating policy, slippage and field characteristics. Travel to and from a field, major repair and maintenance and daily service activity are not included in field time or field efficiency.

Field efficiency is not a constant for a particular machine, but varies with the size and shape of the field, pattern of field operation, crop yield moisture, and crop conditions. The following activities account as the major factors of time loss in the field:

- Turning and idle travel.
- Material handling (seed, fertilizer, water, chemicals).
- Cleaning clogged equipment.
- Machine adjustment.
- Lubrication and refueling (besides daily service).
- Waiting for other machine.

The following equation can be used to calculate field efficiency.

 $\eta = \frac{actual \ area \ covered \ (w \ v \ t \)}{theoretical \ area \ covered \ (wvt)}$

Where:

- W^{-} = actual width measured (m)
- t = effective operating time (hr)
- v⁻ =actual speed (km/hr)
- w = theoretical width (m)
- v = theoretical speed (km/hr)
- t = theoretical time required to complete the operation (hr)

Machine	Effie	Туре	Speed	Туре	Est1	Total life R	RF1	RF2
	Range %	Effic	Range	speed	life h	&M Cost		
		%	km/h	km/h		%of list price		
Tillage and Planning								
Moldboardplow	70-90	85	50-100	70	2000	100	029	18
Heavy duty disc	70-90	85	55-100	70	2000	60	018	17
• Tandem disc barrow	70-90	80	65-110	100	2000	60	018	17
Chisel plow	70-90	85	65-105	80	2000	75	028	14
• Field cultivator	70-90	85	80-130	110	2000	70	027	14
Spring tooth barrow	70-90	85	80-130	110	2000	70	027	14
• Roller packer	70-90	85	70-120	100	2000	40	016	13
Melcher packer	70-90	80	65-110	80	2000	40	016	13
Rotary hoe	70-85	80	13-225	190	2000	60	023	14
Row crop cultivator	70-90	80	50-110	80	2000	80	017	22
Rotary tiller	70-90	85	20-70	50	1500	80	036	20
• Row crop planter	50-75	65	65-110	90	1500	75	032	231
• Gramdrill	55-80	70	65-110	80	1500	75	032	21
Harvesting:								
• Corn picker sheller	60-75	65	3.0-6.5	4.0	2000	70	0.14	2.3
• Combine	60-75	65	3.0-6.5	5.0	2000	60	0.12	2.3
• Combine (SP) ¹⁰¹	65-80	70	3.0-6.5	5.0	3000	40	0.14	2.1
• Mower	75-85	80	5.0-10.0	8.0	2000	150	0.46	1.7
• Mower (rotary)	75-90	80	8.0-19.0	11.0	2000	175	0.44	2.0

[Table (2.5.2)] Field efficiency, fi	ield speed , repair and	I maintenance cost parameters
--------------------------------------	-------------------------	-------------------------------

Mower conditioner	75-85	80	5.0-10.0	8.0	2500	80	0.18	1.6
• Mower condition (rotary)	75-90	80	8.0-19.0	11.0	2500	100	0.16	2.0
• Wmdrower (SP)	70-85	80	5.0-13.0	8.0	3000	55	0.06	2.0
• Side delivery rake	70-90	80	6.5-13.0	10.0	2500	60	017	1.4
Rectangular baler	60-85	75	4.0-10.0	6.5	2000	80	0.23	1.8
Large rectangular baler	70-90	80	6.5-13.0	8.0	3000	75	0.10	1.8
Large round baler	55-75	65	5.0-13.0	8.0	1500	90	0.43	1.8
• Forge harvester	60-85	70	2.5-8.0	5.0	2500	65	0.15	1.6
• Forage harvester (SP)	60-85	70	2.5-10.0	5.5	4000	50	0.03	2.0
• Sugar beet harvester	50-70	60	6.5-10.0	8.0	1500	100	059	1.3
Potato harvester	55-70	60	2.5-6.5	4.0	2500	70	0.19	1.4
Cotton nicker (SP)	60-75	70	3.0-6.0	4.5	3000	80	0.11	1.8
Miscellaneous								
• Fertilizer spreader	60-80	70	8.0-16.0	11.0	1200	80	0.63	1.3
• Boom-type sprayer	50-80	65	5.0-11.5	10.5	1500	70	0.41	1.3
• Att0carrier sprayer	55-70	60	3.0-8.0	5.0	2000	60	0.20	1.6
Bean puller-windrower	70-90	80	6.5-11.5	8.0	2000	60	0.20	1.6
• Footage blower	70-90	80	6.5-11.5	8.0	1200	35	0.28	1.4
Footage wagon					1500	45	0.22	1.8
• Wagon					2000	50	0.16	1.6
					3000	80	0.19	1.3

2-6 Slip

2-6-1 Definition

Slippage of drive wheel on soil surfaces is a power loss, this loss is measured as

$$\mathbf{S} = (\mathbf{D}_{\mathrm{u}} - \mathbf{D}_{\mathrm{L}}) \times 100 / \mathbf{D}_{\mathrm{u}}$$

Where:

S = the slip, percent.

 D_u = the advance under no load conditions per wheel or track revolution (m), (ft)

 D_L = the advance under actual load condition per wheel or track revolution m/ft

2-6-2 The Negative effect of the slip:

- Increases the fuel consumption.
- More energy is required to complete agricultural operation.
- Reduces field efficiency.
- Reduces operating speed.

2-6-3 Factors affecting the slip:

- The shape and tire size.
- Soil properties and soil texture.
- The type of tractor and implement used.
- Gear selection.
- The weight of the tractor.
- Turning radius with break and without break.

2-6-4 Means to reduce the slip:

- Weighting balance method (ballasting).
- Liquid balance
- Iron balance.
- Decreasing moisture of the soil.
- Shape and number of the lugs, If the number of the lugs increases the slip will decreases.
- If the tire is smooth the slip increases.
- If the thickness of the tire increases the slip will decreases.

2-6-5 Field determination of slip for different soils Implements &

tractors:

Measuring wheel slip is simple and only takes a few minutes.

- A typical, un-worked flat area must be chosen in a field that represents normal working conditions.
- One side of a drive tire should be marked by using any marker (clearly seen).
- The distance of the tractor should be measured by certain number of revolutions, at least ten revolutions.
- This step must be repeated on the same experiment land and with similar number of the revolutions.
- After the tractor has been loaded, the distance could be ready for measuring.

Chapter (III)

Material and Methods

Field tests:

Experiments were performed in the farm of the Agricultural engineering department

in Soba-south of Khartoum.

3-1 Description of the field experiments & conditions:

Field No (1):

Site: Soba – south of Khartoum.

- Vegetation: No vegetation.
- Past history for cultivation: not tilled.
- Past history for irrigation: dry.
- Type of soil: sandy loam.

Field No (2)

Site: Soba – south of Khartoum.

- Vegetation: sorghum.
- Past history for cultivation: tilled.
- Type of soil: clay soil.

Duration of experiments:

- For slip measurement from 9 am 12 pm on Feb 2009.
- For draft measurement from 2 pm twice on march 2009.
- For field efficiency measurement" 3 pm 6 pm twice on April 2009.

3-2 Climatic Condition:

- Rain fall: No

- Temperature : 30 C^o

3-3 Tractors, Implements and Material used:

- Two tractors were used Massy Ferguson (82 hp) was instrumented to measure the drawbar force, and New Holland tractor for measuring the field efficiency and the two tractor for the comparison between the slip values. The details of the tractors specification and tire's are shown in the following Table (3.3).

Weight and dimension	MF 290	New Holland (82hp)
• Static weight	2552 kg	2230 kg
• Overall length	3.89 m	2.2 mm
• Wheel base.	2.29 m	2.5 mm
Ground clearance under		
• Drawbar	381 mm	500 mm
• Front axle	486 mm	490mm
• Rear axel	648 mm	650mm
Tire size		
• Front tire.	14 x 24	7.5-16.8 PR
• Rear tire.	18 x 34	16.9-28.1 PR

[Table (3.3)] Specification of tractors used

Three types of implements used (Dis plow, ridger and rotary hoe)

3.3.1 Disc plow:

The common disc plow consists of disc blades mounted individually on a frame, the disc blades are set at an angle.

Standard disc plows usually have three to six blades spaced to cut 18 to 30 cm/ disc and the disc angles vary from 42° to 45° .

The disc diameters are commonly between 60 and 70 cm.

Disc plows are used for primary tillage and they are most suitable for conditions under which moldboard plows do not work satisfactory, such as in hard, dry soils, and assist in covering plant residues, inverting the soil and prevent soil buildup- in sticky soil.

Specification of disc plow used in the experiment:

Attachment	: mounted.
Power requirement	: 70- 80 hp.
Hitching	: 3 point linkage category.
Main frame	: Robust, strong enough to withstand working in heavy clay soil.
Disc type	: plain heavy duty.
Disc diameter	: 665 mm.
Disc thickness	: 6 mm
Number of discs	: 3

Figure (3.3.1) shows the plow used in the experiment and figure (3.3.2) explain the hitching of disc plow.

3.3.2 Ridger:

• Attachment : mounted.

- Power requirement : 70-80 hp
- Ridger body : with wings and shear point suitable to be used in dry ridging.
- Ridger bodies clearance: 510 mm from the ground.

Figure (3.3.3) shows the rigder used in the experiment and figure (3.3.4) shows the hitching of ridger.

Figure (3.3.5) shows the hitching of rotary hoe.

3.3.3 Rotary hoe:

Attachment	: mounted.
Power requirement	: 35-70 hp.
Rotary length	: 450 mm.
Rotary height	: 1200 mm
Rotary weight	: 300 kg.

The specification of drawbar digital dynamometer

- The digital dynamometer is designed to read the force in kg. f from (1.0 -3000 kg.f)
- 5 digit, 1.2 inch (world height 40 mm) digital display with high brightness.
- Anti-shaking and anti-vibrating swing intellectual digital filter stabilizes reading with a stabilization time of less than 5 sec.
- Working environment temperature $5C^{\circ} 35C^{\circ} 85 \%$ R.H.

Figure (3.3.6) shows the drawbar digital dynamometer and figure (3.3.7) shows the tractor with implement and dynamometer.

Material used:

- Stop watch.
- 30 meter steel tape.
- Ruler for measuring depth.
- Digging tools.
- Plastic bags.
- Cylinders for taking soil sample.

Methods use:

Method of draft determination:

- Two tractors were used in these tests with the dynamometer connected between them, as the implements tests were all mounted implements.
- Selection of depths and speeds:
- For each implement 3 depths are used for the test:

$$\left.\begin{array}{c} \circ & D_1: 15 \text{ cm} \\ \circ & D_2: 20 \text{ cm} \\ \circ & D_3: 25 \text{ cm} \end{array}\right\} \text{ disc plough}$$

$$\left.\begin{array}{c} \circ & D_1: 15 \text{ cm} \\ \circ & D_2: 20 \text{ cm} \\ \circ & D_3: 28 \text{ cm} \end{array}\right\} \text{ ridger}$$

And only one depth = 5 cm was used for the rotary.

For each implement three different speed are used for the test.

- o S₁: 4.1 km/hr
- $\circ \quad S_2: 5.76 \text{ km/hr} \qquad \text{ disc plow}$
- $\circ \quad S_3{:}\ 8.28 \ km/hr$
- \circ S₁: 6.1 km/hr
- \circ S₂: 3.9 km/hr ridger
- $\circ \quad S_3{:}\ 2 \ km/hr$
- $\circ \quad S_1{:}\;4\;km/hr$

- \circ S₂: 6 km/hr rotary
- o S₃: 8 km/hr
- A 60 m distance was taken as a reference for all implements and about 4 readings were taken for each depth and speed and the average value was taken.

Method of field efficiency and field capacity determination:

The objective of this experiment was to compare three different tillage implements (disc plow – ridger – rotaryhoe) in terms of effective field capacity and field efficiency.

Experimental work was done on untilled area of about 100m² using 82 hp tractor (Massy 290), experiments were replicated three times in a random manner for all implements.

Field efficiency and effective field capacity were calculate using equation (2-5-2).

3-4 Soil tests:

The analysis of soil was performed in building and road research institute soil lab to determine soil properties and we got the following results.

3-4-1 Grain size Analysis:

Gravel	= 2%
Sand	= 56%
Clay	= 12%
Slit	= 30%

By using USDA soil texture triangle, the type of soil is sandy loam.

3-4-2 liquid and plastic limit test:

Liquid limit	= 34%
Plastic limit	= 20%
Plasticity index	= 14%

B.S Sieve Size (mm)	Retained By Weight (gm)
5.60	0.4
4.76	0.4
2.80	0.5
2.00	0.9
1.40	1.8
1.00	4.0
0.710	7.3
0.500	10.8
0.425	12.0
0.250	16.6
0.212	17.9
0.180	20.1
0.150	21.8
0.125	23.0
0.090	25.7
0.075	26.9
Pan (0.063)	28.6

3-4-3 Sieve Analysis test:

USDA soil Texture triangle for soil classification

4 Results:

4-1 Ridger

Depth 15 cm

Draft (N)	Draft (N)	Draft (N)
at speed = 6.1 km/hr	at speed 3.9	At speed 2 km/hr
	km/hr	
3240	4470	1420
4580	5040	4700
5020	5130	4260
5510	4420	3720
5570	6260	4570
Draft = 4784 N	Draft = 5064 N	Draft = 4334 N
8106.2 W	5486 W	2407.7 W
	Draft (N) at speed = 6.1 km/hr 3240 4580 5020 5510 5570 Draft = 4784 N 8106.2 W	Draft (N) Draft (N) at speed = 6.1 km/hr at speed 3.9 km/hr km/hr 3240 4470 4580 5040 5020 5130 5510 4420 5570 6260 Draft = 4784 N Draft = 5064 N 8106.2 W 5486 W

$$P_{db} = \frac{D*S}{3.5}$$

$$D = 4784 \text{ N} , S = 6.1 \text{ km/hr}$$

$$P_{db} = \frac{4784*6.1}{3.6} = 8106.2 \text{ w}$$

$$D = 5064 \text{ N} , S = 3.9 \text{ km / hr}$$

$$P_{db} = \frac{5064*3.9}{3.6} = 5486 \text{ w}$$

$$D = 4334 \text{ N} , S = 2 \text{ km / hr}$$

$$P_{db} = \frac{4334*2}{3.6} = 2407.7 \text{ w}$$

Depth 20 Cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 2 km/hr	at speed 3.9 km/hr	At speed 6.1 km/hr
	-	4570	4560
	5040	5320	5210
	4700	4170	4710
	3860	5570	6200
	4180	-	-
Average draft	Draft = 4445 N	Draft = 4907.5 N	Draft = 5170 N
Average P _{db}	2469.4 W	5316.4 W	8760 W

$$P_{db} = \frac{D*S}{3.6}$$

$$D = 5170 \text{ N} , S = 6.1 \text{ km / hr}$$

$$P_{db} = \frac{5170*6.1}{3.6} = 8760 \text{ w}$$

$$D = 4907.5 \text{ N} S = 3.9 \text{ km/hr}$$

$$P_{db} = , \frac{4907.5*3.9}{3.6} = 5316.4 \text{ w}$$

$$D = 4445 \text{ N} , S = 2 \text{ km / hr}$$

$$P_{db} = \frac{4445*3.6}{3.5} = 2469.4 \text{ w}$$

Depth 28 Cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 6.1 km/hr	at speed 3.9 km/hr	At speed 3.6 km/hr
	4370	4260	3520
	3260	3990	4470
	-	4470	3510
	-	5320	4170
	2320	4520	5550
Average draft	Draft = 5332 N	Draft = 5142 N	Draft = 4925 N
Average P _{db}	9035 w	5571 w	2736 w

$$P_{db} = \frac{D \cdot S}{3.5}$$

$$D = 5332 \text{ N} , \quad S = 6.1 \text{ km / hr}$$

$$P_{db} = \frac{5332 \cdot 6.1}{3.6} = 9035 \text{ w}$$

$$D = 5142 \text{ N} \qquad S = 3.9 \text{ km/hr}$$

$$P_{db} = \frac{5142 \cdot 3.9}{3.6} = 5571 \text{ w}$$

$$D = 4925 \text{ N} \qquad , \text{ S} = 2 \text{ km / hr}$$

$$P_{db} = \frac{4925 \cdot 2}{3.6} = 2736 \text{ w}$$

4-2 Disc Plow:

Depth = 15 cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 4.1 km/hr	at speed 5.7 km/hr	At speed 8.28 km/hr
	-	4060	4250
	3650	3140	3630
	4160	5420	5000
	4250	3560	5100
	4110	-	-
Average draft	Draft = 4042 N	Draft = 4054 N	Draft = 4495 N
Average P _{db}	4603 w	6404w	10238.6

P _{db}	$=\frac{D*S}{3.6}$	
D	=4042 N	S = 4.1 km / hr
		$P_{db} = 4603 \text{ w}$
D	= 4045 N	S = 5.7 km/hr
		$P_{db} = 6404 \ w$
D	= 4495N	, $S = 8.28 \text{ km} / \text{hr}$
		$P_{db} = 10238.6 \text{ w}$

Depth 20 Cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 4.1 km/hr	at speed 5.76 km/hr	At speed 8.28 km/hr
	4560	6130	4260
	5060	5420	5500
	-	6230	5800
Average draft	Draft = 4810 N	Draft = 5926N	Draft = 5180N
Average P _{db}	5478w	9481.6 w	11913.8 w

P _{db}	$=\frac{D*S}{3.6}$	
D	= 4810N	, S = $4.1 \text{ km} / \text{hr}$
		$P_{db} = 5478 \text{ w}$
D	= 5926 N	, S = 5.76 km/hr
		$P_{db} = 9481.6 \text{ w}$
D	= 5180 N	, $S = 8.28 \text{ km} / \text{hr}$
		$P_{db} = 11913.8 \text{ w}$

Depth 25 Cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 4.1 km/hr	at speed 5.76 km/hr	At speed 8.28 km/hr
	5000	5600	5850
	4500	6000	5760
	5500	5200	5790
Average draft	Draft = 5000N	Draft = 5600 N	Draft = 5800 N
Average P _{db}	5694.4w	8960.6 w	13340 w

P _{db}	$=\frac{D*S}{3.6}$		
D	= 5000 N	S = 4.1 k	tm / hr
		P_{db}	= 5694.4 w
D	= 5600 N	S = 5.76	km/hr
		P _{db}	= 8960 .6 w
D	= 5800 N	S = 8.28	km / hr
		P _{db}	= 13340 w

4-3 Rotary hoe

Depth 5 Cm

	Draft (N)	Draft (N)	Draft (N)
	at speed = 4 km/hr	at speed 6 km/hr	At speed 8 km/hr
	4002	5008	4403
	4708		5207
	5105	5505	5706
	6102	5607	5409
Average draft	Draft = 4979.2 N	Draft = 5356.75 N	Draft = 5181 N
Average P _{db}	5532 w	8927.9 w	11513.8 w

$$P_{db} = \frac{D*S}{3.6}$$

$$D = 4979.2 \text{ N} \qquad S = 4 \text{ km / hr}$$

$$P_{db} = 5532 \text{ w}$$

$$D = 5356.75 \text{ N} \qquad S = 6 \text{ km/hr}$$

$$P_{db} = 8927.9 \text{ w}$$

$$D = 5181 \text{ N} \qquad S = 8 \text{ km / hr}$$

$$P_{db} = 11513.8 \text{ w}$$

4-4 Result of Field efficiency for rotary hoe:

No of Experiment	1	2	3	average
Implement working width (m)	1.5	1.5	1.5	1.5
Theoretical width (m)	1.57	1.57	1.57	1.57
Actual time (s)	05:18	05:48	06:30	05:65
Theoretical time (s)	13:12	08:30	09:00	10:14
Theoretical speed (km/hr)	7	7	7	7
Actual speed (km/hr)	6.62	6.62	6.62	6.62

4-5 Result of Field efficiency for disc plow:

No of Experiment	1	2	3	average
Implement working width (m)	1.1	1.1	1.1	1.1
Theoretical width (m)	1.8	1.8	1.8	1.8
Actual time (s)	05:00	05:00	06:00	5:53
Theoretical time (s)	13:30	13:00	12:00	12:7
Theoretical speed (km/hr)	7	7	7	7
Actual speed (km/hr)	6.62	6.62	6.62	6.62

4-6 Result of Field efficiency for ridger:

No of Experiment	1	2	3	average
Implement working width (m)	1.2	1.2	1.2	1.2
Theoretical width (m)	2.4	2.4	2.4	2.4
Actual time (s)	02:30	02:30	02:00	2:33
Theoretical time (s)	06:30	06:00	05:00	5:30
Theoretical speed (km/hr)	7	7	7	7

Actual speed (km/hr)	6.62	6.62	6.62	6.62

Results & calculation

4-7 Ridger:

(A) **Depth = 15 cm**

Implement draft:

$$\begin{array}{lll} D_{i} & = F_{i} \left\{ A + B \left(S \right) + C \left(S^{2} \right) \right\} \, wd \\ A & = 185 \, , B = 9.5 \, , C = 0 \, , F_{2} = 0.88 \\ W & = 1.2 \, m \, , D = 15 \, cm \, , S = 6.1 \, km \, / \, hr \\ D_{I} & = 0.88 \left\{ 185 + 9.5 \left(6.1 \right) \right\} * 1.2 * 15 = 3848.32 \, N \\ W & = 1.2 \, m \, D = 15 \, cm \, S = 3.9 \, km / \, hr \\ D_{I} & = 0.88 \left\{ 185 + 9.5 \left(3.9 \right) \right] * 1.2 * 15 = 3517.2 \, N \\ W & = 1.2 \, m \, D = 15 \, cm \, S = 2 \, km / hr \\ D_{I} & = 0.88 \left\{ 185 + 9.5 \left(2. \right) \right] * 1.2 * 15 = 3077.5 \, N \end{array}$$

$$P_{db} = \frac{D_{I} * S}{3.6}$$

$$S = 6.1 \text{ km/ hr} , \quad D_{I} = 3418 \text{ N}$$

$$P_{db} = \frac{3848.32 * 6.1}{3.6} = 6520 \text{ w}$$

$$S = 3.9 \text{ km/ hr} \quad D_{I} = 3130 \text{ N}$$

$$P_{db} = \frac{3517.2 * 3.9}{3.6} = 3810 \text{ w}$$

$$S = 3.6 \text{ km/hr} \quad D_{I} = 3077.5 \text{ N}$$

$$P_{db} = \frac{3472.12 * 2}{3.6} \quad D_{I} = 1795.2 \text{ w}$$

(B) **Depth = 20 cm**

Implement draft:

$$\begin{array}{lll} D_{I} & = F_{i} \left\{ A + B \left(S \right) + C \left(S^{2} \right) \right\} \, wd \\ A & = 185 \, , B = 9.5 \, , C = 0 \, , \quad F_{2} = 0.88 \\ W & = 1.2 \, m \, , D = 20 \, cm \, , S = 6.1 \, km \, / \, hr \\ D_{I} & = 0.88 \, \left\{ \, 185 + 9.5 \, (6.1) \right\} \, * \, 1.2 \, * \, 20 = 5131.1 \, N \\ W & = 1.2 \, m \, D = 20 \, cm \, S = 3.9 \, km / \, hr \\ D_{I} & = 0.88 \, \left\{ \, 185 + 9.5 \, (3.9) \right] \, * \, 1.2 \, * \, 20 = 3944.25 \, N \\ W & = 1.2 \, m \, D = 20 \, cm \, S = 2 \, km / hr \\ D_{I} & = 0.88 \, \left\{ \, 185 + 9.5 \, (2) \right] \, * \, 1.2 \, * \, 20 = 3926.2 \, N \end{array}$$

$$P_{db} = \frac{D_{I} \cdot S}{3.6}$$

$$S = 6.1 \text{ km/ hr} , \quad D_{I} = 5131.1 \text{ N}$$

$$P_{db} = \frac{5131.1 \cdot 6.1}{3.6} = 8694 \text{ w}$$

$$S = 3.9 \text{ km/ hr} \quad D_{I} = 3944.25 \text{ N}$$

$$P_{db} = \frac{3944.25 \cdot 3.9}{3.6} = 4272.9 \text{ w}$$

$$S = 2 \text{ km/hr} \quad D_{I} = 3926.2 \text{ N}$$

$$P_{db} = \frac{3926.2 \cdot 2}{3.6} = 2181.2 \text{ w}$$

(C) **Depth = 28 cm**

Implement draft:

$$\begin{array}{lll} D_{I} &= F_{i} \left\{ A + B \left(S \right) + C \left(S^{2} \right) \right\} \, wd \\ A &= 185 \qquad , B = 9.5 \qquad , C = 0 \; , \qquad F_{2} = 0.88 \\ W &= 1.2 \; m \qquad , D = 28 \; cm \qquad , S = 6.1 \; km \, / \; hr \\ D_{I} &= 0.88 \; \left\{ \; 185 + 9.5 \; (6.1) \right\} \; * \; 1.2 \; * \; 28 = 7183.5 \; N \\ W &= 1.2 \; m \qquad D = 28 \; cm \qquad S = 3.9 \; km / \; hr \\ D_{I} &= 0.88 \; \left\{ \; 185 + 9.5 \; (3.9) \right] \; * \; 1.2 \; * \; 28 = 6565.5 \; N \\ W &= 1.2 \; m \qquad D = 28 \; cm \qquad S = 2 \; km / hr \\ D_{I} &= 0.88 \; \left\{ \; 185 + 9.5 \; (2) \right] \; * \; 1.2 \; * \; 28 = 5489 \; N \end{array}$$

$$P_{db} = \frac{D_{I} \cdot S}{3.6}$$

$$S = 6.1 \text{ km/ hr} , \quad D_{I} = 7183.5 \text{ N}$$

$$P_{db} = \frac{7183.5 \cdot 6.1}{3.6} = 12172.1 \text{ w}$$

$$S = 3.9 \text{ km/ hr} \quad D_{I} = 6565.5 \text{ N}$$

$$P_{db} = \frac{6565.5 \cdot 3.9}{3.6} = 7112.7 \text{ w}$$

$$S = 2 \text{ km/hr} \quad D_{I} = 5489 \text{ N}$$

$$P_{db} = \frac{5489 \cdot 2}{3.6} = 3049.4 \text{ w}$$

Depth (cm)	Speed (km/hr)	D _I (N)	P _{db} (w)	
15	6.1	3848.32	6520	
15	3.9	3517.2	3810	
15	15 2 3231.3		1795.2	
20	6.1	5131.1	8694	
20	3.9	3944.25	4272.9	
20	2	3926.2	2181.2	
28	6.1	7182.5	12172.1	
28	3.9	6565.5	7112.7	
28	2	5489	3049.4	

Table (4-1) Result of Estimated draft and drawbar power

Figure (4-1) Shows draft Vs depth at different speeds (6.1, 3.9, 2) km/hr

Figure (4-2) shows draft Vs speed at three different depths (15, 20, 28) cm

4-8 Disc Plow

(A) **Depth = 15 cm**

Implement draft:

$$D_i = F_i \{A + B(S) + C(S^2)\} wd$$

- A = 390 , B = 19 , C = 0 , $F_2 = 0.88$
- W = 1.1 m , D = 15 cm , S = 4.1 km / hr
- $D_I = 0.88 \{390 + 19 (4.1)\} * 1.1 * 15 = 6793.9 N$
- W = 1.1 m D = 15 cm S = 5.7 km/hr
- $D_I = 0.88 \{390 + 19 (5.7)\} * 1.1 * 15 = 7235.3 N$
- W = 1.1 m D = 15 cm S = 8.28 km/hr

$$D_{I} = 0.88 \{390 + 19 (8.2)\} * 1.1 * 15 = 7925 N$$

$$P_{db} = \frac{D_{I} * s}{3.6}$$

$$S = 4.1 \text{ km/ hr} , \quad D_{I} = 6793.9 \text{ N}$$

$$P_{db} = \frac{6793.9 * 4.1}{3.6} = 7739.5 \text{ w}$$

$$S = 5.7 \text{ km/ hr} \quad D_{I} = 7235.3 \text{ N}$$

$$P_{db} = \frac{7235.3 * 5.7}{3.6} = 11455.9 \text{ w}$$

$$S = 8.2 \text{ km/hr} \quad D_{I} = 7925 \text{ N}$$

$$P_{db} = \frac{7925 * 8.2}{3.6} = 18051.4 \text{ w}$$

(B) **Depth = 20 cm**

Implement draft:

$$P_{db} = \frac{D_{I} * S}{3.6}$$

$$S = 4.1 \text{ km/ hr} , \quad D_{I} = 9058 \text{ N}$$

$$P_{db} = \frac{9058 * 4.1}{3.6} = 10316 \text{ w}$$

$$S = 5.7 \text{ km/ hr} \quad D_{I} = 9647 \text{ N}$$

$$P_{db} = \frac{9647 * 5.7}{3.6} = 15274 \text{ w}$$

$$S = 8.2 \text{ km/hr} \quad D_{I} = 10566 \text{ N}$$

$$P_{db} = \frac{10566 * 8.2}{3.6} = 24068 \text{ w}$$

(C) **Depth = 25 cm**

Implement draft:

$$\begin{array}{lll} D_i & = F_i \; \{A + B \; (S) + C \; (S^2)\} \; wd \\ \\ A & = 390 & , B = 19 & , C = 0 \; , & F_2 = 0.88 \\ \\ W & = 1.1 \; m & , D = 28 \; cm & , S = 4.1 \; km \, / \; hr \\ \\ D_I & = 0.88 \; \{390 + 19 \; (4.1)\} \; * \; 1.1 \; * \; 25 = 11323.18 \; N \\ \\ W & = 1.1 \; m & D = 25 \; cm & S = 5.7 \; km / \; hr \\ \\ D_I & = 0.88 \; \{390 + 19 \; (5.7)] \; * \; 1.1 \; * \; 25 = 12058.8 \; N \\ \\ W & = 1.1 \; m & D = 25 \; cm & S = 8.2 \; km / hr \\ \\ D_I & = 0.88 \; \{390 + 19 \; (8.2)] \; * \; 1.1 \; * \; 25 = 13208.3 \; N \end{array}$$

$$P_{db} = \frac{D_{I} * S}{3.6}$$

$$S = 4.1 \text{ km/ hr} , \quad D_{I} = 11323.18 \text{ N}$$

$$P_{db} = \frac{11323.18 * 4.1}{3.6} = 12895 \text{ w}$$

$$S = 5.7 \text{ km/ hr} \quad D_{I} = 12058.8 \text{ N}$$

$$P_{db} = \frac{12050.0 * 5.7}{3.6} = 19093 \text{ w}$$

$$S = 8.2 \text{ km/hr} \quad D_{I} = 13208 \text{ N}$$

$$P_{db} = \frac{13208 * 8.2}{3.6} = 30085 \text{ w}$$

Depth (cm)	Speed (km/hr)	D _I (N)	$\mathbf{P}_{db}\left(\mathbf{w} ight)$	
15	4.1	6793.9	7737.5	
15	5.7	7235.3	11455.9	
15	8.2 7925		18051.4	
20	20 4.1 9		10316	
20	5.7	9647	15274	
20	8.2	10566	24068	
25	4.1	11323.18	12985	
25	5.7	12058.8	19093	
25	8.2	13208.3	30085	

Table (4-2) Result of Estimated draft and drawbar power

Figure (4-3) shows draft Vs depth at three speeds(4.1, 5.7, 8.2) km/hr

Figure (4-4) shows draft Vs speed at three depths (15, 20, 25) cm

4-9 Rotary Hoe

Depth = 5 cm

Implement draft:

$$P_{db} = \frac{D_{I} * S}{3.6}$$

$$S = 4 \text{ km/ hr} , \quad D_{I} = 4500 \text{ N}$$

$$P_{db} = \frac{4500 * 4}{3.6} = 5000 \text{ w}$$

$$S = 6 \text{ km/ hr} \quad D_{I} = 4500 \text{ N}$$

$$P_{db} = \frac{4500 * 6}{3.6} = 7500 \text{ w}$$

$$S = 8 \text{ km/hr} \quad D_{I} = 4500 \text{ N}$$

$$P_{db} = \frac{4500 * 8}{3.6} = 10000 \text{ w}$$

Depth (cm)	Speed (km/hr)	D _I (N)	$\mathbf{P}_{db}\left(\mathbf{w}\right)$
5	4	4500	5000
5	6	4500	7500
5	8	4500	10000

Table (4.3) Result of estimated draft and drawbar power

Figure (4-5) shows draft Vs speed at depth (5) cm

4-10 Field Efficiency and field capacity calculation

4-10-1 Rotary hoe

Experiment No (1)

$$\eta = \frac{w^{-}v^{-}t^{-}}{w v t}$$

$$w^{-} = 1.50 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 05:18 \text{ S}$$

$$w = 1.57 \text{ m} , v = 7 \text{ km/hr} , t = 13:12 \text{ S}$$

$$\eta = \frac{1.5*6.62*5.18}{1.57*7*13.12} = 38.6\%$$
Field capacity $= \frac{v w \eta}{10}$

$$= \frac{1.57*7*0.386}{10} = 0.41 \text{ ha / hr}$$

Experiment No (2)

$$\eta = \frac{w^{-}v^{-}t^{-}}{w v t}$$

$$w^{-} = 1.50 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 05:48 \text{ S}$$

$$w = 1.57 \text{ m} , v = 7 \text{ km/hr} , t = 08:30 \text{ S}$$

$$\eta = \frac{1.5*6.62*5.8}{1.57*7*8.5} = 52\%$$

Field capacity
$$= \frac{v w \eta}{10}$$

 $= \frac{1.57 * 7 * 0.52}{10}$ $= 0.575 \text{ ha} / \text{ hr}$

Experiment No (3)

$$\eta = \frac{w^{-}v^{-}t^{-}}{w v t}$$

$$w^{-} = 1.50 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 06:30 \text{ S}$$

$$w = 1.57 \text{ m} , v = 7 \text{ km/hr} , t = 09:00 \text{ S}$$

$$\eta = \frac{1.5*6.62*6.5}{1.57*7*9} = \frac{65.3 \%}{1.57*7*9}$$

Field capacity $=\frac{v w \eta}{10}$

$$=\frac{1.57*7*0.653}{10} = 0.71 \text{ ha / hr}$$

4-10-2 Disc Plow:

Experiment No (1)

$$\eta = \frac{w^{-}v^{-}t^{-}}{w v t}$$

$$w^{-} = 1.10 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 05:00 \text{ S}$$

$$w = 1.80 \text{ m} , v = 7 \text{ km/hr} , t = 13:30 \text{ S}$$

$$\eta = \frac{1.1*6.62*5}{1.8*7*13.5} = 21\%$$

Field capacity $=\frac{v w \eta}{10}$

$$= \frac{7*0.21*1.8}{10} = 0.26 \text{ ha / hr}$$

Experiment No (2)

$$\eta = \frac{w^- v^- t^-}{w v t}$$

w = 1.10 m, v = 6.62 km/hr, t = 05:00 S

w = 1.80 m , v = 7 km/hr , t = 13:00 S

$$\eta = \frac{1.1*6.62*5}{1.8*7*13} = 22\%$$

Field capacity $= \frac{v w \eta}{10}$ $= \frac{7*1.8*0.22}{10} = 0.27 \text{ ha / hr}$

Experiment No (3)

$$\eta = \frac{w^- v^- t^-}{w v t}$$

$$w^{-} = 1.10 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 06:00 \text{ S}$$

$$w = 1.80 \text{ m} , v = 7 \text{ km/hr} , t = 12:00 \text{ S}$$

$$\eta = \frac{1.1*6.62*6}{1.8*7*12} = 28\%$$

Field capacity
$$= \frac{v \cdot v \cdot \eta}{10}$$
$$= \frac{1.8 \times 7 \times 0.28}{10} = 0.35 ha / hr$$

4-10-3 Ridger:

Experiment No (1) $=\frac{w^{-}v^{-}t^{-}}{w v t}$ η $w^{-} = 1.20 \text{ m}$, $v^{-} = 6.62 \text{ km/hr}$, $t^{-} = 02:30 \text{ S}$ w = 2.40 m, v = 7 km/hr, t = 06:30 S $=\frac{1.2*6.62*2.5}{2.4*7*6.5}$ η <u>= 18%</u> Field capacity $=\frac{v w \eta}{10}$ $= \frac{7*2.4*0.18}{10}$ <u>= 0.3 ha / hr</u> **Experiment No (2)** $\eta = \frac{w^- v^- t^-}{w v t}$ $w^{-} = 1.20 \text{ m}$, $v^{-} = 6.62 \text{ km/hr}$, $t^{-} = 02:30 \text{ S}$ w = 2.40 m , v = 7 km/hr, t = 06:00 S $\eta = \frac{1.2*6.62*2.5}{2.4*7*6}$ <u>= 20%</u> Field capacity $=\frac{v w \eta}{10}$ $=\frac{7*2.4*0.2}{10}$ <u>= 0.33 ha / hr</u>

Experiment No (3)

$$\eta = \frac{w^- v^- t^-}{w v t}$$

$$w^{-} = 1.20 \text{ m} , v^{-} = 6.62 \text{ km/hr} , t^{-} = 02 : 00 \text{ S}$$

$$w = 2.40 \text{ m} , v = 7 \text{ km/hr} , t = 05 : 00 \text{ S}$$

$$\eta = \frac{1.2 * 6.62 * 2}{2.4 * 7 * 5} = 19\%$$

Field capacity $= \frac{v \cdot w \cdot \eta}{10}$ $= \frac{2.4*7*0.19}{10} = 0.32 ha / hr$

4-11 Comparison

4-11-1 Ridger

Width	Depth	Speed	Calculated	Measured	Calculated	Measured	Specific	% Range of
(m)	(cm)	(Km/hr)	Draft (N)	draft (N)	$P_{db}(w)$	$P_{db}\left(w\right)$	drat (N/cm ²	draft variation
1.20	15	6.1	3848	4784	6520	8106.2	2.65	19.5%
1.20	15	3.9	3517.2	5064	3810	5486	2.8	30%
1.20	15	2	3231	4334	1795	2407.7	2.4	25%
1.20	20	6.1	5131.1	5170	8694	8760	2.1	7.5%
1.20	20	3.9	3944.2	4907	4272.9	5316	2	19%
1.20	20	2	3926.2	4445	2181.2	2469	1.85	11%
1.20	28	6.1	7183.5	5352	12172.1	9055	1.6	25%
1.20	28	3.9	6585.9	5142	7112.7	5571	1.5	21%
1.20	28	2	5489	4925	3049.4	2736	1.46	10%

Figure (4-6) Draft Vs Depth at speed (6.1 km/hr)

Figure (4 -7) Draft Vs Depth at speed (3.9 km/hr)

Figure (4-8) Draft Vs Depth at speed (2 km/hr)

Figure (4-9) Draft Vs speed at depth (15 cm)

Figure (4-10) Draft Vs speed at depth (20 cm)

Figure (4-11) Draft Vs speed at depth (28 cm)

4-11-2 Disc Plow

Width	Depth	Speed	Calculated	Measured	Calculated	Measured	Specific drat	% Range of
(m)	(cm)	(Km/hr)	Draft (N)	draft (N)	$P_{db}(w)$	$P_{db}(w)$	(N/cm^2)	draft variation
1.10	15	4.1	6793.9	4042	7737.5	4603	2.44	40%
1.10	15	5.7	7235.3	4554	11455.9	4606	2.45	43%
1.10	15	8.2	7925	4405	18051.4	10238.6	2.66	43%
1.10	20	4.1	9058	4810	10316	5478	2.18	45%
1.10	20	5.7	9647	5926	15274	94816	2.69	38%
1.10	20	8.2	10566	5180	24068	11913.8	2.35	50%
1.10	25	4.1	11323	5000	8150.2	12895	1.80	54%
1.10	25	5.7	12058	5600	6625.6	19093	2.04	53%
1.10	25	8.2	13208	5800	18001.5	30085	2.12	55%

Figure (4-12) Draft Vs depth at speed (4.1 km/hr)

Figure (4-13) Draft Vs depth at speed (5.7 km/hr)

Figure (4-15) Draft Vs speed at depth (15 cm)

Figure (4-16) Draft Vs speed at depth (20 cm)

Figure (4-17) Draft Vs speed at depth (25 cm)

4-11-3 Rotary Hoe

Width	Depth	Speed	Calculated	Measured	Calculated	Measured	Specific draft	% range of
(m)	(cm)	(Km/hr)	Draft (N)	draft (N)	$P_{db}(w)$	$P_{db}(w)$	(N/cm^2)	draft variation
1.50	5	4	4500	3500	5000	3888	4.6	22%
1.50	5	6	4500	7500	7500	12500	4	66%
1.50	5	8	4500	5760	10000	12800	7.6	28%

Figure (4-18) Draft Vs speed at depth (5cm)

4-12 Values of slip measured in the field for different types of

tractors

4-12-1 Massy Ferguson Tractor - Model MF 290-

(Gear selected 1-H)

Slip %

 $Slip\% = (D_u - D_L) \times 100 / D_U$

 D_U = Distance travelled with unloaded tractor.

 D_L = Distance travelled with loaded tractor.

Distances traveled in 154.2 sec:

Distance traveled with unloaded tractor = 261.7 m

Distance traveled with loaded tractor	= 229.2 m
Slip % = (261.7-229.2) x 100/ 261.7	= 12.4%

4-12-2 New Holland (82 hp)

Slip%:

(Gear selected 1-H)

 $Slip\% = (D_u - D_L) \times 100 / D_U$

 D_U = Distance travelled with unloaded tractor.

 D_L = Distance travelled with loaded tractor.

Distances traveled in 100 sec:

Distance traveled with unloaded tractor	= 300 m
Distance traveled with loaded tractor	= 249 m
Slip % = (300–249) x 100/ 300	= 17%

Chapter (V)

Discussions & Conclusions & Recommendation

5-1 Discussions:

- The tractor used for the experiments was relatively old and much time was taken for its repair and maintenance. This attributed the low values of field efficiency calculated from the experiments.
- The difference between the values calculated and values measured for draft and drawbar power resulted from the fact that the constants taken for the ridger and disc plough were for the disc bedder and sweep respectively,

because no constants are available in the standards. These estimated constants may result in the differences shown.

5-2 Conclusions:

From these results the following conclusions were drawn :

- The measured draft and drawbar power values were found to be matching with the calculated values using ASABE equations and the error ranged from 22 to 66% Rotovator, 38 to 55% for disc plow and 7.5 to 30% for the ridger compared to what is found in standard ASABE table (+_30%, +_45%, +40%) respectively.
- The value of slip for two types of tractors (tilled soil) was found within the range of ASABE standards values (12%-17%).
- The field efficiencies measured in the field for three implements (19% for ridger, 23.6% for disc plow ,51.9% for rotary hoe) were lower than the standard values (70%-85%).

5-3 Recommendations:

- Use of drawbar digital dynamometer with recording system is required.
- Considering the effect of moisture content.
- Use skilled and well trained operator to decrease time loss and increase field efficiency.
- To increase the field efficiency we recommend to repair all the machines to minimize the time loss.

- Using of modern techniques (GPS) and control traffic such as B-line method.
- Conduct experiments on different soil types.
- Use other types of tillage implements with various speeds and tillage depths other than those used in this study.

References

- AJITK: srivastava, Roger P, Carrole Deninsr. Buckmaster, (2006), Engineering Principles of Agricultural Machines.
- ASABE standards (2006) Agricultural Machinery Management.
- ASABE standards (2002), Terminology for Agricultural Machinery Management
- Farm Machinery

CLUDE CUPLIN

- Agricultural Engineering Handbook

CARL W. HALL

- Farm Machinery

BELL, B

_

- Agricultural Machinery and Ways of it is Use

BARBARAH, S

- ((Robert grisso, John Perumpral, Frank Zoz, 2006).
- (William Edwards) in (May 2007)

(Rayan Hassan Mohammed, Sarah Adam Salih) in (May 2008).

Chapter (I)

Appendix

Fig (3-3-1) shows the Disc plow used in the experiment

Fig (3-3-2) shows the Hitching of disc plow

Fig (3-3-3) shows the ridger used in the experiment

Fig (3-3-4) shows the hitching of ridger

Fig (3-3-5) shows hitching of rotary hoe

Fig (3-3-6) Shows the drawbar Digital Dynamometer

Fig (3-3-7) Shows Tractor with Implement and Dynamometer