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  خلصستالم

من ناحية ) Pulse Jet Engine (الهدف من هذا البحث هو دراسة ماكينة الدفع النفثي المتقطع 

 الاستهلاك للماكينة و التي تشمل الأداءالمعاملات البعدية و معاملات ثيرموديناميكية بالإضافة لدراسة 

  .الدفع و التردد،النوعي للوقود 

أيضاً تم .  رطل100 دفع مقداره لإنتاجميم ماكينة دفع نفثي متقطع تم التحصل علي الأبعاد المطلوبة لتص

  ).Petal Valve System(من نوع تصميم منظومة للتحكم في دخول الهواء المطلوب لتغذية الماكينة 
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Abstract 

The objective of this research is to understand the thermodynamic characteristics 

of conventional pulse jet engine. 

 The geometrical parameters and performance aspects of the engine were studied 

including specific fuel consumption, thrust and frequency limitations. 

Calculation were made on geometrical parameters for a deign of a pulse jet engine 

of 100 lb thrust. 

Petal valve were selected for their simplicity to control air flowing to the engine.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Pulse Jet Engines: 

The pulsejet is a compressor less, unsteady flow jet engine 

without wave pre-compression of the combustible charge. A pulsejet 

is mechanically very simple and consists of a short inlet diffuser 

leading to a set of flow check valves, followed by a combustion 

chamber and a shaped tube, as shown in Figure 1.1. A fuel injection 

system is located downstream of the valves. The air flowing into the 

engine through the valves is mixed with a fuel spray, and the mixture 

is ignited. As a result of the pressure rise generated by the explosion, 

the inlet flow check valves close and the exhaust gases expand outside 

through the exhaust tube. The exhaust of the burned gases generates 

expansion waves that reduce the pressure behind the check valves 

until they open again and a fresh charge of air enters. The cycle is 

then repeated. A spark is required only to start because after the first 

cycle, the hot gases from the previous cycle ignite the fresh 

combustible charge. The most common version of the pulsejet is the 

valved pulsejet; however, there exist valve less pulsejets. 

 
Figure 1.1: Schematic of a valved pulsejet 
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1.2   How Does Valve less Pulsejet Work?   

Figure 1.2 shows one of the possible layout of a valve less 

pulsejet engine.  It has a chamber with two tubular ports of unequal 

length and diameter.  One port, curved backwards, is the inlet pipe 

and the other (flared at the end) is the tail pipe.  In some other valve 

less engines, it is the exhaust pipe that is bent into the U-shape, but 

the important thing is that both ports point in the same direction. 

 

 

Figure 1.2: Valve less Pulsejet 
 

           When the fuel-air mixture combusts in the chamber, the 

pressure inside rises very suddenly.  The rising pressure forces the hot 

gas to expand out of the chamber and pass through the two ports at 

high speed.  As it leaves the engine, the hot gas exerts thrust. 

 As the gas expands, the pressure inside the chamber drops.  

Due to inertia, the expansion continues even after the pressure falls 

back to atmospheric.  At the lowest point, there is partial vacuum in 

the chamber.  At that point, the momentum of the expanding gas is 

spent and the expansion stops.  The process reverses itself and fresh 

air starts rushing into the ends of the two ports to fill the vacuum. 

   At the intake side, it quickly passes through the short tube, 

enters the chamber and mixes with fuel.  The tailpipe, however, is 

rather longer than the intake, so that it takes incoming air longer to 



3 
 

reach the chamber that way.  One of the prime reasons for the extra 

length is to have some hot exhaust gas remain inside the tailpipe at the 

moment the suction starts.  This remaining hot gas will now be pushed 

back towards the chamber by the incoming fresh air.  When it enters 

the chamber and mixes with the fuel/air mixture, the heat and the free 

radicals in the gas will cause ignition and the process will repeat itself. 

In a small models pulsejet, it happens 100 to 250 times a 

second.  The cycle is not much different, really, from that in the 

conventional flap-valve pulsejet.  There, the rising pressure makes the 

valves at the front of the chamber snap shut and there is only one way 

for the hot gas to go into the exhaust tube.  In the J-shaped and U-

shaped valve less engines, the hot gas spews out of two ports.  It does 

not matter, because they both face in the same direction. 

Some valve less engine designers have developed designs that 

are not bent backwards, but employ various tricks that work in a 

similar fashion to valves  i.e. they allow fresh air to come in but 

prevent the hot gas from getting out through the intake.   

Great number of developers tried to come up with other ways 

of making the combustor tube irreversible, to have gases moving 

through the pulsejet in one direction only. It is not easy to do without 

a mechanical non-return valve, but the inventors have nevertheless 

come up with a variety of tricks supposed to do the job. Some, like 

Schubert, introduced ways to make the resistance to the passage of 

gas unsymmetrical. Others came up with ways to deflect gases in 

different directions. 

Paul Schmidt and Jean Henri Bertin (among others) tested a 

number of designs featuring concave ring baffles in the intake tract, 

which offered great resistance to back flow but let fresh air in easily. 

A simple version of the Bertin baffle intake is sketched in figure 1.3. 
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Fresh air coming in from the left encounters a series baffles, but flows 

easily past them. The baffles have increasingly broader openings, 

forming a diffuser. 

 

 
Figure 1.3: Pulse jet with concave ring baffles in the intake tract 

 

In the opposite direction, however, the flowing is different. Hot 

exhaust gas will be trying to expand as it travels forward (towards the 

left in the figure) and increasing amounts will be trapped in the 

pockets between the baffles. Only a relatively small amount will ever 

be likely to escape. At least, that was what the designers hoped would 

happen. 

However, all the configurations they had tried produced lower 

thrust and consumed more fuel than the equivalent engines with 

mechanical valves. Most also displayed at least some blow back, no 

matter how hard the designer tried to prevent it. 

Numerous versions of tubes with similarly serrated walls have 

been tried, sometimes with baffles/serrations awaiting exhaust gas on 

more than one side. Figure 1.4 shows a typical design of that family, 

from the pen of a man better known for pulsejets with valves. 

The problem with most serrated designs is that the return flow 

is not impeded as much as their inventors would like because the 

exhaust gas quickly fills the small concave ‘pockets’ in the tube sides 

and forms cushions of pressurized dead air or small trapped vortices, 

which offer little resistance to the passing stream. Under some 
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conditions, the flow of gas in one direction will actually be very 

similar to the flow in the opposite direction. 

 

 
 

Figure 1.4: Pulse jet with baffles/serrations 

1.3   Kadenacy Effect: 

 In the explanation of the working cycle, the inertia drives the 

expanding gas out until the pressure in the chamber falls some way 

below atmospheric.  The opposite thing happens in the next part of the 

cycle, when the outside air pushes its way in to fill the vacuum.  The 

combined momentum of the gases rushing in through the two opposed 

ports causes the chamber briefly to be pressurized slightly above 

atmospheric. There is thus an oscillation of pressure in the engine 

caused by inertia. The pressure swings from way above atmospheric 

to partial vacuum and back again, in damped oscillation (See Figure 

1.5). This is called the Kadenacy Effect.  

 

  

 

 

  

 

Figure 1.5: Pressure oscillations in the combustion chamber 
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   It is what makes the aspiration (removal of burned gas and 

replacement with fresh fuel-air mixture) possible.  Without it, 

pulsejets would not work. 

1.4 Advantages of Pulse Jet Engine: 

A key advantage of the pulsejet engine, to which no other 

mechanical thrust device compares, lies in its simplicity. Though the 

physical fundamentals of operation may be far from simple, the 

pulsejet's construction, especially that of the valve less design, is 

exquisitely unsophisticated. This fact alone places the pulsejet as a 

forerunner in the innovative field of miniature propulsion. Pulsejets 

have begun to receive renewed interest as a possible source of 

miniature and/or micro propulsion. However, a basis for powered 

thrust should not be considered its only application. The valve less 

pulse jet could be an excellent source for micro-heating. Past 

investments have been made toward the use of conventional-sized 

pulsejets in central heating systems. Cost is significantly reduced by 

the simplistic nature of valve less pulsejet construction.  

The pulsejet engine has a peculiar property of pulsating 

combustion, it can be self-compressing. In the pulsejet, the fuel-air 

mixture does not burn steadily, at a constant pressure, as it does in the 

other jet engines. It burns intermittently, in a quick succession of 

explosive pulses. In each pulse, the gaseous products of combustion 

are generated too fast to escape from the combustor at once. This 

raises the pressure inside the combustor steeply, which increases 

combustion efficiency. 

           The pulse jet is the only jet engine combustor that shows a net 

pressure gain between the intake and the exhaust. All the others have 

to have their highest pressure created at the intake end of the chamber. 

From that station on, the pressure falls off. Such a decreasing pressure 
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gradient serves to prevent the hot gas generated in the combustor from 

forcing its way out through the intake. This way, the gas moves only 

towards the exhaust nozzle in which pressure is converted to speed. 

           The great intake pressure is usually provided by some kind of 

compressor, which is a complex and expensive bit of machinery and 

consumes a great amount of power. Much of the energy generated in 

the turbojet engine goes to drive a compressor and only the remainder 

provides thrust.  

            The pulsejet is different; the exhaust pressure is higher than 

the intake pressure. There is pressure gain across the combustor, 

rather than loss. Moreover, the pulsejet does it without wasting the 

power generated by combustion. This is very important. About 5% 

gain in combustion pressure achieved by this method which improve 

overall efficiency 

1.5   Limitations of Pulse jet Engine:  

 A big problem is that the gain in efficiency offered by 

pulsating combustion is not at all easy to utilize for propulsion. 

Paradoxically, the central problem here is the same as the Source of 

the benefit  namely, pulsation. The very means of increasing 

combustion efficiency makes it difficult to take advantage of the 

result. 

The real potential for the pulsejet has always been in its use as 

the combustor for a turbine engine, rather than as an engine in itself. 

Its ability to generate pressure gain is greatly multiplied in a high-

pressure environment. Compared to the more usual constant-pressure 

combustor, it can either give the same power with much smaller 

mechanical loss and lower fuel consumption, or much greater power 

for the same amount of fuel. 
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Unfortunately, a turbine demands steady flows to function 

efficiently. Unsteadiness generates loss. Also, pulsations are 

dangerous for the brittle axial turbine blades. Radial turbines are 

tougher in that respect, but they are less efficient, especially so with 

intermittent flow. They are mostly used to exploit waste heat, as in a 

turbocharger, rather than as prime movers. Researchers have toyed 

with converting pulsations into a steady flow, but most methods 

proved inefficient.  

1.6 Objectives of this Project:  

Pulse jet engines have recently been recognized as promising 

propulsion technology that offers advantage in thermodynamic cycle 

efficiency, hardware, simplicity and operation scalability. The 

potential for self aspiration operation is highly attractive for the 

perspective of efficiency and operation. 

One of the main questions in the pulse jet performance analysis 

is what the combustion type (mode)? It obviously a strong function of 

the cycle frequency and valve timing. A key issue in the conceptional 

design and analysis of proposed propulation system is the role of the 

combustion mode. 

Our objective in this Project to understand based on 

thermodynamics the characteristics of the conventional pulse jet 

engine then we designed based on the geometrical aspect a pulse jet 

engine with 100 lb thrust.  

 

 

 

 

 

 



9 
 

CHAPTER TWO 

LITERATURE REVIEEW 

2.1 Historical Review: 

Early attempts to utilize the power obtained from explosions for 

propulsion applications date back to late 17th–early 18th centuries and 

the contributions of Huygens and Allen are note worthy. In 1729, 

Allen proposed a jet propelled ship ‘whose operation is owing to the 

explosion of gun powder’ in a proper engine placed within a ship [7]. 

Before this archival contribution, gun powder was predominantly used 

in artillery for destructive purposes.  

            First exposure of gaseous detonations dates back to 1870–

1883 period when Berthelot and Vieille, and Mallard and Le Chatelier 

discovered [7] a combustion mode propagating at a velocity ranging 

from 1.5 to 2.5 km/s. This combustion mode arose when gas was 

ignited with a high-explosive charge. Later on it was observed in long 

tubes even when gas was ignited by non explosive means (spark or 

open flame). In this case, flame acceleration along the tube, often 

accompanied with flame speed oscillations, was detected prior to 

onset of detonation. The most impressive findings of those times 

indicated that the detected detonation velocity was independent of the 

ignition source and tube diameter and was primarily a function of the 

explosive mixture composition. The main distinctive feature of 

detonation was a severe mechanical effect implying the development 

of a high pressure in the propagating wave. The mechanism of 

detonation propagation has been identified as governed by adiabatic 

compression of the explosive mixture rather than by molecular 

diffusion of heat. During those times, the interest in detonation was 

basically associated with explosion prevention in coal mines. 
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            A few years later, based on the shock wave theory of Rankine 

and Hugoniot, Mikhelson in 1890, Chapman in 1899, and Jouguet in 

1904, provided [7] theoretical estimates for the detonation parameters 

based on one-dimensional (1D) flow considerations and mass, 

momentum and energy conservation laws. In their theory, the 

detonation wave was considered as a pressure discontinuity coupled 

with the reaction front (instantaneous reaction). According to the 

theory, the detonation products possess density that is almost two-fold 

higher than the initial mixture density; temperature and pressure that 

are, respectively, 10–20% and two-fold higher than the corresponding 

values of constant-volume explosion; particle velocity that attains a 

value close to one half of the detonation velocity. Comparison of the 

theoretical predictions with experimentally observed detonation 

velocities showed fairly good agreement. 

Since the end of the 19th–the beginning of the 20th century, 

significant progress has been made both in experimentation and 

analysis of detonations. In addition to explosion safety issues in coal 

mines and pits, other applications surfaced, in particular, those dealing 

with new technologies, balloon transportation, and reciprocating 

internal combustion engines. After the World War I, there was a 

considerable growth of interest to combustion in automotive and 

aircraft engines.  

After World War II, the aviation industry saw a major 

advancement in flight capabilities with the development and 

implementation of the turbine engine. With this new technology, 

aircraft could fly higher, faster, and farther than ever before. 

However, along side early turbine development was a different type of 

jet power, commonly known today as the pulsejet. The pulsejet 

promised lower thrust specific fuel consumption, more robust 
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operating characteristics, and, most importantly, a design that was 

significantly simpler mechanically than its turbine counterparts. 

However, interest in pulsejets subsided due to poor thrust 

performance versus size and horrific decibel performance. 

Improvements upon such limitations were never achieved owing 

mostly to a lack of fundamental understanding for the pulsejet’s 

operation. This, in turn, caused the pulsejet to fade from history’s 

timeline and the turbine engine to emerge as the dominant propulsion 

option. Today, pulsejet technology shows promise as a viable source 

for alternative propulsion purposes, but the general lack of 

fundamental understanding remains a foremost inhibiter.  

 
Figure 2.1: A schematic of the Esnaut-Peltr push-pull combustion engine. 

 

Pulsejets operate on a cyclical combustion event, characteristic 

of its geometry and fuel. The discovery of the pulsating flame, or 

“sensitive flame,” was first noted around 1777 [5]. Conceptual 

designs of pulsating combustion devices then followed almost one and 

a half centuries later. It was not until the turn of the 20
th 

century that 

the possibility of a cyclical combustion engine was realized and 

documented. Two French engineers, Esnault and Peltrie, patented a 

design for an engine that drove a turbine wheel. This engine worked 

based on the principle of two opposing pulsating combustion columns 



12 
 

fitted in a single straight, tubular chamber working out of phase from 

one another (Figure 2.1) [5]. Shortly thereafter, another Frenchman 

named Georges Marconnet patented a device that was essentially a 

variation to the Esnault-Peltrie design. Here, Marconnet replaced the 

flap valves with what he termed an “aerodynamic valve.” A simple 

area constriction served a similar purpose as the mechanical valve – to 

let fuel and air into the combustion chamber but inhibit exhaust gasses 

from escaping in the opposite direction. Shown in Figure 2.2, 

Marconnet’s engine is, in principle, half of Esnault and Peltrie’s 

combustor column without valves.  

 
 

Figure 2.2: A schematic of the Marconnet valve less pulsejet. 

 

Successful development of an operational pulsating combustion engine 

did not come about until the 1930’s when a German named Paul Schmidt [5] 

developed and tested the Schmidt tube, or a constant area chamber with 

flapper valves at one end and an opening at the other, shown below in Figure 

2.3. During World War II, Germany incorporated Schmidt’s design into the 

development of their V-1 missile program, or the 'Buzz Bomb,' sister project 

to the infamous V-2 rocket. Schmidt's design served as the powerhouse 

behind Germany's V-1 weapon. 
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Figure 2.3: The Schmidt tube 

 

The Buzz Bomb (Figure 2.4) terrorized England's countryside 

with its enormously loud namesake buzz heard from miles away and 

is given credit for being the first successful pulsejet utilized for thrust 

capabilities [5] . After the war, other countries continued development 

of pulsejet power. Specifically, the United States worked on 

developing a valve less variant to pulsejet engines through several 

secret, military-funded programs. From the declassified documents 

available today, it is clear that an understanding of the fundamental 

physics responsible for the successful operation of pulsating 

combustion engines was never truly achieved.  

 

 
 

Figure 2.4: The V-2 'Buzz Bomb 
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2.2 Development in Valve less Pulse jet engine: 

Valve less pulsejets were not an exclusive American 

development. The French company SNECMA (today a child company 

to the SAFRAN technology group of Paris, France), for example, was 

the first to use a valve less pulsejet for commercial use in powered 

flight [5]. The Escopette, illustrated in Figure 2.5, was a valve less 

design employed as a backup propulsion source for the French 

Emouchet sailplane in the early 1950's. Other foreign interests such as 

Russia, China, and Germany were involved in valve less 

development, as well. Still, the United States government made 

considerable advances in valve less pulsejet technology before 

eventually putting the idea to rest until recent years. 

 

 
Figure 2.5: The French 'Escopette' valveless pulsejet. 

Two prominent declassified American collaborations are noted 

for valve less pulsejet research in the 1950's to early 60's. Project 

Squid, a collaborated effort between the United States Navy and Air 

Force to research and develop all potential sources of jet propulsion 

available at that time [5], became greatly involved in the investigation 

of valveless pulsejets. Under the initial direction of J.G. Logan at the 

Cornell Aeronautical Laboratory, Project Squid's valveless pulsejet 

work began as an investigation into 'small scale models for 

fundamental research purposes and later grew to applications in 

helicopter rotor tip propulsion. Logan performed the majority of 
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testing on a valveless design concept conceived from a hobby-scale 

valved pulsejet known as the Dynajet. Logan replaced the flapper 

valves by a flat plate, completely closing the jet at one end, and 

injected fuel and air directly into the combustion chamber. Project 

Squid investigated performance characteristics with hydrocarbon fuels 

on multiple geometric configurations of the 'Logan' pulsejet, 

respectively named after its chief designer. It has been suggested that 

the Logan jet improved rate of heat release and cycle efficiency.  

The Bureau of Naval Weapons and the Advanced Research 

Division of Hiller Aircraft Corporation conducted a cooperative 

investigation of valve less pulsejet reactors for the development of 

lift-propulsion systems from 1961 to 1963 [5]. Numerous valve less 

designs were developed, produced, and tested in the course of the 

project. The most well known of these designs was the Hiller-

Lockwood pulsejet illustrated and diagramed below in Figure 2.6. The 

Hiller company was successful in several developmental 

breakthroughs in pulsejet research, namely decreasing combustor size 

with the advent of converging bulkheads at the entrance and exit of 

the combustor section. Other accomplishments included the thrust-

efficient design of the Hiller-Lockwood jet, tsfc improvements via 

effective thrust augmenters, and scaling studies on a range of size 

classes. 

In a related concurrent program summarized in a report 

presented by Lockwood (1964), the Hiller Aircraft Corporation, under 

support from the United States Army Transportation Research 

Command (TRECOM), also performed work on conventional valve 

less designs resembling that of a Logan jet or the pulsejets utilized in 

the valve less work [5]. Investigations into miniature valve less 

pulsejets led the Hiller team to develop an engine with a minimum 
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combustion diameter of 0.75 inches, an inlet to combustor area ratio 

of 0.34, and an overall length of 12.0 inches. However, poor response 

led to a lack of recorded data. 

 

 

 
Figure 2.6 Schematic of the Hiller-Lockwood pulsejet
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CHAPTER THREE 

THEORY OF OPERATION  

3.1 Unsteady Propulsive Devices: 

Pulse detonation engines are characterized by their unsteady 

nature (pulse) and detonative combustion (detonation). Axial-flow 

engines with unsteady or intermittent combustion are relatively 

uncommon. The best known example is the V-1. The power plant of 

the V-1, has commonly been referred to as a pulsejet and operates in 

the following manner: 

1. The combustion chamber is filled with air through a reed type 

inlet valve.    

 Inside the chamber, the air is mixed with fuel and some residual 

hot gases. 

2. The continued venting of the previous charge sends a 

compression wave from the tail into the chamber providing a 

slight pre-compression which closes the reed valve. The flow of 

the exhaust gases from the previous charge also reverses 

direction during this process. The combination of pre-

compression and mixing with hot gases spontaneously ignites 

the new charge. 

3. Upon ignition, rapid combustion of the reactants increases the 

pressure and ejects the products gases out of the tail. 

4. The dynamics of the venting causes the inlet pressure to fall 

below atmospheric. This opens the reed valve and allows a fresh 

charge of air to enter the inlet valve, thus completing the cycle. 

A summary of a generic pulse jet engine cycle is shown in figure 3.1.  
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Figure 3.1: Summary of pulse jet engine Cycle 

3.2 Pulsejet Cycle: 

A pulsejet’s operation can be explained by combining two-

cycles: the Lenoir Cycle which consists of constant pressure 

compression followed by constant volume heat addition and then 

adiabatic expansion and the Humphrey Cycle, which operates 

similarly but has an isentropic compression added to the cycle. 

Pulsejets typically have a very small compression ratio that reaches a 

maximum at around 1.7. The Lenoir three cycle processes can be seen 

below in figure 3.2. 

 
Figure 3.2 Lenoir Cycle 
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 The process consists of the intake of air and fuel at point a, 

constant volume combustion from a to b, and an adiabatic expansion 

to c. The Humphrey Cycle is shown below, figure 3.3 and adds a 

small amount of compression before combustion, step a to b. This 

holds true for both valved and valve less models. 

 

 
Figure 3.3: Humphrey Cycle 

 

3.3 Pulsejet Cycle Theory: 

Several prominent figures in the history of pulsating 

combustion research have offered theories based upon their respective 

areas of specialization on the fundamental physical processes 

responsible for the pulsejet's cycle of operation. F. H. Reynst, best 

known for his ‘combustion pot’ discovery, devoted most of his 

professional career to understanding the principles behind pulsating 

combustion engines. Reynst believed pulsejet engines operate on an 

acoustic resonating principle analogous to that of a ¼ wave organ 

pipe. In a 1955 journal article, Reynst relates the pressures and 
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velocities in a characteristic Schmidt tube cycle to standing wave 

theory for small amplitude oscillations (i.e. linear acoustics). In a tube 

open at one end pressures and velocities can be represented by sine 

waves 90 degrees out of phase from each other. As is presented by the 

journal author (Figure 3.4), experimental velocity lags pressure by a 

quarter period if a correction factor of Z/4 is applied to the flow 

velocity. Reynst rightfully attributes the necessity of such a correction 

factor to the fact that the pressure and velocities were measured at 

opposite ends of the tube, simultaneously. In doing so, his ¼ wave 

hypothesis is shown to be arguably supported by experimental 

evidence. Regardless of his acoustic interpretations, Reynst, in several 

published works, expressed a keen understanding of the combustion 

and fluid dynamic processes involved in the intermittent cycles of a 

pulsejet engine .  

 
Figure 3.4: Diagram Showing Pressure and Velocities in the Schmited 

Tube C-D Air inflow at the open end,A-B vlved open,Z cycle time 

 

In a collection of works edited by Felix Weinberg, the author 

Ben Zinn  gives a very thorough development of pressure oscillations 

in a closed tube driven by linear heat addition (i.e. amplitudes of 

oscillation and heat addition are small). Starting from a system of 

wave equations, Zinn  utilizes the Green’s function technique to prove 
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the validity of Rayleigh’s empirical criterion for heat driven 

oscillations, similar to common techniques for investigating 

combustion noise. He derives a relationship between heat addition and 

pressure amplitude where proportionality constant may be used to 

determine the potential for modal excitation within the tube. By 

extending his results for boundary effects at the walls (i.e. momentum 

influx and out flux), they can then be well applied to pulsating 

combustor problems. As is the case, Zinn uses the practical example 

of the previously described Esnault-Peltrie combustor. Zinn suggests 

that the Esnault-Peltrie analysis can be easily adjusted for the ¼ wave 

structure of a pulsejet simply by substituting the fundamental mode 

approximation for that of a tube open at one end and closed at the 

other. In theory, such a solution would determine the characteristics of 

the oscillations inside the engine and the range of operating conditions 

for which pulsating operation is possible.  

A detailed discussion on ideal pulsejet performance theory is 

presented by J.V. Foa (1960). An ideal pulsejet, as defined by Foa, is 

“a pulsejet in which ram pre-compression of the charge is fully 

utilized, all flow processes except combustion are isentropic, and the 

exhaust velocity is a square-wave function of time.” It can be shown 

that the cycle efficiency, as well as the air specific impulse, inevitably 

approaches that of the ideal ramjet as free-stream Mach number 

increases. In reality, pulsejet performance differs strongly from ideal 

theory mainly due to the loss of ram pressure compression of 

combustible gasses. As was discussed above, pressure inside the 

combustion chamber immediately before ignition is generally 

equivalent to atmospheric free-stream conditions.  
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3.4 Thermodynamic Analysis of Pulsejet Engine: 

Let us subscript 0 denote quantities corresponding to the free 

atmospheric condition, the subscript 1 denotes stagnation conditions 

when the valve are closed, the subscript 2 denotes the condition in the 

combustion chamber at the end of the charging process and the 

subscript 3 denotes the condition at the end of combustion. Since the 

compression from free stream to the stagnation pressure is really the 

inverse of isentropic expansion, the chamber condition is now the 

stagnation condition, and the exit condition are now the free stream 

conditions. Thus we have the equation  

 

                                                             (3-1) 

 

The temperature ratio is then: 

 

                                                                  (3-2) 

 

When the valve is opened, there is a rush of air into the 

combustion chamber and the velocity in the throat of the venture must 

be very close to the velocity of sound. In other words, the pressure at 

the throat is roughly one-half that of . Due to the diffuser shape, 

very little of the kinetic energy is recovered as pressure energy. Thus 

we can assume that: 

 

                                                                                  (3-3) 
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The temperature , being a representation of the total energy of 

the gas at rest, must be the same as , since no appreciable heat loss 

can occur. 

                                                                                     (3-4) 

It will assume that the combustion is carried out at constant 

volume. Thus, if the small additional fuel flow is neglected, the heat 

added ( ) per unit mass of air is 

 

                                        (3-5) 

 

 The prime quantities are referred to the combustion products. 

Since the combustion is carried out at constant volume, 

 

                                                                                       (3-6) 

 

Therefore: 

 

                                                                   (3-7) 

 

 To calculate the discharging process, we assume that the 

velocity of discharge at every instant is the same as the isentropic 

steady expansion from the chamber pressure P to P0, the atmospheric 

pressure in the chamber .Due to the removal of mass in the chamber, 

the pressure in the chamber will also drop. The expansion of gas in 

the chamber is also isentropic if heat loss to the atmosphere is not 

counted. This really corresponds to a physical situation of a very large 

chamber and a very small discharge nozzle so that the pressure 
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variation in the chamber is very slow and a steady discharge is 

approximated. We shall calculate the total impulse due to this charge 

process and say that the impulse of such a slow discharge is good 

approximation of the actual rapid discharge. 

Let  be the discharge velocity corresponding to p, then we have  

 

                                                     (3-8) 

 

The impulse due to a discharge dm at this velocity is 

=                                                                                     (3-9) 

If  is the mass before the removal of , then the ratio of the 

density in the chamber after the removal of dm to that before the 

removal is 

 

 

 

Similarly the pressure ratio is  

 

 
Since the process in the combustion chamber is isentropic, we have  

 

 
 

Hence by neglecting infinitesimals of high order, we obtain 
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                                                                           (3-10) 

This show that a discharge of  will decrease the pressure in the 

chamber, as expected. Now  where is the volume of the 

combustion chamber. Thus we can replace the  in equation (3-9) 

completely by . The result is  

(3-11) 

 

  To find the total impulse due to the discharge, we have to 

integrate  for pressure variations from the initial pressure p3 the 

final pressure p0. Therefore  

         

                         

         (3-12) 

Where . But   is the total mass in the combustion 

chamber at the beginning of the discharge and    is the velocity 

of sound a3 corresponding to the condition in the combustion chamber 

at the end of combustion. Thus if we call the effective exit velocity Ve 

then 

 d�                   (3-13)  
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 If we have an average mass rate flow of one unit per second, 

the average thrust is 1.Ve. This thrust is diminished by the intake 

momentum of 1.Vo where Vo is the flight velocity. Thus the actual 

thrust for a mass flow of one unit per second is 1. (Ve-Vo). If H is the 

heat value of the fuel per lb and  the combustion efficiency then the 

specific fuel consumption S in lb per hr per lb thrust is  

 

                                                                   (3-14) 

 

Substituting the value of h from equation (3-7) 

 

                                              (2-15) 

                                           (2-16)      

       

Therefore, the specific fuel consumption can easily determined if we 

know the pressure ratio   and the combustion efficiency   

3.5 Frequency of pulsation of pulse jet Engines: 

 The Frequency in pulse jet engines is directly connected with 

the non-steady pulsating flow. In order to have estimate of the 

frequency, we shall adopt another simple picture of operation. We 

shall assume that explosion pressure ratio to be very nearly 

equal to unity. In other words, we shall assume the pressure 

amplitudes to be very small and then calculate the frequency by the 

elementary considerations to small pressure amplitudes. We then say 
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that the frequency so calculated for very small pressure amplitudes 

should be representative of that for large pressure amplitude. 

 Consider the pulse jet engine as a pipe closed at one end and 

open at another. Then the pulsation in the pipe can be considered as a 

quarter wave length oscillation with maximum pressure amplitude at 

the closed end and zero pressure amplitude but maximum velocity 

amplitude at the open end, As shown by figure 3.5. If a* is the velocity 

of sound propagation and L the length of the pipe, the frequency of 

oscillation is  

 

     Cycle per second                                                      (2-17) 

 
Figure 3.5: Pressure Distribution at the 

Beginning and the End Of combustion 

 

For the application to the pulse jet we must use a* 

corresponding to the mean condition of the flow in the duct. Since the 

temperature at end of expansion in the duct is  

  

The mean value a* for the velocity of sound is  
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                                                  (3-18)    

 

3.6 Thrust of pulse jet Engines: 

 The average thrust of the pulse jet engine depends on the rate of 

air flow and the mixture ratio. The rate at which the air is taken into 

the duct per second is, in turn, depended upon the charge per cycle 

and the number of the cycle per second. All three factors, however, 

are interrelated. For instant, if the cycles per second are very large, the 

charge pressure in the chamber will be low, due to the rapid 

acceleration necessary to push the air in the chamber. In other words, 

the charge per cycle tends to decrease as the frequency were increase. 

Furthermore, the combustion process also tends to limit the mixture 

ratio that could be effectively used at lower values if the frequency 

were increased as the combustion time was shortened. Thus the 

average thrust of the engine, being an increasing function of the 

product of all these factors, has maximum with respect to the rate of 

fuel injection and the frequency, or the length of the tail pipe. The 

actual prediction of the thrust of pulse jet is thus rather complicated. 

The calculation is based upon empirical data, as the effects of the 

volumetric efficiency or breathing capacity and combustion 

conditions are very difficult to calculate. 

 If the ratio of the pressure at the beginning of the combustion to 

those at the end of the combustion is maintained and the frequency 

and flight mach number kept the same, the thrust of the engine will be 

directly proportional to the atmospheric pressure, as everything can 

then be referred to the atmospheric pressure, if F’ is the thrust 

corresponding to P0
’ and F for P0 then under the condition stated  
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                                                                         (3-19) 

 

 Actually the ratio of pressure of the combustion and frequency 

depend upon the mixture ratio and atmospheric temperature. The fact 

that the atmospheric temperature enters the relation can be seen by the 

following reasoning. If the atmospheric temperature is low, the 

temperature at the beginning of combustion will also be low, with 

everything else the same. Now keeping the mixture ratio and 

combustion efficiency the same, the heat due to the combustion per 

unit mass of gas and the temperature rise of the gas will be the same, 

but the ratio of the absolute temperature and hence the pressure ratio 

will be higer due to the lower temperature at the start of the 

combustion. This fact tends to give higher thrust at altitudes other 

than those calculated from Eq. (3-19). However, the more sluggish 

combustion at lower pressure, and hence lower frequencies, may 

balance this tendency. Thus, for lack of more accurate information, 

Eq. (3-19) can be used to calculate the altitude performance of the 

pulsejet, provided the mixture ratios at two altitudes are the same. 

 The mixture ratio and the frequency are maintained, then the 

thrust is directly proportional to the size or the sectional area of the 

combustion chamber. Since Eq. (3-17) shows that frequency is a 

function of the distance between the air flow valve and the exit of the 

duct, this distance must be kept the same for the same frequency. 

Actually the change in the flow condition with change in combustion 

chamber size will produce a small deviation from this simple rule. 

However, it is certain that, with increasing thrust, the pulsejet engine 

will become less slender in overall dimensions. 
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 To compare the thrust output of pulsejet with other power 

plants, it is advantageous to express the net thrust Fnet in terms of a 

thrust coefficient defined as 

 

                                                                         (3-20) 

 

 Where A is the combustion chamber cross-sectional area. The 

maximum value of the thrust coefficient ( ) which occur at static 

condition (V0 = 0). However the coefficient decreases rapidly with the 

increase in velocity.  
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CHAPTER FOUR 

DESIGN PRINCIPLES 

The design of pulse jet must be based upon a wealth of well 

performed experiments giving the fundamentals relations between 

dimensions, frequency, thrust and mixture ratio. 

4.1 Engine Diameter:  

 One of the texts on pulse jet engine designing was written by 

C.E.Tharratt he was staff scientist at the Chrysler Space Division in the 

late 1950s.The simple formula that Tharratt proposed to be the core of the 

pulse jet design is 

                                                           (4-1) 

Where: 

V = Engine Volume           (Cubic ft) 

L = Effective length           (ft) 

F =Thrust                          (lb) 

The constant 0.00316 sq ft/ lb is a factor from experimental. 

 The validity of formula (4-1) has been verified at a wide number of 

different pulse jet engines including V1. From this formula when keep the 

engine volume (V) constant and increase the effective length (L), then the 

power would reduce. In order to do this, the diameter (and cross-section 

area) of the engine would need to be reduce. So there is a definite 

relationship between cross-sectional area and power. 

 Also when the length (L) is kept constant and increase the volume 

(V) the power would increase; to accomplish this there will be increasing 

in the diameter (cross-sectional area) of the engine. 
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Figure 4.1: Engine Dimension 

 

Manipulate equation (4-1) in a simple form 

  

But V= A × L 

  

Where: 

A = Area (inches) 

Then: 

                                                                (4-2) 

The constant 2.2  is derived from the formula that includes 

the engine total volume as a factor. 

4.2 Engine Effective Length: 

 Engine Effective Length does not effect on the output power, but 

only effect on the frequency at which the engine will operate. The length 

of engine always given as a ratio (L/Dm) which governed by relation: 

                                                                                           (4-3) 
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When ( ) the combustion with chemical fuels is difficult to 

sustain, from experimental work it found that  must not exceed 15. 

Table (4.1) show (  ) ratio in Dynajet and V1 engines. 

 

 

 

 

 

 

Table 4.1: The ratio (L/Dm) in Dynajet and V1 engines 

 

4.3 Valve Area: 

The valve area (Va) for an engine of given size and power is found 

using empirical formula as: 

 Va= 0.23  Mean cross-section area                              (4-4) 

4.4 Valve System:  

One of the most critical components of a traditional pulsejet engine 

is the intake valve system. 

Valves have to open and close several hundred times a second while 

being exposed to the thermal stresses associated with being alternately 

blasted by searing hot combustion gases and cold incoming air. At the 

same time, these thin strips of spring steel must resist metal fatigue and 

fracture resulting from the high Mechanical stresses imposed. 

Engine 
 

Dynajet 15 

V1 9.6 
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          It have to do all this while providing a 100 percent seal against 

combustion gases when closed, and allowing the smooth, unimpeded flow 

of fresh air when open. 

        To make life even harder, the only power available to open them is 

the tiny difference in pressure between the outside air and the small 

vacuum created inside the engine by the kadenacy effect of escaping 

exhaust gases down the tailpipe.  

4.4.1 Petal Valves: 

Small engines always use a petal-valve system. A petal valve system consists of a 

ring of holes over which spring steel valve, consisting of matching number of 

petals is laid. There would a space between the outer edge of the valves holes and 

the side of the engine which. From experimental works found that this area is equal 

to the total area of the valve holes. Petal valves offer the following benefits: 

1. Simplicity. The valve can be etched or cut from a single piece of 

spring-steel. 

2. Low cost. As a side effect of their simplicity, petal valves can also be 

very economical to manufacture especially when valve plate consists 

of a simple piece of aluminum with a ring of holes drilled in it. 

The petal valve also has a number of disadvantages: 

1. Poor aerodynamic performance. Since the air passing through a petal 

valve bends near 90 degree on its way into the engine, the efficiency 

of such a system is not particularly high. 

2. Low durability. Because the tips of the petals are directly exposed to 

the hot Combustion gases, petal valves often suffer from premature 

tip cracking or fracture. 
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3. High maintenance. Since petal valves are usually made as a single 

piece, the failure of individual petal requires the replacement of the 

entire spring-steel valve. 

 

 

 
 

Figure 4.2: Petal valve 

4.4.2 The V or multi-V valve: 

Generally use on larger engines, these valves is more efficient than 

petal valves because they produce less deflection of the airflow when they 

are in an open position. 

There are two basic methods of constructing such a valve system 

one involves the use of two or more flat metal plates with holes in them, 

joined at an angle 45 degrees. 

The other method of forming a V valve is the one used in the Argus 

V1 where a cast or machined spacer with multiple ribs is used to hold the 

valves in position and limit their movement as in figure 4.3. 
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Figure 4.3: V- Valve 

V valves provide the following benefits: 

1. Higher efficiency than a simple petal valve. Since the incoming air 

has a far straighter pathway into the engine, more air is able to flow 

for a given size of valve opening when compared to a petal-valve. 

2. Lower maintenance costs. Since the individual spring steel valves in 

a V-valve system can be replaced as/when they fail, maintaining the 

engine becomes a less expensive task and all valves can be used to 

the full extent of their lifespan. 

3. Scalability. Unlike the petal-valve, a V-valve can be easily scaled to 

create the required valve area by simply increasing the length or 

number of V-valves in the array. 

Of course there are downsides too: 

1. Greater complexity. A V-valve generally requires more machining 

steps and a higher component count than a petal-valve setup. 

2. Increased expense. As a side effect of this complexity, the 

production cost for a V-valve system is significantly higher than for 
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a petal-valve. This is another reason why most cheap model engines 

don’t use V-valving.  

4.5 Combustion Chamber: 

 Pulse jet engines have much larger diameter section at the front, 

from where they funnel down to narrower tail pipe. Most of air / fuel 

mixture is burned inside this front section which is called combustion 

chamber. 

 

 
 

Figure 4.4: Engine combustion chamber 

It’s important that the combustion chamber be of a shape and volume that 

the rest of the engine is able fill it with a fresh charge of air and fuel during each 

operating cycle. 

When the combustion chamber is too small then some of the intake charge 

will be drawn down into the tailpipe where it may not be burnt as efficiently. Also 

when the chamber is too large then it will likely contain too much contaminating 

residue from the previous combustion cycle and that can also reduce the efficiency. 

A too large combustion chamber will also reduce the magnitude of the vacuum 

which draws in the fresh charge of air and that will mean a further power loss. 
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 The combustion chamber volume can be found using Schmidt’s 

(Designer of V1) empirical results that indicate the following: 

”During the intake phase of the pulsejet’s operation it will draw in a 

fresh charge of air equal to 15%-20% of the total engine volume” 

4.6 Joint The Combustion Chamber With Tail Pipe: 

Dynajet is hardly a cone at all, more of an abrupt transition. By 

comparison, the Argus V1 engine uses a very long, shallow angled cone to 

join the two sections.  

 

 
Figure 4.5: Dynajet engine 

 

Coming up with a suitable angle for this cone requires balancing a 

number of factors.                 

1. If simply flat plate is used to join the two sections of the engine then the 

hot exhaust gases would have a rather torturous path to follow. Some of 

those gases would have to travel around two 90 degree bends to get from 

the combustion chamber to the tailpipe and that would potentially reduce 

the speed at which they were able to exit from the engine. The speed at 

which the gases leave the engine affects the thrust. 

The fact that it is so hard for the combustion gases to get into the 

tailpipe means that immediately after ignition, pressure will build up inside 

the combustion chamber as all those gases try to rush around a tight bend 
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and down the tailpipe. Those higher pressures can improve combustion 

efficiency and actually increase the speed of the gases in the tailpipe.  

It’s also worth noting that in the case of a flat plate, the hot gases 

that return from the engine's tailpipe and ignite the fresh air-fuel charge 

may do so far more efficiently. This is due to an effect that occurs in the 

way they form a narrow jet that reaches deep into the chamber rather than 

a larger diffuse front that ignites the fuel more slowly. 

The faster the fuel burns, the more power our pulsejet will develop 

because it will have less time to expand as it burns, thus producing the 

higher internal pressures that will, in turn, result in higher tailpipe gas 

velocities. 

 
 

Figure 4.6: Jointing Combustion chamber with tail pipe 

 

Figure (4.7) shows how ignition differs based on the angle of the 

cone between combustion chamber and tailpipe. In the second diagram, 

the distance between the hot gases and the engine body is far less than in 

the first. 

The speed at which the combustion flame-front travels through the 

fresh air/fuel mixture is relatively slow (just a few tens of feet per second) 

in a low-compression engine like the pulsejet. Because of this, the mixture 
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in the second diagram will be burnt far more quickly than that in the first, 

since the flame-front will be wider with a much shorter distance to travel. 

2. If very long cone that had a shallow taper all the way to the end of the 

engine is used to join the two sections of the engine then it would 

obviously be much easier for the combustion gases to flow out under 

pressure. However, there would also be significantly reducing the ability 

of the engine to create a vacuum after combustion is completed because a 

much smaller percentage of the exhaust mass would be travelling at 

maximum velocity inside the engine.  

Force exerted by the escaping gases is equal to their mass times the 

velocity to which they are accelerated (F=MA). For a given size of engine, 

the mass will always be the same but the velocity to which those gases are 

accelerated will depend very much on the design of the tailpipe. There 

need plenty of velocity to get the force required to establish a strong 

Kadenacy effect.  

Tests conducted by the NACA during the 1950s indicated that an 

engine designed with just a long convergent cone instead of a straight 

tailpipe was very difficult to get running at all. 

4.7 Fuel Systems: 

One of the great advantages of pulsejet engines is that they can, at 

least in theory, be made to run on almost any type of combustible liquid or 

gas. Pulsejets aren’t limited to liquid or gas fuels however on at least two 

occasions, coal dust has been used as a fuel. It is rumored that the 

Germans attempted to run the Argus V1 engine on coal dust when liquid 

fuel supplies became almost unobtainable near the end of WW2 and some 

of  pulsed combustors were designed specifically to use this unusual fuel. 
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There is a report published by Princeton University in 1947 that 

summarized a large amount of the research done into pulsejet engines up 

to that time. It said “the pulsating jet engine of contemporary design ran on 

almost any common fuel with negligible variations in performance.” The 

only caveat the report included was that “principal differences were in the 

degree of body heating and the rapidity of valve destruction.” 

There are two main types of fuel system used in pulsejet engines. 

4.7.1 Atomization: 

Smaller engines such as the Dynajet have traditionally used a very 

crude form of carburetor that using the incoming air to create a spray of 

rather coarsely atomized fuel droplets. This atomizing process occurs right 

at the front of the engine when the incoming air is forced through a slight 

venturi. 

The atomizer on small pulsejets uses a venturi to squeeze the 

incoming air through a narrowing in the intake. As it squeezes the pressure 

drops, although this system does work, the magnitude of the low-pressure 

area created in the pulsejet’s venturi is quite small and this means that 

there’s not much energy available to suck that fuel through. 

Another problem with the simple atomizer is that the fuel droplets 

created tend to be very large and therefore do not vaporize particularly. 

however, the inside of a pulsejet engine is a very hot place so, despite the 

fact that the simple atomizer does a poor job of converting liquid fuel into 

a nice fine spray, the high internal temperatures of the engine greatly assist 

the conversion of those large droplets of fuel into vapor. 
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Figure 4.7: Simple diagram for atomization 

 

Small pulsejets are extremely sensitive to just where the fuel tank is 

placed relative to the atomizer assembly. If the tank too low then the 

engine won’t have enough “suck” to pull the fuel up to the atomizer 

nozzle. When the tank is too high the gravity will draw the fuel through 

effectively flooding the engine. 

4.7.2 Injection: 

Virtually all engines over 20lbs of thrust use direct fuel injection 

rather than atomization. In such a system, the fuel is injected directly into 

the engine’s combustion chamber under some form of pressure. This 

makes the engine’s operation far more reliable and adds the additional 

benefit that by varying the amount of fuel being injected, the engine’s 

power can be varied.  

There are two ways to inject the fuel, using a fuel pump or 

pressurize the entire fuel tank. The simplest injection system for a petal-

valved engine simply involves locating a cross-drilled injection nozzle 

directly behind the valve-retainer plate. This nozzle is drilled so that the 

incoming fuel is sprayed out directly towards the side of the combustion 

chamber. This ensures optimum mixing with the air and (in the case of 

liquid fuels) means that any droplets of fuel that aren’t vaporized by the 
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incoming air will be instantly flashed into vapor when they hit the hot 

combustion chamber walls. 

4.7.3 Timed Injection: 

One disadvantage of direct fuel injection is that simple systems such 

as the one used in the Argus V1 engine tend to spray fuel throughout the 

engine’s operating cycle. Fuel will only burn efficiently when mixed with 

exactly the right amount of air. This combustible mixture of air to fuel is 

referred to as the “stoichiometric ratio” and it varies depending on the type 

of fuel being used. Using timed fuel injection would be a way to improve 

the fuel-efficiency of pulsejet engines. 

The pressure inside the engine falls to below 1 atmosphere during 

the intake phase and rises to as much as twice atmospheric during 

combustion and exhaust phases. A valve placed over the fuel jet is 

sufficient to provide a degree of injection timing and the addition of this 

mechanism can provide a noticeable improvement in the fuel-efficiency of 

a large pulsejet. 
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CHAPTER FIVE 

RESULTS AND RECOMMENDATIONS 

In this study we consider a conceptional design of pulse jet engine with a 

thrust 100 lb, the goal of present study is to estimate in very simple fashion 

the dimensions of pulse jet engine. We have not considered important 

aspects such as inlet diffuser and exhaust nozzles effects. All these factors 

will be significant in real applications. 

1-Engine Diameter: 

from equation (4-2), using the amount of thrust of the engine, the mean cross-

sectional area: 

       100 = 2.2 A 

A= 45.45 sq in  

The mean diameter of the engine  

Dm =   

      = 7.61 in 

2- Engine Length: 

Using relation (4-3), assume ( ) = 12, then engine length can be 

calculated: 

      = 12 then the effective length 

  L = 12 Dm 

     = 12  7.61 

     = 91.32 in 
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3- Total Petal Valve Area: 

From relation (4-4), total valve area: 

        = 0.23  45.45 

    = 10.45 sq in 

Relation (4-4 ) assume that the intake is an open hole, with no loss due to 

the presence of valves, but when there is valves there will be losses, petal 

valves have Poor aerodynamic performance. Assume that the efficiency of 

intake valves is 50%, then the actual area (Vactual) of valves required 

Vactual=   

         =   

         = 20.91 sq in 

4- Petal Valve: 

 Increase the size of hole would increase the pressure on the valves 

themselves which cause them to bend so that it begins to dish into the 

holes which affects their operation. Assume using valve with 12 hole, then 

hole area will be:   

 Ah =   

      =  

      = 1.74 sq in 

Then each hole diameter (Dh) will be: 

 Dh =  

                = 1.49 in 
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5- Combustion Chamber Diameter: 

 Petal valve holes will place in a ring around the edge of the pipe, so there 

is need of a certain amount of space between the holes . 

 
Figure 5.1: Petal valve front view 

 

Assume there is ¼ inch gap between the holes, then the total 

circumference of the circle drawn through the center of each hole will be 

    = Number of holes Diameter + Number of Gaps   Grip size 

             = 12   1.49 + 11   .25 

            = 20.63 in 

Diameter of the Circle which runs through the center of each hole  

 D =  

               = 6.07 inches 

The diameter of the circle which runs around the outer edge of the ring of 

holes: 

 D0 = 6.566 +1.49 

      = 8.06 inches        
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There would be a 20.907 square inches of space around the ring of holes, 

then the overall combustion chamber area will be 

 AO=  

      =71.89 square inches 

Then the combustion chamber diameter 

 DC=  

              =9.57 inches 

6- Combustion chamber length: 

Using Schmidt’s empirical results in chapter four (4.5), then the engine 

will suck in a volume of air equal to: 

Vair= 91.32  

                =830.72 cubic inches  

Combustion chamber length will be: 

 CL=   

    = 13.683 inches 

7- Joint The Combustion Chamber With Tail Pipe: 

Using an angle of 30 degrees for the section between the combustion 

chamber and the tailpipe. This will provide some post combustion 

confinement to increase the internal operating pressures while ensuring 

that the engine still has good internal mass-flow speeds to provide 

maximum Kadenacy effect.  
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           Figure 5.2: Joint combustion chamber with tail pipe using 300 cone 

From the figure above, the length of joint (Lc) will be 

   

                   Lc = 1.69 inches 

Recommendations:  

While this study present very much through investigation on the geometrical 

design of pulse jet engine, continued work is needed on designing fuel and ignition 

systems. 

For more study of engine, the design need to be built using suitable material 

and tested in lab to compare the actual thrust with the theoretical, study the effect 

of changing dimensions on engine performance. Combustion chamber volume and 

shape, valve system type as well as, the inclination of the transition section have 

ability to improve engine performance. 
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