Comparative Study of Different Vaccination Protocols Against Newcastle Disease and Infectious Bursal Disease in Broiler and Layer Chickens

BY
HANADI MOHAMED KHAIR AHMED
(B.V.M, 2002)
University of Khartoum

Supervisor
Dr. ABDELWAHID SAEED ALI BABIKER
Department of Preventive Medicine and Public Health
Faculty of Veterinary Medicine
University of Khartoum
Co-supervisor
Dr. Mahmoud Ishag Omer

A thesis submitted to the University of Khartoum in Partial Fulfillment of the Requirements of (M.V.Sc)

Department of Preventive Medicine and Public Health
Faculty of Veterinary Medicine
University of Khartoum
August 2006
List of Contents

Dedication I
Acknowledgement II
List of contents III
List of Table IV
List of figures V
List of abbreviation VI
Abstract VII
Arabic Abstract VIII
Introduction 1

Chapter I: Literature Review 3
1.1. Newcastle disease 3
1.1.1. Definition 3
1.1.2. History 3
1.1.3. The disease in Sudan 3
1.1.4. Newcastle disease virus 4
1.1.5. Clinical signs 5
1.1.6. Transmission 6
1.1.7. Pathogenicity 6
1.1.8. Incubation period 7
1.1.9. Immunosuppression 7
1.1.10. Diagnosis 7
1.1.10.1. Clinical sign 7
1.1.10.2. Gross lesion 8
1.1.10.3. Virus isolation 8
1.1.10.4. Laboratory diagnosis 9
1.1.11. Prevention and control 9
1.1.11.1. Vaccines 10
1.1.11.1.1. Live vaccines 10
1.1.11.1.1.1. The lentogenic strain vaccine 10
1.1.11.1.1.2. The mesogenic strain vaccine 11
1.1.11.1.2. Inactivated vaccine 11
1.1.12. Routes of application 11
1.2. Infectious Bursal Disease 13
1.2.1. Definition 13
1.2.2. History 13
1.2.3. The disease in Sudan 13
1.2.4. Infectious bursal disease virus 14
1.2.5. Serotypes and variants 15
1.2.6. Pathogenesis 15
1.2.7. Transmission 16
1.2.8. Immunity to IBDV
1.2.9. Immunosuppression
1.2.10. Clinical signs
1.2.11. Lesions
1.2.12. Diagnosis
1.2.13. Prevention and control
1.2.13.1.1. Live vaccines
1.2.13.1.1.1. Mild strains
1.2.13.1.1.2. Intermediate strains
1.2.13.1.1.3. Hot strain
1.2.14. Inactivated vaccine

Chapter II: Material and Methods
2.1. Chicks
2.2. Vaccines
2.2.1. ND Broiler
2.2.2. Nobilis MA5 + clone 30
2.2.3. clone 30
2.2.4. Lasota
2.2.5. Komarov
2.2.6. Gumboro D78
2.3. Vaccination programme
2.3.1. Experiment 1
2.3.2. Experiment 2
2.4. ELISA for IBD and ND disease
2.4.1. Reagents provided
2.4.1.1. NDV and IBD coated plates
2.4.1.2. Conjugate reagent
2.4.1.3. Stop solution
2.4.1.4. Sample diluent
2.4.1.5. Wash buffer
2.4.1.6. Negative control
2.4.1.7. Positive control
2.4.3. Reagent preparation
2.4.3.1. Test procedure
2.5. Data Analysis

Chapter III: Result
3.1. EXPERIMENT 1 — Broiler flock
3.1.1. Mean antibody titre (log 2) for ND in broiler flock
3.1.2. Mean antibody titre (log 2) for IBD in broiler flock
3.2. EXPERIMENT 2 — Layer flock
3.2.1. Mean antibody titre (log 2) for ND in Layer flock
3.2.4. Mean antibody titre (log 2) for IBD2 in Layer flock

Chapter IV Discussion

References
DEDICATION

To all whom I love
ACKNOWLEDGEMENTS

My heartfelt thanks Almighty Allah for giving me the strength to complete this work.

I would like to express my gratefulness gratitude to my supervisor Dr. Abdelwahid Saeed Ali and my Co-supervisor Dr. Mahmoud Ishag Omar and to Dr. Essam M. Ali Algaali for their great help, guidance and advice during the study.

My thanks to Dr. Sobhi Mohamed Khair, Centeral Veterinary Research Laboratory (CVRL) for his help and advice in doing the experiments.

My gratitude is extended to Mr. Ibrahim Hasabo, The head of Coral Company, to the staff of Coral Laboratory and to Mr. Mohamed Omar, the head of Ditasi for their help in the lab. work.

I wish to extend my thanks to Dr. Mohamed Tabidi for his help.

My gratitude is extended to every one at the Animal Production Research Centre-Kuku- who directly or indirectly helped me to finish this work.

All thanks to my friends, family, for supporting me to do this work.
LIST OF ABBREVIATIONS

AGID Agar gel diffusion test
BD Beak dipping
DW Drinking ater
ELD50 Embryol lethal dose 50
ELISA Enzyme linking immunosorbent assay
HI Heamagglutination inhibition
IBD Infectious bursal disease
IBDV Infectious bursal disease virus
IBV Infectious bronchitis
I\M Intramuscular
I\N Intranesal
K Komarov
MDA Meternal drived antibody
ND Newcastle disease
NDV Newcastle disease virus
OIE Office International des Epizootics
PMV Paramyxovirus
VNT Virus netrolization test
VV Visrotropic velogenic
List of Table

Table 1: The coefficient variation of ND MDA in Broiler Chicks vaccinated via different protocol in groups (A, B, C and D)	35
Table 2: The coefficient variation of IBD MDA in Broiler Chicks vaccinated via different protocol in groups (A, B, C and D)	35
Table 3: The coefficient variation of ND MDA in Layer Chicken vaccinated via different protocol in groups (A, B, C and D)	41
Table 4: The coefficient variation of IBD MDA in Layer Chicken vaccinated via different protocol in groups (A, B, C and D)	41
List of Figures

Figure 1: Mean antibody titre (log 2) for ND in broiler chicks 31
Figure 2: Log2 titre for ND1 in groups A, B, C and D in 48 days in broiler chicks 32
Figure 3: Mean antibody titre (log2) for IBD in broiler chicks 33
Figure 4: log2 titre for IBD1 in groups A, B, C and D in 48 days in broiler chicks 34
Figure 5: Mean antibody titre (log2) for ND in Layer flock. 36
Figure 6: Log 2 titre for ND2 in groups A, B, C and D in 62 days in Layer flock. 37
Figure 7: Log 2 titre for ND2 in groups A, B, C and D in 133 days in Layer flock 38
Figure 8: Mean antibody titre (log2) for IBD2 in Layer flock. 39
Figure 9: log2 titre for IBD2 in groups A, B, C and D in 48 days in layer flock 40
Abstract

In the present study, two experiments were designed to evaluate different protocols of (ND) and (IBD) vaccines in broiler and layer flocks to choose the best.

In both broiler and layer chicks a total of 400 one day old chicks 200 for each, were divided into four groups (A, B, C and D). Group D in all protocols is the control.

In broiler and layer using different ND vaccines live and inactivated vaccines in four protocols and different doses (2 doses and 3 doses) IBD D78.

In broiler the mean [ELAISA] titre (log2) of ND in all groups after 21 days post vaccination is (8.04, 11.9, 8, 5, and 6.45). And for IBD is (10.79, 11.41, 11.74, and 5.7).

In layer the mean [ELAISA] titre (log2) of ND in all groups after 21 days post vaccination is (12.65, 13.28, 13.1 and 4.1). And for IBD is (11.57, 10.58, 11.48, and 5.5).

In all groups in broiler, concluded that live ND with inactivated in day old and boosting with lasota in 18 days is the best. Also 2 doses D78 is better than 3 doses.

In layer, concluded that live ND with inactivated in day old and boosting with lasota or Komarov in 3 weeks and komarov with inactivated in 16 weeks at point of laying is the best. Also 2 doses D78 is better than 3 doses.
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
يؤهل المنجوم في المريض في درجة D87 للاستخدام الجبلي، خلافاً للتحديد السابق.
Introduction

Newcastle and infectious bursal disease are major problems in poultry industry, and have world distribution; they are most contagious viral disease. ND is caused by *Avian Paramyxox Virus 1* and IBD caused by RNA virus.

The morbidity and mortality rates depend on the type and virulence of the virus strain, age, environmental condition, and reach to 100% mortality in susceptible chicken. The morbidity rate of IBD usually as high as 100% and mortality range between (10-70%).

ND was first reported in Sudan in 1951 but isolation and identification of virus done in 1964, from outbreak in Khartoum province. IBD observed in late December 1980 and early January 1981.

Vaccination is the most effective control measure of the highly contagious viral infections in poultry including ND and IBD. Vaccination programs for both diseases includes live vaccines. ND virus vaccines are lentogenic strains (La Sota, HitchnerB1, clone 30) and mesogenic strains (Komarov) for secondary vaccination of birds and inactivated vaccines. IBD virus vaccines are live (D78, 228E) and inactivated vaccines.

Several epidemics of ND and IBD appeared in vaccinated chickens and caused high mortality rates. The present study was designed to find the most
suitable vaccination program against both viral diseases through the application of different vaccination programs. Another objective of this study is to find a relationship between imported vaccines and isolated pathogenic strains.
CHAPTER I

LITERATURE REVIEW

1. 1. Newcastle Disease

1.1.1. Definition

Newcastle Disease (ND) is a major viral disease of poultry and other avian species (Alexander 1991). It is enzootic in most countries in Africa, Asia and South America (Bread and Wilkes 1985). However the disease have economic impact on poultry industry precipitated following outbreaks of the disease (Alexander and Aldous, 2001).

1.1.2. History

The disease was first described by Dolye (1926) and it was named for the city in England where it is catastrophic. The disease also occurred in Java in Indonesia in the same year (Dolye, 1927).

1.1.3. The disease in Sudan

ND was reported at the first time in Sudan in 1951 (Anon, 1950-1951). The virus was first isolated in Sudan in 1964 in a natural outbreak (Karrar and Mustafa 1964). Twelve of the NDV strains were isolated from the country during 1963-1979 eight of them were velogenic and four of them were mesogenic (Ballouh et al, 1983).
According to Haroun et al. (1992) there were four NDV strains isolated from outbreaks around Shambat village. Moreover the local isolate of NDV was first characterized by Eisa (1979). The isolate was found to be virulent ND virus. However Khalfallah et al. (1992) reported that the most prevalent NDV strain in the Sudan is velogenic viscerotropic pathotype, the strain, which cause heavy annual losses of the country's poultry industry. The lentogenic strain isolated for the first time in the Sudan from apparently healthy chickens (Khalafallah, 1994)

1.1.4. Newcastle disease virus

The disease is caused by avian paramyxovirus genus Rubella virus of the family paramyxoviridae (Murphy et al, 1999). Furthermore the family is subdivided into two sub families paramyxovirinae and pneumo virinae, the former contains the genera Respirovirus, Rubella virus and Morbilli virus. The later contains the genera pneumo virus and Metapneumo virus (Murphy et al, 1999). The genus Rubella virus consists of NDV, Avian paramyxovirus (2.9), canine Para influenza virus, porcine rubella virus Michoacan Mexico virus, Mumps virus and human Para influenza viruses 2.4a and 4b (Murphy et al, 1999).

All isolates had the characteristics of NV and VV strains similar to Herts 33 Paramyxoviridae, Rhabdoviridae, Filoviridae and Bornaviridae form the
order Mononegavirales. All this families are enveloped, covered with peplomers and all have genomes consisting of a single molecule of negative-sense, single stranded RNA. (Murphy et al, 1999).

1.1.5 Clinical signs

Newcastle disease virus occurs as three pathotypes Velogenic, Mesogenic and Lentogenic, these terms have come to be applied to high virulence, moderate virulence and low virulence (Alexander, 1991). Strains of NDV have been grouped into pathotype depending on clinical signs: viscerotropic velogenic is highly pathogenic form make hemorrhagic intestinal lesions, neurotropic velogenic form makes respiratory and nervous signs with high mortality mesogenic form usually occurs with respiratory signs and sometimes neural signs with low mortality. In lentogenic form there is mild respiratory signs. In asymptomatic enteric form sub clinical enteric infection and Hitchner form respiratory infections caused by viruses of lentogenic pathotype (Bread and Hansen, 1981).
1.1.6. Transmission

ND infection takes place either by inhalation or ingestion of the virus, spreading depends on the availability of the virus in an infectious form (Alexander 1988). The important route of transmission of NDV flock is aerosol (Bread and Hansen, 1984). Moreover transmission by direct contact, air aerosol, contaminated food, water and dust particles (Murphy et al, 1999). Infected chicks may hatch from contaminated eggs in lentogenic strain (Murphy et al, 1999).

In natural infections, large and small droplets containing virus will be liberated from infected birds as result of replication of the virus in the respiratory tract or as result of dust and other particles including feces (Alexander, 1991). Some authors presented evidence that wild birds were one of the major factor in the spread of NDV (Khalafalla et al, 1990). Vertical transmission doesn’t occur as there is death of infected embryos. Also newly hatched eggs broken eggs serve as a source of virus.

1.1.7. Pathogenicity

Pathogenicity of NDV is determined by the strain of the virus, dose, route of administration, age and environmental condition. However, the disease is more acute in younger chicken and in virulent strains causes sudden death in young chickens without clinical signs, but older birds may be more protracted
and with characteristic clinical signs (Alexander, 1991b). Breed organetic constitution of the birds appears to have very little effect on the susceptibility of chickens to the disease (Cole and Hut, 1961). Moreover, Chickens are highly susceptible, but ducks and geese may be infected and show few or no clinical signs even with strains lethal for chickens (Higgins, 1971).

1.1.8. Incubation period

Incubation period of NDV after natural exposure has been reported 2-15 days with average 5-6 days (Alexander, 1991b).

1.1.9. Immunosuppression

Immunosuppression may occur due to infection with other viruses like IBDV (Patlison and Allan, 1974). However Immunosuppression due to chicken anemia agent infection has implicated in the failure of chicken to respond well second inactivated NDV vaccine (Box et al, 1989).

1.1.10. NDV diagnosis:

1.1.10.1. Clinical signs

In the visrotropic velogenic (VV) pathotype in chickens, clinical signs are restlessness, increase respiration, weakness prostration and death. In birds which do not die green diarrhea appear, muscular tremors, torticollis, paralysis and wing opisthotonus. Mortality reaches 100% (Alexander, 1991a)
The NV forms severe respiratory disease followed by neurological signs, dropping in egg production, morbidity is 100% ND mortality is up to 50% and 90% (Alexander, 1991a). The mesogenic NDV causes respiratory diseases, it may cause dropping in egg production (Alexander, 1991b). The lentogenic viruses do not cause disease in adult fowl.

1.1.10.2. Gross lesions:

Gross lesions depend on the strain and the pathotype of the infecting virus and the host (Alexander, 1991a, b). The presence of hemorrhagic lesion in the intestine has been used to distinguish VVND viruses from NVND viruses (Hanson 1980). The ovarian follicles are often flaccid and degenerated. Hemorrhage and discoloration of the other reproductive organs may occur (Alexander, 1991a).

1.1.10.3. Virus isolation

Specimens for NDV isolation are taken from spleen, feces, intestinal contents or cloacal swabs, specimen taken from carcasses should reflect the clinical signs (Alexander, 1991a). Furthermore bone marrow biopsy is a useful sample in countries where transport is slow (Omojola and Hanson, 1986). In virus isolation transport the samples in frozen or chilled state is very important (Alexander, et al 1988).
1.1.10.4. Laboratory diagnosis

1.1.10.4.1. Serological tests

Newcastle disease virus may be used as antigen in a wide variety of serological test, like Hemagglutination inhibition (HI) test or enzyme-linked immunosorbent assay (ELISA) to be used for diagnosis (Alexander, 1996). Hemagglutination inhibition (HI) by sera of chickens that have ND or have been vaccinated with ND vaccines, antibodies of the sera inhibit the agglutination of fowl red blood cells, the antibodies appear 4-8 days after infection. Although HI test is simple to perform, it is different to standardize among laboratories (Bread and Wilkes, 1985). Other method for detecting antibodies is Enzyme Linked ImmunoSorbent Assays (ELISA). (Snyder et al., 1983; Adair et al., 1989). Tabidi M.H et al. 2004 made a comparison between the antibody (Ab) titers to the intermediate Newcastle disease virus (NDV) vaccine (komarov strain) in broiler chick using haemagglutination inhibition (HI) test and (ELISA). for all routes of the vaccine administration, higher Ab titers were detected using ELISA technique than HI test.

1.1.11. Prevention and control

To prevent the introduction of NDV, most countries have restriction on trade in poultry products, eggs and live poultry (Alexander, 1991a). The most
important factor in preventing the introduction of the NDV and its spread is prevention at the farm level during outbreaks.

Proper vaccination programmes and strict biosecurity measures were proved in many reports as essential tools for the control of ND and IBD. (Giambrone and Clay, 1986; Wyeth and Chettle, 1990; Whitfill et al., 1995; Hadd et al., 1997).

1.1.11.1. ND vaccines

ND vaccines have been used successfully since 1940 to prevent this disease (Bread and Hanson, 1984). According to Alexander (1999) ideal vaccination against ND would result in immunity against infection and replication of the virus.

Commercial vaccines are live attenuated and killed vaccines.

1.1.11.1.1. Live vaccines:

ND live vaccines are lentogenic and mesogenic vaccines (Plalya and Rwegemamu, 1991). Most live virus vaccine are grown in the allatonic cavity of embryonated fowl eggs but some, notably mesogenic strains, have been adapted to a variety of tissue culture systems (Alexander, 2004).

1.1.11.1.1.1 The lentogenic strain vaccines

These are Lasota, F (sp1n), Hitchner, v4 ,I2 virulent thermo stable strain (Alexander 1991a, Tuhuc, et al., 1998)
Methods of application for these vaccines are drinking water, intranasal, eye dropping and beak dipping (BD) (Alexander 1991a) spray and aerosol.

1.1.11.1.1.2. The mesogenic strain vaccines

These are Mukteswar, Komarov (K) and Roakin, these are suitable only for secondary vaccination.

1.1.11.1.2. Inactivated vaccines

Inactivated vaccines are produced from infective AF treated with betapropiolactone or formalin to kill the virus and mixed with a carrier adjuvant such as aluminum hydroxide or mineral oil (Cross, 1988; Alexander 2004). Inactivated vaccines are administered by injection either intramuscularly or subcutaneously. Inactivated vaccines are easier to store than live vaccines not as adversely affected by maternal immunity as live vaccines can be used in day-old chicks (Box, et al., 1976). They also produce low levels of protective antibodies of long duration. However, their disadvantages are that they are expensive to produce and to apply and their quality control is often difficult and mineral oils may cause hazard to the vaccinator if accidentally injected (Stones, 1979).

1.1.12. Routes of application

Methods of application of NDV vaccines are injection, eye drop, nasal
Drinking water is the most common means of Newcastle disease vaccination according to direction (Spalatin and Hanson, 1974). It has disadvantage, high local temperature and long time required after vaccine reconstitution may cause drop in vaccine titre, variation in the level of immunity produced in the flock (Khair, 1992).

In aerosol application it is important to achieve the correct size of particles by controlling the conditions under which the aerosol is generated (Meulemans, 1988). The aerosol method is more efficient than intranasal route as measured by the haemagglutination inhibition test (Khair, et al., 1998). According to Tabidi et al., (1998) higher antibody titre was obtained by aerosol than by giving the same dose via the I/N route vaccination 21 days later. Furthermore, 80% of the first group survived virulent and virus challenge while only 60% of the second group withstood the challenge.

Some mesogenic strains are given by wing-web intradermal inoculation (Alexander, 2004).
1.2. Infectious Bursal Disease
1.2.1. Definition:

Infectious Bursal Disease (IBD) is an acute and highly contagious viral infection in chicken. (Lukert and Saif, 1991). The disease was particularly important due to high mortalities, lowered productivity among infected chicks. (Shane et al, 1994).

1.2.2. History:

The disease was first described by Gosgrove (1962), Winderfield et al (1962) isolated the virus and named it infectious bursal agent (IBA). The name infectious bursal disease is termed by Hitchers (1970).

1.2.3. The disease in Sudan:

IBD was first reported in the Sudan in poultry farms in 1981 in Elobied and it was affect chicken of 6 weeks old at that time with a mortality rate of 36% (Shuaib et al, 1982). In Kassala the studies of IBDV revealed that the virus strain was seroepidemiologically related to those strains in Elobied outbreak (Gaffer, et al., 1988). In 1986 in Sennar an outbreak of high mortality rate in 40 days old chickens (Genawi and Shuaib 1988, Genawi and Shuiab 1993). In 1990 the disease occurred in south east of Khartoum. The data presented in this outbreak revealed that a low virulent strain of IBDV is present among broiler chicks in the Sudan (Khalafalla et al 1990-1991).
Serological detection of IBD antibodies among non vaccinated, non-previously infected flocks confirms the existence of sub clinical IBD in the Sudan (Mahasin, 1998).

1.2.4. IBDV:

Infectious bursal disease virus (IBDV) is a member of the family Birnaviridae (Dobos et al, 1979). In the family three genera Avibirnavirus, Aquibirnavirus and Entombirnavirus, IBDV is a member of genus Avibirnavirus. The virus is resistant to many disinfectant and environmental factor for at least 4 month in poultry house (Gary et al., 2000). IBDV Verions are non-enveloped, hexagonal in outline with icosahedral symmetry, 60nm in diameter. The genome consists of two molecules of liner double stranded RNA (Murphy et al., 1999). The larger segment encodes three proteins namely vp2, vp3 and vp4; of which vp2 and vp3 are structural proteins while vp4 is viral protease. the smaller segment encodes viral protein (vp1) 98,000 dalton and the viral polymerase (Fhey et al., 1991)

1.2.5. Serotypes and Varient:

Mc ferran et al (1980) in European origin and Jack wood et al in USA (1982) presented that evidence for the presence of two serotypes designated 1 and 2. The two serotypes are differentiated by virus neutralization test VNT ,although they show a common antigen (Saif,1994). Serotype1viruses
are only pathogenic for chicken, serotype 2 viruses infect chicken and turkey but these infections are of unknown clinical significant (Ismial, et al., 1988). Immunization against serotype 2 doesn't protect against serotype 1 and antibodies to serotype 2 are common in both chickens and turkey (Jack wood and Saif, 1983).

1.2.6. Pathogenesis of IBDV:

Infectious bursal disease is the selective replication of virus in the bursa of fabricius, which in early infections becomes enlarged up to five times its normal size and becomes edematous, hyperemic and cream colonial with prominent longitudinal lymphoid follicles of the bursa become necrotic (Murhy et al., 1999). A virulence forms of the virus produce depletion of cells in the thymus, spleen and bone marrow (Alan et al., 1972; Earagler et al., 1974).

IBDV affects lymphoid tissue causing destruction of the bursa derived lymphocytes within the bursa of fabricius, in the thymus, spleen and caecal tonsils. Thymus derived lymphocytes are relatively unaffected (Jorden, et al., 1990).

1.2.7. Transmission

The virus is resistant to heat and disinfectants, which make it, survive the adverse environmental condition: infected litter is infectious even after
seven weeks (Brar and Robinson, 1999). Equipment and people can transmit IBDV among farms (Butcher and Miles, 1999).

1.2.8. Immunity to IBVD

Birds that are recovered from IBDV infection or vaccination showed serum-neutralizing activity homologous and heterologous IBDV strains when assayed in chick embryos (Winterfield, 1969). Chicks exposed to IBVD at age of three weeks did not develop as high neutralizing titer as those exposed four weeks later (Winterfield, 1969). Carmen (1994) reported that vaccines of low virulence break down the MDA in the forth week of life. However maternal immunity is able to protect the chicks against the disease but can neutralize the vaccine virus (Vob and Vielitz, 1994; Zaheer and Saeed, 2003).

1.2.9. Immunosuppression

Dohm and Saif (1984) defined immunosupression as a state of temporary or permanent dysfunction of the immune response resulting from damage to the immune system and leading to increased susceptibility to disease and always leading to sub-optimal antibody response (Lutticken 1997).

Immunosuppressive effect of infectious bursal disease virus on vaccination against Newcastle disease was compared two, three and four weeks old chickens inoculated with the highly virulent IBDV field isolate 90-11 and the reference serotype 1 strain GBF-1. In all ages groups, isolate 90-11
severely suppressed antibody response to Newcastle vaccination and protective vaccine immunity against Newcastle.

The mesogenic response to phytohemagglutinin of splenic lymphocytes from chicken inoculated with isolate 90-11 or strain GBF-1 was significantly lower than an inoculated control (Nokamura and Nunoya, 1992). IBD of chickens and hemorrhagic enteritis in broiler were diseases that induced immunosuppression, resulting in lowered resistance to a variety of infectious agents and poor response to commonly used vaccines (Saif, 1998).

1.2.10. Clinical signs

The signs of the disease are soiled vent feathers, ruffled feathers, watery diarrhea, anorexia, depression, dehydration and finally death (Gosgrove, 1962).

1.2.11. Lesions

1.2.11.1. Macroscopic lesions

Bursa of fabricius is the target organ for IBDV lesions (Käufer and Weiss, 1980). It appears in the bursa before clinical signs. Gross lesion induced dehydration with darkened discoloration of pectoral muscles, intestinal mucous and renal changes (Gosgrove, 1962).

1.2.11.2. Microscopic lesions

They occur primarily in the lymphoid structures cloacal bursa, spleen,
thymus, harderian gland and caecal tonsils. Histological evidence of infection in the cloacal bursa within 24 hours (Helmloldt and Garner, 1964). Degeneration and necrosis of lymphocytes in the medullar area of the bursal follicle appears early: one day after infection. Lymphocytes are replaced by heterophilli, pyknotic debris and hyperplastic reticuloendothelial cells (Lurket and Saif, 1991). The spleen showed hyperplasia of reticuloendothelial cells in early stage then lymphoid necrosis in the germinal follicles (Lurket and Saif, 1991).

1.2.12. Diagnosis

The disease can be diagnosed by clinical signs and postmortem changes. However in practice, laboratory diagnosis of IBD depends on detection of specific antibodies to the virus, using immunological methods. Identification of the virus by direct immunofluorescent staining or direct examination by electron microscopy (McFerran et al., 1980). A direct immunofluorescent smear of bursa of fabricius and direct electron microscopy examination are more sensitive method than virus isolation and direct electron microscopy (Allan, et al.,1994). Agar gel diffusion test (AGID) is the most useful for detection of specific antibodies in serum or urinal antigen in bursal tissue and the test can be used to measure antibody levels (Cullen and Wyeth, 1975). AGIDT is economic to use and simple to perform and the result could
be obtained within 28 hours. Virus neutralization test (VNT) is more laborious and expensive than AGID, but is more sensitive in detecting antibodies, so it may be useful for evaluating vaccines responder or differentiate between the two serotypes (Isamil and Saif, 1990). Enzyme linked Immunosorbant assay (ELISA) was firstly developed for detection of IBDV antibodies (Marquard et al 1980). Antigen capture (AC) The ELISA had been used for detection of IBDV antigens directly from infected tissues (Synder et al, 1988). It was for serosurveyes of chicken flock (Synder et al 1986). The ELISA is the most rapid test and its results are easily entered into computer software. The reverse transcriptase polymerase chain reaction restriction endonuclease. (RT \ PCR – RE) assay can be used to diagnose IBD in chickens and IBDV strains (Jakwood and Nilsen, 1997).

1.2.13. Prevention and control

The control of the disease depends on vaccination and management.

1.2.13.1. Vaccination:

In 1970, only live vaccines were used to control IBD. Large variation in the degree of the attenuation of vaccines strains and the effects of heterogeneous level of maternal antibodies (which effect the suitable time to vaccinate) make many problems at that time (Myth, 1980). Maternal antibodies protect chicks for 1-3 weeks, but by boostering with oil adjuvant
vaccine, the immunity may extend to four or five weeks (Lucio and Hichner, 1979). Progeny can be protected by vaccinating the parent stock, thereby providing passive immunity, or young birds can be immunized by vaccinating with live IBD vaccine (O’Brien, 1976). Recently, technology has been developed to deliver live vaccine into eggs during the incubation period. Live vaccine virus is blended with IBD antibody and the complex is injected in ovo at 18 days of incubation. The eggs on to hatch and the vaccine virus are released when the chicks are about 7 days of age. In this way, the problem of maternally derived IBD antibody is overcome and the chicks are effectively immunized (OIE, 2000). The IBDV vaccine strains used to control the disease worldwide and classified as mild, intermediate and hot strains based on their capability to neutralize the MDA and cause.

Types of vaccines:

These are live attenuated vaccines and inactivated oil emulsion adjuvant vaccines.

1.2.13.1.1. Live vaccines

Live vaccines strains can be categorized into three groups according to the test bursal body weight ratios (Michele Guittet *et al.* 1994).
1.2.13.1.1.1. Mild strains

It is susceptible to the effect of maternally derived antibody (MDA), so should be administrated only after all MDA has wanted. Application is by means of intramuscular injection, spray or drinking water at 8 weeks age (Skeals et al. 1979).

1.2.13.1.1.2. Intermediate strains

Intermediate vaccines are used in young parent chicken if there is a high risk of natural infection with virulent IBD. They are sometimes administrated at one day old as a course spray to protect chicken in the flock that may have no or only minimal level of MDA (OIE, 2000). Second and third doses are usually administrated, especially when there is a high risk of exposure to virulent forms of the disease (OIE, 2000). Feed based IBDV vaccination was recently tried with good result (Hair-Bejo et al. 2004).

1.2.13.1.1.3. Hot strain

Hot strain is used in severe affected areas such as intervet L228E and TADLC75. It’s used should be where no other means of control exist (Löhern, 1994).

1.2.14. Inactivated vaccine

Inactivated vaccines produce high, long, lasting and uniform levels of antibodies in breeding hens that have previously been primed by live vaccine
or by natural exposure to field virus during rearing (Cullen and Wyeth 1975).
CHAPTER II
MATERIALS AND METHODS

2.1. Chicks:

Two hundred chicks of male (Bovan Hybrid) and two hundred chicks of broiler (Ross 308) were used in the study from Coral Poultry Company.

2.2. Vaccines:

2.2.1. Clone 30:

This is Nobilis ND clone 30 is a line, freeze-dried vaccine against ND. Each dose contains at least 10^6 ELD$_{50}$ of the ND strain clone 30. The vaccine pellet contains stabilizers and Gentamicin.

2.2.2. ND Broiler:

Inactivated vaccine for the protection of day old chickens against ND. Nobilis MD Broiler contains one immunogenic strain of NDV. The virus has been grown on embryonated eggs and is inactivated with formalin, subsequently they have been suspended in the aqueous phase of an oil adjuvant emulsion.

2.2.3. Nobilis MA5+clone 30:

This is an alive, freeze-dried vaccine against IB and ND. Each dose contains at least 10^3 EID$_{50}$ IBV strain MA5 and 10^6 EID$_{50}$ NDV strain clone30.
2.2.4. La Sota:

It is a live NDV vaccine containing the lentogenic chick embryo propagated, Lasota strain of the virus.

2.2.5. Komarov:

It is a freeze-dried, live chick embryo adapted vaccine containing Komarov strain, supplied by the viral vaccine unit centre of Veterinary Research Laboratories.

2.2.6. Gumboro D\textsubscript{78}:

Nobilis Gumboro D\textsubscript{78} is an alive, freeze-dried vaccine. Each dose contains at least 4.0 \(\log_{10}\) TCID\textsubscript{50} of the Gumboro strain D\textsubscript{78}. The vaccine pellet contains stabilizer and Gentamicin.

2.2.7. Nobilis IB +ND:

This is a combined inactivated vaccine for the protection of the chickens against Avian Infectious Bronchitis (IB) and Newcastle disease (ND). It contains one immunogenic strain of IBV, one immunogenic strain of NDV, grown on embryonated eggs or Vero cell culture and inactivated with formalin subsequently they have been suspended in the aqueous phase of an oil adjuvant emulsion.

2.3. Vaccination programme:

All chicks were divided into four groups namely A, B, C and D (50 per
group). Chicks in all groups were bled by head puncture method after one day old and the collected blood left overnight at room temperature to clot and then centrifuged at 1000 rpm for 10 minutes. Separated sera were store at -20°C before tested for antibodies level for ND and IBD in 1 day old using ELISA.

2.3.1. Experiment 1:

Chicks in group A were vaccinated at a day old with clone 30 via the aerosol and ND Broiler injection. Then, in thirteen days old, they were vaccinated with D_{78}, the second dose in 20 days and the third dose in 27 days in drinking water. Chicks in group B were vaccinated at a day old with MA5+clone 30+ND Broiler injection, in 13 days old vaccinated with D_{78} and the second dose in 20 days in drinking water. Then in 23 day, they were given Lasota in DW. Chicks in group C were vaccinated at day old with clone 30 via the aerosol and 13 day and 20 day with D_{78} in DW. Then, with Komarov in 23 day. Chicks in Group D was left without vaccination as control.

Chicks in all groups were bled by wing puncture method after 21 days and the collected blood left overnight at room temperature to clot and then centrifuged at 1000 rpm for 10 minutes. Separated sera were store at -20°C before tested for antibodies level for ND and IBD in 48 days using ELISA.
2.3.2. Experiment 2:

Chicks in group A were vaccinated at day old with clone 3 via the aerosol and ND Broiler injection. Then, in 24 day they were vaccinated with D78, second dose in 31 days, third dose in 38 days in drinking water and finally with Komarov in 58 days. Chicks in group B were vaccinated at day old with MA5+clone 30 (spray) +ND Broiler (injection). Then, they were vaccinated with Lasota (DW) in 21 days. In 24 days, 31 days, and 38 days they were vaccinated with D78 (DW) and with Lasota again in 58 days. Chicks in group C were vaccinated in day old with clone 30 (spray). In 21 days, they were vaccinated with Komarov, in 24 days with D78 (DW) and in 58 days with Komarov. Chicks in groups A, B and C were vaccinated in 16 weeks with inactivated IB+ ND (injection). Then, a day after they were vaccinated with Komarov (intranasal) and after another week, they were vaccinated with live IB (DW). Chicks in group D were left as control. Chicks in all groups were bled and separated sera were used for measuring antibodies level for ND and IBD 48 days using ELISA and in 19 weeks for antibodies level for ND and IB using ELISA.
2.4. ELISA for IBD and ND disease:

2.4.1 Reagents provided:

2.4.1.1 NDV and IBD coated plates:

Inactivated viral antigen on microtitre wells,

2.4.1.2, Conjugate reagent:

Sheep anti-chicken: alkaline phosphates in tris buffer with protein stabilizers, inert red dye and sodium azide preservative (0.1 % w/v).

2.4.1.3. Substrate buffer:

Diethanolamine buffer with enzyme cofactors.

2.4.1.4. Substrate Tablets

pNPP(p-Nitrophenyle phosphotase) tablets to be dissolved with Substrate buffer.

2.4.1.5. Stop solution:

Sodium Hydroxide in Diethanolamine buffer.

2.4.1.6. Sample diluent:

Phosphate buffer with protein stabilizers, inert green dye and sodium azide preservative (0.1 % w/v).

2.4.1.7. Wash buffer:

Powdered phosphate buffered saline with Tween.

2.4.1.8. Negative control:
Specific pathogen free serum in phosphate buffer with protein stabilisers and sodium azide preservative (0.1 % w/v).

2.4.1.9, Positive control:

Antibodies specific to NDV and IBDV in Phosphate buffer with protein stabilisers and sodium azide preservative (0.1% w/v).

2.4.2 Materials and equipment required:

Precision Pipettes and disposable tips, eight or twelve channel pipette/repeater pipette. Plastic tubes for sample, distilled or deionized water, microtiter plate reader with 405nm filter, microtiter plate washer.

2.4.3 Reagent preparation:

2.4.3.1. Substrate reagent:

I tablet was added to 5.5 of substrate buffer and allowed to be mixed for 3 minutes or until fully dissolved. The prepared reagent was made on the day of use, it was stable for one week when kept in the dark at + 4ºC. Tablets were dropped into clean container and appropriate volume of substrate buffer was added.

2.4.3.2. Wash buffer:

The contents of wash buffer sachet were dissolved in one litre of distilled/deionized water. It remained stable for up to one month when stored in + 4ºC. All other kit components are ready to use, they were allowed to
come to room temperature before use.

2.4.3.3. Sample preparation:

Test sample was diluted 1:500 by adding 1 µl to 0.5ml of sample diluent. Well was mixed with vortexing. A fresh pipette was used for each separate sample. The dilution tube was clearly identified with sample number. Positive and negative controls do not require diluting.

2.4.3.4. Test procedure:

NDV or IBDV coated plates were removed from sealed bag and the location of sample was recorded on template. 100 µl of negative control was added into wells Cl and D1. Then diluted samples were added into appropriate wells and the plate was covered with lid and incubated at room temperature (22-27°C) for 30 minutes. The contents of wells were aspirated and the plate was washed four times with wash buffer, inverted and tapped firmly on absorbent paper. 100 µl of conjugate reagent was added to each well, and the plate was covered with lid and incubated at room temperature for 30 minutes. The wash procedure was repeated, 100 µl of prepared substrate reagent was added to each well and the plate was covered with lid and incubated at room temperature for 15 minutes. 100 µl of stop solution was added. The microtitre plate was blanked in air and the reading was recorded by reading at 405nm.
2.5. Data analysis:

Coefficient of Variation (CV): is an indicator of individual value dispersal with regards to titer mean.

Coefficient of Variation = \[\frac{\text{standard deviation}}{\text{Arithmetic mean titer}} \]

CV values is currently made according to the following threshold

- < to 30% = Very homogenous
- 30 to 50% = Homogenous
- 50 to 80% = poorly homogenous
- > 80% = Heterogeneous
- > to 150% = Very heterogeneous
CHAPTER III

Results

3.1. Experiment 1 — Broiler flock

3.1.1. Mean antibody titre (log 2) for ND in broiler chicks

Figure 1 in experiment 1 shows mean antibody titre (log2 titre) for ND of 4 different protocol (A, B, C and D) pre and post vaccination after 21 days from the last dose by ELISA.

![Graph showing mean antibody titre (log2 titre) for ND in broiler chicks](image)

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>LOG2 TITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1DAY</td>
<td>12</td>
</tr>
<tr>
<td>48 DAY</td>
<td>10</td>
</tr>
</tbody>
</table>

NB:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Day 3: clone 30 (spray) + ND broiler (I/M)</td>
<td>* Day 3 : clone 30 + IB (spray) + ND broiler (I/M)</td>
<td>* Day 3 – clone 30 (spray) Day 23 : Kamarov (I/N)</td>
<td>Non-vaccinated (as a control)</td>
</tr>
</tbody>
</table>
Fig. 2: Log2 titre for ND1 in groups A, B, C and D in 48 days in Broiler Chicks.

ND1

A

B

C

D

0

2

4

6

8

10

12

14

8.04

11.9

11.4

6.45

DCBA
3.1.2. Mean antibody titre (log 2) for IBD in broiler flock

Figure 3 in experiment 1 shows mean antibody titre (log 2 titre) for IBD 1 of 4 different protocol A, B, C and D pre and post vaccination after 21 days from the last dose by ELISA.

NB:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Day 13 – first dose D78 (DW)</td>
<td>* Day 13 – first dose D78 (DW)</td>
<td>* Day 13 – first dose D78 (DW)</td>
<td>Non-vaccinated (as a control)</td>
</tr>
<tr>
<td>* Day 20 – second dose D78 (DW)</td>
<td>* Day 20 – second dose D78 (DW)</td>
<td>* Day 20 – second dose D78 (DW)</td>
<td></td>
</tr>
<tr>
<td>* Day 27 – third dose D78 (DW)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 4: Log2 titre for IBD1 in groups A, B, C and D in 48 days in Broiler chicks.
Table 1: the coefficient variation of ND MDA in Broiler Chicks vaccinated via different protocol in groups (A, B, C and D):

<table>
<thead>
<tr>
<th>Days</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days old</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>48 days old</td>
<td>83</td>
<td>75</td>
<td>99</td>
<td>163</td>
</tr>
</tbody>
</table>

Table 2: the coefficient variation of IBD MDA in Broiler Chicks vaccinated via different protocol in groups (A, B, C and D):

<table>
<thead>
<tr>
<th>Days</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days old</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>48 days old</td>
<td>77</td>
<td>42</td>
<td>46</td>
<td>50</td>
</tr>
</tbody>
</table>

< to 30% = Very homogenous 30 to 50% = Heterogeneous
50 to 80% = poorly homogenous > 80% = Heterogeneous
> to 150% = Very heterogeneous
3.2. EXPERIMENT 2 – Layer flock

3.2.1. Mean antibody titre (log 2) for ND in Layer flock

Figure 5 in experiment 2 shows mean antibody titre (log 2 titre) for ND2 of 4 different protocol (A, B, C and D) pre and post vaccination after 21 days from the last dose by ELISA.

![Figure 5 ND2](chart)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Day 3: clone 30 (spray) + ND broiler (I/M) * Day 28 Komarov (I/N) * Day 58: Komarov (I/N) * Day 133 Komarov (I/N) + (IB + ND) (I/M)</td>
<td>* Day 3: clone 30 + IB (spray) + ND broiler (I/M) * Day 21: Lasota (DW) * Day 58: Lasota (DW) * Day 133 Komarov (I/N) + (IB + ND) (I/M)</td>
<td>* Day 3 – clone 30 (spray) * Day 23: Komarov (I/N) * Day 58: Komarov (I/N) * Day 133 Komarov (I/N) + (IB + ND) (I/M)</td>
<td>Non-vaccinated (as a control)</td>
</tr>
</tbody>
</table>
Figure 6: Log2 titre for ND2 in groups A, B, C, and D in 48 days in layer flock.
Fig 7: Log2 titre for ND2 in groups A, B, C and D in 133 Days in Layer Flock

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>LOG2 TITRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.65</td>
</tr>
<tr>
<td>B</td>
<td>13.28</td>
</tr>
<tr>
<td>C</td>
<td>13.1</td>
</tr>
<tr>
<td>D</td>
<td>4.1</td>
</tr>
</tbody>
</table>
3.2.4. Mean antibody titre (log 2) for IBD2 in Layer flock

Figure 8 in experiment 2 shows mean antibody titre (log 2 titre) for IBD2 of 4 different protocol (A, B, C and D) pre and post vaccination after 21 days from the last dose by ELISA.

NB:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>* Day 24 – first dose D78 (DW)</td>
<td>* Day 20 – first dose D78 (DW)</td>
<td>* Day 24 – first dose D78 (DW)</td>
<td>Non-vaccinated (as a control)</td>
</tr>
<tr>
<td></td>
<td>* Day 31 – second dose D78 (DW)</td>
<td>* Day 28 – second dose D78 (DW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Day 38 – third dose D78 (DW)</td>
<td>* Day 35 – third dose D78 (DW)</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 9: Log 2 titre for IBD2 in group A, B, C and D in 62 days in Layer Folck
Table 3: the coefficient variation of ND MDA in Layer Chicken vaccinated via different protocol in groups (A, B, C and D):

<table>
<thead>
<tr>
<th>Days</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days old</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>48 days old</td>
<td>82</td>
<td>90</td>
<td>200</td>
<td>224</td>
</tr>
<tr>
<td>133 days old</td>
<td>62</td>
<td>62</td>
<td>54</td>
<td>128</td>
</tr>
</tbody>
</table>

Table 4: the coefficient variation of IBD MDA in Layer Chicken vaccinated via different protocol in groups (A, B, C and D):

<table>
<thead>
<tr>
<th>Days</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 days old</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>62 days old</td>
<td>43</td>
<td>70</td>
<td>48</td>
<td>44</td>
</tr>
</tbody>
</table>

< to 30% = Very homogenous
30 to 50% = Heterogeneous
50 to 80% = poorly homogenous
> 80% = Heterogeneous
> to 150% = Very heterogeneous
CHAPTER IV

Discussion

Newcastle disease and infectious bursal disease are important diseases in poultry industry in Sudan, to control these diseases many vaccines had been introduce.

The proper time of vaccination, varies and depends on maternal derived antibodies (Ab), route of vaccination, virulence of the vaccine strain, environmental stresses and management are essential factors to be considered when developing a vaccination program.

In this study we followed very important steps to choose a perfect protocol, firstly measuring MDA for ND and IBD to choose the suitable time to vaccinate this is agree with Lurket and Saif (1991) who reported that monitoring of antibody level in the Flock com aci kin determine the proper time to vaccinate. Then, using ELISA technique to measuring Ab titre according to Tabbidi et al (2004) who mentioned that for all routes of the vaccine administration, higher Ab titers were detected using ELISA technique than HI test.
The satisfactory levels of immunity are not reached after vaccination of maternally immune chicks unless vaccination is delayed until the 2-3 weeks of life (Allan, 1971). So in this study the blood sample was taken in 3 weeks after vaccination to measuring Ab titre after vaccination.

In ND vaccine mesogenic strians are used as booster dose because the mild live vaccines do not multiply very efficiently when used as boosters in face pre of existing immunity and hence the secondary response that they induce is rarely very much high than the primary response vaccination of young chicken which have high level of MDA was considered as on of the main problems associated with control of ND (Dawson and Allan, 1973)

The effect of MDA the immune response against ND vaccination was well documented (Mahasin *et al*, 1980; Haroun and Hajer, 1989).

In the present study, using different vaccines for ND, using live vaccines only and live with in activated vaccines to compare. For IBD we used intermediate strain D78 two doses and three doses to compare. In all protocols in this study ND vaccine was administrated before IBD vaccine. Solano and *et al*, 1989 confirmed that high level of MDA protect the chicks from infection by IBDV in early ages. In this study we used D78 in 2 weeks in broiler chicks and after 3 weeks in layer chicken.
MDA was found to reduce the level of protection produced by vaccination. MDA may not always be protective against natural infection in moderate to high titer (Allan, 1973).

In experiment 1, the broiler chicks were vaccinated with ND clone 30 (spray) at one old with inactivated (ND Broiler) vaccine IM and booster dose with La Sota vaccine (DW) at 20 days showed high Ab titer than using live only with booster dose with kamorov vaccine. And vaccinated two doses IBD D78 vaccine showed high antilogy level than 3 doses.

In IBD vaccination (Iurket and Saif 1991) (MDA) maternal derived antibodies were not sufficient to protect broiler chicks against highly pathogenic strain of IBDV during the growth period. Even the patient flock had been boosted at pointed lay using oil emulsion vainer (OIE) (Van Den Berg et al., 1991).

Regeswar and Masillamony (1993) mentioned that vaccinated with La Sota or B1 by aerosol at 7 days of age could be given with dose level low than the usual dose and at early age without side effect and good immunity. The efficacy of Komarov vaccine might improve if the filed dose increased (Ali, 1973). K vaccine was recommended to be given by IM in 4 weeks and repeated at point of lying. (Ali, 1978).
In Experiment (2) layer Flock using Live (clone 30) spray in day old with inactivated (NDBroiler) I\M and La Sota (DW) or Komarov 1/N at 3 weeks and in 58 day showed the highest antilogy level. In 16week using Komarov 1/N with in activated (IB + ND) I\M showed high antibody titre in all groups, also using 2 doses D78 showed high antilogy level than 3 doses.

According to Khair 1992, vaccinated chicken at 4 weeks of age by Komarorv strain 1/N route gave immune response greater than given vaccine by DW route. Vaccinated 18day old broiler chickens onse with Komarov1/N or1/M route had high antibody titres than DW route (Gaffer Elamin et al, 1993).

In conclusion, this study revealed that in broiler chicks vaccinated with clone 30 (spray) at a day old with inactivated (ND Broiler) I\M and boostring with La Sota (DW) at 20 days showed the highest Ab titer. And vaccinated with two doses IBD D78 showed high antilogy level. In layer Flock using Live (clone 30) spray in day old with inactivated (NDBroiler) I\M and La Sota (DW) or Komarov 1/N at 3 weeks and in 58 day showed the highest antilogy level. In 16week using Komarov 1/N with in activated (IB + ND) I\M showed high antibody titre in all groups, also using 2 doses D78 showed high antilogy level.
Therefore it is recommended for ND to use live vaccines with the inactivated vaccines, special in layers, for IBD using 2 doses D78 after monitoring of antibody level.
REFERENCES

Khalafalla, A.I., Nimir, A.H. and Hajer, I. (1990): Role of some passeriformes birds in transmission of Newcastle disease 111-Transmiss ability of Newcastle disease virus in Sudan

House sparrow (passer domesticus arborius).

Jack wood, D.J. and Saif

Lucio, C. and Hitchner, S.B. (1979): Infectious bursal disease emulsified vaccine: effect upon neutralizing antibody levels in the dam and subsequent protection of the progeny. Avian Diseases

