
A Labeling DOM-Based Tree Walking Algorithm for

Mapping XML Documents into Relational Databases

Dissertation Submitted in Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in the Faculty of

Mathematical Sciences University of Khartoum

By:

Seif El.Duola Fath EL Rhman El Haj El.Bashair

Supervisor:

Dr. Izzeldin Kamil Amin

 Co supervisor:

Dr. Mohamed Ahmed Al-Affendi

Aug 2011

i

DEDICATION

To my parents, brother Rabiea, my wife, and my children and all

my family with love.

ii

ACKNOWLEDGEMENTS

 I am very thankful to my supervisors, Dr. Izzeldin K.

Amin and Dr.Al- Affendi M. A., for their guidance, encouragement

and help in fulfilling the requirements of this dissertation. Their

invaluable advice and constant guidance has helped me improve

myself as a researcher and guide me to improve my written skills.

 I would like to extend my special thanks to the faculty and

the staff of the Department of Computer Science, University of

Khartoum, Sudan.

 Above all, I would like to express my appreciation and

thanks to my wife and my son Mohammed and Ahmed and my

daughter Renad for their love, support, understanding, and patience.

1

TABLE OF CONTENTS

DEDICATION ………………………………………………….…….…..I

ACKNOWLEDGEMENTS …………………………………………..……II

ABSTRACT ... 13

الدراسة ملخص ... 14

CHAPTER 1 THE PROBLEM ... 15

1.1 INTRODUCTION ... 15

1.2 PROBLEM STATEMENT: ... 17

1.3 OBJECTIVES OF RESEARCH: .. 18

1.4 MAIN CONTRIBUTION: ... 20

1.4.1 DATA MAPPING: ... 20

1.4.2 DATABASE RECONSTRUCTION: 21

1.6 THESIS ORGANIZATION: ... 23

2

CHAPTER 2: INFORMATION RETRIEVAL USING XML . 25

2.1 INTRODUCTION: ... 25

2.2 INFORMATION RETRIEVAL ON THE WEB: 28

2.3 DIFFERENCE BETWEEN STANDARD INFORMATION

RETRIEVAL AND XML RETRIEVAL: 31

2.4 XML RETRIEVAL APPROACHES: 32

2.5 FULL TEXT INFORMATION RETRIEVAL APPROACH

 ... 33

2.6 NATIVE XML DATABASE APPROACH 35

2.7 HYBRID XML RETRIEVAL APPROACH........................ 39

CHAPTER 3: AN OVERVIEW OF XML STANDARD

TECHNOLOGY ... 41

3.1 XML TECHNOLOGY ... 41

3.1 XML TECHNOLOGY ... 43

3

3.3 VALIDATING: DTD AND XSDL .. 50

3.4 PARSING: SAX AND DOM .. 51

3.5 TRANSFORMING: XSLT .. 52

3.6 XML MANAGEMENT SYSTEMS: 55

3.7 RELATIONAL STORAGE OF XML DATA: 56

3.8 NATIVE XML ENGINES: .. 56

3.9 INDEX STRUCTURES: .. 58

3.9.1. NODE LABELING ... 58

3.9.2. B+-TREE ... 59

3.9.3. XR-TREE ... 61

3.9.4. XB-TREE ... 61

3.10 THE XML QUERY FUNDAMENTALS 62

3.11 XML QUERIES: ... 64

4

3.11.1 LOREL .. 66

3.11.2 XML-QL ... 67

3.11.3 XML-GL ... 67

3.11.4 XSL .. 68

3.11.5 XQL ... 68

3.11.6. XPATH ... 69

3.11.7 XQUERY .. 69

3.12 CHARACTERIZATION OF XML QUERY STYLES: ... 71

3.12.1 THE SELECTION OPERATION 71

3.12.2 SELECTION: SIMPLE PATH .. 72

3.12.3 SELECTION: COMPLEX PATH 72

3.12.4 THE PROJECTION OPERATION 73

3.13 XML ADVANTAGE: ... 73

5

THE FOLLOWING COUNTERARGUMENTS POINT

DESCRIBES THIS ADVANTAGE: ... 74

CHAPTER 4: THE EVOLUTION OF RELATIONAL

DATABASE SYSTEMS ... 77

4.1 INTRODUCTION ... 77

4.2 A DATABASE: .. 79

4.3 DATABASE MODELS .. 81

4.4 FLAT MODEL .. 82

4.5 HIERARCHICAL MODEL .. 83

4.6 NETWORK MODEL ... 83

4.7 DIMENSIONAL MODEL ... 84

4.8 OBJECT DATABASE MODELS ... 85

4.9 RELATIONAL MODEL ... 87

4.10 RELATIONAL OPERATIONS .. 89

6

4.11 ADVANTAGES OF RELATIONAL DATABASES 93

4.12 UNDERSTANDING THE APPLICATION....................... 95

4.13 ORGANIZING THE DATA TO FORM AN INITIAL

CONCEPTUAL MODEL .. 96

4.14 EVALUATING THE CONCEPTUAL MODEL 96

4.15 SEQUENTIAL DATABASE DESIGN 97

GOOD DATABASE DESIGN : ... 98

4.16 THE SIMILARITIES AND DIFFERENCES BETWEEN

XML PATTERN AND RDBMS PATTERN 98

CHAPTER 5: RELATED WORKS AND CURRENT

APPROACHES ... 100

5.1 INTRODUCTION: ... 100

5.2 RELATED WORK ... 101

5.3 MAPPING XML DOCUMENTS TO RELATIONAL

DATABASE RESEARCHES: ... 108

7

5.3.1 THE BASIC INLINING TECHNIQUE: 109

5.3.2 SHARED INLINING TECHNIQUE: 115

5.3.3 HYBRID INLINING TECHNIQUE: 117

THEY DESCRIBED THESE OPERATORS AS FOLLOWS

[101] .. 128

5.4 TRANSLATION ALGORITHM: 132

THE S-GRACE ALGORITHM IS SHOWN IN 5.8: 159

5.6 SUMMARY ... 175

CHAPTER 6: A PROPOSED NEW ALGORITHM 177

INTRODUCTION ... 177

6.2 THEORY INVOLVED ... 177

6.3 THEORY BACKGROUND ... 178

6.5 DEFINITION 2: .. 180

6.6 DEFINITION 3: .. 181

8

6.6.1 DEFINITION 4: ... 181

6.7 MAPPING FRAMEWORK: ... 182

IT DOSE NOT CONSIDER THE XML SCHEMA FOR THE

FOLLOWING REASONS: .. 182

6.8 LABELLING METHOD.. 183

6.9 RELATIONAL SCHEMA ... 184

6.10 MAPPING XML TO RDB ALGORITHM:.................... 188

6.11 RECONSTRUCTING XML DOCUMENT FROM RDB

ALGORITHM:.. 191

6.12 DIFFERENCES BETWEEN THE PRESENTED

ALGORITHMS AND PROPOSED ALGORITHM: 195

CHAPTER 7: EXPERIMENTAL RESULTS AND

DISCUSSION .. 197

7.1 THEORY IMPLEMENTATION:....................................... 197

7.2 TECHNOLOGIES USED: ... 200

9

7.3 SYSTEM DESIGN CONSIDERATION 202

7.4 EXPERIMENTAL ENVIRIOUMENTS 202

7.5 EXPERIMENTAL DATA ... 202

7.6 EXPERIMENTAL PROCEDURE: 202

7.7 EXPERIMENTAL RESULTS ... 203

7.8 RECONSTRUCTING TIME: ... 204

7.9 MAPPING EXPERIMENTS COMPARE WITH OTHER

ALGORITHMS: ... 207

7.10 COMPARE THE XMR ALGORITHM AND ODTDMAP

ALGORITHM[99] .. 210

7.11 RECONSTRUCTION EXPERIMENTS COMPARE

WITH OTHER ALGORITHMS: ... 211

7.12 CONFIDENCE INTERVAL OF RESULTS: 213

7.13 ALGORITHM OPERATIONS ... 215

10

CHAPTER 8: CONCLUSION AND FUTURE WORKS 218

8.1 CONCLUSION .. 218

8.2 FUTURE WORKS .. 221

8.3 REFERENCES: ... 223

APPENDIX: ... 243

 LIST OF FIGURES

Figure 2.1: A hybrid XML retrieval approach to INEX Content

And Structure (CAS) topics ... 38

Figure 3.1: Query twig patterns .. 45

Figure 3.2: A sample of XML Tree representation [57] 46

Figure 3.3: Example transformation from one format to

another ... 54

Figure 3.4: (Prototype) systems for managing XML documents

 ... 55

Figure 3.5: OEM Representation with Interval 60

Figure 3.6: sample XB-tree .. 62

Figure 3.7: An example of an XML document 63

11

Figure 3.8: Tree Base Representation of queries 66

Figure 3.9: selection- Simple P ... 71

Figure 3.10: Selection-Complex Path .. 72

Figure 5.1: Converting a nested definition into flat

representation [98] .. 108

Figure 5.2: Reducing of unary operators to a single operator

[98] .. 109

Figure 5.3: Grouping of sub-elements having the same name

[98] .. 109

Figure 5.4 : DTD graph [98] .. 111

Figure 5.5: Element graph for the editor element [98] 112

Figure 5.6: Node labelling using SPIDER [103] 140

Figure 6.1 : Composite parent –child realtion 179

Figure 6.2: A tree representation for XML documents with

labeling ... 183

Figure 6.3: Relational schema .. 186

Figure 7.1: XML document .. 197

Figure 7.2: A tree representation for XML document in figure

6.1 .. 198

Figure 7.4 Graph represent reconstructing time 205

12

Figure 7.5: Graph represent Compare between mapping time

and .. 206

Figure7.6: Graph mapping time reconstructing time 206

Figure7.7: Graph mapping time OXinsert 208

Figure7.8: Graph For Compare XMR mapping time and

OXinsert mapping time .. 209

Figure7.9: Graph For Compare XMR mapping time and

ODTDmap .. 211

Figure7.10: Graph:To compare between RRXreconstructing

time and Returndesendent time ... 213

Figure7.11: Graph:To compare between XMR confidence

interval and ODTDMap confidence interval 215

13

Abstract

 XML has emerged as the standard format for

representing and exchanging data on the World Wide Web. For

practical purposes, it is found to be critical to have efficient

mechanisms to store and query XML data, as well as to exploit the

full power of this new technology. Several researchers have

proposed to use relational databases to store and query XML data.

With the understanding the limitations of current approaches, this

thesis aims to propose an algorithm for automatic mapping XML

documents to RDBMS with XML-API as a database utility. The

algorithm uses best fit auto mapping technique, and dynamic

shredding, of a specified selected XML document type (data-

centric, document-centric, and mixed documents).e. The propose

algorithm use DOM(Data Object Model) as a warehouse and stack

as a data structure to mapping the XML document into relational

database and reconstructing the XML document from the relational

database. The experiment study show that the algorithm mapping

document and reconstructing it again well. Finally, the algorithm

compare with other algorithms the result is good in time and

efficiency, also the algorithm complexity is O(11n+2).

14

 ملخص الدراسة

ة عرض XMLتعتبر قوالب ة الوسيط الأفضل في عملي آتقنية حديث

ادل ذا الوسيط آأحد الوسائل القياسية لتب اد ه م اعتم د ت ر الانترنت وق وتبادل البيانات عب

ات والاستفسار عن ترجاع البيان ة اس ي إمكاني ا أدى لكشف بعض القصور ف ات مم البيان

ة الت رة في عملي ا واجهت صعوبات آبي م تصمم بعض المعلومات، آما أنه خزين، فهي ل

زين يلة للتخ ة ت . آوس دي أصبحت عملي ي التح ات ه ترجاع البيان زين واس ه خ ذي واج ال

ين ى . المهتم دة عل ات عدي ت دراس ات العلائ أجري د البيان تخدام قواع زين يقاس ي التخ ة ف

تندات ال ة XMLوالاستفسار عن مس ين الطبيع ق ب د من التوفي ان لاب ذا آ وللوصول له

 . الطبيعة المسطحة لقواعد البياناتو XMLالهرمية ل

ات من ات XMLطورت هذه الدراسة خوارزمية لتحويل البيان ي قواعد البيان إل

تند اء مس ادة بن ة وإع ري XMLالعلائقي رة أخ وذج .م ة النم ذه الخوارزمي تخدمت ه اس

ائيني ات)Data Object Model(الك ة بيان آوسيط تخزين و استخدمت المكدسة آبني

تند ة XMLلدفع البيانات من مس م استخدام الطريق ه ت ا أن ة آم ات علائقي ي قواعد بيان إل

ة استرجاع XMLالقياسية لفهرسة شجرة آائنات مستند و استفادة من الفهرسة في عملي

ات في جربت هذه الخوارزمية مع جم. XMLالبيانات مرة أخري لمستند واع البيان يع أن

XML ة اءة الخوارزمي اس آف ة قي ت نتيج ب 11n+2(O(وآان د بتناس ا تتزاي ا إنه آم

آما انه تم مقارنة هذه الخوارزمية مع مجموعة من .خطية مع حجم المستند المراد تحويله

 .الخوارزميات فأثبت آفأتها من حيث التنفيذ و الزمن

15

CHAPTER 1 THE PROBLEM

1.1 Introduction

 XML is widely accepted as a standard medium for

representing data exchanged between businesses on Internet since

1998. However, it was not designed for efficient storage and

retrieval of [1]. As a result, seeking an efficient storage and query

medium of XML documents is an attractive area of research in the

database community.

 For that, Mapping XML documents to RDBMS has been

studied for the last few years to leverage the powerful, reliability,

concurrency control, integrity, crash recovery and multi-user access

of RDBMS [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], which are not available in

XML technology until now. These studies are trying to bridge the

technology gap between XML hierarchical ordered structured and

RDBMS tabular unordered structure. Existing Mapping techniques

from XML-to-relational can be generally classified into two tracks:

the first one is the structured-centric technique, which depends on

the XML document structure to guide the mapping process

[9,17,18,19], and the second track is the schema–centric, which

16

makes the use of schema information such as DTD or XML schema

to derive an efficient relational storage for XML documents [2, 3, 4,

6, 7, 8].

 None of the above mapping XML-to-Relational technique

gave an ideal solution to all the types of XML documents, which

are data-centric, document-centric, and mixed documents of the

previous two.

 The aim of this research is to propose an algorithm for

automatic mapping of XML documents to RDBMS with XML-API

as a database utility. The algorithm uses best fit auto mapping

technique, and dynamic shredding, of a specified selected XML

document type (data-centric, document-centric, and mixed

documents). The proposed algorithm will be used to overcome the

database vendor dependency and XML document types and

information loss stored in the original XML documents due to the

shredding process. Also, the XML-API as a database utility will

simplify the mapping process for loading the XML documents,

selecting the best fit mapping technique, querying, retrieving, and

managing the XML documents stored in the Database.

17

1.2 Problem Statement:

 XML is becoming the standard medium for data exchange

and representation over the web that can be shared between

business partners. It is not designed to facilitate efficient retrieval of

data or data storage [20]. On the other hand, Relational Database

Management System (RDBMS) is one of the successful database

management systems which are currently the most widely deployed

data-storage system, particularly for large-scale databases. It's

Scalability, reliability, integrity, multi-user, concurrency control,

recovery mechanism, and easy implementation [21], makes it the

best choice to store and retrieve XML documents.

 To bridge the gap between the two technologies, there have

been many studies done to map the XML documents to the

RDBMS. Some of them are using the shredding approaches with

indexing techniques to store data-centric XML documents in

RDBMS [22, 23, 24, 25], while others store document-centric XML

documents as Character Large Objects (CLOBs) in a relational

database [26]. But a few of them are trying to deal with all types of

XML documents (data-centric, document centric and mixed

documents). [23]

18

 As a result, there is still a need for efficient algorithm to

take the advantages of the XML and RDBMS technologies and deal

with unspecified XML documents types.

Until now, the research efforts are directed towards three areas:

 a) The First is using Relational Data Base Management System

(RDBMS) [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]as a well established medium

to store and retrieve data in the business area.

 b) The second is using Object Relational Database Management

System (ORDBMS) [12], to take advantages of the facilities in

RDBMS and some of OORDB.

c) The third is using new approach dedicated for XML documents

to create a native XML database [13, 14, 15, 16]. This approach [1]

includes modules XLink, XPath, Xquery, XSLT, and SOAP which

are built from scratch for specific purpose to store and query XML

documents. However, the approach is still short to reach the

powerful capabilities of existing relational database system and also

does not have complex search tools like relational database tools.

1.3 Objectives of research:

The research aims to achieve the following objectives:

19

1) Propose an automatic conversion of XML documents to

relational database in order to:

a) Save the time by reducing human interference and the need

of user's previous knowledge of the mapping process

b) Enhance the quality of mapping process.

2) Propose a dynamic mapping technique for an XML document in

order to:

a) Deal with any XML document types, structured,

unstructured, and semi-structured documents.

b) Improve the performance of the mapping process.

c) Overcome the limitation on size of the XML documents.

d) Reduce the loss of information results from fixed shredding

process.

3) Build a high-level XML-API utility for database in order to:

a) Load XML documents to be stored in a relational database

b) Manage in an efficient way the querying ofan XML document.

c) Manage XML documents by storing in a database, deleting,

and retrieving the names of XML documents.

20

d) Reduce the need for support of vendor-specific feature.

e) Have a good GUI application to avoid users command entry

syntax errors and maintain semantic consistencies among all

the tabular data in a relational databases.

1.4 Main Contribution:

 In this research, we propose an automatic mapping

technique of XML documents to RDBMS with XML-API for a

database. This technique will leverage the advantages of mature

relational database features and the strength of XML in data

representation and exchange on the Internet. To accomplish this

goal the research will propose a new Dynamic shredding mapping

technique for the mapping XML-to-relational to overcome the

issues of the XML documents size, loss of information stored in the

original documents, and mixed XML document types. The new

Technique is carried out in two step:

1.4.1 Data mapping:

 The data mapping module takes a valid XML

document and map it into relational tuples, which are then loaded to

the relational database. The data mapping module uses the XML-to

21

– relational mapping information to form relational tuples and to

decide on the relation where these tuples will be loaded to database

tables.

1.4.2 Database Reconstruction:

 The reconstruction module retrieves the descendant of

each XML element in the relational database. Then reconstructs the

XML subtree corresponding to these element by putting the proper

tags around the relations.

22

1.5 Thesis Tools:

To get the above objective, the following tools will be used during

the research:

1) One of the most popular Relational Database Managemnt

Systems with high share in the market (e.g. SQL server, Access

DB2, … etc) for testing purposes[27].

2) An XML editor software to create XML documents (e.g.

Composer, XMLSpy 2006, TurboXML, , … etc) [28], which can be

made available.

3) A Programming language to implement the techniques and the

XML API. Vbasic 6 was selected for the following reasons:

• VBasic 6 is being familiar to the researcher.

• It is object-oriented language that offers a standard library of a

number of classes with varied functionalities.

• The basic functionality includes the reading, manipulating, and

generating of XML text, which are the core features required to

form the building blocks for developing fully functional, XML

based application

23

4) Standard XML processor such as XQuery, XPath, and XSLT to

be integrated with the mapping processor to provide the maximum

amount of query and transformation flexibility on the database data.

5) Data for testing and analysis to be selected at that time with

arrangement of the supervisors.

6) A benchmark for XML Data Management for evaluating the

performance mapping technique and XML API data management

systems (XMatch-1, XMark … etc), for comparison purposes,

which could be justified at the time of testing and evaluation.

1.6 Thesis Organization:

 The rest of the dissertation is organized as follows:

chapter 2 present information retrieval for XML documents.

Chapter 3 gives a Historical brief on the development in XML

technology and its Patterns. Chapter 4 covers the Historical

development in RDBMs and its Patterns. Chapter 5 related work

and the current mapping approaches in the literature are analyzed

and discussed. In chapter 6, we propose an algorithm with its

analysis and design. In chapter 7, we give the results and

24

experimental discussion and a conclusion and proposal of future

work. All reference and appendix are given in Appendix A.

25

CHAPTER 2: INFORMATION RETRIEVAL USING XML

2.1 Introduction:

 From a general web-surfer point of view, clearly, a

human maintained index allows quick and accurate search of the

web; in addition, the result of the queries are semantically

organized. The indexing function is normally assigned a catalogue

service module which is sometimes, overloaded. As a consequence

of that, some important sites are not included and indexed; and the

directories are not always up to date both due to the enormous

growth of information sources available on the Internet and for the

inherently time varying nature of the web pages. This fundamental

issue of imprecise search results arises due to the representation of

the data on the web. The semantic approach makes use of metadata

descriptions to add meaning to a particular document’s content.

These metadata descriptions provide a greater probability of

ascertaining what the user really desires when entering a search

query.

 XML messaging is at the heart of Web services,

providing the flexibility required for their deployment, composition,

and maintenance. Yet, current approaches to Web services

26

development hide the messaging layer behind Java or C# APIs,

preventing the application to get direct access to the underlying

XML information.

 XML [29] is an emerging standard for the representation

and exchange of Internet data. It is obvious that relational, object

relational, or object-oriented data models, do not suffice to integrate

data from several data sources in the web. To support this, semi-

structured data models have been proposed. The nature of this semi-

structured data is that it is self-descriptive, and that it incorporates

an optional XML definition (DTD) Document Type Descriptor.

 One of three alternative data models can be deployed for

the persistent storage of semi-structured data (i.e., XML

documents). First, the development of specialized data

management systems can be noted, such as Rufus [30], Lore [31,

32], and Strudel [33]. These are tailored to store and retrieve XML

documents using special purpose indices and techniques of query

optimization. Second, for an object-oriented database management

system[34], or Object store, can be used to store XML documents

because of the rich capability of this database system. Third, when a

relational database management system (RDBMS) is employed

27

XML data is mapped into relations and queries posed in a semi

structured query language which is then translated into SQL

queries.

 It is not possible to reliably predict which of these three

approaches will be widely accepted. The first, the use of a

specialized or special purpose database system, may work best,

once needs are met concerning scalability and the level of maturity

required for the handling of huge amounts of data. The second, an

object-oriented database system, seems well-suited to complex data

like XML, but vulnerable in the area of evaluating queries

addressed to a very large database[35].

 The third approach, (RDBMS), provides maturity, stability,

portability, and scalability [35]. Furthermore, since a majority of the

data on the web currently resides in and will continue to be stored

in RDBMS, the opportunity arises for constructing a system using a

RDBMS to store XML documents, making it possible to seamlessly

query of data with one system and one query language. Given all

these advantages, we believe that a RDBMS will be a viable option.

28

2.2 Information Retrieval on the Web:

 Early definitions, dating from 1960, emphasize the very

general nature of the task. For example, in Salton's classic

textbook[36]:

"Information retrieval (IR) is the field concerned with the structure,

analysis organization, storage, searching, and retrieval

information."

In that textbook, information retrieval is assumed also to include

database systems and question answering systems, and information

is construed to mean document, references, text passages, or facts.

 Over the 1970's and 1980's, much of the research in IR was

focused on document retrieval, and the emphasis on this task in the

text retrieval conference (TREC) evaluation of the 1990's has

further reinforced the view that IR is synonymous with document

retrieval. Web search engines are, of course the most common

example of this type of IR system.

 The huge success of Web search engines, such as Google,

might lead some to question the need for extensive IR research.

There are a number of possible answers to this question, but here

are some major point:

29

- Web search and IR are not Equivalent. As mentioned previously,

IR encompasses many types of information access. Web search is

only part (although an important part) of this spectrum of

information systems.

- Web queries do not represent all information needs. A broad range

of information access technologies are being created to address

the diversity of information needs of people in different contexts.

If we focus only on the current mix of queries in Web search

engine loge, many of those information needs will not be

addressed.

- Web search engine are effective for some types of queries in some

contexts. Retrieval experiments in the TREC environment, and

commercial success, demonstrate that, for a very popular type of

query (find the right home page), retrieving the pages containing

all the query words and then ranking them according to other

features based on links, anchor text, URLs, and HTML tags is

very effective. For other type of queries, and in other

environment (e.g. corporate), this approach to ranking is less

successful.

30

 XML could actually hinder some of the processes

involved in the functioning of the system. Let us examine this issue

further. Firstly, although XML has had a significant impact on

information management for the Web, it is still unclear whether

XML will be used primarily as a data exchange format, or also as a

data storage format [36].

 Since XML is a document format and not a data model, we

need the ability to map XML-encoded information into a true data

model [36]. More generally, we need to resolve the various

conflicts that arise when we try to mix the concepts of documents

and databases. For example, while some applications may wish to

view a large set of XML documents as exactly that-a set of

documents-other applications may prefer to think of each document

as a database "load file," where all document contents are merged

into a single large database [36].

 In fact, we may wish to simultaneously view a body of

XML information in both ways. But there are a number of questions

that arise when translating a conceptual model of a database into an

XML encoding. For example, when should attributes be used and

when should sub-elements be used [36].

31

 Efficient physical layout and indexing mechanisms are

required for large stores of XML data. Random searching on an

XML file is equivalent to key-based searches on any flat sequential

file and can take an exorbitant amount of time. Also, we sometimes

want to be able to provide the illusion of an XML data store when

the data actually is stored elsewhere (such as in a traditional

DBMS), and make the two modes work together [36]. This leads to

the consideration of issues in information storage and management

in XML and possible alternatives.

2.3 difference between standard information retrieval and

XML retrieval:

 The fundamental difference between standard

information retrieval and XML retrieval is the unit of retrieval. In

traditional IR, the unit of retrieval is fixed: it is the complete

document. In XML retrieval, every XML element in a document is

a retrievable unit. This makes XML retrieval more difficult: besides

being relevant, a retrieved unit should be neither too large nor too

small. The research presented here, a comparative analysis of two

approaches to XML retrieval, aims to shed light on which XML

elements should be retrieved. The experimental evaluation uses data

32

from the Initiative for the Evaluation of XML retrieval. (INEX

2002).

2.4 XML RETRIEVAL APPROACHES:

 Most full-text information retrieval systems ignore the

information about the document structure and consider whole

documents as units of retrieval. Such retrieval systems take queries

that often represent a bag of words, where phrases or logical query

operators could also be included. The final list of answer elements

usually comprises ranked list of whole documents sorted in a

descending order according to their estimated likelihood of

relevance to the information need in the query. Accordingly, it is

expected that for Content – And – Structure (CAS) retrieval topics

in the first category a full-text information retrieval system would

be able to successfully retrieve highly relevant articles.

 Most native XML databases support XML-specific retrieval

technologies, such as found in XPath and XQuery. The information

about the structure of the XML documents is usually incorporated

in the document index, allowing users to query both by document

content and by document structure. This allows an easy

identification of elements that belong to the XML documents, either

33

by the path they appear in the document or by certain keywords

they contain. Accordingly, it is expected that a native XML

database would be suitable for CAS retrieval topics that belong in

the second category.

 In an effort to support a content-and-structure XML

retrieval that combines both CAS topic categories, we develop a

hybrid XML retrieval system that uses a native XML database to

produce final answers from those documents that are estimated as

likely to be relevant by a full-text information retrieval system.

 The following sections describe the XML retrieval

approaches implemented in the respective systems, together with

some open issues that arise when a particular retrieval approach is

applied.

2.5 Full Text Information Retrieval Approach

 The efficient inverted index structure is first used with

Zettair [38] to index the INEX (INitiative for the Evaluation of

XML retrieval) XML document collection, which is a first indexed

by using its efficient indexing scheme. This index stores the

information about the parsed elements within articles together with

the information about the attributes and all word occurrences; its

34

size is roughly twice as big as the total collection size. The term

postings file is stored in a compressed form on disk, so the size of

the Zettair index takes roughly 26% of the total collection size. The

time taken to index the entire INEX collection on a system with a

Pentium4 2.66GHz processor and a 512MB RAM memory running

Mandrake Linux 9.1 is around 70 seconds. A topic translation

module is used to automatically translate an INEX CAS topic into a

Zettair query. For INEX CAS topics, terms that appear in the

<Title> part of the topic are used to formulate the query. Up to 100

<article> elements are then returned in the descending order

according to their estimated likelihood of relevance to the CAS

topic. One retrieval issue when using Zettair, which is in particular

related to the XML retrieval process, is that it is effective retrieval

scheme [37]. For the INEX XML document collection, we

calculated the optimal slope parameter in the pivoted cosine ranking

formula by using a different set of retrieval topics (those from the

previous year, INEX 2002). When using terms from <Title> part of

INEX topics while formulating Zettair queries, we found that a

slope parameter with a value of 0.25 yields highest system

effectiveness (although when longer queries are used, such as

35

queries that contain terms from the <Keywords> part of INEX

topics, a different value of 0.55 would be better [38]).

Consequently, for INEX 2003 CAS topics we use the value of 0.25

for the slope parameter in the pivoted cosine ranking formula in

Zettair.

 2.6 Native XML Database Approach

 With eXist, the INEX XML document collection is first

indexed by using its efficient indexing scheme. This index stores

the information about the parsed elements within articles together

with the information about the attributes and all word occurrences;

its size is roughly twice as big as the total collection size. The time

taken to index the entire INEX collection on a system with a

Pentium 4 2.6GHz processor and a 512MB RAM memory running

Mandrake Linux 9.1 is around 2050 seconds.

 A topic translation module is used to automatically translate an

INEX CAS topic into two eXist queries: AND and OR. For INEX

CAS topics, the terms and structural constraints that appear in the

<Title> part of the CAS topic are used to formulate eXist queries.

The query symbol operators &=, denoting logical “and” operation,

and |=, denoting logical “OR” operation are used with eXist while

36

formulating the above queries, respectively. The AND and OR

eXist queries are depicted in solid boxes in Figure 2.1 where the

elements to be retrieved are specified explicitly.

 For an INEX CAS topic, our choice for the final list of

answer elements comprises matching elements from the AND

answer list followed by the matching elements from the OR answer

list that do not belong to the AND answer list. If an AND answer

list is empty, the final answer list is the same as the OR answer list.

In both cases it contains (up to) 100 matching articles or elements

within articles. The equivalent matching elements are also

considered during the retrieval process.

 We observed two retrieval issues while using eXist, which

are in particular related to the XML retrieval process.

1. For an INEX CAS topic that retrieves full articles rather than

more specific elements within articles, the list of answer elements

comprises full articles that satisfy the logical query constraints.

These articles are sorted by their internal identifiers that correspond

to the order in which each article is stored in the database.

However, there is no information about the estimated likelihood of

37

relevance of a particular matching article to the information need

expressed in the CAS topic.26

2. For an INEX CAS topic that retrieves more specific elements

within articles rather than full articles, the list of answer elements

comprises most specific elements that satisfy both the content and

the granularity constraints in the query. eXist orders the matching

elements in the answer list by the article where they belong,

according to the XQuery specification.

 However, there is no information whether or not a particular

matching element in the above list is likely to be more relevant than

other matching elements that belong to the same article.

Accordingly, ranking of matching elements within articles is also

not supported.

 The following sections describe our approaches that address both

of these issues.

38

 Figure 2.1: A hybrid XML retrieval approach to INEX Content And Structure (CAS) topics

39

2.7 Hybrid XML Retrieval Approach

 Our hybrid system incorporates the best retrieval features

from Zettair [38] and exists. . Figure 2.1 shows the hybrid XML

retrieval approach as implemented in the hybrid system. We use the CAS

topic 86 throughout the example. Zettair is first used to obtain (up to)

100 articles likely to be considered relevant to the information need

expressed in the CAS topic as into a Zettair query. For each article in the

answer list produced by Zettair, both AND and OR queries are then

applied by eXist, which produce matching elements in two

corresponding answer lists. The answer list for an INEX CAS topic and a

particular article thus comprises the article's matching elements from the

AND answer list followed by the article's matching elements from the

OR answer list that do not belong to the AND answer list.

 The final answer list for an INEX CAS topic comprises (up to)

100 matching elements and equivalent element tags that belong to highly

ranked articles as estimated by Zettair. The final answer list is shown as

Hybrid list in Figure 2.1.

 Figure 2.1 also shows queries and other parts of our hybrid system

depicted in dashed boxes, where we also explore whether or not using

CO-type queries could improve the CAS retrieval task. This can equally

40

be applied to the hybrid approach as well as to the native XML database

approach, since they both use eXist to produce the final list of matching

elements. The next section explores this retrieval process in detail.

 The hybrid XML retrieval approach addresses the first retrieval

issue observed in a native XML database approach. However, because of

its modular nature we observe a loss in efficiency. For a particular CAS

topic, up to 100 articles firstly need to be retrieved by Zettair. This

article list is then queried by eXist, one article at a time. In order to

retrieve (up to) 100 matching elements, eXist may need to query each

article in the list before it reaches this number. Obviously, having an

equally effective system that produces its final list of answer elements

much faster would be more efficient solution. The second retrieval issue

observed in a native XML database approach still remains open, since

for a particular article our hybrid XML retrieval system also uses exist to

produce its final list of answer elements.

41

CHAPTER 3: An Overview of XML Standard Technology

3.1 XML Technology

 The Extendible Markup Language (XML), a W3C

Recommendation for marking up data as a standard medium for

representing and exchanging structured and semi-structured data

between business applications on the Internet, was published on 10th

February 1998 as a First Edition, and its Second Edition XML 1.1 was

published on 4th February 2004 [52]. It was designed to improve the

functionality of the Internet by providing flexible information

structuring. XML is extensible because it is not a fixed format like

Hypertext Markup Language (HTML) (W3C 1999b) but a meta

language for describing other languages. XML can be utilized to design

customized markup languages for different types of documents. XML is

a subset of Standard Generalized Markup Language (SGML) (ISO

1986), with some exceptions. SGML is a standard for defining

descriptions of the structure of an electronic document. SGML is very

powerful but complex, whereas XML is a lightweight version of SGML

cleansed of all the features that make SGML too complex for the

Internet. SGML is very comprehensive, which makes it hard to learn and

expensive to implement.

42

 Newly standardized applications to complete the data processing

capabilities of XML were developed. XML Schema was approved as a

W3C recommendation on 2nd May 2001 [52] aimed at replacing

Document Type Definition (DTDs) as the official schema language for

XML documents. Other XML schema languages, DSD was proposed by

Klarlund in 2000 [52], and RELAX NG was proposed by OASIS in

2001 [52]. These schema languages are using to define and validate the

structure and data of XML documents.

 The XML Path Language (XPath) was approved as a W3C

recommendation on 16th November 1999 [52] for addressing parts of an

XML document. XML Query Language (XQuery) is recommended by

W3C on 3rd November 2005 as XQuery 1.0 [52]. The mission of the

XML Query project is to provide flexible query facilities to extract data

from real and virtual documents on the World Wide Web. A common

feature of XPath and XQuery languages is a possibility to formulate

paths in the XML graph. Such paths are a sequence of element or

attribute names from the root element to a leaf.

 XML Linking Language (XLink) Version 1.0 was approved as a

W3C recommendation on 27th June 2001, which allows elements to be

43

inserted into XML documents in order to create and describe links

between resources [52].

 The Extensible Stylesheet Language for Transformations (XSLT)

is a W3C Recommendation in 16th November 1999 [52]. It is a language

in XML markup designed to transform an XML document into another

XML or plain text document.

3.1 XML Technology

 The Extendible Markup Language (XML), a W3C

Recommendation for marking up data as a standard medium for

representing and exchanging structured and semi-structured data

between business applications on the Internet, was published on 10th

February 1998 as a First Edition, and its Second Edition XML 1.1 was

published on 4th February 2004 [52]. It was designed to improve the

functionality of the Internet by providing flexible information

structuring. XML is extensible because it is not a fixed format like

Hypertext Markup Language (HTML) (W3C 1999b) but a meta

language for describing other languages. XML can be utilized to design

customized markup languages for different types of documents. XML is

a subset of Standard Generalized Markup Language (SGML) (ISO

1986), with some exceptions. SGML is a standard for defining

44

descriptions of the structure of an electronic document. SGML is very

powerful but complex, whereas XML is a lightweight version of SGML

cleansed of all the features that make SGML too complex for the

Internet. SGML is very comprehensive, which makes it hard to learn and

expensive to implement.

 Newly standardized applications to complete the data processing

capabilities of XML were developed. XML Schema was approved as a

W3C recommendation on 2nd May 2001 [52] aimed at replacing

Document Type Definition (DTDs) as the official schema language for

XML documents. Other XML schema languages, DSD was proposed by

Klarlund in 2000 [52], and RELAX NG was proposed by OASIS in

2001 [52]. These schema languages are using to define and validate the

structure and data of XML documents.

 The XML Path Language (XPath) was approved as a W3C

recommendation on 16th November 1999 [52] for addressing parts of an

XML document. XML Query Language (XQuery) is recommended by

W3C on 3rd November 2005 as XQuery 1.0 [52]. The mission of the

XML Query project is to provide flexible query facilities to extract data

from real and virtual documents on the World Wide Web. A common

feature of XPath and XQuery languages is a possibility to formulate

path

attri

W3

inse

betw

is a

in X

XM

hs in the

ibute nam

 XML

C recomm

erted into

ween reso

 The E

 W3C Rec

XML mar

ML or plain

XML gr

mes from th

L Linking

mendation

 XML do

urces [52]

Extensible

commend

rkup desig

n text docu

Fig

raph. Suc

he root ele

g Languag

n on 27th J

ocuments

].

Styleshee

dation in 1

gned to tra

ument.

gure 3.1: Q

45

ch paths a

ement to a

e (XLink)

June 2001

in order

et Languag

6th Novem

ansform a

Query twi

are a seq

a leaf.

) Version

1, which a

r to creat

ge for Tra

mber 1999

an XML d

ig pattern

quence of

1.0 was ap

allows ele

te and de

ansformati

9 [52]. It is

document

ns

element

pproved a

ements to

escribe lin

ions (XSL

s a langua

into anoth

or

s a

be

nks

LT)

age

her

XM

the

algo

tech

XQ

al.,

In t

twig

Figur

 New

ML docum

XML doc

orithms pr

hniques fo

Query [52]

 PathS

2002, from

their study

g pattern

re 3.2: A s

query lan

ments. The

cument bu

roposed fo

for queryi

approach

Stack and

m the Col

y, they tri

into bin

sample of

nguages ar

se query

ut also the

or XML t

ing XML

es of W3C

TwigStac

lumbia Un

ied to solv

nary struc

46

f XML Tre

re designe

approache

e structure

tree patter

 data [53

C organiza

ck algorith

niversity a

ve the lim

tural ance

ee represe

ed to extr

es not onl

e of it. Th

rn matchin

3-54], bes

ation.

hms were

and AT& T

mitation of

estor-desc

entation [

ract inform

ly use the

here are so

ng to pres

side XPat

proposed

T Labs-Re

f decompo

cendant re

[57]

mation fro

e contents

ome existi

ent efficie

th [52] a

by Bruno

esearch [5

osing of t

elationship

om

of

ing

ent

and

o et

7].

the

ps,

47

which may generate large and possibly unnecessary intermediate results

because the join results of individual binary relationships may not appear

in the final results. However the approach is found to be suboptimal if

there are Parent-Child (P-C) relationships in twig patterns. But, the

method may still generate redundant intermediate results in the presence

of P-C relationships in twig patterns [58].

 TSGeneric+, twig join processing algorithm, was developed by

Jiang et al., 2003, from the Hong Kong University of Science and

Technology and the Chinese University of Hong Kong [59], for indexing

XML documents, which makes use of a set of stacks to cache elements

and a cursor interface that provides standard methods to return elements

with possible matches in order to speed up the twig pattern match. Also,

they proposed three edge-picking heuristics, top-down, bottom-up and

statistics-based to select the first edge to start the processing. However, it

still does not solve the problem of redundant intermediate results in the

presence of P-C relationships [58].

 ITwigJoin, a holistic twig Join algorithm, was proposed by Chen

et al., 2005, from the National University of Singapore [58], which

works correctly on any XML streaming scheme. They used the following

recursive formula to determine the useful streams for evaluating a twig

48

pattern Q using both Tag+Level schema and Prefix-Path Stream scheme.

For a stream T of class q, they defined UT to be the set of all descendant

streams of T (including T) which are useful for the sub-twig of Qq except

that they only used stream T to match node q.

{T} if q is a leaf node;

UT = {T} ∪ { ∪ qi ∈ child(q) Ci} if none of Ci is {};

{} if one of Ci is {};

 Where Ci = ∪ Tc ∈ soln(T,qi) UTc [58]

 Applied on Tag+Level scheme the algorithm can process

Ancestor-Descendant (A-D) and Parent-Child (P-C) only twig patterns

optimally, applied on Prefix-Path Stream (PPS) scheme the algorithm

can process A-D only or P-C only or one branchnode only twig patterns

optimally.

 PRIX, PRufer sequences for Indexing XML, system was

developed by Rao and Moon, 2006, from the University of Arizona [60],

for indexing XML documents and processing twig queries. Their work is

different from previous works, in that they tried to get further

49

optimization for twig query processing without breaking a twig into root-

to-leaf paths and merging the results.

 TwigStackList, algorithm to process NOT-twig query, was

proposed by Yu et al., 2006, from the National University of Singapore

[61]. Also they developed a new concept Negation Children Extension to

determine whether an element is in the results of a NOT-twig query.

An indexing framework, the layer index, and evaluation algorithms for

performing the structural join operation on graph-structured XML data,

was proposed by Chen et al., 2005, from the Hong Kong University of

Science and Technology and University of California [55]. This

approach constructed multiple nested layers of tree-structured indexes by

recursively decomposing a graph into basic trees. Their study is different

from Alkhalifa et al. [62] which adopted the representation, (DocID,

LeftPos: RightPos) to index XML elements of a tree–structured model.

 TJFast, holistic twig join algorithm, was proposed by Lu et

al., 2005, from the National University of Singapore [54] based on their

extending of labelling Dewey ID. Extended Dewey gives a powerful

labelling scheme, since from the label of an element alone, all the

elements names along the path from the root to the element can be

derived. Algorithm TJFast is no longer guaranteed to be optimal in the

50

case where the query contains parent-child relations between branching

nodes and their children.

3.3 Validating: DTD and XSDL

 An XML document can be validated against a Document Type

Definition (DTD) or schema that is included in or referenced by the

document. Since DTD and schemas describe the metadata of the

document, they can be used to define a vocabulary that is a shared

specification for documents in a particular domain of interest. Although

DTDs are a part of XML Standard 1.0, they originate from SGML. A

DTD specifies the structure of the XML document by defining elements

of the document, one, zero-or-one, zero-or-more, and one-or-more

occurrences of the elements and the hierarchical order between the

elements. The DTD may define required and optional attributes of the

elements and alternative values of the attributes. It may also contain

references to other DTDs. Unfortunately; DTDs are not well-formed

XML documents and provide little support for data typing, cardinality,

and namespaces. A schema is an XML document for describing the

structure of XML documents. XML Schema Definition Language

(XSDL) (W3C 2001b), which is also known as XML Schema, is an

XML language for schemas. XSDL offers a number of built-in data

51

types and capabilities of defining data types. It allows applying data

types to both element content and attributing values.

 Although not all XML parsers are validating, the most popular

ones enable that XML documents are validated against DTDs. In

comparison, a number of XML parsers supporting validation against

XSDL is small but increasing.

3.4 Parsing: SAX and DOM

 There are two approaches for parsing XML documents. Simple

API for XML (SAX) (SAX 2002) is an event-based application

programming interface (API) that reports parsing events, such as the start

and end tags, directly to the application through callbacks. The

application implements handlers to deal with the different events. Since

the original SAX did not support namespaces, SAX2 was developed.

Document Object Model (DOM) (W3C 2002) is a tree-based API that

converts an XML document into a tree structure. The application has

access to navigate and manipulate this structure. It can also generate a

well-formed XML document.

 Comparing the parsing approaches, the SAX requires more

programming due to handlers and makes it harder to visualize XML

documents than the DOM. However, the SAX is faster and less memory-

52

intensive because it does not load entire XML documents as tree

structures into the memory.

There are several XML parsers for parsing XML documents. The most

popular XML parsers support both SAX and DOM approaches.

3.5 Transforming: XSLT

 XSL Transformation (XSLT) (W3C 1999a) is an XML language

for transforming XML documents into other XML documents. XSLT is

not intended as a complete general purpose XML transformation

language but it is designed for use as a part of Extensible Stylesheet

Language (XSL), which is a stylesheet language for XML. XSL includes

a vocabulary for specifying formatting. For example, the block

formatting represents the breaking of the content of a paragraph into

lines.

 A transformation expressed in XSLT describes the rules for

transforming a source document into a result document. This stylesheet

contains a set of template rules that consist of patterns and templates.

This allows a stylesheet to be applicable to a wide class of documents

that have structures similar to the source document. A pattern is matched

against elements in the source document. A template is instantiated to

create the part of the result document that is separate from the source

53

document. In constructing the result, elements from the source can be

filtered and reordered, and arbitrary structure can be added. Figure 3.3 a

shows an example of an XSLT document and 4b is the output document

of the transformation.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0"

encoding="UTF-8"

indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="PurchaseOrder">

<PurchaseOrder>

<BuyerPartyID>

<xsl:value-of select="BuyerParty/PartyID"/>

</BuyerPartyID>

<SellerPartyID>

<xsl:value-of select="SellerParty/PartyID"/>

</SellerPartyID>

54

<ProductID>

<xsl:value-of select="Product/ProductID"/>

</ProductID>

<Amount>

<xsl:value-of select="Product/Quantity"/>

</Amount>

</PurchaseOrder>

</xsl:template>

</xsl:stylesheet>

(a)

<?xmlversion="1.0" encoding="UTF-8"?>

<PurchaseOrder>

<BuyerPartyID>X</BuyerPartyID>

<SellerPartyID>Y</SellerPartyID>

<ProductID>ZZZ</ProductID>

<Amount>12.3</Amount>

</PurchaseOrder> (b)

Figure 3.3: Example transformation from one format to another

55

 Previously, an XSLT processor was a separate tool. Currently,

many XML parsers are capable of XSLT processing.

3.6 XML Management Systems:

 There are mainly two types of XML storage considered in the

literature: relational database management systems and native XML

technology. By relational storage, we mean that XML documents are

mapped into relational tables. In contrast, in native storage, XML data

can be stored in a versatile format and we can evaluate XML queries

with algorithms that are tailored for XML. Figure 3.4 shows a

classification of some existing proposals on managing XML data.

Figure 3.4: (Prototype) systems for managing XML documents

56

3.7 Relational Storage of XML Data:

 Various techniques have been proposed to leverage the power

of widely available object-relational databases for storing and querying

XML data. The basic idea is that we shred XML documents into

relational tables and access the data with SQL queries.

When XML data is stored in a relational database, a relational schema

must be defined. The table schema can generate by either using or not

using the schema information of an XML document to be stored. Such

schema information could be given in the form of either a Document

Type Definition (DTD) or an XML schema [63]. When the relational

schema is generated based on the document schema, say DTD, different

DTDs will lead to different table schemas, resulting in a document-

dependent mapping. On the other hand, since any XML document can be

modeled as an ordered tree, a single relational schema is able to describe

the tree structure for all XML documents. No DTD information is

required by this approach and all XML documents can share the same

relational schema, resulting in a document-independent mapping.

3.8 Native XML Engines:

 Native XML engines are systems that are specially designed

for managing XML data. The storage and query processing techniques

57

adopted by different systems may vary from each other in a noticeable

way. One approach is to model XML documents using the Document

Object Model (DOM) [64]. Internally, each node in a DOM tree has four

filiation pointers and two sibling pointers. The filiation pointers include

the first child, the last child, the parent, and the root pointers. The sibling

pointers point to the previous and the next sibling nodes. The nodes in a

DOM tree are serialized into disk pages according to depth-first order

(filiation clustering) or breadth-first order (sibling clustering). Lore [65,

63] and XBase [66] are two instances of such a storage approach. The

current release of TIMBER [67] transforms each node of the data tree

into an internal representation and stores it into SHORE [68] as an

atomic unit of storage. TIMBER is being engineered to package nodes in

page-size containers due to SHORE's considerable overheads in dealing

with small objects. Natix [69] uses a native storage format with the

following features: (1) subtrees of the original XML document are stored

together in a single (physical) record; (2) the inner structure of subtrees

is retained; and (3) to satisfy special application requirements, the

clustering requirements of subtrees are specifiable through a split matrix.

Documents stored in Tamino [70,71] are grouped into collections.

Within a collection, several document types can be declared and each

incoming document validates against one of these types. The elements

58

and attributes parsed from an incoming document can be stored in

Tamino itself or in an external/built-in SQL database.

3.9 Index Structures:

 Indexing structures used in relational databases are well-known

and highly efficient. Using these indexing structures as a starting point

for indexing XML documents, a natural evolution in the features and

efficiency of said indexes has occurred and will continue to develop.

This section starts by introducing a labeling scheme for nodes in a tree,

presents preliminary index structures (B+-tree and XR-tree) used for

XML documents, moves on to more sophisticated and efficient index

methodologies (XB-tree, DataGuide, and ToXin), and finishes with a

state-of-the-art indexing technique (constraint sequencing).

3.9.1. Node Labeling

 When constructing a B+-tree, XR-tree, or XB-tree index on an

OEM structure, the nodes must be labeled with a standard labeling

scheme. Many labeling methods exist [72], but the most common and

widely-used is an extension to Dietz’s numbering scheme (tree traversal

order [73]) called extended preorder traversal [74]. Using this labeling

method, each node in the tree is labeled with a pair of numbers

<order,size>. This extension allows insertions to be made into the tree

59

without the need for global reordering. It maintains the original idea of

Dietz’s scheme by imposing three conditions on the values for order and

size.

1. For a tree node y and its parent x, order(x) < order(y) and

order(y)+size(y) _ order(x)+ size(x). In other words, the interval

[order(y), order(y)+size(y)] is contained in the interval [order(x),

order(x) + size(x)].

2. For two sibling nodes x and y, if x is the predecessor of y in preorder

traversal, then order(x)+ size(x) < order(y).

3. For any node x, size(x) _Xy size(y) for all y’s that are a direct child of

x. By using an arbitrarily large integer for size(x), future insertions into

the structure can be made without the need for global reordering.

3.9.2. B+Tree

 In relational database systems, the B+-tree (a variation of the B-

tree) is used to implement a dynamic multilevel index [75]. Offering

advantages to indexed sequential files, a B+-tree does not require

reorganization of the entire file to maintain performance. In other words,

the tree will automatically reorganize itself with small, local changes

when insertions and deletions occur. Due to its hierarchical nature, the

B+-tree was used in an algorithm for processing XML structural joins

60

[76]. Although structural joins are discussed in greater detail in a later

chapter, it is sufficient to mention that they require information about

ancestors and descendants of a given element (possibly through multiple

levels). For this reason, an algorithm and index structure that allows

ancestors and descendants to be found and evaluated quickly will

improve performance of structural joins. While it showed an

improvement over a previous algorithm using R-trees for the same

purpose, the B+-tree was later improved upon to produce the XR-tree

and later the XB-tree.

Figure 3.5: OEM Representation with Interval

(51,5) (60,5)

&1

&2 &3 &4

&10 &9 &11 &8 &7 &6 &5

Foodplay

Restaurantid=”R001”

Restaurantid=”R001”

Clubid=”C001”

stylename
manager

name
owner

phone
name owner

(1,10)

(10,35)
(50,20)

(80,10)

(15,10) (30,5) (41,2) (81,5)
(91,1)

Cris 671-1102 S.Peppard Maggiana’s Crowley Crowley Cris

61

3.9.3. XRTree

 The XR-tree [77], known as the XML Region Tree, is a B+-tree

that is built on the start points of the element intervals. Designed for

strictly nested XML data, this type of index structure allows all ancestors

and descendants for a given element to be identified with optimal worst

case disk input/output cost. The XR-tree outperforms the B+-tree for

processing structural joins, but it lacks the capability to handle highly

recursive XML elements with the same efficiency [78].

3.9.4. XBTree

 The XB-tree was developed by Bruno et al. [79] for use in

processing holistic twig joins (a specialized version of structural joins).

The XB-tree combines the structural features of both the B+-tree and the

R-tree. It indexes the pre-assigned intervals of elements in the tree

(similar to a one-dimensional R-tree) and then constructs the index on

the start points of the intervals (similar to the standard B+-tree) [78]. The

main difference is that the size portion of the <order,size> label must be

propagated up the index. The main advantage of the XB-tree is that it

quickly processes requests to find ancestors and descendants. A

performance study [78] found that the XB-tree outperforms both the B+-

tree and XR-tree for processing structural joins in XML documents.

62

Figure 3.6: sample XBtree

3.10 The XML Query Fundamentals

 We present the background information of the XML query and

notations used in this research. An XML document consists of nested

elements enclosed by user-defined tags, which indicate the meaning of

the content contained. Figure 3.7 shows an example of an XML

document named “pub.xml”, which contains some publication

information. The hierarchical structure of an XML documents can be

modeled as a tree. The XML documents on the Internet are a forest of

XML trees and we call it an XML database.

<?xml version="1.0" ?>

(30,35) (51,10)

(10,35) (30,20) (51,10) (81,5)

(10,35)

(15,10)

(81,5)

(90,1)

(30,5)

(41,2)

(50,20)

(51,5)

(60,5)

(80,10)

63

<publication>

<journal title="DBMS">

<editor>Jack</editor>

<article>

<title>

Index Construction

</title>

<author>Smith</author>

</article>

</journal>

<journal title="Algorithm">

</journal>

</publication>

Figure 3.7: An example of an XML document

 The semi-structured format of XML documents brings the

possibility of using database technology to query the XML data instead

of information retrieval techniques applicable only to plain text

documents. However, the mature SQL queries can not be applied

directly since XML documents do not necessarily conform to a

predefined, rigid schema required by the traditional database system

64

[79]. Much research has been done on XML query languages. Although

the query languages differ in detailed grammars, they share a common

feature, that is: querying structure as well as the contents or values of

elements. Queries in XML query languages make use of tree patterns to

match portions of data in the XML database. For example, the following

is a query expressed in Xquery [80] over the document in Figure 3.7

where “//” indicates ancestor-descendant relationship, and “/” indicates

parent-child relationship. FOR $a IN document

(“http://.../pub.xml”)//journal/article $b IN $a/title WHERE $a/author

=“Smith” RETURN <article>$b </article>

 This query retrieves the titles of articles authored by “Smith” and

published in a journal. It contains both structure and content information.

In other words, this query will find all the matching of the tree pattern in

the XML database.

3.11 XML Queries:

 XPath and XQuery are the standard XML querying languages.

An XML query specifies selection predicates for multiple elements or

attributes that share some tree-based relationships (see Figure 3.8). In a

query’s tree-based representation, nodes represent an element tag, an

attribute tag, or a value; edges represent hierarchical relationships

65

between XML elements (ancestor–descendant, element– subelement,

element–attribute, element–value, or attribute–value). Thus, both nodes

and edges represent conditions that the retrieved XML documents must

satisfy. We can classify XML queries in three ways:

• Tree structure. As Figure 3.8 shows, XML queries can be classified

into simple path or branching path expressions. In the first case, the tree

corresponds to a chain-path. In the second case, it contains branches and

corresponds to a small tree, called a twig.

• Starting node. Total matching queries are those that start from the

root of the document representation, whereas partial matching queries

start from some internal node. For example, the document in Figure

3.8(a) does not satisfy the total matching query /cast/actor[@role=

‘Leading actor]. It does, however, satisfy the partial matching query

//cast/actor [@role=‘Leading actor].

• Node types. XML queries can contain nodes representing text

associated with the father attribute or element node. We call such queries

content-based queries because they check element or attribute content.

66

Figure 3.8: Tree Base Representation of queries

3.11.1 LOREL

 LOREL was originally designed for querying semi structured

data and has now been extended to XML data; it was conceived and

implemented at Stanford University (S. Abiteboul, D. Quass, J.

McHugh, J. Widom, J. Wiener) and its prototype is at http://www-

db.stanford.edu/lore. It is a user-friendiy language in the SQL\OQL

style, it includes a strong mechanism for type coercion and permits very

powerful path expressions, extremely useful when the structure of a

document is not known in advance [81].

movie

cost

actor

role

“loading actor”

(a)

Movie

@title @year actor

“Life is beautiful”

“1998” @name

“Roberto Benigni”

(b)

67

3.11.2 XMLQL

 XML-QL was designed at AT&T Labs (A. Deutsch, M.

Fernandez, D. Florescu, A. Levy, D. Suciu); its prototype is reachable at

the url: http://www.research.att.com/sw/ toois/ xmlql as part of the

Strudel Project. The XML-QL language extends SQL with an explicit

CONSTRUCT clause

for building the document resulting from the query and uses the element

patterns (patterns built on top of XML syntax) to match data in an XML

document. XML-QL can express queries as well as transformations, for

integrating XML data from different sources [82].

3.11.3 XMLGL

 XML-GL is a graphical query language, relying on a graphical

representation of XML documents and DTDs by means of labelled XML

graphs. It was designed at Politecnico di Milano (S. Ceri, S. Comal, E.

Damiani, P. Fraternali, S. Paraboschi and L. Tanca); an implementation

is ongoing. All the elements of XML-GL are displayed visually;

therefore, XML-GL is suitable for supporting a user-friendly interface

(similar to QBE) [83].

68

3.11.4 XSL

 The Extensible Style sheet Language (XSL) has facilities that

could serve as a basis for an XML query language. An XSL program

consists of a collection of template rules; each template rule has two

parts: a pattern which is matched against nodes in the source tree and a

template which is instantiated to form part of the result tree. XSL makes

use of the expression language defined by XPath [79] for selecting

elements for processing, for conditional processing and for generating

text. It was designed by the W3C XSL working group (J. Clark editor)

[84, 85, 86] .

3.11.5 XQL

 XQL is a notation for selecting and filtering the elements and text

of XML documents. XQL can be considered a natural extension to the

XSL pattern syntax; it is designed with the goal of being syntactically

very simple and compact (a query could be part of a UKL), with a

reduced expressive power. It was designed by J. l~bie, Texcel Inc., J.

Lapp, webMethods, Inc., and D. Schach, Microsoft Corporation [86, 87,

88,89, 90].

69

3.11.6. XPath

 The simplest type of query in XML is an XPath expression .

The XPath 1.0 [91] has been designed mostly as a navigation language

that returns a subset of the nodes of a document. For instance, XSLT

uses XPath heavily to match patterns that need transformation. When

applied on a document, XPath returns a node set and not a sub-

document. From the nodes, it is always possible to reconstruct the

document (using the context to find the ancestors of the current node up

to the root), but this is not the default behavior and the application using

XPath needs to perform this reconstruction. Moreover, when the context

is lost (e.g. data shipped from a remote site), this information is lost.

3.11.7 XQuery

 XQuery is a query language for XML designed to be broadly

applicable across many types of XML sources [52]. Designed to meet

the requirements identified by the World Wide Web Consortium (W3C),

XQuery operates on the logical structure of an XML document, and it

has both human readable syntax and XML-based syntax. A grammar for

XQuery is defined by the W3C [52]. While XQuery can successfully

extract information from XML documents, there are no built-in

optimization techniques that relate to the relational optimization

70

techniques discussed earlier. XQuery [92] is an extension of the XPath

language, sometimes called a superset of XPath. The most important

extensions are the following:

1. XQuery introduces module definitions. A module can be a main

module, which is a complete query program, or a library module that

exports library functions and variables.

2. To facilitate more flexible control on query evaluation context, an

XQuery module may contain a Prolog definition. Programmers can

choose default namespaces at query time, import pre-defined schemas

and library modules, bind global variables to some values, and define

global functions.

3. A type-switch expression is a run-time dynamic type checking

mechanism. Depending on the dynamic data type of an operand

expression, a type-switch expression evaluates one of its case

expressions and returns the expression as its own return value.

4. A constructor expression constructs an XML document fragment

inside the query body. Query programmers can restructure XML data

and produce different views.

71

&1

FooDrink

&2

Restaurant id=”R001”

Phone

3.12 Characterization of XML Query Styles:

 This section presents a classification scheme for the different

styles of XML queries. XML queries can be effectively categorized into

three main operators: select, project, and join. Each of these operators

can then be further decomposed into two distinct styles.

3.12.1 The Selection Operation

 In relational algebra, the selection operator selects from a given

table only those rows that satisfy a specified criteria or set of criteria.

The returned value for the relational model is always an atomic value or

set of atomic values (including the empty set). This definition can be

applied to XML databases and queries. Due to the tree structure of an

XML document, the path traversed during the execution of a selection

can be either simple or complex.

Figure 3.9: selection Simple P

72

3.12.2 Selection: Simple Path

 A simple path selection is shown in Figure 3.8. Stated in English,

the query is asking for the phone number of Chili’s

(//restaurant[@name=‘‘Chili’s’’]/phone in XPath). The path is

considered simple because it does not cause the query tree to branch. The

result (a phone number, 671-1102) is returned to the user.

3.12.3 Selection: Complex Path

 In contrast to the simple path selection, a complex path selection

causes the query tree to branch in order to return the requested values or

objects. An example of a query that causes a complex path selection is to

ask for the name of all restaurants owned by G. Peppard (given in XPath

as //restaurant[@owner=‘‘G. Peppard’’]/name). All restaurants owned

by G. Peppard (Chili’s and Maggiano’s) are returned to the user.

Figure 3.10: SelectionComplex Path

&1

&2 &3

&8&5

Restaurant id=”R001” Restaurant id=”R002”

name name

FoodPlay

73

3.12.4 The Projection Operation

 The projection operator in relational algebra retains certain

columns from a given table and discards the others. Since XML

documents have objects that are either atomic values or complex objects

, projection operator in XML can return either a set of values or an object

3.13 XML advantage:

 XML has been loaded with expectations. It has clear

advantages over HTML and SGML. However, not all the features of

XML are comparable with EDI. Some expectations are relevant in web

publishing. The basic underlying ideas in XML are very simple: tags on

data elements identify the meaning of the data rather than specifying

how the data should be formatted (as in HTML), and the relationships

between data elements are provided via simple nesting and references

[93]. Yet the potential impact is significant: information content is

separated from information rendering, making it easy to provide multiple

views of the same data [93]. XML data files can be rendered via

specifications in XSL, the Extensible Style sheet Language [93].

Generally, the types of web applications that will benefit from the use of

XML are those that have any or all of the following features:

74

The following counterarguments point describes this

advantage:

 XML is flexible: The ability to define other languages can potentially

lead to problems because agreement on a common DTD or schema is

not self-evident even in a small user community. Tens of e-business

frameworks have been standardized using XML. This indicates that

XML can be too flexible for this domain.

 XML is human-readable: If the XML document is indented for full-

automated communication, human readability makes no sense. Even

in semi-automated communication, it is easy to create quite

unreadable XML documents. For example, the element ProNa may

mean a product name. What about XML documents created in a

different language?

 XML is self-describing: Although DTDs and schemas guarantee a

certain amount of validity to XML documents, one may use a DTD,

whereas another uses a schema to validate the document. How can it

be ensured that the trading partners use the same version of DTDs or

schemas?

 XML is structured: There are difficulties to store some characters,

e.g. angle brackets, and binary data in XML documents. Since XML is

structured text, it may take a lot of memory to store and a lot of time

75

to process this data. The possibility of specifying the contents is not

free.

 XML is widespread and inexpensive: Processing data in XML

documents does not necessarily stop at validation, parsing, or

transformation of the documents but more steps are needed for many

applications. For example, storing information in or retrieving it from

the relational database is often necessary. The necessary widespread

and inexpensive tools for all the steps that process the XML

documents are not available.

 XML is platform-neutral and widely supported: Although XML is

platform neutral and widely supported; the applications using XML

are not guaranteed to be such. For example, a less-supported

application may use a proprietary XML document format.

 XML-based systems have lower costs: Modification of legacy

systems is not necessary because middleware can be built to transform

data between XML and the native format. However, this does not

eliminate the costs but shifts them from the legacy systems to the

middleware.

 XML separates processing from content: Although XML separates

processing from content; it depends on the developers to ensure that

this separation really occurs. For example, if certain elements or

76

attributes require processing that is not supported by the basic XML

technologies, these element or attribute names may need to be hard

coded into the program. within the XML document.

77

CHAPTER 4: The Evolution of Relational Database Systems

4.1 Introduction

 The earliest known use of the term 'data base' was in June

1963, when the System Development Corporation sponsored a

symposium under the title Development and Management of a

Computer-centered Data Base. Database as a single word became

common in Europe in the early 1970s and by the end of the decade it was

being used in major American newspapers. (Databank, a comparable

term, had been used in the Washington Post newspaper as early as 1966.)

 The first database management systems were developed in the

1960s. A pioneer in the field was Charles Bachman. Bachman's early

papers show that his aim was to make more effective use of the new

direct access storage devices becoming available: until then, data

processing had been based on punched cards and magnetic tape, so that

serial processing was the dominant activity. Two key data models arose

at this time: CODASYL developed the network model based on

Bachman's ideas, and (apparently independently) the hierarchical model

was used in a system developed by North American Rockwell, later

adopted by IBM as the cornerstone of their IMS product.

78

 The relational model was proposed by E. F. Codd in 1970. He

criticized existing models for confusing the abstract description of

information structure with descriptions of physical access mechanisms.

For a long while, however, the relational model remained of academic

interest only. While CODASYL systems and IMS were conceived as

practical engineering solutions taking account of the technology as it

existed at the time, the relational model took a much more theoretical

perspective, arguing (correctly) that hardware and software technology

would catch up in time. Among the first implementations were Michael

Stonebraker's Ingres at Berkeley, and the System R project at IBM. Both

of these were research prototypes, announced during 1976. The first

commercial products, Oracle and DB2, did not appear until around 1980.

The first successful database product for microcomputers was dBASE

for the CP/M and PC-DOS/MS-DOS operating systems.

 During the 1980s, research activity focused on distributed

database systems and database machines, but these developments had

little effect on the market. Another important theoretical idea was the

Functional Data Model, but apart from some specialized applications in

genetics, molecular biology, and fraud investigation, the world took little

notice.

79

In the 1990s, attention shifted to object-oriented databases. These had

some success in fields where it was necessary to handle more complex

data than relational systems could easily cope with, such as spatial

databases, engineering data (including software engineering

repositories), and multimedia data. Some of these ideas were adopted by

the relational vendors, who integrated new features into their products as

a result.

 In the 2000s, the fashionable area for innovation is the XML

database. As with object databases, this has spawned a new collection of

startup companies, but at the same time the key ideas are being

integrated into the established relational products. XML databases aim to

remove the traditional divide between documents and data, allowing all

of an organization's information resources to be held in one place,

whether they are highly structured or not.

4.2 A database:

 is a collection of logically related data designed to meet the

information needs of one or more users. A possible definition is that a

database is a collection of records stored in a computer in a systematic

way, so that a computer program can consult it to answer questions. For

80

better retrieval and sorting, each record is usually organized as a set of

data elements (facts). The items retrieved in answer to queries become

information that can be used to make decisions. The computer program

used to manage and query a database is known as a database

management system (DBMS).[21].

 The central concept of a database is that of a collection of

records, or pieces of knowledge. Typically, for a given database, there is

a structural description of the type of facts held in that database: this

description is known as a schema. The schema describes the objects that

are represented in the database, and the relationships among them. There

are a number of different ways of organizing a schema, that is, of

modeling the database structure: these are known as database models (or

data models). The model in most common use today is the relational

model, which in layman's terms represents all information in the form of

multiple related tables each consisting of rows and columns (the true

definition uses mathematical terminology). This model represents

relationships by the use of values common to more than one table. Other

models such as the hierarchical model and the network model use a more

explicit representation of relationships.

81

 A topic of great importance is to understand how to make a

proper design of relational databases. The Relational model is not only

very mature, but it has developed a strong knowledge on how to make a

relational back-end fast and reliable, and how to exploit different

technologies

 The reason for my belief is that Relational Databases have a very

well-known and proven underlying mathematical theory, a simple one

(the set theory) that makes possible automatic cost-based query

optimization, schema generation from high-level models and many other

features that are now vital for mission-critical Information Systems

development and operations.

4.3 Database models

 Various techniques are used to model data structure. Most

database systems are built around one particular data model, although it

is increasingly common for products to offer support for more than one

model. For any one logical model various physical implementations may

be possible, and most products will offer the user some level of control

in tuning the physical implementation, since the choices that are made

have a significant effect on performance. An example of this is the

82

relational model: all serious implementations of the relational model

allow the creation of indexes which provide fast access to rows in a table

if the values of certain columns are known.

 A data model is not just a way of structuring data: it also defines

a set of operations that can be performed on the data. The relational

model, for example, defines operations such as selection, projection, and

joins. Although these operations may not be explicit in a particular query

language, they provide the foundation on which a query language is

built.

4.4 Flat model

 The flat (or table) model consists of a single, two-dimensional

array of data elements, where all members of a given column are

assumed to be similar values, and all members of a row are assumed to

be related to one another. For instance, columns for name and password

that might be used as a part of a system security database. Each row

would have the specific password associated with an individual user.

Columns of the table often have a type associated with them, defining

them as character data, date or time information, integers, or floating

point numbers. This model is, incidentally, a basis of the spreadsheet.

83

4.5 Hierarchical model

 In a hierarchical model, data is organized into a tree-like

structure. Hierarchical structures were widely used in the early

mainframe database management systems, such as the Information

Management System (IMS) by IBM. Most desktop computers also

employ a hierarchical file system. This structure allows one 1:N

relationship between two types of data. This structure is very efficient to

describe some of the relationships in the real world. However, the

hierarchical structure is inappropriate in many cases and is inefficient for

certain database operations.

4.6 Network model

 The network model (defined by the CODASYL specification)

organizes data using two fundamental constructs, called records and sets.

Records contain fields (which may be organized hierarchically, as in the

programming language COBOL). Sets (not to be confused with

mathematical sets) define one-to-many relationships between records:

one owner, many members. A record may be an owner in any number of

sets, and a member in any number of sets.

84

 The operations of the network model are navigational in style: a

program maintains a current position, and navigates from one record to

another by following the relationships in which the record participates.

Records can also be located by supplying key values.

Although it is not an essential feature of the model, network databases

generally implement the set relationships by means of pointers that

directly address the location of a record on disk. This gives excellent

retrieval performance, at the expense of operations such as database

loading and reorganization.[21].

4.7 Dimensional model

 The dimensional model is a specialized adaptation of the

relational model used to represent data in data warehouses in a way that

data can be easily summarized using OLAP queries. In the dimensional

model, a database consists of a single large table of facts that are

described using dimensions and measures. A dimension provides the

context of a fact (such as who participated, when and where it happened,

and its type) and is used in queries to group related facts together.

Dimensions tend to be discrete and are often hierarchical; for example,

the location might include the building, state, and country. A measure is

85

a quantity describing the fact, such as revenue. It's important that

measures can be meaningfully aggregated - for example, the revenue

from different locations can be added together.

In an OLAP query, dimensions are chosen and the facts are grouped and

added together to create a summary.

 The dimensional model is often implemented on top of the

relational model using a star schema, consisting of one table containing

the facts and surrounding tables containing the dimensions. Particularly

complicated dimensions might be represented using multiple tables,

resulting in a snowflake schema.

 A data warehouse can contain multiple star schemas that share

dimension tables, allowing them to be used together. Coming up with a

standard set of dimensions is an important part of dimensional modeling.

4.8 Object database models

 In recent years, the object-oriented paradigm has been applied to

database technology, creating a new programming model known as

object databases. These databases attempt to bring the database world

and the application programming world closer together, in particular by

86

ensuring that the database uses the same type system as the application

program. This aims to avoid the overhead (sometimes referred to as the

impedance mismatch) of converting information between its

representation in the database (for example as rows in tables) and its

representation in the application program (typically as objects). At the

same time object databases attempt to introduce the key ideas of object

programming, such as encapsulation and polymorphism, into the world

of databases.

 A variety of these ways have been tried for storing objects in a

database. Some products have approached the problem from the

application programming end, by making the objects manipulated by the

program persistent. This also typically requires the addition of some kind

of query language, since conventional programming languages do not

have the ability to find objects based on their information content. Others

have attacked the problem from the database end, by defining an object-

oriented data model for the database, and defining a database

programming language that allows full programming capabilities as well

as traditional query facilities.

 Object databases suffered because of a lack of standardization:

although standards were defined by ODMG, they were never

87

implemented well enough to ensure interoperability between products.

Nevertheless, object databases have been used successfully in many

applications: usually specialized applications such as engineering

databases or molecular biology databases rather than mainstream

commercial data processing. However, object database ideas were

picked up by the relational vendors and influenced extensions made to

these products and indeed to the SQL language.

4.9 Relational model

 The relational model was introduced in an academic paper by

E. F. Codd in 1970 [20] as a way to make database management systems

more independent of any particular application. It is a mathematical

model defined in terms of predicate logic and set theory.

 The products that are generally referred to as relational databases

in fact implement a model that is only an approximation to the

mathematical model defined by Codd. The data structures in these

products are tables, rather than relations: the main differences being that

tables can contain duplicate rows, and that the rows (and columns) can

be treated as being ordered. The same criticism applies to the SQL

language which is the primary interface to these products. There has

88

been considerable controversy, mainly due to Codd himself, as to

whether it is correct to describe SQL implementations as "relational":

but the fact is that the world does so, and the following description uses

the term in its popular sense.

 A relational database contains multiple tables, each similar to the

one in the "flat" database model. Relationships between tables are not

defined explicitly; instead, keys are used to match up rows of data in

different tables. A key is a collection of one or more columns in one

table whose values match corresponding columns in other tables: for

example, an Employee table may contain a column named Location

which contains a value that matches the key of a Location table. Any

column can be a key, or multiple columns can be grouped together into a

single key. It is not necessary to define all the keys in advance; a column

can be used as a key even if it was not originally intended to be one.[21].

 A key that can be used to uniquely identify a row in a table is

called a unique key. Typically one of the unique keys is the preferred

way to refer to a row; this is defined as the table's primary key.

 A key with an external real-world meaning (such as a person's

name, a book's ISBN, or a car's serial number), is sometimes called a

89

"natural" key. If no natural key is suitable (think of the many people

named Brown), an arbitrary key can be assigned (such as by giving

employees ID numbers). In practice, most databases have both generated

and natural keys, because generated keys can be used internally to create

links between rows that cannot break, while natural keys can be used,

less reliably, for searches and for integration with other databases. (For

example, records in two independently developed databases could be

matched up by social security number, except when the social security

numbers are incorrect, missing, or have changed.)

4.10 Relational operations

 Users (or programs) request data from a relational database by

sending it a query that is written in a special language, usually a dialect

of SQL. Although SQL was originally intended for end-users, it is much

more common for SQL queries to be embedded into software that

provides an easier user interface. Many web sites, such as Wikipedia,

perform SQL queries when generating pages.

 In response to a query, the database returns a result set, which is

just a list of rows containing the answers. The simplest query is just to

90

return all the rows from a table, but more often, the rows are filtered in

some way to return just the answer wanted.

 Often, data from multiple tables are combined into one, by doing a

join. Conceptually, this is done by taking all possible combinations of

rows (the Cartesian product), and then filtering out everything except the

answer. In practice, relational database management systems rewrite

("optimize") queries to perform faster, using a variety of techniques.

 There are a number of relational operations in addition to join.

These include project (the process of eliminating some of the columns),

restrict (the process of eliminating some of the rows), union (a way of

combining two tables with similar structures), difference (which lists the

rows in one table that are not found in the other), intersect (which lists

the rows found in both tables), and product (mentioned above, which

combines each row of one table with each row of the other). Depending

on which other sources you consult, there are a number of other

operators - many of which can be defined in terms of those listed above.

These include semi-join, outer operators such as outer join and outer

union, and various forms of division. Then there are operators to rename

columns, and summarizing or aggregating operators, and if you permit

relation values as attributes (RVA - relation-valued attribute), then

91

operators such as group and ungroup. The SELECT statement in SQL

serves to handle all of these except for the group and ungroup operators.

 The flexibility of relational databases allows programmers to

write queries that were not anticipated by the database designers. As a

result, relational databases can be used by multiple applications in ways

the original designers did not foresee, which is especially important for

databases that might be used for decades. This has made the idea and

implementation of relational databases very popular with businesses.

 The rows from a relational table are analogous to a record, and the

columns to a field. Here's an example of a table and the SQL statement

that creates the table:

CREATE TABLE ADDR_BOOK (

 NAME char(30),

 COMPANY char(20),

 E_MAIL char (25))

NAME COMPANY E_MAIL

Haj fath Haj Comp Hajcompany@hotmail.com

Hafiz

albarbari

Dal for Car Dalcar@yahaoo.com

92

 There are two basic operations you can perform on a relational

table. The first one is retrieving a subset of its columns. The second is

retrieving a subset of its rows. Here are samples of the two operations:

 SELECT NAME, E_MAIL FROM ADDR_BOOK

NAME E_MAIL

Haj fath Hajcompany@hotmail.com

Hafiz albarbari Dalcar@yahaoo.com

SELECT * FROM ADDR_BOOK WHERE COMPANY = ' Haj Comp '

NAME COMPANY E_MAIL

Haj fath Haj Comp Hajcompany@hotmail.com

 You can also combine these two operations, as in:

 SELECT NAME, E_MAIL FROM ADDR_BOOK WHERE

COMPANY = 'Haj Comp'

NAME E_MAIL

Sum song sumsong@hotmail.com

 You can also perform operations between two tables, treating

then assets: you can make Cartesian product of the tables, you can get

93

the intersection between two tables, you can add one table to another and

so on. Later we'll present more details about these operations and how

then can be useful.

 Most set operations between tables are interesting but of limited

use. After all, they will work as expected only when the tables have the

same set of columns. The fun begins when you operate on tables that do

NOT have the same set of columns.

4.11 Advantages of relational databases

 The relational data model is appropriate for database

applications requiring flexibility in the data structures and access paths

of the database. Flexibility in the data structures allows the data to be

stored as groups of logically similar data, with the groups being inter-

linked as needed, rather than in a single, monolithic structure. Flexibility

of the access paths permits the database to provide the exact data which

each data consumer requires, in the most appropriate format for them.

Relational databases are suitable both for applications under production

control and for those in which there is a substantial need for ad hoc data

manipulation by end users who are not computer professionals.

94

 Relational Databases limit replication of data. By storing all the

data pertaining to a particular item together, and then linking this

collection of information to related objects, there is no need to store data

about the original item in several different places. For instance, in a

contact database, the information about each organization is stored in

one place and information about individual contacts within that

organization are linked to the relevant corporate information. There is

therefore no need to store duplicate data.

 By storing the data relating to an object in a single place, there is

less likelihood of incorrect or incomplete data being stored or used. It

only needs to be kept up-to-date in one place. If the data changes, it is

only necessary to edit it in one place which saves time for those entering

the data and reduces the likelihood of errors occurring on data entry.

Data inconsistencies are thus more easily avoided.

 Users of the data stored in the database do not have to be aware of

the underlying structure. This permits the database designer to optimize

the data storage while presenting the users with the data in the format

which they need. For instance, in the contact database example, the

individual and corporate information may be stored separately but a user

who needs the address for an individual will be presented with a

95

combination of the individual's information (name and title, say) along

with the corporate data (company name and postal address).

 Relational databases are very flexible. Because they can be used

to present information in different ways, it is easy to add new views of

the data as they are required. Inexperienced users can easily obtain the

information they require without having to know anything about

database design or implementation. Different components of the data can

be maintained by different individuals so that the burden of keeping the

data up-to-date can be spread over a number of people. Well-designed

relational databases can provide appropriate data storage and retrieval

facilities over a long timescale.

 The relational database model is noted for its simplicity and

expandability. The majority of large database applications are relational

databases.

4.12 Understanding the application

 The database designer must understand the application so that it

is clear how the data will be maintained and how it will be used.

Information to be ascertained at this stage of the design process must be

the rules for creating and accessing data - how many users will perform

96

each of these tasks, how much expertise they will have in using the

system and how regularly the data will be updated or viewed. It is also

important to understand the circumstances in which the data may be

deleted and whether only specific users will be permitted to do this.

4.13 Organizing the data to form an initial conceptual model

 At this stage, the database designer begins to identify the

significant groups of data which are logically related. These logically

distinct groups will correspond to database tables. Having recognized the

differences between these sets of data, it is also necessary to recognize

how the data sets will be linked.

4.14 Evaluating the conceptual model

 The initial conceptual design should be used as a starting point

for constructing "use cases" for each aspect of the database. Such "use

cases" should cover different roles of user - administrator, manager, data

provider, data consumer - as well as different scenarios of database use.

By considering these scenarios in the context of the initial database

design, it will become clear where shortcomings of the initial model lie.

97

4.15 Sequential Database Design

 As a rule of thumb. the order in which constituent parts of the

database should be constructed is as follows:

Identify tables

• Insert columns into tables

• Eliminate repeating groups

• Identify a primary key for each table

• Identify relationships between the tables

• Identify foreign keys

 Repeating groups are groups of fields which recur in two or more

tables. They indicate that the data has not been divided to a sufficiently

atomic level and that this group should form the core of a new table with

links to the tables requiring access to this information. Eliminating

repeating groups in the database design will eliminate later problems in

updating and accessing data.

This sequence of design stages should be iterated around until the design

has been finalized.

98

 Good Database Design :

 Mapping from a file-based process directly to a relational database is

not good practice; the database should always be designed

 Several narrow fields are better than a single wide one

 Use character fields for numeric values such as phone numbers

 Do not store derived data in a record - only store raw, unprocessed

data

4.16 The similarities and differences between XML pattern and

RDBMS pattern

 XML was originally proposed for representing and exchanging

data between business applications on the Internet [94]. Where, RDBMS

was proposed for storing and retrieving data [95].

 XML can organize data in a hierarchical, object-oriented, and

multidimensional way in the form of a tree with an arbitrary depth and

width [96, 97]. While a traditional relational database table can be

thought of as a tree of depth two with unbounded fan out at the first

level, and fixed fan out at the second level, with the first level

representing tuples (or rows) and the second level representing fields (or

columns). An XML tree is clearly a more expressive way of representing

data as no constraints are placed on either depth or width.

99

 A comparison between XML technology and RDBMS

technology shows that there is a technology gap between XML

hierarchical ordered structure and RDBMS tabular unordered structure.

A Comparison between XML and RDBMS

XML RDMS

Data in single hierarchical structure Data in multiple tables

Nodes have element and/or attribute values Cells have a single value

Elements can be nested Atomic cell values

Elements are ordered Row/column order not defined

Elements can be recursive Little support for recursive

elements

Schema optional Schema required

Direct storage/retrieval of XML documents Joins often necessary to retrieve

data

Query with XML standards (XQuery, XPath) Query with SQL

Human and machine readable Machine readable

Table 4.1: A Comparison between XML and RDBMS

100

CHAPTER 5: Related Works and Current Approaches

5.1 Introduction:

 To store semi-structured data (i.e., XML documents) into

persistence storage, three alternative approaches can be proposed: a

special purpose database management system, an object-oriented

database management system, and a relational database management

system.

 For researches to use a special purpose database system, Rufus

[30], Lore [31, 32], and Strudel [33] report the development of research

prototypes [39]. These are tailored to store and retrieve XML documents

using special purpose indices and techniques of query optimization.

Insofar as an object-oriented database management system is concerned,

the rich capability of such a database system permits the use of Object

Orient (O2) [34] or Object store for the storage of XML documents (e.g.

the MONET project [40]).

For a relational database management system one of two techniques can

be considered. First, schema is extracted from XML documents based on

semi-structured data [41, 42, 43]. By analyzing this semi-structured data,

and the workload of a target application, efficient schema can be

constructed. Thus, performance will be little concerned with the matter

101

of how semistructured data is stored in RDBMS. Second, rather than

extracting a schema, different techniques are studied for storing XML

documents in relational databases. Examination of how XML data can be

mapped into tables or relations can be found in [44, 35, 45, 46, 47, 48].

Besides the pure relational case [45], an object-oriented approach is also

proposed. Furthermore, all of these use XML-QL [49] from XML

documents to extract data, while simply ignoring the restructured

element, (i.e., the result of SQL could be a XML document).

5.2 RELATED WORK

 Various XML retrieval approaches were used by the participating

groups in INEX 2003. These approaches were generally classified as

model-oriented and system-oriented [51]. Their group followed the latter

approach by using the initial hybrid XML retrieval system [49]. In an

earlier work regarding retrieval from semi-structured documents,

Wilkinson [43] shows that simply extracting components from

documents likely considered to be relevant to the information need in a

query leads to poor system effectiveness. However, in INEX 2003

approach they have investigated various extraction strategies which

exist that produced effective results for CAS topics. The hybrid system

with their CRE module (which they developed since INEX 2003)

102

furthermore increases the retrieval effectiveness of the initial hybrid

XML retrieval system.

 The CSIRO group participating in INEX 2002 proposed a

similar XML retrieval approach where PADRE, the core of CSIRO's

Panoptic Enterprise Search Engine5 is used to rank full articles and

elements within articles [32]. Unlike many full-text information retrieval

systems, PADRE combines full-text and metadata indexing and retrieval

and is also capable of indexing and retrieving more specific elements

within articles. A post processing module is then used to extract and re-

rank the full articles and elements within articles returned by PADRE.

However, unlike our CRE retrieval module, the above approach ignores

the structural elements within articles that contain the indexed element.

Less specific and more general elements are therefore not likely to

appear in the final answer list. For the purpose of ranking the resulting

answers of XML retrieval topics, Wolffet al [35] extend the probabilistic

ranking model by incorporating the notion of structural roles, which can

be determined manually from the document schema. However, the term

frequencies are measured only for the structural elements belonging to a

particular role, without taking into account the entire context where all

these elements belong in the document hierarchy. XRank [34] and

XSearch [35] furthermore aim at producing effective ranked results for

103

XML queries. XRank generally focuses on hyperlinked XML

documents, while XSearch retrieves answers comprising semantically

related nodes. However, since the structure of IEEE XML documents in

the INEX document collection does not typically meet the above

requirements, neither of them (without some modifications) could be

used in a straightforward fashion with the CAS retrieval task.

 Carmine Cesarano [118] developed a system for

semantically searching information on the Internet; the first

implementation of the system shows an interesting performance in terms

of searching precision. Several problems have to be still addressed. From

the implementation point of view, we are testing, for pages found just by

WSA, a penalizing factor Kb, thus assuming as SyG(x):

 SyG(x) = 1 .

 Kb . AP(x) [118]

A radically different approach consists in ignoring SyG(x), i.e. they can

decide to use standard search engines just as starting point for their

search and completely ignoring the position in which each link is

returned. Another problem is that the semantic network representing the

104

ontology for each context has to be automatically built; machine learning

strategies such as neural networks[118]

 Urvi Shah [119] presented an approach to information retrieval

over the Semantic Web utilizing a set of ontology's and inference

engine.DAML+OIL is a schema system that provides key improvements

over RDFS, including a built-in data typing system, support for

enumerations, specializations on properties, and classification and typing

by inference. Is used as the knowledge representation language and as an

interface for the inference engine, thus fostering edibility and

interoperability. The powerful support for rules formulation, constraints

and question answering over schema information surpasses what is

available in existing database technology.

 Inference service can be used to answer queries about explicit

and implicit knowledge spiced by the ontology thus providing a query

answering facility that performs deductive retrieval from knowledge

represented in DAML+OIL. Indeed, the retrieval of precise information

is better supported by languages designed to represent semantic content

and support logical inference. [119]

 J. u [120] successfully implemented a systematic approach from

ontology, agent, RDF and database systems. Given this lack of maturity

in established implementation in semantic-web, this technology is still

105

considered significant because the web infrastructure has become

increasingly difficult to manage. The standard client/server approach to

application design has led to the inception of a paradigm where

representation and format code interacts with a server data store. This

approach and the development techniques associated with it are confined

to handling rigid and highly-controlled database environments. The

limitation could have when the extension to three-tier and n-tier systems,

which may affect effectiveness of access/retrieval. As applications

migrate onto the Web, their inherent rigidity hampers further

development and maintainability. However, Web applications range

from portals to e-commerce sites. Thus, they must assemble data from

diverse sources and services. Furthermore, the basic requirements for

such applications tend to more adaptable in ‘Internet time’. This is the

sort of environment in which the extensibility of both XML and RDF

proves to be of great significance. XML flexibly facilitates the

adaptation of data formats, and RDF provides great benefits for the

adaptation of data-processing rules.

 Yuichi lizuka an integrated information retrieval method for the

world wide web (WWW) [121]. This method bases the user interface on

a universal relation. Given the user's query, the method returns a

preliminary list of candidate sources from which the user selects target

106

sources. The information desired is extracted from the target sources.

Besides adopting a universal relation, the other features of this method

are as follows. Template mechanism allows HTML pages to be treated

as if they were relational database forms. Information resource

management resolves heterogeneity of information sources. New

application programming interface (API) allows users to construct a

query by specifying items, which designate the retrieval items and the

retrieval conditions. The proposed method resolves heterogeneity among

sources and generates and presents retrieval candidates based on the

user's query. Though there are many candidates, the users can choose the

sources desired as retrieval targets. So, this method can treats

independently controlled sources covering various subjects such as cars,

PCs, restaurants, and so on. This method returns the lists of item values

within an uniform user domain as the retrieval results. The method

strength, the user needs not to analyze HTML documents to obtain the

desired information and retrieval can be more easily. The method

limitation it need in the future research to follows.- Create an automatic

template generation method.- Expand the range of the proposed method

to cover information sources such as text databases. XML data, and

multimedia databases.

107

 Mapping XML documents to RDBMS has been studied for

the last few years to leverage the power, reliability, concurrency control,

integrity, crash recovery, triggers, and multi-user access of RDBMS

[21], which are not available in XML technology until now. These

studies try to narrow down the technology gap between XML

hierarchical ordered structure and RDBMS tabular unordered structure.

Existing Mapping techniques from XML-to-relational can generally be

classified into two tracks. The first one is the structured-centric

technique, which depends on the XML document structured to guide the

mapping process. The second track is the schema–centric, which makes

the use of schema information as DTD or XML schema to derive an

efficient relational storage for XML documents.

 None of the previous mapping XML-to-Relational technique

gave an ideal solution to overcome all issues of the mapping process,

such as, size restriction, database vendor dependency, XML document

types and information loss in the stored original XML documents due to

the shredding process. Also, the size of the resulting relational database,

and query performance are another issues of the mapping process.

108

5.3 Mapping XML documents to relational Database Researches:

 There have been number of researches on mapping XML-to-

relational database. One of the early studies in this area was proposed

by:

 Shanmugasundaram et al., 1999, in University of Wisconsin-Madison

[98]. In their study, three techniques, i.e. Basic, Shared, and Hybrid

Inlining mapping techniques, are proposed for DTDs to relational

schemas. These techniques are different from one another in the degree

of redundancy; they vary from being highly redundant in Basic Inlining,

to containing no redundancy in Hybrid Inlining. To map from DTD to

relational schema, they used the following transformation rules to get

simplified DTD first:

 if an element a is defined as <!ELEMENT a((b|c|e)?,(e?|(f?,(b,b)*))*)>,

where b, c ,e and f are other elements. Then, the following rules in

figure 5.1, 5.2 and 5.3 could be used to do simplification process:

Figure 5.1: Converting of a nested definition into flat
representation [98]

(e1, e2)* e1*, e2*
(e1, e2)? e1?, e2?

(e1|e2) e1?, e2?

109

Where “*” mean zero or more of a given element, “?” means zero or

one element, “|” means a choice between two elements, and “+” means

one or more of a given element.

Figure 5.2: Reducing of unary operators to a single operator [98]

Figure 5.3: Grouping of subelements having the same name [98]

5.3.1 The Basic Inlining Technique:

 The Basic Inlining Technique, solves the fragmentation problem by

inlining as many descendants of an element as possible into a single

relation. However, Basic creates relations for every element because an

XML document can be rooted at any element in a DTD [123]. Basic

technique steps:

1) Each XML element is mapped to relation in RDB because an XML

document can be rooted at any element in a DTD. So, Basic creates

relations for every element in a DTD. For example, the author element

in List 5.1 would be mapped to a relation with attributes firstname,

e1** e1*
e1*? e1*
e1?* e1*
e1?? e1?

…, a* , …, a*, … a*, …
…, a* , …, a?, … a*, …
…, a? , …, a*, … a*, …
…, a? , …, a?, … a*, …

…, a , …, a, … a*, …

110

lastname and address.

2) Solves the fragmentation problem by inlining as many descendants of

element as possible into a single relation.

3) To address set-valued attributes and recursion: they followed the

standard technique for storing sets in RDBMS and created a relation

these sets and link them using a foreign key. In List 1, when creating

relation for article, they cannot inline the set of authors because the

traditional relational model does not support set-valued attributes.

Instead, they created a relation for author and link authors to articles

using foreign key. And they expressed the recursive relationship using

the notion of relational keys and use relational recursive processing to

retrieve the relationship. To do so, they introduced the notion of a DTD

graph as in Figure 5.3, which represents the structure of a DTD. Its

nodes are elements, attributes and operators in the DTD. In the DTD

graph, each element appears exactly once in the graph, each attributes

and operators appear as many times as they appear in the DTD, and

cycles in the DTD graph indicate the presence of recursion. The schema

created for a DTD is the union of the sets of relations created for each

element. In order to determine the set of relations to be created for a

particular element, they created a graph structure called the element

graph. The element graph is constructed as follows [98]:

111

 a) Do a depth first traversal of the DTD graph, starting at the element

node for which the relations are being constructed.

b) Each node is marked as “visited” the first time it is reached and is

unmarked it once all its children have been traversed.

c) If an unmarked node in the DTD graph is reached during first

traversal, a new node bearing the same name is created in the element

graph.

d) A regular edge is created from the most recently created node in the

element graph with the same as the DFS parent of the current DTD node

to the newly created node. Figure 5.4 shows the element graph of editor

element.

Figure 5.4 : DTD graph [98]

112

Figure 5.5: Element graph for the editor element [98]

4) Given an element graph, relations are created as follows. A relation is

created for the root element of the graph. All the element’s descendents

are inlined into that relation with the following two exceptions:

a) Children directly below a “*” node are made into separate relations –

this corresponds to creating a new relation for a set-valued child.

b) Each node having a backpointer edge pointing to it is made into a

separate relation – this corresponds to creating a new relation to handle

recursion. List 5.2 shows the relational schema that would be generated

for the DTD in 5.1.

113

<!ELEMENT book (booktitle, author)

<!ELEMENT article (title, author*, contactauthor)>

<!ELEMENT contactauthor EMPTY>

<!ATTLIST contactauthor authorID IDREF IMPLIED>

<!ELEMENT monograph (title, author, editor)>

<!ELEMENT editor (monograph*)>

<!ATTLIST editor name CDATA #REQUIRED>

<!ELEMENT author (name, address)>

<!ATTLIST author id ID #REQUIRED>

<!ELEMENT name (firstname?, lastname)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT address ANY>

List 5.1: Document Type Definition DTD [98]

book (bookID: integer, book.booktitle : string, book.author.

name.firstname: string, book.author.name.lastname: string,

book.author.address: string, author.authorid: string)

booktitle (booktitleID: integer, booktitle: string)

article (articleID: integer, article.contactauthor.authorid: string,

114

article.title: string)

article.author (article.authorID: integer, article.author. parentID:

integer, article.author.name.firstname: string,

article.author.name.lastname: string, article.author.address: string,

article.author.authorid: string)

contactauthor (contactauthorID: integer, contactauthor. authorid:

string)

title (titleID: integer, title: string)

monograph (monographID: integer, monograph.parentID: integer,

monograph.title: string, monograph.editor.name: string,

monograph.author.name.firstname: string,

monograph.author.name.lastname: string,

monograph.author.address: string, onograph.author.authorid:

string)

editor (editorID: integer, editor.parentID: integer, editor . name:

string)

editor.monograph (editor.monographID: integer, editor .

monograph.parentID: integer, editor.monograph.title: string,

editor.monograph.author.name.firstname: string, editor.

115

monograph.author.name.lastname: string,editor. monograph.

author.address: string, editor. monograph.author.authorid: string)

author (authorID: integer, author.name.firstname: string,

author.name.lastname: string, author.address: string,

author. authorid: string)

name (nameID: integer, name.firstname: string, name. lastname:

string)

firstname (firstnameID: integer, firstname: string)

lastname (lastnameID: integer, lastname: string)

address (addressID: integer, address: string)

List 5.2: Relational schema resulted by Basic technique [98]

5.3.2 Shared Inlining Technique:

 The Shared Inlining Technique, is attempt to avoid the drawbacks

of Basic by ensuring that an element node is represented in exactly one

relation. The principal idea behind Shared is to identify the element

nodes that are represented in multiple relations in Basic and to share

them by creating separate relations for these elements.[123]

1) Its principle idea is to identify the element nodes that are represented

in multiple relations in Basic (such as firstname, lastname, address) and

116

to share them by creating separate relations for these elements.

2) Relations are created for all elements in DTD graph whose nodes

have an in-degree greater than one.

3) Nodes with an in-degree of one are inlined.

4) Nodes having an in-degree of zero are also made separate relations,

because they are not reachable from any other node.

5) Elements below a “8” node are made into separate relations.

6) The mutually recursive elements all having in-degree one (such as

monograph and editor) one of them make a separate relation. To find

mutually recursive elements, look for strongly connected

components in the DTD graph.

7) After deciding which element nodes are to be made into separate

relations, it is easy to construct the relational schema as follows:

a) Each element node X that is a separate relation inlines all the nodes Y

that are reachable from it such that the path from X to Y does not

contain a node (other than X) that is to be made a separate relation.

b) Inlining an element X into a relation corresponding to another

element Y creates problems when an XML document is rooted at the

element X. To facilitate queries on such elements we make use of is

Root fields. List 5.3 shows the relational schema derived from the

DTD graph of list 5.1.

117

book (bookID: integer, book.booktitle.isroot: boolean,

book.booktitle : string)

article (articleID: integer, article.contactauthor.isroot: boolean,

article.contactauthor.authorid: string)

monograph (monographID: integer,monograph.parentID: integer,

monograph.parentCODE: integer,

monograph.editor.isroot: boolean, monograph.editor.name: string)

title (titleID: integer, title.parentID: integer, title.parentCODE:

integer, title: string)

author (authorID: integer, author.parentID: integer,

author.parentCODE: integer, author.name.isroot: boolean,

author.name.firstname.isroot: :boolean, author.name.firstname:

string, author.name.lastname.isroot: boolean, author.name.lastname:

string, author.address.isroot: boolean, author.address: string,

author.authorid: string)

List 5.3: Relational schema resulted by Shared technique [98]

5.3.3 Hybrid Inlining Technique:

 The Hybrid Inlining Technique, or Hybrid, is the same as Shared

except that it inlines some elements that are not inlined in Shared. In

particular, Hybrid additionally inlines elements with in-degree greater

118

than one that are not recursive or reached through a “*” node. Set

subelements and recursive elements are treated as in Shared.[123]

1) It combines the join reduction properties of Basic with the sharing

features of Shared.

2) It is the same as Shared except that it inlines some elements that are

not inlined in Shared.

3) It additionally inlines elements with in-degree greater than one not

recursive or reached through a “*” node.

4) Set sub-elements and recursive elements are treated as in Shared.

 The above approach offers limited structures to represent the

features of XML data, such as nested relationships and ordering of XML

documents, and the DBMS schema representations are proprietary and

querying these structures is usually complex since the final users are not

familiar with them.

 Redundancy reducing XML storage in relations (RRXS)

within XML Functional Dependency (XFD) is proposed by Yi Chen et

al., 2003, at University of Pennsylvania and Universidade Federal do

Parana, Brazil [99], as a constraint definition to capture structural

constraints as well as semantic information. XFD are used to describe

the property that the values of some attributes of a tuple uniquely

119

determine the values of other attributes of the tuple, which is different

from relational database in that they must be defined using path

expressions. The path language used in XFDs and for XML tree

navigation allows traversal along the child (/) and descendant (//) axis.

So they defined their path language, XP{/,//} by the following grammar

[99]:

 PL1 ℓ\PL1/PL1\PL1//PL1

 PL2 ∈\PL1\//PL1

 PL PL2\PL2/value()

 SSXP{/,//} PL\$x/PL

Where ℓ dSenotes an XML node label (element tag or attribute name),

denotes the empty path, value() retrieves the value of the context node

(only applicable for a leaf node), and $x is a variable bound to a path

expression in PL.

 A reduced set of the input XFDs is used to guide the design of the target

relational schema by translating XFDs to relational functional

dependencies and creating a third normal form (3NF) decomposition. In

this way, XFDs are mapped to relational keys and relational primary key

technology used to validate semantic constraints. In addition, redundant

information in the XML document as expressed in XFDs is reduced in

120

the relational design, and the use of node ids is reduced wherever value-

based keys exist.

In order to do this, they defined three algorithms, algorithm 1 (5.4): a

polynomial time algorithm (function infer), which given an XFD Ø: X >

Y and a set of XFDs F, determines whether or not Ø can be inferred

from F using L (L represents XFDs defined over XML data). Given an

initial set of XFDs, this algorithm is then be used to detect which XFDs

can be eliminated and which ones can be simplified by eliminating P-

attributes on their left hand sides, thereby deriving a reduce set G of

XFDs F.

 Algorithm 2 (List 5): RRXS function, takes an XML schema (a set

of XFDs, F) and optional DTD (D), and generates a normalised

relational schema (R) with a set of keys (K) as well the instant

transformation program (M). The transformation M will map an XML

tree T which conforms to D and satisfies F to relations M(T) which

conform to schema R. Every node is assigned a unique node id or it is

identified by a semantic key value to guarantee that the parent-child

connections between nodes are preserved. Removing of redundant node

id is based on the following observation: if X > Y and Y = X then X and

Y are functionally equivalent. Equivalence will recognize equivalent

121

XFDs and equivalent elements (an element is a set of P-attributes which

appear on the left or right side of an XFD), then group those elements

into equivalence classes and output G. In the second step, the reduced

set H of G is computed to remove redundant XFDs. Then for each

equivalence class, shrink removes unnecessary elements, producing the

set of XFDs I. During the fourth step, every non-equivalent P-attribute p

in I is mapped into a relational attribute pa to record the ids or values of

the nodes reachable by p, and I is mapped into a set of functional

dependencies IR. Finally, a third normal form (3NF) target relational

schema R is generated based on IR. The optional XML schema

information D can be used to automatically generate structural XFDs,

and also used in the path containment test in the reduced cover

algorithm.

 Function infer

 Input:):,(YXF →ϕ

 Output: True, if otherwiseFalseLF ,;ϕ⊥

 Let I = max{lengths(QvQv /$|/$ is a P-attribute of some XFD in

F r ϕ }

 If XQv ∈∀ /$ satisfies the singleton condition then

122

 S=X

 If XPv ∈∃ /$ and P does not end with value() then

 }{$vSS ∪=

 End if

 Else

 return false

 end if

 if SY ∈ then

 return true

 end if

 repeat

 NullB =
'

 For each XFD FBA ∈→:φ do

 If SRvARv ∈∃∈∀ ,/$,,/$ ' not marked by),,$(vφ

 and expand)($ 'v ≤ expand ($v) then

 =B
' replace each $v with v '$ In B

 Mark v
'$ / R, by),$(vφ if the variable of B is $v,

 or $v is dependent variable.

 Else if SRvARv ∈∃∈∀ ,'/'$,,/$ not mark by

123

 (),,$vφ expand ≤),'/'($ Rv expand ($v/R), and

 the path between R ' , and R , satisfies the singleton

 condition then

 B ' = replace each $v with)($ 'v and adjust the path under

)($ 'v .

 Mark),$(,/$ '' vbyRv φ if the variable of B is $v,

 or $v is the dependent variable.

 End if

 If lthenBandNullB ≤≠ ''

 }{ 'BSS ∪=

 End if

 If Y = B ' then

 Return true

 End if

 End for

 Until S does not enlarge

 Return false

List 5.4: Algorithm 1, infer function [99]

124

Function RRXS

Input: F, optional DTD D

Output: R with K defined ,M

G==Equivalence(F,D)

H=Reduce(G,D)

I=Shrink(H)

Map each distinct P-attribute p in I to an attribute pa

M=)(ppaIp ←∪ ∈∀

Let A be the set of attributes obtained

Map I to functional dependences IR over A.

Generate a 3NF relational schema R over the attribute

set

A according to IR

Return R,M

List 5.5: Algorithm 2, RRXS function [99]

Algorithm3 (list 5.6): Equivalence function is used to find relationship

between variables and P-attributes to recognise redundant node ids. It

consists of two steps to achieve its purpose [99]:

(1) If two XFDs Ø1 and Ø2 satisfy Ø1 ⊃ Ø2 and Ø2 → Ø1, then the one

125

will be chosen is that minimizes the number of variables used for a given

set of XFDs;

(2) If there are two XFDs Ø3: X ∪ Y and Ø3: Y ⊃ X then elements X

and Y are grouped into an equivalence class.

Function Equivalence

Input: F,D

Output: G

Construct C using the unique child and unique parent

XFDs in F

CconstructtousedXFDstheFF −='

Fn '=

For i= 1 to n do

Let YXbei →,φ

If);,(,, '' njiorCXX XX kkk ≤∈∈∃∈∀ pφ such that: expand

(Node Path (≡))'X k expand (Node Path)(X k)then

If YXYX '' →⇔→ then

Replace iφ ,with '' YX →

End if

End if

126

End for

For i=1 to n do

Let YXbei →,φ

If ((expand(X)∈PL2 and 1=X)or expand(Y)

∈PL2) and infer (XYF →,) then

Put X and Y into the same equivalence class C,

Remove iφ

End if

End for

),(' CFG =

Return G

List 5.6: Algorithm 3, Equivalence function [99]

 However, using XFDs and nodes ids together leads to some

information loss. In order to overcome this information loss, documents

must be completely covered by XFDs. Unfortunately; the suggested

rewrite rules are not complete. So, this algorithm will not be sure to

reduce the redundancy.

 A querying approach for XML documents by dynamic shredding

127

is proposed by Hui Zhang and Frank Wm Tompa, 2004, in University of

Manitoba and University of Waterloo[100]. In this approach, user's

interference is needed to typically first "shred" their documents by

isolating what they predict to be meaningful fragments, then store the

individual fragments according to some relational schema, and later

translate each XML query (expressed in XQuery) to SQL queries

expressed against the shredded documents. So, they defined an

extraction operator, X A,S(R), adapted from function extract_subtexts()

designed for a text-relational abstract data type (this operator takes a

table R as input and two parameters, A and S, where A is a column of

table R of type text and S is a tree pattern to match against each text

entry in the given column A), in order to enable dynamic shredding of

XML data. The pattern matching language is a variant of XPath that

describes tree patterns instead of path patterns, using hash marks or

some similar flags to indicate which nodes are to be returned. Therefore,

it differs from an XPath expression by identifying several nodes in a tree

that correspond to a single match rather than extracting only the last

node in some path. Their algebra is an extended relational algebra based

on SQL tables rather than relations with support for text function in

order to convert data to string. They used traditional relational operators,

selection, join conditions, and projection list which may include text

func

The

1. E

mat

item

COL

in C

ope

the

con

assu

ctions as w

ey descri

Extraction

tching pat

ms in XPa

LS=<p1, p

COLS; OP

erations on

vector of

ndition ap

umed); F

well as no

Ta

ibed thes

n: Let S(C

ttern, whe

ath termin

p2, … , pn>

PS=<op1, o

n items, i.e

f text ma

pplied on

COLS is

on-standard

able 5.1: Li

se operat

COLS, PR

ere COLS=

nology (re

> is the ve

op2, … , o

e., a ‘/’ or

atching co

a particu

the vecto

128

d operator

ist of oper

tors as fo

RE COLS

=<col1, co

enamed if

ector of th

opn> is the

a ‘//’ ope

onstraints

ular item,

or of items

r which sh

ators [101

ollows [10

S,OPS, Φ,

ol2, … , c

f needed f

he closest

e vector o

eration; Φ=

 on each

, an alwa

s with ass

hown in Ta

1]

01]

,F COLS

coln> is th

for unique

ancestor o

of child or

=<�1, �2,

item (if

ays-true c

sociated fl

able 5.2.

S) be a tr

he vector

eness); PR

of each ite

r descende

, … , �n>

there is n

condition

flag #. The

ree

of

RE

em

ent

 is

no

is

eir

129

extraction operator(χ) with a pattern S on column A of table R can be

formally defined as:

χA,S(COLS,PRE_COLS,OPS,Φ,F_COLS)(R)

= R ►◄ A (πF_COLS’F_ COLS’_ �{A}(�1(ex(A, col1, op1))

 ►◄pre(col2,S) (�2(ex(pre(col2, S), col2, op2))

 ►◄pre(coln,S) (�n(ex(pre(coln, S), coln, opn))))

 Where F COLS’ is the vector of hidden columns corresponding

to F COLS.

2. Sorting: A sorting operator τ is used to sort a table according to some

sorting criteria. τA(R) takes a table R as input and a list of sorting

columns A as a parameter. The result of this operation is the table R, but

with the rows sorted in the order indicated by A.

3. Groupby: For a grouping column col of simple type, the partition

operator (γ) partitions a table such that each row in a partition has the

same value for col; if the grouping column is of type text, it partitions

the table based on the value of the (hidden) node identifier of col. Thus

the groupby operator can be used to partition a table based on simple

values or instead on node identity when a text column is specified.

4. Construction operator: to support the conversion of parts or whole

relational tables into documents, two construction operators are

130

included:

a) Aggregate constructor (µA) is used mainly for representing the

contents of a set-valued column for several tuples as a single tree.

Assuming that a groupby operation is performed first, instead of

computing an aggregated scalar value for each group, aggregate

construction forms a tree from the values over column A in each group,

appropriately handling null values. Their catenate (◦) operator is defined

as follows: If T1 = T(t1, a1,< e1, e2, … , em >) and T2 = T(t2, a2, <f1, f2, …

, fn>) are two text values and [101]

Then T1 ◦ T2 = T(vector, null,E).

and the aggregate constructor µA is defined as follows:

Let v1, v2, … , vn be the list of values in a group on column A. Applying

the aggregate constructor on this group generates the text value v1 ◦ v2 …

◦ vn, and µA is the result of applying an aggregate constructor to each

group in the table. Note that the order of the subelements of the result is

131

defined to match the order of the rows in the table.

b) Element constructor (ν) is another construction operator. It takes three

parameters, AC1,AC2, and tag, where (1) AC1 is a list of columns that are

to become the XML attributes of the resulting element being

constructed, here denoted elet. The order that columns occur in the list

AC1 does not matter. (2) AC2 is a list of columns that are to become the

subelements of elet. The order that columns occur in the AC2 list is also

the order that these subelements occur in the resulting element. (3) tag is

the tag name of elet. By default, the column corresponding to elet in the

resulting table is named tag, but if tag conflicts with an existing column

name, some renaming is necessary.

Element constructor is applied to each tuple and the result is computed

as: concatenate the value Ti of each column i appearing in AC2 to

construct a tree T with all Ti as children. Set the tag of the result to tag

and the (XML) attributes of the result to the named set of values in AC1,

where names correspond to the (table) attribute names in AC1. Since the

order of each column appearing in AC2 is important, we apply the

catenate operator in a way such that each child is in the same order as it

is in AC2 . This can be formally defined as: For a single row in a table, let

c1j be the value of column C1j for each C1j in AC1; and let c21, c22, … , c2m

be the values of columns in AC2 . Applying the element constructor to

132

this row produces the text value T(tag, {C1j = c1j | C1j � AC1}, c21 ◦ c22 ◦

… ◦ c2m). Finally, ν(tag, AC1,AC2) is the result of applying such element

constructor to each row of the table.

To translate XQuery to relational algebra the following procedure is

followed [101]:

1) Given an XQuery Q, XML query processing framework first

canonicalizes it to a query Q’.

2) Translate from Q’ to an extended relational algebra with support to

text, using the translation algorithm described below.

3) After obtaining an initial query plan from translation, query

rewritings (see [102]) to optimize it to get better plan, which is then sent

to the underlying extended database management system to be executed.

5.4 Translation algorithm:

 Given XQuery Q in the canonical form (Q’), represents it as a

query tree. A query tree has four kinds of nodes: every internal node is

called a CF node and represents a FLWOR expression or a compound

return value; every leaf node represents a simple return value and is

either a V node to denote a for-variable, U node for a let-variable, or

aggU node for an aggregate function applied to a let-variable. The

subtrees of each CF node represent either nested FLWOR expressions

133

that are bound to let-variables or the components of the return clause, in

the order of their appearance in the XQuery expression. In the former

case, the incoming edge is labelled with ‘let’ and this CF node is

referred to as a let-CF node. The operation of the translator of XQuery in

canonical form (Q’) to relational algebra expression will be as follows:

Let Q be a query in basic XQuery canonical form, and QT be the query

tree for Q. Note that QT has only one CF node (i.e., root) with some leaf

children as returned values. Trans0 proceeds as follows by considering

query information and the returned values associated with the CF node

(Trans0: Basic CF translation) [101]:

1. Translate for clause: extract binding values for each for clause $vi :=

FEi using the extraction operator χ. FEi is a path expression beginning

with either document() or a reference to another variable, which

determines the source for the extraction. The rest of the path expression

is translated to a pattern matching string, and supplied as the second

parameter to χ.

1.1. If FEi starts with the document() function Trans0 selects the

corresponding row and column of the initial table R0 to form a new one-

row, one-column table R1 containing the document text doc, then

extracts $vi from R1 using the tree pattern corresponding to FEi. When

executed, this produces a new column together with a hidden mark

134

column on R1.

1.2. If FEi starts with another variable, Trans0 must have previously

extracted a corresponding column in some table. In this case, extraction

starts from that column and forms a new column together with a hidden

mark column for that existing table. Whenever distinct is present,

duplicate elimination is performed based on value or node identity as

desired, depending on the specification of distinct. After this step, each

variable corresponds to a column from which the variable takes its

binding values, and a hidden mark column indicating where these

binding values originate. Since these mark columns are used only by the

underlying DBMS, we use the term ‘column’ to mean ‘visible column’

unless specified explicitly.

2. Translate let clause: similar to step 1 except that after each extraction,

perform a sorting operation on all the remaining columns (except let-

columns) based on document order, then perform a partition on all

columns except the newly extracted one, followed by an aggregate

constructor on the newly extracted column. Thus each let-variable’s

value is a text tree representing a collection as a vector. To ensure

compliance with XQuery semantics, the order of elements in the

grouping column list and the sorting column list is the same as in the

query.

135

3. Form a single table: compute the cross product of multiple tables, if

any, obtained from the previous steps. Let the resulting table be

R(a1, a2, ..., an).

4. Translate where clause:

4.1. Rewrite the where condition such that variable appearances are

replaced by their corresponding column names in R. Denote the

rewritten condition as WC.

4.2. Include a selection operator σ with condition WC.

5. Translate return clause:

5.1. Project on columns corresponding to for-variables, let-variables

appearing in the return clause, plus those aggregate functions

applied on let-columns. If a returned variable has a tag around it,

then the projection list includes an element constructor applied to

that column.

5.2. Sort the table according to document order or as the query requires.

In the case of sorting on document order, the sorting column list is

the for-variable list with each for-variable in the order of its

appearance in the for–clause, and the sorting is performed on the

hidden mark column associated with each for-variable. (This

corresponds to W3C’s specification for ordering.)

5.3. Apply an element constructor using the columns of the previous

136

step. Its parameters are supplied as indicated by the return clause,

with the columns in the second parameter (i.e., subelements list) in

the order of their corresponding variable appearances in the return

clause and the third parameter as return-tag if present. Let the

resulting column be named a.

6. Generate the result: Project on column at and apply an aggregate

construction operator on at treating all rows as a single group,

followed by an element constructor adding the tag result-tag or vector

on the aggregated value of at. Hence, the result of this step is a one-

row, one-column table containing a constructed text tree T.

 To extend the translation of basic XQuery expressions to expression

with or without nesting in return and let clauses, Let the table R in the

translation of a basic query be denoted as the working table. In the

extended translation for general queries, the working table is global to

all nested FLWOR expressions.

Trans [101]: XQuery of translation: Let Q be an XQuery in canonical

form, QT be the query tree for Q. For each CF node in the query tree QT,

visited in depth-first order, Trans applies an extension of the basic

translation Trans with the following modifications:

Step 1. Save the current working table R as S.

137

Step 2’. Translate let clause. If the let clause is a simple variable binding

without nested CF, its translation is the same as that in basic translation.

Otherwise, call Trans on the nested CF node to create a column

containing the sets of values to which the let variable is bound.

 Step 3’. Denote the extracted for- and let-columns for this current CF

node as CC, all previously extracted for- and let-columns for nested

subqueries as RC, and all previously aggregated columns (including

both scalar aggregated columns and aggregated construction columns)

for nested subqueries as AC.

a. If there are nested CF nodes in the return clause, call Trans on the

nested CF nodes.

b. If processing a nested CF node, replace R by the left outer join of S

with R. T his step is to ensure that empty substructures will be

generated, if needed, precisely where they are required by XQuery

semantics.

c. Similar to Step1 but with the projection list enlarged to include all

columns in RC ≡AC along with those required in the construction of

this CF node.

d. Sort the table as specified by the query, or (if no sorting is specified)

sort the table with the sorting column list including all columns in RC to

CC (except all let-columns) with each for-variable in the order of its

138

appearance in Q. As before, sorting is performed on the hidden mark

column associated with each for-variable to ensure correct document

order.

e. Same as step 3

 Step 4. Partition on all columns in RC and AC, construct the result of

this CF node in the same way as Step 4, and put the result into a new

column in table R.

 It just converts subtexts to relational fields as needed

dynamically in response to user queries, and keeps the original XML

text untouched. This approach solves the problem of the document size

limitation, and the loss of information from the original XML data since

it keeps the original document untouched. But not saving the XML

document in the relational database will make it impossible to connect

with the data already existing in the relational database. Also there is a

need for query translation for every XQuery.

 SPIDER (Schema based Path IDentifiER): a node labelling

scheme is used by Kei Fujimoto et al., 2005, in Nagoya University and

Nara Institute of Science and Technology [103] to preserve XML tree

structure. SPIDER is a scheme that uniquely numbers all paths from root

node appearing in documents under a DTD by referring to information

139

distilled from the DTD. It assigns a unique integer to a sequence of

elements and/or attributes names from the root node to a node in an

XML tree. SPIDER only identifies paths from the root node to a node in

an XML tree; it could not distinguish between multiple nodes appearing

in the same path. It is calculated as follows: (1) A table, called

StruDTD, is created to enumerate all parent-child relations in DTD.

StruDTD, Table 5.2, has three columns: Parent, Child and cOrder.

Parent contains the names of parent nodes, and Child contains the names

of child nodes of the parent nodes. cOrder is an integer assigned so that a

pair of any two columns identifies the remaining column. (2) SPIDER is

calculated by referring to cOrder in StruDTD. Let p.sid denote SPIDER

of parent node, let c.sid denote SPIDER of child node, let f denote

maximal value of cOrder and let childOrd(p.tag, c.tag) denote cOrder,

where the value of Parent is p.tag and the value of Child is c.tag in the

same row. SPIDER is calculated recursively by the following

expression. (The SPIDER of the root node is 1.)

c.sid = (p.sid − 1) × f +1+ childOrd(p.tag ,c.tag)

Figure (5.6) shows an example for labelling nodes in XML documents

using SPIDER depending on StruDTD table.

140

Figure 5.6: Node labelling using SPIDER [103]

 To solve this issue they introduced Sibling Dewey Order to identify

such nodes. When a new node is to be inserted into an XML document,

there is a need to re-label some other nodes to preserve the order of

nodes. In this method, only Sibling Dewey Order is relabelled where

SPIDER is not affected. Sibling Dewey Order is calculated as follows.

First, get the order of the nodes that have the same path from the root

node and the same parent node. Then, concatenate the order from the

root node to the target node. The ancestor-descendant relationship

between any two nodes is checked efficiently by the concatenation.

Figure (3.6) shows node labelling using SPIDER and Sibling Dewey

Order method.

141

Figure 5.7: Node labelling using SPIDER and Sibling Dewey Order. [103]

Parent Child cOrder

Site Regions 1

Site Categories 2

Site Catgraph 3

Site People 4

Site open-auctions 5

Regions Africa 1

Africa Item 1

open-auction Open-auction 1

Table 5.3: A part of StruDTD [103]

142

In order to store XML documents enumerated with SPIDER and Sibling

Dewey Order, the following schema are defined [103]:

Element (docID, nodeID, spider, sibling, parentID)

key is (docID, nodeID)

Attribute (docID, nodeID, spider, sibling, parentID, value)

key is (docID, nodeID)

Text (docID, nodeID, spider, sibling, parentID, value)

key is (docID, nodeID)

Path (spider, path, pathexp)

key is (spider)

 “Element” is a relation to store element nodes, “Attribute” is a relation

to store attribute nodes, “Text” is a relation to store text nodes, and

“Path” is a relation to store all paths from the root node to a node in

XML documents.

And the following describes the attributes of the above schemas [103]:

docID Identifier to identify XML documents.

nodeID Serial number to identify each node. The order among this serial

number has no sense. This number is not updated.

spider SPIDER assigned to nodes. In the Text relation, this attribute

stores SPIDER assigned to parent nodes.

143

sibling Sibling Dewey Order assigned to nodes. In the Text relation, this

attribute stores Sibling Dewey Order assigned to parent nodes.

parentID nodeID of parent node.

value Attribute value in Attribute relation, and content of element node

in Text relation.

pathexp Path expressions appearing in all XML documents.

Table 5.3 shows the relations storing XML documents in Figure 5.7.

 In this mapping scheme, string matching is used to handle the path

that contains "//". This matching requires a join between the "path" and

"element" relations in such a scheme. This causes the performance to get

worse. They cannot also preserve node order exactly by using a pair of

SPIDER and Sibling Dewey Order if DTD declaration contains multiple

components having the same name but appearing in different places. On

the other hand, using node indexing will result in a large extra space

compared with the real data, it is impossible to index a document with a

large number of nodes. This also results in time consumed to reconstruct

the original XML document.

144

Element

docID nodeID Spider Sibling parented

1 1 1 1 1

1 2 2 1.1 2

1 3 16 1.1.1 3

1 4 212 1.1.1.1 3

1 5 212 1.1.1.2 1

1 6 6 1.1 6

1 7 72 1.1.1 7

1 9 999 1.1.1.1 7

1 11 1001 1.1.1.1 11

1 12 14004 1.1.1.1.1 11

1 16 14005 1.1.1.1.1 6

1 18 999 1.1.2.1 18

1 20 1001 1.1.2.1 18

1 22 1002 1.1.2.1 11

145

Attribute

DocID nodeID Spider Sibling ParentID value

1 8 996 1.1.1.1 7 Open_aucti

on0

1 13 196044 1.1.1.1.1.1 12 Peron175

1 18 996 1.1.2.1 16 Open_aucti

on1

Text

docID nodeID Spider Sibling ParentID value

1 10 999 1.1.1.1 9 70.11

1 15 14005 1.1.1.1.1 14 9.00

1 19 900 1.1.2.1 18 87.55

1 10 453 1.1.1.1 9 56.21

1 15 14005 1.1.1.1.1 14 9.00

1 10 999 1.1.1.1 9 70.11

1 15 1001 1.1.1.1.1 14 7.00

146

Path

Spider Pathexp

1 #/site

2 #/site#/regions

16 #/site#/regions#/Africa

212 #/site#/regions#/Africa#/item

6 #/site#/open_auctions

72 #/site#/open_auctions#/open_aution

999 #/site#/open_auctions#/open_aution#/initial

1001 #/site#/open_auctions#/open_aution#/bidder

14004 #/site#/open_auctions#/open_aution#/bidder#/personr

ef

196044 #/site#/open_auctions#/open_aution#/bidder#/personr

ef#/@preson

14005 #/site#/open_auctions#/open_aution#/bidder#/increas

e

Table 5.4 :An example of storing XML document in relations [103]

147

 Indexing a group of XML nodes methods are proposed by Guangming

Xing et al., 2005, in Western Kentucky University, University of

Michigan-Dearborn and Syracuse University [104]. These methods

include: using path information to refine the storage, indexing a group of

XML nodes instead of each individual node, and query evaluation based

on the "nodes of interest". They are used to reduce the extra space

needed for indexing nodes in which a DTD is mandatory in order to use

the index schema. A fewer tables to be created results in reducing the

number of path join needed to process the query. This will cause the

performance of query to get better. Based on this idea, a set of related

nodes may be grouped and stored together in a table instead of storing

each type of nodes separately. To do so, the following assumptions are

taken into the consideration: (1) Each XML element consists of a

collection of attributes and sub-elements. For each attribute, it is

required, implied, or optional. For each sub-element, it may either

appear exactly one time, optional, or many times (zero or more times,

one or more times, etc). This information is stated in DTD or XML

schema. DTD or XML schema may still be helpful for generating

mapping to tables in relational database. (2) An elements can be stored

together with its sub-elements as long as certain constraints are satisfied.

(3) Based on the relation with its parent, each node can be classified as

148

fixed node if a node occurs exactly one time, multiple nodes if a node

may appear many times, or optional node if this node may appear one

time or zero time. (4) A leaf node is defined to be a node if it is either an

attribute of an element, or an element that does not have any sub-

elements and attributes.

Based on the assumptions above, their mapping algorithm, 5.7, for DTD

to tables in a relational database is defined as follows:

Algorithm Node Grouping

Input: A DTD

Output: List of Grouped Nodes

Function Main

 Queue q

 q.Enqueue(root)

 while not q.empty()

 p = q.Dequeue()

 list.addLabel()

 list = CalcGroup(p)

 list.Output()

 EndWhile

end

149

Function CalcGroup(node)

 list = CreateEmptyList()

 list.SetName(p)

 for each child c of p

 if c is fixed and c is leaf

 list.Add(c)

 else if c is optional and c is leaf

 list.Add(c)

 if c is fixed and c is not leaf

 list.Merge(CalcGroup(c))

 else

 q.Enqueue(c)

 fi

 endfor

 return list

end

List 5.7: Node Grouping Algorithm [104]

Query processing using nodes grouping indexing: as the nodes in an

XML document are grouped, so there are two possibilities for the nodes

appearing in one XPath [104]:

1) They are grouped and stored in one table; or

150

2) They appear in two different tables, and are related with each other

by the label field in the table.

The following example illustrates how a regular path expression can

processed under this indexing scheme:

“//catalog[name=”CS”]//author[name=”David”]

 As the information about catalog except the books are stored in one

table, finding the catalog with name “CS” will be the same as finding a

tuple in a relational database, which can be handled by the following

SQL query: select * from catalog where name = ’CS’; Similarly, authors

with the name of “David” can be found. select * from authors where

name = ’David’; the element join of catalog and author could be done

similarly as before by determining whether or not the label of an author

properly covers the label of a catalog”. In order to improve the

efficiency of query processing two techniques are used [104]:

a) Refined Storage with Path index: Instead of storing a path label for

each node, the union of all path labels is used. Based on this idea, the

nodes have the same path labels are stored in the same unit. Schema tree

is used to represent all the path labels. The number of path labels in an

XML document is equal to the number of nodes in the schema tree.

There are several advantages of using the path index to refine the storage

for an XML document:

151

1. The path joins between the nodes that are impossible to be paired are

avoided. For example, as the name for author and the name for catalog

are stored in different units, so the path joins between an element from

//catalog/book/author/name and //catalog are avoided.

2. The child axis can be handled without introducing level information.

As in existing range-based techniques, parent-child relation can’t be

handled without introducing level information. For example, level

information is kept in the storage of each node in XISS. However, when

the path index is used, the level of a node is just the length of the path

from the root.

3. Another advantage is that path information could be used for query

optimization, which will be discussed in the remaining parts of this

section by the introduction of “nodes of interest”.

b) Nodes of Interest: they used a solution that only does paths joins if it

is absolutely necessary by the introduction of “nodes of interest”, which

is defined as:

1. The nodes in a XPath expression with a predicate as long as the

predicate is not trivial (selecting all or selecting nothing are trivial);

2. The nodes in the output statement;

3. Those nodes that are needed to relate the nodes defined by the above

two rules.

152

 Using grouping method reduces the space used for labelling and

makes the reconstruction of the original documents of XML easier.

Introducing nodes of interest reduce the number of path joins needed to

process the query.

 An algorithm for mapping DTD to relational schema is prposed by

Zijing Tan et al., 2005, in Fudan University [105]. This technique

preserved not only the content and structure but also the semantics of

original XML documents. To tackle the problem of constraint

expression, they introduced a way to define functional dependencies and

normalization for DTD. In a normalized DTD, every constraint

expressed by functional dependencies can be concluded to keys. So they

used the key definitions for XML as the foundation for relation

generation, and maintain the keys in relations. After investigating the

relationship between functional dependencies in XML documents with

the corresponding ones in relations; they further proved that if the

original DTD is normalized, the generated relations will be in BCNF.

The following notations, theories and definitions are given in order

present their mapping algorithm, Algorithm 1, of DTD to relations:

Definition 1: “A DTD is defined to be D = (E, A, M, N, r), where:

 1) E is a finite set of element types.

153

 2) A is a finite set of attribute types, and there is a special attribute id ∈

A.

 3) M is a mapping from E to string or element type definitions with a

regular expression α ::= ε|e’| α|α |α, α|α∗. Here ε is the empty sequence,

e’ ∈ E, and ”|”,”,” and ”*” denote union, concatenation and the Kleene

closure.

4) N is a mapping from E to the powerset of A, and ∀e ∈ E, id ∈ N(e).

5) r ∈ E, is called the element type of the root.”

Definition 2 “Given a DTD D = (E, A, M, N, r), an XML document

conforming to D is modelled as: 1) Here v denotes node, V denotes the

finite set of nodes. 2) For each v, name(v) ∈ E U A. We further define

two subsets of V: Ve ={v | v ∈ V , name(v) ∈ E}; Va ={v | v ∈ V ,

name(v) ∈ A}. 3) ∀v ∈ Ve, subelem(v) is a list=[v1, v2,. . ., vn](vi ∈

Ve). If name(v) = e and M(e) = α, name(v1),name(v2),. . .,name(vn) is in

the alphabet of α. 4)∀v ∈ Ve, attr(v) is a set={v1, v2, . . . , vm} (vi ∈ Va).

If name(v) = e, for each a ∈ N(e), there is a unique vi where name(vi) =

a. 5) For each v, value(v) ∈ {S}. If name(v1) = id, value(v1) is unique

across the whole document. 6) There is one and only one special node

root, and name(root) = r.”

154

Definition 3 “Given a DTD D, a path expression P over D is defined to

be ρ1/ρ2 . . ./ρn. Here ρ1 … ρn ∈ E and ρn ∈ E U A. For i = [2, n−1], ρi ∈

is in the alphabet of M(ρi−1), and ρn ∈ is in the alphabet of M(ρn−1) U

N(ρn−1). As a special case, an empty path expression is denoted as ε.

Given an XML tree X conforming to D and a node v in X, when ρ1 is in

the alphabet of M(name(v)) U N(name(v)), ⎣v{P}⎤ is defined to be the

node set of P. If there is a node sequence (v0, v1, … , vn) in X,(vi is the

child node of vi−1, v0=v), and name(vi)=ρi, vn ∈ ⎣v{P}⎤. Specially, when

there is only one node in ⎣v{P}⎤, we use v{P}to denote this node.

⎣root{P}⎤ is abbreviated as ⎣P⎤.

First(P) is defined to be the first element or attribute type of P, and

last(P) is defined to be the last element or attribute type of P. If First(P)

is in the alphabet of M(r) U N(r), P is called root path expression. Let P

= ρ1/…/ρn, Q=ρ’1…/ρ’m. If ρ’1 is in the alphabet of M(ρn) U N(ρn), ρ1/ . .

./ρn/ρ’1/ . . ./ρ’m is called the concatenation of P and Q, denoted as P/Q.

If R = P/Q, we say P is a prefix of R, denoted as P ⊆ R. If R ⊆ P, and R

⊆ Q, R is called a common prefix of P and Q. If for any common prefix

R’ of P and Q, R’ ⊆ R always holds, we say R is the maximum common

prefix of P and Q, denoted as MCP(P,Q).

If e, e’ ∈ E, e_ is in the alphabet of M(e) and there is no self join of e’ in

155

M(e), e’ is called a singleton for e. if ρ’i is a singleton for ρ’i−1 (i ∈

[2,m]), and ρ’1 is also a singleton for ρn, we say P determines Q.”

Definition 4 “(Value Equality and Node Equality) For nodes v and v’, if

name(v) = name(v’) and value(v) = value(v’), we say v and v_ are value

equality, denoted as v ≡ v’. If v and v’ are the same node of an XML

tree, we say v and v’ are node equality, denoted as v = v’.”

Definitions 5 through 7 are related to functional Dependencies for XML:

Definition 5 “Given D, a functional dependency(FD) σ over D is an

expression of the form (R1,R2,Q1,… , Qn → P1, … , Pk). Here R1 is a root

path expression, or R1 = ε. Let S = MCP (Q1,…,Qn, P1, ..., Pk), Qi = S/Q’i

and Pj = S/P’j, S determines Q’i and P’j. If S = ε, R2 determines Qi and Pj

(i ∈ [1, n], j ∈ [1, k]). XML tree X conforming to D satisfies σ, denoted

as X |= (R1,R2,Q1, …, Qn→ P1 ,… ,Pk): iff ∀v ∈ ⎣R1⎤, ∀v1, v2∈ ⎣v{R2}⎤,

∀u1∈ ⎣v1{S}⎤, ∀u2∈ ⎣v2{S}⎤, when u1{Q’i} ≡u2{Q’i} holds for ∀i ∈ [1,

n], u1{P’ j} ≡ u2{P’ j} also holds for ∀j ∈ [1, k]. In σ, R1 is called the

context path, R2 is called the target path, Q1, . . .,Qn are called the head

paths, and P1, . . ., Pk are called the body paths. If R1 = ε, the FD is

absolute and holds inside the whole document; otherwise the FD is

relative and holds in the tree rooted by ⎣R1⎤.”

Definition 6 “(Logical Implication and closure) Given D and a set of

156

functional dependencies ∑ over D, given any XML document X

conforming to D, if X satisfies∑, must also satisfy FD σ, we say ∑

logical implies σ, denoted as ∑ ⇒ σ. The set composed of all functional

dependencies logical implied by ∑ is called the closure of ∑, denoted as

∑+. ∑+ = {σ | ∑ ⇒ σ}.”

Definition 7 “(Key for XML) Given D and a set of functional

dependencies ∑ hold over D, if σ = (R1,R2,Q1,…,Qn → id) ∈ ∑+, we say

(R1,R2,Q1,…,Qn) is a key of D.”

The following conclusions within Theorem 1 are used by them for

developing inference rules to derive new dependencies for given ones:

Theorem 1 “The following conclusions can be proved by definition 5:

1. S = MCP(Q1, …,Qn, P1, …, Pk), If R1 determines R2/S, (R1,R2,Q1,

…,Qn →P1, … , Pk). Specially, when S=ε, if R1 determines R2,

(R1,R2,Q1,…,Qn → P1, …, Pk).

2. (R1,R2,Q1, … , Qn → Qi), i = [1, n].

3. When (R1,R2,Q1,… , Qn → P1,… , Pk), (R1,R2, Q1, … , Qn, Q’ → P1,

… , Pk,Q’).

4. When (R1,R2,Q1, … , Qn → P1, … , PL), and (R1,R2, P1, … , PL → t1, ,

. Create a DTD graph to represent the structure of given DTD, including

elements, attributes and operators. Also add the virtual root, and split the

157

shared nodes if necessary.

2. Create key relations for the chosen set of keys from original DTD

(described in the previous subsection). If K = (R1, R2, Q1, …, Qn), mark

the node for last(R2) in DTD graph.

3. Define (KR1ID,KQ1,…,KQn) and (KR2ID) as keys for key relation

KR(KR1ID,KR2ID, KQ1, … , KQn).

4. Identify top nodes that need a separate relation. The nodes are either

marked in step 2, or satisfy any of the following conditions: 1) not

reachable from any nodes, 2) direct child of ”*” operator node, 3)

either node between tow mutually recursive nodes(if one node is child

node of ”*” operator node, choose it).

5. Starting from top node T, inline all the element and attribute nodes

that are reachable form T unless they are other top nodes.

6. Add a XID field as key for all the generated relations other than key

relations.

7. Add a parent ID field for relations to record the key value of parent

element if necessary, and if the parent element X is inlined into another

element Y, record the key value for Y instead.

List 5.8: Mapping DTD to Relations [105]

158

 So their method keeps the good properties of normalized DTD, and

can fully leverage the relational technology.

 A hierarchical algorithm (S-GRACE) is proposed by Wang Lian

et al., in 2004 [99] for clustering a collection of XML documents based

on structural information in the data to alleviate the fragmentation

problem of storing them into relational tables. To do so, they developed

the notion of structure graph (s-graph), supporting a computationally

efficient distance metric defined between documents and sets of

documents. To achieve their goal they proposed some definition as

follows:

1) A new notation to measure the similarity between XML documents:

 “Definition 1: Given a set of XML documents C, the structure graph

(or s-graph) of C, sg(C) = (N, E), is a directed graph such that N is the

set of all the elements and attributes in the documents in C and (a, b) �

E if and only if a is a parent element of element b or b is an attribute of

element a in some document in C.”

2. “Theorem 1: Given a set of XML documents C, if a path expression q

has answer in some document in C, then q is a subgraph of sg(C). Also,

sg(C) is the minimal graph that has this property.”

3. “Corollary 1: Given two sets of XML documents C1 and C2, if a path

159

expression q has an answer in a document of C1 and a document of C2,

then q is a subgraph of both sg(C1)and sg(C2).”

4. “Definition 2: For two XML documents C1 and C2, the distance

between them is defined by dist(C1, C2) = 1- |})2(||,)1(max{|
|)2()1(|

CsgCsg
CsgCsg I

 ,

 Where |sg(Ci)| is the number of edges in sg(Ci); i = 1, 2 and sg(C1) ∩

sg(C2) is the set of common edges of sg(C1) and sg(C2).”

The matrix in definition 2 above gives an evidence to identify which

XML documents to be separated and which documents can be clustered.

The SGRACE algorithm is shown in 5.8:

 “In S-GRACE algorithm, the input D a set of XML documents, the s-

graphs of the documents are computed and stored in the array SG. The

procedure pre_clustering (line 1) creates SG from D using hashing. Two

s-graphs in SG are neighbours if their distance is smaller than an input

threshold. Compute_distance computes the distance between all pairs of

s-graphs in SG and stores them in the array DIST. Given two s-graphs x

and y in SG, link(x, y) is the number of common neighbours of x and y,

where an s-graph z is a neighbour of x, if dist(x, z) Y, (y is a given

distance threshold). In S-GRACE, the number of neighbours of an s-

graph is weighted by the number of documents it represents. For a pair

160

of clusters Ci, Cj, link[Ci, Cj] is the number of cross links between

elements in Ci and Cj, (i.e., link[Ci, Cj] = y Pq,Ci,Pr>Cj link(pq, pr). Also, a

goodness measure g(Ci, Cj)between a pair of clusters Ci, Cj is defined

by[108].

)(21)(21)(21)(
],[

),(rf
j

rf
i

rf
ji

ji
ji nnnn

CClink
CCg +++ −=+

=

/* input D: a set of XML document */

/* input B : a similarity threshold */

/* input α : an integer */

/* input β : a control parameter for labeling outliers */

/* input k: a control parameter for the number of clusters */

/* output Q: a set of cluster: O: outliers set */

 SG = pre_clustering (D);

 DIST = compute distance (SG)

 LINK = compute_link(DIST, SG,0);

 O = remove_outlier(LINK, SG, β);

 for each s ∈ SG do

 G[s] = build_local_heap(LINK,s);

161

 Q= build _global_heap(SG, q);

 While size (Q)> {doκα ×

 u= extract_max(Q);

 v = max(q[u]);

 delete(Q,v);

 w_merge(u, v);

 for each {][][dovquq ∪∈χ

 Link [x,w] = LINK [x, u] +LINK [x, v];

 Delete(q[x], u); delete (q[x], v);

 Insert(q[x], w, g(x, w)): insert(q[w], x, g(x, w));

 Update(Q, x, q[w]);

}

Insert(Q,w, q[w]);

Deallocate(q[u]):deallocate(q[v]);

}

O= O ∪ remove_outlier(LINK , Q, q, β);

Second_cluster(Link, Q, q, κ);

List 5.9: SGRACE Algorithm [99]

 where ni and nj are the number of documents in Ci and Cj ,

respectively, and ƒ(ϒ) is an index on the estimation of number of

162

neighbours for Ci and Cj. In fact, the denominator is the expected

number of cross links between the two clusters. Compute link (line 3)

computes the link value between all pairs of s-graphs in SG and stores

them in the array LINK. Remove outlier then removes the clusters that

have no neighbours. Initially, each entry in SG is a separate cluster. For

each cluster i, we build a local heap q[i] and maintain the heap during

the execution of the algorithm. Q[i] contains all clusters j such that

link[i, j] is nonzero. The clusters in q[i] are sorted in decreasing order by

the goodness measures with respect to i. In addition, the algorithm

maintains a global heap Q that contains all the clusters. The clusters i in

Q are sorted in the decreasing order by their best goodness measures,

g(i, max(q[i])), where max(q[i]) is the element in q[i] which has the

maximum goodness measure.” [99]

 “The ‘while loop’ (lines 8-21) iterates until only α × k clusters

remain in the global heap Q, where α is a small integer controlling the

merging process. During each iteration, the algorithm merges the pair of

clusters that have the highest goodness measure in Q and updates the

heaps and LINK. The s-graph of a cluster obtained by merging two

clusters contains the nodes and edges of the two source clusters (refers

to Definition 1). Outside the loop, remove outlier removes some more

outliers from the remaining clusters which are small groups loosely

163

connected to other nonoutlier groups. Second cluster (line 23) further

combines clusters until k clusters remain. It also merges a pair of

clusters at a time. The purpose is to allow different control strategies to

choose the pair of clusters to be merged in the last stage of S-GRACE.”

[99].

 They had shown that the s-graph of an XML document can be

encoded by a cheap, bit string. Clustering can then be efficiently applied

to the set of bit strings for the whole document collection. With the

structural information encoded, clustering of XML data becomes

efficient and scalable using the proposed S-GRACE algorithm.

 A B+tree technique is introduced by Shankar Pal et al., 2004, in

Microsoft Corporation [106] for indexing XML instances stored in a

relational database in a decomposed form. The B+tree called primary

XML index that encodes the Infoset items of XML nodes.Using of

secondary XML indexes improve the performance of common classes of

queries: (a) PATH (or PATH_VALUE) index for path-based queries, (b)

PROPERTY index for property bag scenarios (c) VALUE index for

value-based queries, and (d) work break index for content indexingwith

structural information.. They had avoided the approach of

decomposition of XML instances based on their schema since their goal

164

is a uniform data representation and query processing with or without

XML schemas

 Greedy Search algorithm is built by Surajit Chaudhuri et al.,

2005, in Microsoft Research, University of Maryland, Seoul National

University, and Indiana University [107] taking in to consideration the

interplay between the physical design and logical design, in order to

overcome the following issue. (1) Solving logical and physical designs

independently leads to suboptimal query performance. (2) Taking

physical design into account in fact influences the definition of the

appropriate search space for logical designs as well as how this space

can be effectively searched. Greedy, List 5.9, is an extended version of

old one [108], which was proposed for logical design. They extended it

by invoking the physical tools instead of the query optimizer to estimate

the cost of each mapping.

165

List 5.10: Greedy Search algorithm [107]

166

“The algorithm first selects a set of candidate transformations at line 1.

The merge type candidates are stored in C1 and split type candidates are

stored in C2. It then generates an initial fully split mapping M0 at line 2

by applying all split type candidates. At line 3, candidates are merged.

These newly generated candidates are added to C along with previously

generated merge type candidates. At line 5, the algorithm calls the

physical design tool to select physical design structures on M0 using the

SQL workload WSQL translated from the XML query workload W at line

4. Lines 6 to 19 repeatedly select the minimal-cost mapping Mmin that is

transformed from the current mapping M0 with a transformation in C. In

each round, the minimal cost mapping Mmin is initialized as M0. For each

transformation c � C, lines 8 to 16 enumerate a mapping M transformed

from M0 using c (line 9), and call the physical design tool to return the

cost and physical configuration of M (lines 10 and 11). Lines 12 to 15

replace Mmin with M if the cost of M is lower than the cost of Mmin. At

the end of the round, line 17 returns if no better mapping is found.

Otherwise, line 18 replaces M0 with Mmin, deletes from C the

transformation cmin that generates Mmin and proceeds to the next round.”

 They defined, the mapping M from XML schema to relational

schema R, where R is a set of relations for given a XSD tree T(V, E, A),

167

as follows [107]:

1. Each node v with annotation in A is mapped to a relation with the

annotation as table name. It has two default columns, an ID column as

primary key that stores a unique node ID and a PID column as a foreign

key that refers to the ID column in the table mapped from its parent.

2. Each leaf node ℓ as descendants of v is mapped to a column in the

table for v if there is no annotated node along the path between ℓ and v.

3. If two nodes have the same annotation, they are mapped to the same

table and the data instances for these two nodes are mapped to separate

rows in the table.

However, they did not take into their account the recursive part of XSD.

5.5 Pattern Matching:

 Bruno et al., [101] in their PathStack and TwigStack

algorithms, tried to solve the limitation of decomposing of the twig

pattern into binary structural ancestor-descendant relationships, which

may generate large and possibly unnecessary intermediate results

because the join results of individual binary relationships may not

appear in the final results. However the approach is found to be

suboptimal if there are parent-child relationships in twig patterns. But,

168

the method may still generate redundant intermediate results in the

presence of P-C relationships in twig patterns [109].

 Haifeng Jiang et al., [110] developed TSGeneric+ twig join

processing algorithm, on indexing XML documents, which makes use of

a set of stacks to cache elements and a cursor interface that provides

standard methods to return elements with possible matches in order to

speed up the twig pattern match. Also, they proposed three edge-picking

heuristics, top-down, bottom-up and statistics-based to select the first

edge to start the processing. Their solution is to extend the existing

cursor interface to reflect new abilities to access elements through

indices. In addition to the existing advance() method, they defined two

new methods: (1) Cq � fwdBeyond(Cp) forwards Cq to the first element

e, such that e.start > Cp � start. (2) Cq � fwdToAncestorOf(Cp)

forwards the cursor to the first ancestor of Cp and returns TRUE. If no

such ancestor exists, it stops at the first element e, such that e.start > Cp

�start, and returns FALSE. However, it still does not solve the problem

of redundant intermediate results in the presence of P-C relationships

[109].

 Ting Chen et al., [109] proposed holistic twig Join algorithm,

iTwigJoin, which works correctly on any XML streaming scheme.

169

Applied on Tag+Level scheme the algorithm can process Ancestor-

Descendant (A-D) or Parent-Child (P-C) only twig patterns optimally,

applied on Prefix-Path Stream (PPS) scheme the algorithm can process

A-D only or P-C only or 1-Branchnode only twig patterns optimally.

 Praveen Rao and Bongki Moon [111] developed a system called

PRIX (PRufer sequences for Indexing XML) for indexing XML

documents and processing twig queries. Their work is different from

previous works, in that they tried to get further optimization for twig

query processing without breaking a twig into root-to-leaf paths and

merging the results.

 Tian Yu et al. [112] proposed, TwigStackList, algorithm to process

NOT-twig query. Also they developed a new concept Negation Children

Extension to determine whether an element is in the results of a NOT-

twig query.

 Qun Chen et al., [113] proposed an indexing framework, the layer

index, and evaluation algorithms for performing the structural join

operation on graph-structured XML data. This approach constructed

multiple nested layers of tree-structured indexes by recursively

decomposing a graph into constituent trees. Their study is different from

Shurug Alkhalifa et al [114] which adopted the representation, (DocID,

170

LeftPos:RightPos) to index XML elements of a tree–structured model.

 TJFast, holistic twig join algorithm is proposed by Jiaheng

Lu et al., 2005, in National University of Singapore [115] based on their

extending of labelling Dewey ID. Extended Dewey gives a powerful

labelling scheme, since from the label of an element alone, all the

elements names along the path from the root to the element can be

derived.

Algorithm TJFast is no longer guaranteed to be optimal in the case

where the query contains parent-child relations between branching nodes

and their children.

171

Table 5.5 shows a comparison between some algorithms of pattern matching for XML document.
 Algorithm Aims Used

Technique

Paramete

rs

Advantages Disadvantage

s

Reference

1

.

A novel

holistic twig

join

algorithms for

matching an

XML query

twig pattern

1- PathStack

2- TwigStack

To solve the

limitation of

decomposing the

twig pattern.

Uses a chain of

linked stacks.

 Solve the problem of

the large size of the

intermediate result.

For

PathStack:

many

intermediate

results may

not be part of

any final

answer.

[Bruno et

al. 2002]

172

2

.

Holistic Twig

Joins on

Indexed XML

Documents,

1- TSGeneric

2-

TSGeneric+

Algorithms can be

developed to process

twig joins based on

available access

methods.

- Used indexes

to speed up the

twig pattern

matching.

-Used two data

type structures:

- Stacks to

catch elements.

 Achieve some linear

performance for twig

pattern queries.

It is still does

not solve the

problem of

redundant

intermediate

results in the

presence of P-

C relationship.

[Ting Chen et

al. 2005]

[Haifeng

Jiang et

al. 2003]

3

.

Holistic Twig

Join

To avoid

unnecessary

iTwigJoin:

- applied on

 1) Reduce the

amount of input I/O

 [Ting

Chen et

173

Algorithm,

which works

correctly on

any XML

streaming

scheme.

iTwigJoin

scanning of

irrelevant portion of

XML documents,

and to avoid

generating redundant

intermediate results.

Tag+Level

scheme the

algorithm can

process A-D or

P-C only twig

patterns

optimally

cost;

2) Reduce the sizes

of redundant

intermediate results.

al. 2005]

4

.

TreeMatch To propose a fast

tree pattern matching

algorithm that can

directly find all

The basic idea

is as follows:

given a tree

pattern,

 [J. T. Yao

and M.

Zhang,

2004]

174

matching of a tree

pattern in on step.

TreeMatch .

5

.

TwigStackList

: A holistic

Join

Algorithm for

Twig Query

with Not-

predicates on

XML Data:

TwigStackList

To address the

problem of XML

NOT-twig matching

 [Tian Yu

et al.

2006]

175

5.6 Summary

 In schemaless centric techniques reviewed above, they do not

require an XML DTD or XML Schema and depend on the XML

document's structure to guide the mapping process. In these approaches,

XML document is stored as a whole, large solid object (CLOBs,

BLOBs) which is a data type provided by most relational database

vendors (e.g., Oracle interMedia Text, DB2 Text Extender). Another

way is to map the tree or graph structure of XML documents generically

into predefined relations. These approaches depend on using a long-

character-string data type, such as CLOB in SQL, to store XML

documents or fragments as text in columns of tables. The advantages of

these approaches are (1) they might be said to provide textual fidelity

because they preserve the original XML at the character string level and

(2) there is no need for an XML schema in the storing process. The

drawbacks of all these methods are that, (1) they fail to take advantage of

the structural information that is available in the XML Markup, (2) they

don’t take into account the query workload while constructing the

relational schema, (3) none of the structure of the XML document is

preserved, and (4) it is difficult to deal with huge XML documents.

176

 While Schema centric techniques make use of schema

information such as DTD or XML Schema to derive the relational

storage schema, they need to create a relational schema to store the XML

schema in and after that shred the XML documents to capture the data

from them and store those data in the created relational schema. The

advantages of these techniques are they: (1) restrict XML structure for

the use and placement of Markup elements and attributes according to

the defined schema, (2) enforce referential constraints, primary and

foreign key relationships, (3) simplify the mapping process, since they

do not require users to master a new specialized mapping language. But,

the techniques reviewed above are (1) all heuristic; (2) don’t consider the

space of several possible relational mappings to choose the optimal one;

(3) in addition, except (Atay, Chebotko et al. 2007), fixed shredding of

XML documents will lead for a loss of information from the original

one, (4) XML schemas are sometimes not available, so there is a need to

construct the schema first and then do the mapping. 5) A reconstruction

for database schema is needed as any change in the XML schema, which

makes it very expensive in this case. 6) Sometimes, a large number of

relations are needed to be created depending on the XML schema, which

means a lot of joins are needed to retrieve XML document information.

177

CHAPTER 6: A Proposed New Algorithm

Introduction

 In this chapter a full description is given for the model for

mapping XML document into relational database. This includes the

main mathematical concepts that are used in this model. A description of

the leballing method that is used to label the XML document and

identifying its content. Mapping XML to relational database algorithm,

reconstructing XML document from relational database algorithms using

DOM parser.

6.2 Theory Involved

 Storing XML documents into relational database means storing

ordered structure hierarchical information in unordered structure tables.

The aim of storing XML documents into relational database is not just as

astore for backup, but it goes more than that for utilizing the strength of

relational database for solving large number of data problems in

retrieving information, updating data contets, concurrency control and

multi-user acess. In order to maintain XML document structure and it

contents relationships a alabelling technique is used to label the

document elements and element attributes. A global lablling (Tatarinov,

178

Vigla et al.2002) method is used in this research with some updates on to

make the update XML document easy and with out need to relabelling

the document again. The method makes use of the document structure

information to guide the mapping procees. That's means no need for

DTD or XML schema information in this method, which sometimes

optimize the content of relational database resulted from the mapping

document.

6.3 Theory Background

 The hierarchical structure nature of XML document gives the ability

to represent it as structure tree. A tree representation of XML document

can facilitate easiy document contents relationships between nodes.

Definitions 1 identify composite and associative relations XML elements

as parent–child and ancestor-descendant relations. These relations help

in retrieving XML document contents.

6.4 Definition 1: composite relation:

 If f is a parent-child relation between X and Y as f : X→Y and g is a

parent- child relation between Yand Z as g : X→Y. Then we can say that

h :g of is ancestor-descendent relation between X and Z as h: X→Z.

Figure 6.1 illustrates this composite relation.

179

Where P:: Parent, C::child , A :: ancestor, D:: Descendent

Figure 6.1 : Composite parent –child realtion

An XML document is a tree of nested elements, each element can have

none or more attributes. There can only be one root element, which is

called document element. Each element has a starting and ending tag,

closed by angle brachets, with content in between:

<element> …content …</element>

The content can contain other element, or can consist entirely of other

elements, or might be empty. A ttributes are named values which are

given in the start tag, with the values surrounded by single or double

quotations:

< element attribute1 = "value1" attribute2 = "value2">

One of the important characteristic of XML document is a well formed.

A well-formed XML document is one that conforms to some rules, such

as:

X

Y
z

P-C relation
 f: X→Y A-D relation

 h:g o f, X→Z

P-C relation
g: Y→Z

180

 Having only one root element.

 All start tags have matching end tags.

 Elements must properly nested.

 Attribute values must always be quoted.

 Tags are case sensitive.

These restriction on XML document structure makes shredding process

and storing of XML document in relational database easier. Definition 2

represent a complete description for XML document as a tree structure.

6.5 Definition 2:

XML tree is composed of many sub-trees of different levels; it can be

defined as the following(Atay, Chebotko et al 2007)

∑
=

−=
n

i
iiii rXAET

1
1),,,(

 i=1, 2 … n, represent the levels of XML tree, 0 represents the

document element or tree root.

Where:

 Ei is a finite set of elements in the level i.

 Ai is a finite set of attributes in the level i.

 Xi is a finite set of texts in the level i.

 ri-1 is the root of the sub-tree of level i.

181

The way of processing and handling XML contents is very important in

optimizing data retrieval and updating its content since this way reducing

the search space of data you are dealing with instead of working with the

entire document. Definition 3 and 4 give aproper definition for a way of

dealing with an XML document as adynamic partition size.

6.6 Definition 3:

A dynamic fragment (shred) df(i) is defined to be the attributes and texts

(leaf children) of the sub-tree i of the XML tree plus its root ri-1, as

follows:

df(i) = (Ai, Xi, ri-1),

Where

 Ai is a finite set of attributes in the level i

 Xi is a finite set of texts in the level i.

 ri-1 is the root of the sub-tree of level i.

6.6.1 Definition 4:

The root of the fragment (shred) is the node which has an out- degree

more than one.

182

6.7 Mapping framework:

Mapping framework includes mapping XML documents into relational

database algorithm as it is the main purpose of the research,

reconstructing XML document from relational database algorithm,

updating stored XML document within relational database and retrieving

these data from relational database. The approach is based on the data of

XML document which takes a valid XML document and shreds and

composes it into relational database tables.

It dose not consider the XML schema for the following reasons:

 Many applications deal with highly flexible XML documents from

different resources, which make it difficult to define their structure by a

fixed schema or a DTD. Therefore, it is necessary for schema-less

approach to deal with such XML documents variation.

 It is not practical to design many candidate relationanl schemas for all

potential XML data, which may have different XML schema.

183

Books99

104

100 Book

author name

M. John CS 101

Id
 "11210"

Id
 "a1"

Sex
"m"

101 102
103 106

Book

author subjectname

A. Mark Math Applied
Math 101

Id
 "11211"

107

108 110 109 111

6.8 Labelling Method

Classical standerd labelling method is used to maintain the XML

document contents. Which it uses a global label approach to give a label

to the XML elements and attributes. The label is a unique for each

element and attribute. But, no need to be in sequence as in (Tatarinov,

Viglas et al. 2002; Soltan and Rahgozar 2006). An initial pre-order

traversing for the XML document is performed. No re-labelling for XML

document contents(elements and attributes) is need if new element or

subtree is added to the XML document.

Figure 6.2 show an example labelling technique.

Figure 6.2: A tree representation for XML documents with labeling

184

6.9 Relational schema

 The main issue of this method is it work with all type of XML

document data centric (DTD or Schema document) and document centric

(schemaless document). So that it can't build an entity model because it

need XML schema or DTD to build it but, the algorithm work with

schemaless document at the same time with schema document. For that a

fixed relational schema consist of two tables is used to store XML

documents contents and save their structures since this schema is not

depend on the DTD or XML schema. The first table which is called

"documents table" preserves the required information of the XML

documents, the second table which is called "tochen table" preserves the

detailed contents of the XML documents.

A description of a relational schema is given bellow:

1. A master table for documents is needed. It is called "documents".

This table will keep information about documents themselves, at

minimum it will has the following structure:

documents(doc_id, doc_structure,running time)

 additional fields may be added to keep all information about the

document itself such as dates, statistics, types… etc.

185

a. The doc_id: is a unique id generated per document to identify

documents.

b. The doc_structure: is a big text field containing a coded string

describing each document structure, any changes on the document

structure should be reflected in this field, such as adding a new tag or

property, deleting an existing tag or property, or relocating a given tag or

property to a different location in the same document (details below).

2. A second table to store the actual contents for all documents is also

estanlished. Documents will be shredded into pieces of data that will be

called tokens, each document element, tag, or property will be

considered a token, the tokens table will have at the minimum this

structure, tokens(doc_id, token_id, token_name, token_value).

a. The token_id: is the primary generated id for each token.

b. The doc_id: is the foreign key linking the tokens table to the

documents table.

c. token_name: is the tag name or the property name as found in the

original XML document.

d. token_value: is the text value of the XML tag property.

186

Documents(*doc_id, doc_structure)

Tokens(doc_id, *token_id, token_name, token_value)

Figure 6.3: Relational schema

Documents Tokens

*Doc_id

Doc_structure

Running _time

Doc_id

*Token_id

Token_name

Token_value

The relation between the relational database tables

The rules for constructing doc_structure field are as

follows:

Rule 1: The doc_structure field is where the document structure is

maintained. It consists of long series of related keys.

Rule 2: Each element should use T as a start alphabet character and

followed with the indexing number as a key of element e.g. T120 is a

187

key referring to a token (element) in the tokens table whose token_id =

120.

Rule 3: Each child should use T as a start alphabet character and

followed with the indexing number as a key of child. e.g. T12 is a key

referring to a token (child) in the tokens table whose token_id = 12.

Rule 4: Each attribute should use A as a start alphabet character and

followed with the indexing number as a key of attribute. e.g. A17 is a

key referring to a token (attribute) in the tokens table whose token_id =

17.

This is necessary to delimit keys in the sequence..

Rule 5 : If the token has some properties defined in the original XML

document then the key representing this token in the doc_structure will

be followed with a set of keys defining these properties.

 As an example, T120A12A17A2 is a valid key string which can be

read as token number 120 has three properties defined by tokens number

12, 17, and 2, and these properties appear in the original document in

this order.

Rule 6: If the token has some children tags (sub-tree) in the original

XML document, then these children will be represented as a key-string

surrounded by angle brackets. As an example, T120 <T12T7 <T2T1>

188

T77> is a valid string that can be read, token 120 has three sub tags in

this order token 12, followed by token 7, then token 77, and token 7

itself has also two sub tags numbered 2, and number 1 in the given order.

6.10 Mapping XML to RDB algorithm:

 The data model used for the mapping algorithm uses the W3C's

Document Object Model (DOM) which "is a platform- and language-

neutral interface that will allow programs and scripts to dynamically

access and update the content, structure and style of documents. The

document can be further processed and the results of that processing can

be incorporated back into the presented page" [2] to represent XML

documents in memory before mapping them, it also uses a stack to

traverse the XML document by pushing the children of each node onto

stack in reverse order in order to preserve thier order in the

doc_structure field. List 6.1 shows MapXMLtoRDB algorithm with

DOM Document containing the XML document to be mapped and

DocID as input, and RDB tables as output. Line 5 pushes the root

element of the document to the stack. The do loop is used to construct

the doc_structure field and to insert the XML tokens (elements and

attributes) into token's table (lines 6-28).

189

In line 7, the top of stack is popped, if the popped element is ">", that

means all the children of the parent element were added to the database,

and the ">" symbol is appended to the "struc" string (lines 8-10). If not

(i.e. the popped element is a node), the element's name and value are

inserted into the database, and its id is appended to "struc" string. If this

element has an attributes, all its attributes are inserted to the database and

there ids are appended to the "struc" string. Lines (21-25) check if the

element has children. If so, an "<" is appended to "struc" string, and ">"

is pushed to the stack, and all its children are pushed to the stack but in

reverse order. Line 26 checks the status of the stack, if it is empty, the do

loop is terminated. After that, the "struc" string is inserted to the

database (documents table). All element's children are enclosed by angle

brackets. The nested brackets differentiate between document's levels,

while using the letter 'T' and 'A' to differentiates between element's

children and attribute.

1 XMR Algorithm

2 Input: DOM Document containing the XML document to be

mapped, DocID.

3 Output: XML tables inserted in Relational Database tables.

190

4 Begin

5 Initialize stack with document Element

6 Do loop

7 Pop top of stack Element

8 If Element = ">"

9 Append to struc string

10 Else

11 Write token to database, element name, element value

12 Get token id for the added token

13 Append Id to struc string

14 If element has attributes

15 For each attribute in attributes collection do

16 Add to database as token, att. name & att. value

17 Get token id

18 Append token id to struc string

19 End for

20 End if

21 If element has child nodes

22 append "<" to struc string

23 Push ">" to stack

191

24 Push all childs to stack in reverse order

25 End if

26 If stack is empty exist loop

27 End if

28 End loop

29 Write struc string to database

30 End algorithm

List 6.1: XML Mapping to Relational database algorithm

The reconstruction algorithm for building XML document from

relational database is omitted due to space issue. The algorithm mapping

the document directly without any updating in the orginal data.

6.11 Reconstructing XML document from RDB Algorithm:

 In this section, we propose an efficient XML reconstruction algorithm

(RRX), which reconstructs the XML root element to reconstruct the

original XML document from relational database.

The reconstruction process of XML document from relational database is

need for the following reasons:

192

1. To make sure that the mapping method used in the research is in a

level of maintaining the entire XMl document without loss of

information and in reasonable time.

2. Document contents could be updated after mapping it into relational

database and this update happened on the original XML document file.

So, the old XML file is not reflecting the real state of the database table

contents.

For the previous reasons, a reconstruction algorithm is used to

reconstruct the entire XML document that can be exported by the user

somewhere. This algorithm used the W3C’s Document Object

Model(DOM) to represent XML documents in memory; it also uses

stack data structure to preserve document structure. List 6.2 shows

“Reconst XML fromRDB” Algorithm with DocID and relational

database tables as input, and XML document as output. line 5-6 get the

document structure from the database and store it in sStruc as string. The

do loop is used to construct the XML document from the database

according to its structure in the doc_struc field. The construction process

takes into consideration the document’s structure from elements and

attributes and their ordering. This appears of using the select state to

differentiate between children(letter T)and attribute of the element (letter

193

A). Also, using of angle brackets (<,>) to reserved parent-child

relationship. Line 31 returns the XML document.

1 RRX Algorithm

2 Input: DocID,RDB tables.

3 Output: XML document

4 Begin

5 Get the doc structure from the DB according to docID

6 sStruct = document!Structure

7 ‘parse the structure

8 IIndex=1

9 DO While IIndex<=Len(sStruct)

10 select Case Mid(sStruct,IIndex,1)

11 Case “T”:

12 Reading an element id

13 Locate token

14 Create Node

15 Add oNew as a sub-node to oCurrent

16 Add oCurrent to oPage

17 IIndex= IIndex + length(element id)

194

18 Case “A”:

19 Reading an Attribute id

20 Locate token

21 Create attribute

22 Add attribute value to oPage

23 IIndex = IIndex + length(Attribute id)

24 Case”<”: Start of sub-tree, push parent to stack, and change

parent

25 IIndex= IIndex+1

27 Case”>”: End of sub-tree, pop stack and change parent

28 IIndex = IIndex+1

29 End Select

30 Loop

31 Return oPage.xml

 32 End Algorithm

List 6.2: RDB reconstruct to XML algorithm

The RDB reconstruct algorithm convert the data store in relational

database in XML document without loss and but it in XML structure.

195

6.12 Differences between the presented algorithms and

proposed algorithm:

 In schemaless centric present algorithm reviewed above, they do

not require an XML DTD or XML Schema and depend on the XML

document's structure to guide the mapping process. In these approaches,

XML document is stored as a whole, large solid object (CLOBs,

BLOBs) which is a data type provided by most relational database

vendors (e.g., Oracle interMedia Text, DB2 Text Extender). Another

way is to map the tree or graph structure of XML documents generically

into predefined relations. These approaches depend on using a long-

character-string data type, such as CLOB in SQL, to store XML

documents or fragments as text in columns of tables. The advantages of

these approaches are (1) they might be said to provide textual fidelity

because they preserve the original XML at the character string level and

(2) there is no need for an XML schema in the storing process. The

drawbacks of all these methods are that, (1) they fail to take advantage of

the structural information that is available in the XML Markup, (2) they

don’t take into account the query workload while constructing the

relational schema, (3) none of the structure of the XML document is

preserved, and (4) it is difficult to deal with huge XML documents.

196

 This thesis proposes and develops an efficient mapping algorithm,

called XMR, for storing XML documents using relational databases.

XMR requires the XML data to be shredded and composed into

relational tuples. The Reconstruction algorithm, RRX, reconstructs an

XML subtree rooted at a node from the relational database. These

algorithms solve the problem of XML type, since it works with all type

of XML document, Document Type Descriptor (DTD), schema data,

schema less data without need to format it. It take advantage of the

structural information that is available in the XML Markup, the structure

of the XML document is preserved, and it deal with huge XML

documents. The algorithm performance is linear with respect to the

document size which is an important issue in the processing time.

197

CHAPTER 7: Experimental results and Discussion

7.1 Theory implementation:

 In this chapter, we will give an example to illustrate the

application of the mapping method described in Subsection 6.5.3.1

Consider the XML document in Figure 7.2 as an example. Any XML

document can be represented as a rooted, labeled Tree. Figure 7.3

presents an XML tree for the XML document in Figure 7.2. In our

method, each node in the tree is given a generated label in pre-order

traversal. This label is a unique since it identifies each token in the

document.

<books>

 <book id="11210" category="fiction">

 <author id="a1" sex="m">M. John</author>

 <name>Computer Science 101</name> </book>

 <book id="11211">

 <author>A. Mark</author>

 <name>Applied Math 101</name>

 <subject>Math</subject >

 </book> </books>

Figure 7.1: XML document

198

Books99

104

100 Book

author name

M. John CS 101

Id
 "11210"

Id
 "a1"

Sex
"m"

101 102
103 106

Book

author subjectname

A. Mark Math Applied
Math 101

Id
 "11211"

107

108 110 109 111

Figure 7.2: A tree representation for XML document in figure 6.1

 After transformation, this document will be represented by a single

record in the documents table with doc_id for example = 10, as in table

6.1. And the tokens table will be containing the records for the document

contents as shown in table 6.2. The doc_structure field for this document

will be.

Doc_id Doc_strcuture

10 T99<T100A101A102<T103A104A105T106>T107

A108<T109T110T111>>

Table 7.1: Documents table

199

Table 7.2: Tokens table

doc_id token

_id

token_name token_value

10 99 Books Null

10 100 Book Null

10 101 Id 11210

10 102 Category Fiction

10 103 Author M. John

10 104 Id a1

10 105 Sex M

10 106 Name Computer Science 101

10 107 Book Null

10 108 Id 11211

10 109 Author A. Mark

10 110 Name Applied Math 101

10 111 Subject Math

200

7.2 Technologies Used:

The technologies used in the project can be classified into:

1. XML technology as a source and relational database technology as a

target.

2. Visual basic 6.0 programming language is used as a tool to create the

GUI and to Implement the system component. It is used for some

reasons:

 The V.basic structure is very simple, particularly as the executable

code.

 It is particularly easy to develop graphical user interfaces and to

connect them to handler functions providede by the application>

 V.basic is a component intrgration language which is attuned to

Microsoft's Component Object Model(COM).

 COM componenets and be written in different languages and then

integrated using VB.

 COM components can be embedded in /linked to the application's

user interface and also in/to stored documents (Object Linking and

Embedding "OLE", Compound Documents").

 You can separate designing the user interface from writing the code

for a form or page.

201

3. Microsoft Office Access is used as a relational database mananement

system (RDBMS) from Microsoft which it combines the relational

Microsoft Jet Database Engine with a graphical user interface and

software development tool. It can easy connect with Visual basic

programming language. It is used as a database development platform

for the following reasons:

 It is significantly cheaper to implement and maintain compared with

large database system Oracle or SQL Server.

 Company consulting rats are typically lower for Access database

consultants compared with Oracle or SQL Server.

 Other software manufactures are more likely to provide interfaces to

MS Access than any other desktop database system.

 When it designed correctly, access database can be ported to SQL

Server or Oracle.

 An Access database can be placed on a website for access the remote

users. Simple forms cand be developed within access, Data Access

pages.

202

7.3 System Design Consideration

The system is designed in a way to achieve the method and project

requirements. It consist of the two main components each of which

represents one of the project requirements. These componenets are:

1. Mapping XML document from relational database.

2. Reconstructing XML document from relational database.

7.4 Experimental Enviriouments

 An Intel Core 2 Duo computer with 2 GHz CPU, 1 GB

RAM, 256 MB shared Cache and running Windows Vista is used for the

experimental test. Visual Basic 6 is used as software development kit

with Microsoft Access 2003 as relational database target.

7.5 Experimental Data

 The data is taken randomly from the XML data repository

that is available at the web site of the School of Computer Science and

Engineering, University of Washington [117].

7.6 Experimental procedure:

 Five XML documents with different sizes are used in the

experiment. The performance metric is the time spent for mapping XML

documents to relational database and the time spent for reconstructing

203

these documents from relational database. The experiment is repeated

five times and the mean value of those times is reported to obtain a

realistic and accurate results.

 7.7 Experimental results

The results in table 7.1 shows that the time for mapping XML document

to RDB is acceptable and the relation is linear between the document

size and the mapping time.

Documen

t size

4 KB

28 KB

64 KB

602KB

1MB

Mapping

time

(secs)

0.0198823

8

0.14977736 .3551445 3.574335 5.852781

36

Table 7.3: The time spent for mapping XML documents

204

Fi

gu

re

7.3

:G

raf

Figure 7.3: Graph represent mapping time

7.8 Reconstructing time:

Table 7.4: The time spent reconstructing them

Document size

4 KB

28 KB

64 KB

602KB

1MB

Reconstructing

 time (secs)

0.018990234 0.44980958 1.926836 18.305544 32.06255104

The results in table 7.3 shows that the time for reconstructing XML from

RDB is acceptable and the relation is linear between the document size

and reconstructing time.

Mapping time (secs)

0
2
4
6
8

4 K
B

28
 K

B
64

 K
B

60
2KB

1M
B

Mapping
time (secs)

205

Figure 7.4 Graph represent reconstructing time

Table 7.5: Compare between Mapping time and Reconstructing

time:

Document size 4 KB 28 KB 64 KB 602KB 1MB

Mapping time

(secs)

0.01988238 0.14977736 0.3551445 3.574335 5.85278136

Reconstructing

time (secs)

0.018990234 0.44980958 1.926836 18.305544 32.06255104

The results in table 7.3 shows that the time for mapping XML document

to RDB spent a small time than the reconstructing operation in the same

size of data.

Reconstructing time (secs)

0
10
20
30
40

4 K
B

28
 K

B
64

 K
B

60
2KB

1M
B

Reconstructi
ng time
(secs)

206

Figure 7.5: Graph represent Compare between mapping time and

reconstructing time

Figure7.6: Graph mapping time reconstructing time

0
5

10
15
20
25
30
35

4 KB 64 KB 1MB

Mapping time
(secs)
Reconstructing
time (secs)

0
5

10
15
20
25
30
35

4 K
B

28
 K

B
64

 K
B

60
2KB

1M
B

Mapping
time (secs)

Reconstructi
ng time
(secs)

207

7.9 Mapping Experiments Compare with other algorithms:

 In order to study the performance of both the DOM-based

data mapping algorithm (our XMR Algorithm and the OXInsert

algorithm) We used An Intel Core 2 Duo computer with 2 GHz CPU, 1

GB RAM, 256 MB shared Cache and running Windows Vista is used for

the experimental test. Visual Basic 6 is used as software development kit

with Microsoft Access 2003 as relational database target. An

experiments data is the same data in section 7.5 (4KB,28KB,

64KB,602KB, and 1024KB).

 The performance shown in table 7.4 The table shows that OXInsert is

efficient with the small document size and the time is well when the

XML document the main memory (<= 1 MB). OXInsert performs the

best on schema DTD. OXInsert performs the worst on schemaless

document. The performance shown in table 7.4

Table 7.4: The OXInsert algorithm mapping time

Doc size

4 KB

28 KB

64 KB

602KB

1MB

Mapping

time

(secs)

0.02065214 0.23257331 0.3951687 3.886561 6.73245

127

208

The table 7.4 shows that OXInsert is efficient with the small document

size and the time is well when the XML document the main memory

(<= 1 MB). OXInsert performs the best on schema DTD. OXInsert

performs the worst on schemaless document.

Figure7.7: Graph mapping time OXinsert

The figure 7.7 shows that OXInsert is efficient and scales well when the

XML trees of the documents in the main memory (<= 1MB).

The OXInsert algorithm mapping time

0

1

2

3

4

5

6

7

8

the documents size

th
e

pr
oc

es
si

ng
 ti

m
e

4 KB
0.02065214

209

Compare the XMR algorithm and OXinsert algorithm:

Table 7.8: The OXInsert algorithm mapping time

Figure7.8: Graph For Compare XMR mapping time and OXinsert
mapping time

0
1
2
3
4
5
6
7

The
Mapping

time

1 2 3 4 5

The size

Graph Compare XMR algorithm and
OXInsert mapping time

XMR algorithm
OXisert

4 KB

28 KB

64 KB

602KB

1MB

XMR

algorithm

0.019882

38

0.1497773

6

.35514

45

3.57433

5

5.8527

8136

OXisert

algorithm

0.020652

14

0.2325733

1

0.3951

687

3.88656

1

6.7324

5127

210

Figure 7.8 shows the difference between our algoritm and OXisert

algorithm. Although this time our performance advantage is best than

OXinsert but not obvious compare to OXinsert.

7.10 Compare the XMR algorithm and ODTDMap algorithm[99]

Table 7.6: The ODTDMap algorithm mapping time

Table 7.7: The XMR mapping time Compare with ODTDMap mapping time

Document

size

4 KB

28 KB

64 KB

602KB

1MB

Mapping

time

(secs)

0.04697201 0.328824

71

0.75155

212

7.06938

753

12.024834

61

4 KB

28 KB

64 KB

602KB

1MB

XMR

algorithm

0.01988238 0.1497773

6

.3551445 3.574335 5.852781

36

ODTDmap

Algorithm

0.04697201 0.3288247

1

0.751552

12

7.069387

53

12.02483

461

211

Figure7.9: Graph For Compare XMR mapping time and ODTDmap

mapping time

Figure 7.9 shows the substantial performance advantage of our

algorithm XMR over the OXinsert algorithm.

7.11 Reconstruction Experiments Compare with other

Algorithms:

 There are a few reconstruction algorithms defined in XML-

publishing space[Carey et al 2000, Fernandez et al., 2002a,

Shanmugasundaram et al., 2000] where existing relational data is

published as an XML document. For our experimental study, we

implemented algorithm XRR and two versions of algorithm Return

Descendants.

 The above algorithms were coded using Java 1.4.1 software

development kit, Personal Microsoft Access 2003 Database was used as

0
2
4
6
8

10
12
14

The
mapping

time

1 2 3 4 5

The document size

Graph: Compare between XMR
mapping time And ODTDmap time

XMR algorithm
ODTDmap
algorithm

212

an XML storage. Experiments were run on the computer with CPU

Pentium IV 2.4 GHz and RAM 512 MB operated by Windows XP

Professional. For each experiment, we performed the reconstruction of

the whole XML document for 6 times and computed the average of last 5

runs ignoring the frst run. In all experiments, we reconstructed XML

data in memory and did not output it into a file or on a screen to avoid

unnecessary I/O operations. which performs actual XML document

reconstruction. Using the data in the mapping algorithms.

 To compare scalability and performance of our algorithms

with algorithm ReturnDescendants we reconstructed XML documents of

size 4, 28, 64,602, and 1024. Experimental results shows in table

Table 7.8: The RRXreconctructing time Compare with

 returndesent time

4 KB

28 KB

64 KB

602KB

1MB

RRX

algorithm

0.018990234 0.44980958 1.926836 18.305544 32.06255104

Returndesent

algortim

0.07631357 0.47885743 2.16345 21.006731 39.14256218

Fi

Figu

the

7.1

1-

alg

Mea

Stan

The

= 0

((1.

igure7.10

ure 7.10 s

reconstruc

2 Confid

calculat

gorithm a

an= 1.990

ndard dev

e critical v

0.025. A

99038412

The
reconstr

ing tim

G

0: Graph:T
a

shows the

cting time

ence Inte

ed the s

and stan

038412

viation=0.6

value for a

95% con

2 -

0
5

10
15
20
25
30
35
40

ruct
me

Graph:
rec

r

To compa
and Retur

 compare

e .

erval of r

sample m

ndard de

615900027

a 95% con

nfidence

(1.96*

1 2

The do

To com
constru
returnd

213

are betwe
rndesend

esion resul

 results:

mean of

eviation

7

nfidence in

interval f

0.6159000

3 4

ocument

mpare b
ucting
esende

een RRXre
dent time

lt between

f the ma

:

nterval is 1

for the u

027)),

4 5

size

betwee
time an
ent time

econstruc

n the two

apping ti

1.96, wher

unknown

(1.990384

en RRX
nd
e

RRX

Retu
algo

cting time

algorithm

ime XM

re (1-0.95)

mean

412

X

X algorithm

urndesent
rtim

e

m in

MR

)/2

is

+

m

t

(1.9

+1.2

2-

OD

Mea

stan

The

= 0

((4.

1.32

1.86

T

Alg

XM

OD

96*0.6159

20716405

calcula

DTDMap

an =4.044

ndard devi

e critical v

0.025. A

04431419

26013132

62752875

Table 7.8:

mappi

gorithm

MR

DTDMap

900027)))

53) = (0.78

ted the

p algorit

4314196

iation = 0.

value for a

95% con

96 - (1

))) = (4.0

) = (2.181

: Table sh

ing time C

= (1.9

83220067,

e sampl

thm :

.92601313

a 95% con

nfidence

.96* 1.3

04431419

1561321, 5

how Confi

Compare

Low

0.78

2.18

214

99038412

, 3.197548

le mean

32

nfidence in

interval f

26013132

96 - 1.86

5.9070670

idence In

 with OD

w

83220067

81561321

-1.2071

8173).

n of th

nterval is 1

for the u

2)), (4.04

62752875

071).

terval of

DTDMap

Upp

3.19

5.90

164053,

he mapp

1.96, wher

unknown

4314196

, 4.04431

results: T

mapping

per

97548173

07067071

1.990384

ping tim

re (1-0.95)

mean

 + (1.9

14196

The XMR

g time

412

me

)/2

is

96*

+

R

215

Table 7.8 shows the confidence interval of the ODTDMap algorithm and

XMR algorithm it's the same result that XMR has a better mapping and

reconstructing time when the document size is a smale but, it is not

efficient with a big document size.

Figure7.11: Graph:To compare between XMR confidence interval
and ODTDMap confidence interval

7.13 Algorithm Operations

 First inialize stack with document elements. Then an outer

loop will run n time n is the number of element on the stacks. The

algorithm do four comparison and two inner loop first one when the

0
1
2
3
4
5
6

Rurnning
time

1 2

Graph: Show the confidence interval
reult between XMR and ODTDMap

XMR
ODTDMap

216

element has attribute and the second one when element has child nodes.

Comparison one has one assignment when if clause is true or five

assignment if it false. Comparison two have five assignment if it true.

Comparison three have three assignment if true. Comparison four there

is one assignment if it true. If we interested in the average case, we

would assume that about the half the time the if clause true. And we get

one assignment each time we complete the outer loop.

The gives us the following average number of operations carried out.

Using Mathmatica software to calculate the number of operation.

n
nn

nn

nnnn

nf

n

i

n

i

n

i

n

i

n

i

112
472

2
3572

2
3

2
5342

2
3

2
5342

1)
2

30(1)
2

50(1)
2

51(12)(

11 11

1

+=
++=

+
++=

++++=

++++=

+
+

++
+

++
+

++=

∑∑ ∑∑

∑

== ==

=

 n is the number of the element in the document.

Therefore this algorithm has complexity O(11n+2), which is acceptable

taking into consideration it deals with all types of XML documents. And

we have seen that there are better mapping algorithm but, work on one

2+ 11 n

217

part of XML data centric or non centric data but this algorithm work

with all type of XML document. In general the algorithm complexity it is

good as start work .

218

Chapter 8: Conclusion and Future Works

8.1 Conclusion

 XML is widely accepted as a standard medium for

representing data exchanged between businesses on Internet since 1998.

However, it was not designed for efficient storage and retrieval. As a

result, seeking an efficient storage and query medium of XML

documents is an attractive area of research in the database community.

 For that, Mapping XML documents to RDBMS has been

studied for the last few years to leverage the powerful, reliability,

concurrency control, integrity, crash recovery and multi-user access of

RDBMS, which are not available in XML technology until now. These

studies are trying to bridge the technology gap between XML

hierarchical ordered structured and RDBMS tabular unordered structure.

Existing Mapping techniques from XML-to-relational can be generally

classified into two tracks: the first one is the structured-centric technique,

which depends on the XML document structure to guide the mapping

process, and the second track is the schema–centric, which makes the use

of schema information such as DTD or XML schema to derive an

efficient relational storage for XML documents.

219

 None of the above mapping XML-to-Relational technique gave

an ideal solution to all the types of XML documents, which are data-

centric, document-centric, and mixed documents of the previous two.

 This research, identified the challenging issues for the data mapping

problem which is the database vendor dependency and XML document

types and information loss stored in the original XML documents due to

the shredding process.

In this research, we proposed an automatic mapping technique of XML

documents to RDBMS with XML-API for a database. This technique

will leverage the advantages of mature relational database features and

the strength of XML in data representation and exchange on the

Internet. To accomplish this goal the research will propose a new

Dynamic shredding mapping technique for the mapping XML-to-

relational to overcome the issues of the XML documents size, loss of

information stored in the original documents, and mixed XML document

types. The new Technique is carried out by two linear data mapping

algorithm. XML mapping to relational database (XMR) and

reconstructing algorithm (RRX) to reconstruct data from relational data

base to XML, base on well known parser Dom to address the problem of

220

XML mapping int relational data base and reconstructing XML from

relational database.

 We started off with a labeling and indexing technique which

we use a globel indexing technique that any element or attribute take a

unique lebal by this method it is very easy to maintain document

structure at a low cost price and easily, building the original document is

straight forward, performing first level semantic search is also

achievable either on a single document or on all documents.

 We introduced the mapping algorithm theoretical definition and step

of mapping element and attribute in the relational database and described

the algorithm suqdio code.

 We trried to implement the algorithm to evaluate the

algorithm performance the algorithm coded using V.Basic 6 software ,

Personal Microsoft Access 2003 Database was used as an XML storage.

Experiments were run on the computer with CPU Pentium IV 2.4 GHz

and RAM 512 MB operated by Windows XP Professional. For each

experiment, we performed the reconstruction of the whole XML

document for 6 times and computed the average of last 5 runs ignoring

the frst run. In all experiments, we reconstructed XML data in memory

and did not output it into a file or on a screen to avoid unnecessary I/O

221

operations. which performs actual XML document reconstruction. Using

the data in the mapping algorithms.

 Experimental studies showed that these algorithms are

efficient and well scalable with respect to size of input document, which

is an important, issue in the data process and compare the expermentail

with other thre algorithms (OXinsert, S-Greace,and Bacis inling) to

evaluate the result which it show that our algorithm is better in

processing time and no lossless of orginal document content but, the

efficiency is low with large document size.

 Finally it levarg the gap between the two technologies. And

it deal with all types of XML documents (data-centric, document centric

and mixed documents). Also, the algorthim avoid the relabeling

problem in other algorithms. The algorithm overcome the limitation on

the other present algorithms as we aim. This algorithm work well as the

proposal guest but it need to working in the query subject to be perfect in

mapping XML to relational data base.

8.2 Future works

 There are several directions to extend the work described int

this thesis. Work in indexing technique to perfom the lebaling method to

222

efficient mapping data in database and make the query easy and to avoid

the big text field document.

Improve this method to achieve complex semantic search, differentiate

between XML data type (i.e., strings, dates, integers), in order to apply

less than or greater than queries.

 The application need to use SAX technology to become acceptable to all

document size. Also, we will work to overcome the gap between the

XML query and the SQL and how to return SQL to XML query.

223

8.3 References:

 [1]. www.w3c.org/xml2002.

[2]. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational databases for

querying XML documents: Limitations and opportunities. In Proceedings of VLDB, pages 302–314, 1999.

[3]. Kei Fujimoto, Masatoshi Yoshikawa, Dao Dinh Kha and Toshiyuki

Amagasa: A mapping Scheme of XML Documents into Relational

Databases using Schema-based Path Identifiers. Proceedings of the 2005

International Workshop on Challenges in Web Information and

Integration (WIRI'05), 2005 IEEE.

[4]. Ventzislav Tzvetkov, Xiong Wang. "DBXML - Connecting XML with

Relational Databases," cit, pp. 130-135, The Fifth International

Conference on Computer and Information Technology (CIT'05), 2005.

[5]. Thomas Kudrass: Management of XML Documents without Schema in Relational Database Systems. 2002

Elsevier Science B.V. Information and Software Technology 44 (2002) 269-275.

[6]. Zijing Tan, JianJun Xu, Wei Wang, Baile Shi. "Storing Normalized

XML Documents in Normalized Relations," cit, pp. 123-129, The Fifth

International Conference on Computer and Information Technology

(CIT'05), 2005.

224

[7]. Hui Zhang and Frank Wm. Tompa: Querying XML Documents by

Dynamic Shredding. DocEng’04, October 28–30, 2004, Milwaukee,

Wisconsin, USA. Copyright 2004 ACM.

[8]. Andrey Balmin, Yannis Papakonstantinou: Storing and querying XML

data using denormalized relational databases. The VLDB Journal (2005)

14: 30–49.

[9]. Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo

Giakoumakis and Vasili Zolotov: Indexing XML Data Stored in a

Relational Database. Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004.

[10]. Steffen Ulsø Knudsen, Torben Bach Pedersen, Christian Thomsen,

Kristian Torp. "RelaXML: Bidirectional Transfer Between Relational and

XML Data," ideas, pp. 151-162, 9th International Database Engineering

& Application Symposium (IDEAS'05), 2005.

[11]. Alin Deutsch, Mary Fernandez and Dan Sucui: Storing

Semistructured Data with STORED. SIGMOD ‘99 Philadelphia PA,

Copyright ACM 1999.

[12]. Jagadish, H., Al-Khalifa, S., Chapman, A., Lakshmanan, L.,

Nierman, A., Paparizos S., Patel, J., Srivastava D., Wiwatwattana N., Wu,

225

Y. and Yu, C.: TIMBER: A Native XML Database, SIGMOD 2003, June

9-12, 2003, San Diego, CA. Copyright 2003 ACM 1-58113-634-X/03/06.

[13]. Maxim Grinev, Andrey Fomichev, and Sergey Kuznetsov: Sedna: A

Native XML DBMS Copyright MODIS ISPRAS, 2004.

[14]. Mark Logic's Content Interaction Server:

http://xqzone.marklogic.com.

[15]. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient

relational storage and retrieval of XML documents. In Proc. of WebDB,

2000.

[16]. Guangming Xing, Jinhua Guo and Ronghua Wang: "Managing

XML Documents Using RDBMS," snpd-sawn, pp. 186-191, Sixth

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing and First ACIS

International Workshop on Self-Assembling Wireless Networks

(SNPD/SAWN'05), 2005.

[17]. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. Xrel: A

path-based approach to storage and retrieval of XML documents using

relational databases. ACM Transactions on Internet Technology, 1(1),

2001.

[18] . eXist “Open Source XML Database” (http://exist.sourceforge.net/)

226

[19]. Yi Chen, Susan Davidson, Carmem Hara, and Yifeng Zheng:

RRXS: Redundancy reducing XML storage in relations. Proceedings of

the 29th VLDB Conference, Berlin, Germany, 2003.

[20]. www.w3c.org/xml2003.

[21]. Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database

Systems, Third Edition, 2000.

[22]. Kei Fujimoto, Masatoshi Yoshikawa, Dao Dinh Kha and Toshiyuki

Amagasa: A mapping Scheme of XML Documents into Relational

Databases using Schema-based Path Identifiers. Proceedings of the 2005

International Workshop on Challenges in Web Information and

Integration (WIRI'05), 2005 IEEE.

[23]. Zijing Tan, JianJun Xu, Wei Wang, Baile Shi. "Storing Normalized

XML Documents in Normalized Relations," cit, pp. 123-129, The Fifth

International Conference on Computer and Information Technology

(CIT'05), 2005.

[24].Hui Zhang and Frank Wm. Tompa: Querying XML Documents by

Dynamic Shredding. DocEng’04, October 28–30, , Milwaukee,

Wisconsin, USA. Copyright 2004 ACM.

227

[25].Andrey Balmin, Yannis Papakonstantinou: Storing and querying

XML data using denormalized relational databases. The VLDB Journal

(2005) 14: 30–49.

[26]. Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo

Giakoumakis and Vasili Zolotov: Indexing XML Data Stored in a

Relational Database. Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004.

[27]. Colleen Graham: No Clear Winner in Overall RDBMS Market

Share Race. 2005 Gartner, Publication Date: 23 May 2005 ID Number:

G00127787.

[28]. V. Fresno-Fernández, S. Montalvo-Herranz, J. Pérez-Iglesias and J.

Á. Velázquez-Iturbide: eXitor: A Tool For The Assisted Edition Of Xml

Documents.

[29] Extensible Markup Language (XML). http//www.w3.org/XML/.

[30] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas,

The Rufus system:

[31] S. Abiteboul, D. Quass, J. MeHugh, J.Widom, J.Wiener. The Lorel

Query Language for Semi-structured Data, International Journal on

Digital Libraries, 1(1), pp. 68-88, April 1997.

228

[32] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore:

A Database Management System for Semi-structured Data, SIGMOD

Record 26(3): 54-66 (1997).

[33] M. Fernandez, D. F. Florescu, J. Kang, A. Levy and D. Suciu,

Catching the Boat with Strudel: Experiences with a Web-Site

Management System, Proc. of ACM SIGMOD Conference on

Management of Data, WA, 1998.

[34] F. Bancihon, G. Barbedette, V. Benzaken, C. Delobel, S.

Gamerman, C. Lecluse, P. Pfeffer, P.Richard, F. Velez. The design and

implementation of O2, an object-oriented database system, Proc. of the

Second International Workshop on Object-oriented Database, 1988, ed.

K Dittrich.

[35] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, J.

F. Naughton, Relational Databases for Querying XML Documents:

Limitations and Opportunities, VLDB 1999: 302—214.

[36]Report of a Workshop held at the Center for Intelligent Information

Retrieval,

University of Massachusetts Amherst, September 2002.

 [37] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length

normalization. In Proceedings of the 19th annual international ACM

SIGIR conference on Research and development in information retrieval,

229

Zurich, Switzerland, August 18-22, 1996, pages 21–29. ACM Press,

1996.

[38] J. Pehcevski, J. Thom, and A.-M. Vercoustre. Hybrid XML

Retrieval: Combining Information Retrieval and a Native XML

Database. Submitted for publication.

[39] http://www.lotusnotes.com/, 1998.

[40] R.V. Zwol, P. Apers, and A. Wilschut, Modeling and Querying

Semi-structured Data With MOA, Workshop on Query Processing for

Semi-structured Data and Non-standard Data Formats, 1999.

[41] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu, Adding

Structure to Unstructured Data, Proc. of The Internation Conference on

Database Theory (ICDT), Delphi, Greece, 1997.

[42] A. Deutsch, M. F. Fernandez, D. Suciu, Storing Semistructured

Data with STORED, SIGMOD Conference 1999: 431- 442.

[43]S. Netorov, S. Abiteboul, and R. Motwani, Extracting Schema for

Semistructured Data, Proc. of ACM SIGMOD Conference on

Management of Data, Seattle, WA, 1998.

[44] D. Florescu, D. Kossman, A Performance Evaluation of Alternative

Mapping Schemes for Storing XML Data in a Relational Database,

Rapport de Recherche No. 3680 INRIA, Rocquencourt, France, May

1999.

230

[45] F. Tian, D. DeWitt, J. Chen, and C. Zhang, The Design and

Performance Evaluation of Various XML Storage Strategies. Submitted

for publication ,Computer Science, University of Wisconsin, Madison.

[46] A. Schmidt, M. Kersten, M. Windhouwer, F. Waas, Efficient

Relational Storage and Retrieval of XML Documents, Proceedings of

WEBDB 2000.

[47]M. F. Fernandez and J Simeon and P. Wadler, An Algebra for

{XML} Query",Foundations of Software Technology and Theoretical

Computer Science", pp.11-45, 2000.

[48]M. J. Carey and D. Florescu and Z. G. Ives and Y. Lu and J.

Shanmugasundaram, E. J. Shekita and S. N.

Subramanian",XPERANTO: Publishing Object-Relational Data as

(XML)",WebDB (2000), pp. 105-110.

[49] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu,

XML-QL: a Query Language for XML, Proc. of the Int. WWW Conf.,

1999.

[50] M. Yoshikawa, T. Amagasa, T. Shimura and S. Uemura, XRel: A

Path-Based Approach to Storage and Retrieval of XML Documents

using Relational Databases, ACM Transactions on Internet Technology,

Vol. 1, No. 1, June 2001.

231

[31] S. M. N. Fuhr and M. Lalmas. Overview of the INitiative for the

Evaluation of XML retrieval (INEX) 2003. In Proceedings of the 2nd

Workshop of the INitiative for the Evaluation of XML Retrieval (INEX),

Dagstuhl, Germany, December 15-17, 2003, pages 1–11, 2004.

[52] W3C Recommendation. XQuery 1.0: An XML Query Language.

Available at http://www.w3.org/TR/xquery.

[53] Haixun Wang and Xiaofeng Meng. On the Sequencing of Tree

Structures for XML Indexing. Proceedings of the 21st International

Conference on Data Engineering (ICDE 2005) 1084-4627/05.

[54] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen.

From Region Encoding To Extended Dewey: On Efficient Processing of

XML Twig Pattern Matching. Proceedings of the 31st VLDB

Conference, Trondheim, Norway, 2005.

[55] Qun Chen, Andrew Lim, Kian Win Ong and Ji Qing Tang. Indexing

graph-structured XML data for efficient structural join operation. Data &

Knowledge Engineering 58 (2006) 159–179.

[56] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-

Tree: Indexing XML Data for Efficient Structural Joins. Proceedings of

232

the 19th International Conference on Data Engineering (ICDE’03) 1063-

6382/03.

[57]. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins:

Optimal XML pattern matching. In SIGMOD, pp310-321, 2002.

[58]. Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism

in XML Twig Pattern Matching Using Structural Indexing Techniques.

SIGMOD 2005 June 1416, 2005, Baltimore, Maryland, USA Copyright

2005 ACM 1595930604/ 05/06.

[59]. H. Jiang, W. Wang, H.J. Lu and J.X. Yu. Holistic Twig Joins on

Indexed XML documents. Proceedings of the 29th VLDB Conference,

Berlin, Germany, pp273-284, 2003.

[60] Praveen Rao and Bongki Moon. Sequencing XML Data and Query

Twigs for Fast Pattern Matching. ACM Transactions on Database

Systems, Vol. 31, No. 1, March 2006, Pages 299–345.

[61] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen.

From Region Encoding To Extended Dewey: On Efficient Processing of

XML Twig Pattern Matching. Proceedings of the 31st VLDB

Conference, Trondheim, Norway, 2005.

[62] Shurug Al-Khalifa, H.V.J agadish, Nick Koudas, Jignesh M.P atel,

Divesh Srivastava, and YuqingWu. Structural Joins: A Primitive for

233

Efficient XML Query PatternMatching. Proceedings of the 18th

International Conference on Data Engineering (ICDE.02). IEEE 2002.

[63] D. Lee and W. W. Chu. Comparative analysis of six XML schema

languages. SIGMOD Record, 29(3):76{87, 2000.

[64] Document object model (DOM). Technical report, World Wide

Web Consortium, http://www.w3.org/DOM/.

[65] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom.

Lore: A database management system for semistructured data. SIGMOD

Record, 26(3):54{66, 1997.

[66] H. Lu, G. Wang, G. Yu, Y. Bao, J. Lv, and Y. Yu. XBase: Making

your gigabyte disk files queriable. In Proc. of the ACM SIGMOD Int'l

Conference on Management of Data, pages 630{630, Madison,

Wisconsin, June 2002.

[67] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan,

A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana,

Y. Wu, and C. Yu.

[68] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.

McAulifie, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O.

G. Tsatalos, M. J. SetCarey White, and DeWitt. Shoring up persistent

applications. In Proc. of the ACM SIGMOD Int'l Conference on

234

Management of Data, pages 383{394, Minneapolis, Minnesota, May

1994.

[69] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R.

Schiele, and T. Westmann. Anatomy of a native XML base management

system. VLDB Journal, 11(4):292{314, 2002.

[70] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query

language for heterogeneous data sources. In Proc. of the Third Int'l

Workshop on the Web and Databases (Selected Papers), pages 53{62,

Dallas, Texas, USA, May 2000.

[71] A. Berglund, S. Boag, D. Chamberlin, M. F. Ferneandez, M. Kay, J.

Robie, and J. Simeon. XML path language (XPath) 2.0. Technical report,

World Wide Web Consortium, 2002.

[72] Su Cheng Haw and G. S. V. Radha Krishna Rao. Query

optimization techniques for XML databases. International Journal of

Information Technology, 2(1):97–104, 2005. 29.

[73] Paul F. Dietz. Maintaining order in a linked list. In Proceedings of

the 14th Annual ACM Symposium on Theory of Computing (STOC’82),

pages 122–127, San Francisco, CA, United States, May 5-7 1982.

[74] Quanzhong Li and Bongki Moon. Indexing and querying XML data

for regular path expressions. In Proceedings of the 27th International

235

Conference on Very Large Data Bases (VLDB’01), pages 361–370, San

Francisco, CA, United States, September 11-14 -2001

[75] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of

Database Systems. Addison-Wesley, 3rd edition, 2000.

[76] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, and Vassilis

J. Tsotras. Efficient structural joins on indexed xml documents. In

Proceedings of the 28th International Conference on Very Large Data

Bases (VLDB’02), pages 263–274, Hong Kong, China, August 20-23

2002.

[77] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-

Tree: Indexing XMLdata for efficient structural joins. In Proceedings of

the 19th Internati onal Conference on Data Engineering (ICDE’03),

pages 253–263, Bangalore, India, March 5-8 2003.

[78] Hanyu Li, Mong-Li Lee, Wynne Hsu, and Chao Chen. An

evaluation of xml indexes for structural join. SIGMOD Record,

33(3):28–33, September 2004.

[79] M. Zhang, J.T. Yao. The XML Algebra for Data Mining. In

Proceedings of the 27th International Conference on Very Large Data

Bases (VLDB’01), pages 361–370, San Francisco, CA, United States,

September 11-14 -2001

236

[80] W3C Recommendation. XQuery 1.0: An XML Query Language.

Available at http://www.w3.org/TR/xquery.

[81] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener.

The Lorel query language for semistructured data. International Journal

on Digital Libraries, (1):68{88, 1997.

[82] A. Deutsch, M. F. Ferneandez, and D. Florescu. A query language

for XML. In Proc. of the Eighth Int'l World Wide Web Conference,

Toronto, Canada, May 1999.

[83] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L.

Tanca. XML-GL: a graphical language for querying and restructuring

XML documents. In Proc. of the Eighth Int'l World Wide Web

Conference, Toronto, Canada, May 1999.

[84]http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/Sacha.Berg

er/THESIS/HTML-view/annotations.html#ceri99xmlgl .

[85] XQuery 1.0: An XML Query Language, available at

http://www.w3.org/ TR/xquery

[86] D. Schach, J. Lapp, J. Robie. Querying and Transforming XML. In

Proc. of the Query Languages workshop, Cambridge, Mass., Dec.1998,

h ttp://www.w3.org/TandS /QL /QL98/pp/query- transform.html.

237

[87] Arnaud Sahuguet, Bogdan Alexe, Sub-Document Queries Over

XML With XSQuirrel. International World Wide Web Coference

Committee.(IW3C2).

[88] W3C XSL Working Group. The Query Language Position Paper of

the XSL Working Group. In Proc. of the Query Languages workshop,

Cambridge, Mass.,Dec.1998, http: / /www. w3.org/TandS / QL /

QL98/pp/xsl-wg-position.html.

[89] D. Schach, J. Lapp, J. Robie. Querying and Transforming XML. In

Proc. of the Query Languages workshop, Cambridge, Mass., Dec.1998

,htp://www.w3.org/ Tand S/QL/QL98/pp/query- transform.html.

[90] J. Robie. XQL FAQ. http://metalab.unc.edu/xql/.

[91] Arnaud Sahuguet. Bogdan Alexe. Sub-Document Queries Over

XML with XSQuirrel. International world wide web conference

Committee(IW3C2). WWW 2005 May 10-14,2005 , china ,japan.

[92] XQuery 1.0: An XML Query Language, available at

http://www.w3.org/ TR/xquery

[93]A. Bonifati and S. Ceri. Comparative analysis of five XML query

languages. SIGMOD Record, 29(1):68{79, 2000.

[94] S.W. Ambler, “Mapping Objects to Relational Data”, Ambysoft

White Paper, 2003,

238

http://www.ambysoft.com/mappingObjects.html, [last access 2003-08-

07-].

[95] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone, “Database

Systems – Concepts, Languages and Architectures”, Mc Graw Hill,

1999.

[96] I. Tatarinov, S.D. Viglas, K. Beyer, J. Shanmugasundaram, E.

Shekita, “Storing and Querying Ordered XML Using a Relational

Database System”, SIGMOD Conference, June 2002.

[97] B. Surjanto, N. Ritter, and H. Loeser, “XML Content Management

based on Object-Relational Database Technology”, in Proc. Of the 1st

Int. Conf. On Web Information Systems Engineering (WISE),

Hongkong, June 2000.

[98]. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and

J. Naughton. Relational databases for querying XML documents:

Limitations and opportunities. In Proceedings of VLDB, pages 302–314,

1999.

[99]. Wang Lian, David Wai-lok Cheung,Nikos Mamoulis, and Siu-

Ming Yiu: An Efficient and Scalable Algorithm for Clustering XML

Documents by Structure. IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004.

239

[100]. Hui Zhang and Frank Wm. Tompa: Querying XML Documents

by Dynamic Shredding. DocEng’04, October 28–30, 2004, Milwaukee,

Wisconsin, USA. Copyright 2004 ACM.

[101]. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins:

Optimal XML pattern matching. In SIGMOD, pp310-321, 2002.

[102]. Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The

Knowledge Engineering Review, Vol. 18:3, 265–280. © 2004,

Cambridge University Press DOI: 10.1017/S0269888904000074.

[103]. Kei Fujimoto, Masatoshi Yoshikawa, Dao Dinh Kha and

Toshiyuki Amagasa: A mapping Scheme of XML Documents into

Relational Databases using Schema-based Path Identifiers. Proceedings

of the 2005 International Workshop on Challenges in Web Information

and Integration (WIRI'05), 2005 IEEE.

[104]. Guangming Xing, Jinhua Guo and Ronghua Wang: "Managing

XML Documents Using RDBMS," snpd-sawn, pp. 186-191, Sixth

International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing and First

ACIS International Workshop on Self-Assembling Wireless Networks

(SNPD/SAWN'05), 2005.

[105]. Zijing Tan, JianJun Xu, Wei Wang, Baile Shi. "Storing

240

Normalized XML Documents in Normalized Relations," cit, pp. 123-

129, The Fifth International Conference on Computer and Information

Technology (CIT'05), 2005.

[106]. Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo

Giakoumakis and Vasili Zolotov: Indexing XML Data Stored in a

Relational Database. Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004.

[107]. Surajit Chaudhuri, Zhiyuan Chen, Kyuseok Shim, and Yuqing

Wu. Storing XML (with XSD) in SQL Databases: Interplay of Logical

and Physical Designs. IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005.

[108]. P. Bohannon, J. Freire, P. Roy, and J. Simeon, “From XML

Schema to Relations: A Cost-Based Approach to XML Storage,” Proc.

Int’l Conf. Data Eng., 2002.

[109]. Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting

Holism in XML Twig Pattern Matching Using Structural Indexing

Techniques. SIGMOD 2005 June 1416, 2005, Baltimore, Maryland,

USA Copyright 2005 ACM 1595930604/ 05/06.

[110]. H. Jiang, W. Wang, H.J. Lu and J.X. Yu. Holistic Twig Joins on

Indexed XML documents. Proceedings of the 29th VLDB Conference,

241

Berlin, Germany, pp273-284, 2003.

[111]. Praveen Rao and Bongki Moon. Sequencing XML Data and

Query Twigs for Fast Pattern Matching. ACM Transactions on Database

Systems, Vol. 31, No. 1, March 2006, Pages 299–345.

[112]. Tian Yu, Tok Wang Ling, and Jiaheng Lu. TwigStackList: A

Holistic Twig Join Algorithm for Twig Query with Not-predicates on

XML Data. DASFAA 2006: 249-263.

[113]. Qun Chen, Andrew Lim, Kian Win Ong and Ji Qing Tang.

Indexing graph-structured XML data for efficient structural join

operation. Data & Knowledge Engineering 58 (2006) 159–179.

[114].Shurug Al-Khalifa, H.V.J agadish, Nick Koudas, Jignesh M.P atel,

Divesh Srivastava, and YuqingWu. Structural Joins: A Primitive for

Efficient XML Query PatternMatching. Proceedings of the 18th

International Conference on Data Engineering (ICDE.02). IEEE 2002.

[115]. Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen.

From Region Encoding To Extended Dewey: On Efficient Processing of

XML Twig Pattern Matching. Proceedings of the 31st VLDB

Conference, Trondheim, Norway, 2005

242

 [116] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E.

Shekita, and C. Zhang, (2002), “Storing and Querying Ordered XML

using a Relational Database System”, in Proc. of SIGMOD, pp 204-215.

[117] U. Washington, Computer Science & Engineering Research,

(2002), “XMLData Repository”. Retrieved Jun 15, 2007 from http://

www.cs. washington.edu /research /xmldatasets/.

[118] Carmine Cesarano DIS, via Claudio 21 80125 - Napoli, IT 2003.

[119] Urvi Shah TripleHop Technologies, Inc New York, NY 10010

urvi@triplehop.com 2002).

[120] Joan Lu, School of Computing and Engineering University of

Huddersfield, UK,HD1 3DH, School of Software, Yunnan Universiry,

Kunming, China.

[121] (Yuichi lizuka, NTT Cyber Space Labs. 1-1 Hikarinooka

Yokosuka-shi Kanagawa 239-0847 Japan, +81 468 59 2771, iizuka @

dq.isl.ntt.co.jp).

[122]

[123] Jayavel Shanmugasundaram Kristin Tufte Gang He Chun Zhang

David DeWitt Jeffrey Naughton Relational Databases for Querying

XML Documents:Limitations and Opportunities. ACM Transactions on

Database Systems, 12(1),2005).

243

 Appendix:

' Class Name : Alabeling Dom_Base tree Phd Applcation

' Author : Seif El Duola F. Elhaj

' Description : "XML Documents" Mapping Program

' Date : Dec. 11, 2007

' Last modified :

'

Option Explicit

'---'

' Module Level Variables

'---'

' Data Buffer

Private m_lngDocumentId As Long

Private m_strDocumentName As String

Private m_datDateCreated As Date

Private m_strStructure As String

' Other Module level declarations

Private m_bytBufferStatus As BufferStates

244

'---'

' Class Specific events

'---'

Private Sub Class_Initialize()

 Dim sErr As String

 On Error GoTo Err_Routine

 sErr = ""

 ' Initialize data buffer

 Me.Clean

Exit_Point:

 On Error Resume Next

 If sErr <> "" Then

 Class_Terminate

 On Error GoTo 0

 Err.Raise xbAppErr, "bfrDocument::Initialize", sErr

 End If

 Exit Sub

Err_Routine:

 sErr = "Vb: [" & Err.Number & "] " & Err.Description

 GoTo Exit_Point

245

End Sub

Private Sub Class_Terminate()

 On Error Resume Next

End Sub

'---'

' Property Get/Let

'---'

Public Property Get DocumentId() As Long

 DocumentId = m_lngDocumentId

End Property

Public Property Let DocumentId(ByVal lId As Long)

 m_lngDocumentId = lId

End Property

Public Property Get DocumentName() As String

 DocumentName = m_strDocumentName

End Property

Public Property Let DocumentName(ByVal sName As String)

 m_strDocumentName = Left(sName, 50)

246

 If m_strDocumentName = "" Then

 m_strDocumentName = "Document Untitled"

 End If

End Property

Public Property Get DateCreated() As Date

 DateCreated = m_datDateCreated

End Property

Public Property Let DateCreated(ByVal tDate As Date)

 m_datDateCreated = tDate

End Property

Public Property Get Structure() As String

 Structure = m_strStructure

End Property

Public Property Let Structure(ByVal sValue As String)

 m_strStructure = sValue

End Property

Public Property Get BufferStatus() As Byte

 BufferStatus = m_bytBufferStatus

247

End Property

Public Property Let BufferStatus(ByVal bStatus As Byte)

 m_bytBufferStatus = bStatus

End Property

'---'

' Public methods

'---'

Public Sub Clean()

 m_lngDocumentId = 0

 m_strDocumentName = ""

 m_datDateCreated = 0

 m_strStructure = ""

 m_bytBufferStatus = BufferStates.xbIgnoreContent

End Sub

248

' Module Name : CallBacks

' Author : Seif Elduola F. El Haj

' Date : jan. 29, 2008

' Last modified :

' Description : A mechanism to pass callback functions to classes

'

Option Explicit

'---'

' General Constants '

'---'

Global Const MAX_PATH = 260

'---'

' External declares '

'---'

Public Declare Function SHGetPathFromIDList Lib "shell32" (ByVal

pidList As Long, ByVal lpBuffer As String) As Long

Private Declare Function SendMessage Lib "user32" Alias

"SendMessageA" (ByVal hWnd As Long, ByVal wMsg As Long, ByVal

wParam As Long, ByVal lParam As String) As Long

249

'---'

' Pass Mechanisim functions '

'---'

Public Function GetTheCallBackAddress(ByVal sProcName As String)

As Long

 Select Case sProcName

 Case "BrowseCallbackProc": GetTheCallBackAddress =

GetAddressofFunction(AddressOf BrowseCallbackProc)

 End Select

End Function

Private Function GetAddressofFunction(add As Long) As Long

 GetAddressofFunction = add

End Function

'---'

' The Call back procedures '

'---'

Public Function BrowseCallbackProc(ByVal hWnd As Long, ByVal

lMsg As Long, ByVal lp As Long, ByVal pData As Long) As Long

250

Dim lpIDList As Long, ret As Long, sBuffer As String

 'MS suggests "On Error Resume Next" to prevent an error from

 'propagating back into the calling process.

 On Error Resume Next

 Const WM_USER = &H400

 Const BFFM_INITIALIZED = 1 ' Indicates the browse

dialog box has finished initializing.

 Const BFFM_SELCHANGED = 2 ' Indicates the selection

has changed.

 Const BFFM_SETSTATUSTEXT = (WM_USER + 100) ' Sets the

status text to the null-terminated string specified by the message's lParam

parameter.

 Const BFFM_SETSELECTION = (WM_USER + 102) ' Selects the

specified folder.

 Select Case lMsg

 Case BFFM_INITIALIZED

 Call SendMessage(hWnd, BFFM_SETSELECTION, 1, App.Path

& vbNullChar)

 Case BFFM_SELCHANGED

251

 sBuffer = Space(MAX_PATH)

 ret = SHGetPathFromIDList(lp, sBuffer)

 If ret = 1 Then

 Call SendMessage(hWnd, BFFM_SETSTATUSTEXT, 0,

sBuffer)

 End If

 End Select

 BrowseCallbackProc = 0

End Function

252

' Module Name : Constants

' Author : Seif Elduola F. El Haj

' Date : Jan. 30, 2008

' Last modified :

'

' Description : Application common constants

'

Option Explicit

'---'

' General Constants

'---'

' Redefined system constants

Global Const xbAppErr = vbObjectError + 512 + 4000

Global Const xbShiftMask = 1

Global Const xbCtrlMask = 2

Global Const xbAltMask = 4

' Format Strings

Global Const fmtYMD = "yyyy/mm/dd"

253

Global Const fmtDMY = "dd/mm/yyyy"

Global Const fmtMDY = "mm/dd/yyyy"

Global Const fmtHMS = "hh:mm:ss"

Global Const fmtYMDHMS = "yyyy/mm/dd, hh:mm:ss"

Global Const fmtReal = "#0.00"

Global Const fmtStandard = "#,##0.00"

Global Const fmtFinancial = "#,##0.00;(#,##0.00)"

Global Const fmtInt = "#,##0"

Global Const fmtIntPerc = "0%"

' Important Field Lengths

Global Const SmallPageSize = 25

Global Const MidPageSize = 50

Global Const BigPageSize = 100

' Measures

Global Const msComboSpacing = 5

Global Const TreeSpacing = 5

Global Const ResizeGap = 50

254

' App Specific

Global Const SelectTag = "=>"

Global Const MaxRepId = 8

'---'

' General Error messages (non-systematic)

'---'

Global Const errSysFailure = "An Upnormal Error At Application Load,

Terminating!!"

Global Const errNoSysInfo = "Sorry!! Help sub-system is not available

right now"

Global Const errNullValue = "The current field can not be null"

Global Const errListLimit = "You should select a value from the list"

Global Const errSave = "The last save operation did not complete

successfully"

Global Const errDel = "Unable to delete the current record, it could be

related to other records"

Global Const errMisc = "The last operation has failed, see the technical

details"

'---'

255

' Application Specific Prompts

'---'

Global Const prmConfirmDel = "This record is going to be deleted right

now. Are you sure?"

Global Const prmNotSaved = "The document you are about to close has

been modified, do you like to save?"

256

' Class Name : dbxDocuments

' Author : Seif Elduola F. El Haj

' Description : "Documents" business object class

' Date : Feb. 8, 2008

' Last modified :

'

Option Explicit

'---'

' Module Level Variables

'---'

' Module level declarations

Private m_clsErrors As sysErrorTrap

Private m_clsDataBuffer As bfrDocument

'---'

' Class Specific events

'---'

Private Sub Class_Initialize()

 Dim sErr As String

257

 On Error GoTo Err_Routine

 sErr = ""

 ' Initialize

 Set m_clsErrors = New sysErrorTrap

 Set m_clsDataBuffer = New bfrDocument

Exit_Point:

 On Error Resume Next

 If sErr <> "" Then

 Class_Terminate

 On Error GoTo 0

 Err.Raise xbAppErr, "dbxDocuments::Initialize", sErr

 End If

 Exit Sub

Err_Routine:

 sErr = "Vb: [" & Err.Number & "] " & Err.Description

 GoTo Exit_Point

End Sub

Private Sub Class_Terminate()

 On Error Resume Next

258

 Set m_clsErrors = Nothing

 Set m_clsDataBuffer = Nothing

End Sub

'---'

' Property Get/Let

'---'

Public Property Get TheDataBuffer() As bfrDocument

 Set TheDataBuffer = m_clsDataBuffer

End Property

Public Property Set TheDataBuffer(ByVal cBuffer As bfrDocument)

 Set m_clsDataBuffer = cBuffer

End Property

'---'

' Public methods

'---'

Public Sub GetRow(ByVal lKey As Long)

 Dim rstGet As sysDaoSqler

 ' Reset Err

259

 On Error GoTo Err_Routine

 m_clsErrors.ResetErr

 ' Create and open a data source

 Set rstGet = New sysDaoSqler

 rstGet.NewWhere "(DocumentId = " & lKey & ")"

 rstGet.OpenDataSource p_clsDbase, "SELECT Documents.* FROM

Documents", "", "", dbOpenSnapshot, True

 ' If not found

 If rstGet.IsEmptyRs Then

 m_clsErrors.CollectErr "Specified Document record is not found"

 GoTo Exit_Point

 End If

 ' Load record into buffer

 With m_clsDataBuffer

 .DocumentId = rstGet.TheDataSource!DocumentId

 .DocumentName = rstGet.TheDataSource!DocumentName & ""

 .DateCreated = rstGet.TheDataSource!DateCreated

 .Structure = rstGet.TheDataSource!Structure & ""

260

 End With

Exit_Point:

 On Error Resume Next

 Set rstGet = Nothing

 If m_clsErrors.HaveErrs Then

 On Error GoTo 0

 Err.Raise xbAppErr, "dbxDocuments::GetRow",

m_clsErrors.TechDetails

 End If

 Exit Sub

Err_Routine:

 m_clsErrors.CollectLastVbErr

 GoTo Exit_Point

End Sub

Public Sub PutRow()

 Dim rstPut As sysDaoSqler

 ' Reset Err

 On Error GoTo Err_Routine

 m_clsErrors.ResetErr

261

 ' Creat and open a data sink

 Set rstPut = New sysDaoSqler

 rstPut.NewWhere "(DocumentId = " & m_clsDataBuffer.DocumentId

& ")"

 rstPut.OpenDataSource p_clsDbase, "SELECT Documents.* FROM

Documents", "", "", dbOpenDynaset, False

 ' Start a Trans

 DBEngine.Workspaces(0).BeginTrans

 On Error GoTo Err_Rollback

 ' Edit or Add a new row

 If m_clsDataBuffer.DocumentId = 0 Then

 rstPut.TheDataSource.AddNew

 rstPut.TheDataSource!DateCreated = Now

 Else

 If rstPut.IsEmptyRs Then

 m_clsErrors.CollectErr "Specified Document record is not

found"

 GoTo Err_Rollback

262

 End If

 rstPut.TheDataSource.Edit

 End If

 ' Write buffer to data sink

 rstPut.TheDataSource!DocumentName =

m_clsDataBuffer.DocumentName

 rstPut.TheDataSource!Structure = m_clsDataBuffer.Structure

 rstPut.TheDataSource.Update

 rstPut.TheDataSource.Bookmark =

rstPut.TheDataSource.LastModified

 m_clsDataBuffer.DocumentId = rstPut.TheDataSource!DocumentId

 DBEngine.Workspaces(0).CommitTrans

Exit_Point:

 On Error Resume Next

 Set rstPut = Nothing

 If m_clsErrors.HaveErrs Then

 On Error GoTo 0

 Err.Raise xbAppErr, "dbxDocuments::PutRow",

m_clsErrors.TechDetails

 End If

263

 Exit Sub

Err_Routine:

 m_clsErrors.CollectLastVbErr

 GoTo Exit_Point

Err_Rollback:

 DBEngine.Workspaces(0).Rollback

 m_clsErrors.CollectErr "Rolled Back, due to the following error"

 GoTo Err_Routine

End Sub

Public Sub DelRow(ByVal lKey As Long)

 Dim sTemp As String

 ' Reset Err

 On Error GoTo Err_Routine

 m_clsErrors.ResetErr

 ' Start a Trans

 DBEngine.Workspaces(0).BeginTrans

 On Error GoTo Err_Rollback

264

 ' Delete all tokens

 sTemp = "UPDATE Tokens SET Tokens.DocumentId = Null " & _

 "WHERE (Tokens.DocumentId = " & lKey & ");"

 p_clsDbase.TheDb.Execute sTemp

 ' Delete the Document

 sTemp = "DELETE Documents.DocumentId FROM Documents "

& _

 "WHERE (Documents.DocumentId = " & lKey & ");"

 p_clsDbase.TheDb.Execute sTemp

 If p_clsDbase.TheDb.RecordsAffected <> 1 Then

 m_clsErrors.CollectErr "Specified Document is not found, or

cann't be deleted"

 GoTo Err_Rollback

 End If

 DBEngine.Workspaces(0).CommitTrans

Exit_Point:

 On Error Resume Next

 If m_clsErrors.HaveErrs Then

 On Error GoTo 0

265

 Err.Raise xbAppErr, "dbxDocuments::DelRow",

m_clsErrors.TechDetails

 End If

 Exit Sub

Err_Routine:

 m_clsErrors.CollectLastVbErr

 GoTo Exit_Point

Err_Rollback:

 DBEngine.Workspaces(0).Rollback

 m_clsErrors.CollectErr "Rolled Back, due to the following error"

 GoTo Err_Routine

End Sub

'---'

' Private methods

'---'

266

Line 15: Class ComctlLib.Toolbar of control tbrOperations was not a

loaded control class.

Line 87: Class MSFlexGridLib.MSFlexGrid of control grdTable was not

a loaded control class.

Line 22: The property name _ExtentX in tbrOperations is invalid.

Line 23: The property name _ExtentY in tbrOperations is invalid.

Line 24: The property name ButtonWidth in tbrOperations is invalid.

Line 25: The property name ButtonHeight in tbrOperations is invalid.

Line 26: The property name AllowCustomize in tbrOperations is invalid.

Line 27: The property name Wrappable in tbrOperations is invalid.

Line 29: The property name _Version in tbrOperations is invalid.

267

Line 66: The property name Buttons in tbrOperations is invalid.

Line 93: The property name _ExtentX in grdTable is invalid.

Line 94: The property name _ExtentY in grdTable is invalid.

Line 95: The property name _Version in grdTable is invalid.

Line 96: The property name FocusRect in grdTable is invalid.

Line 97: The property name HighLight in grdTable is invalid.

Line 98: The property name ScrollBars in grdTable is invalid.

Line 99: The property name SelectionMode in grdTable is invalid.

Line 100: The property name AllowUserResizing in grdTable is invalid.

268

269

270

271

272

' Module Name : Generic

' Author : Seif El Duola F. El Haj

' Date : Mar. 1, 2008

' Last modified :

' Description : My Generic tools

'

Option Explicit

'---'

' Data Types Tools

'---'

Public Function EnforceDataType(ByVal sData As String, ByVal sType

As String) As String

Dim bNumber As Byte, iNumber As Integer, lNumber As Long,

rNumber As Currency

 Select Case sType

 Case "SystemDate"

 On Error Resume Next

 If Not IsDate(sData) Then

 On Error GoTo 0

 EnforceDataType = ""

273

 Else

 EnforceDataType = Format(sData, fmtYMD)

 If Err.Number <> 0 Then

 On Error GoTo 0

 EnforceDataType = ""

 End If

 End If

 Case "Date"

 EnforceDataType = ParseDate(sData)

 Case "Byte"

 On Error Resume Next

 bNumber = CByte(sData)

 If Err.Number <> 0 Then

 EnforceDataType = "0"

 Else

 EnforceDataType = sData

 End If

 Case "Integer"

 On Error Resume Next

 iNumber = CInt(sData)

 If Err.Number <> 0 Then

274

 EnforceDataType = "0"

 Else

 EnforceDataType = sData

 End If

 Case "Long"

 On Error Resume Next

 lNumber = CLng(sData)

 If Err.Number <> 0 Then

 EnforceDataType = "0"

 Else

 EnforceDataType = sData

 End If

 Case "Currency"

 On Error Resume Next

 rNumber = CCur(sData)

 If (Err.Number <> 0) Or (rNumber < 0) Then

 EnforceDataType = "0.00"

 Else

 EnforceDataType = Format(sData, fmtReal)

 End If

 Case "Numeric"

275

 If IsNumeric(sData) Then

 EnforceDataType = sData

 Else

 EnforceDataType = "0"

 End If

 Case "Filter"

 If InStr(sData, "[") > 0 Then

 EnforceDataType = ""

 Else

 EnforceDataType = sData

 End If

 End Select

End Function

Private Function ParseDate(sText As String) As String

Dim sBuff(1 To 3) As String, i As Integer, iSeg As Integer

Dim dd As Integer, mm As Integer, yy As Integer, d As Date

 On Error GoTo Err_Routine

 i = 1

 iSeg = 1

276

 sText = Trim(sText)

 Do While i <= Len(sText)

 If IsNumeric(Mid(sText, i, 1)) Then

 sBuff(iSeg) = sBuff(iSeg) & Mid(sText, i, 1)

 i = i + 1

 Else

 i = i + 1

 Do While i <= Len(sText)

 If IsNumeric(Mid(sText, i, 1)) Then

 Exit Do

 Else

 i = i + 1

 End If

 Loop

 iSeg = iSeg + 1

 If iSeg > 3 Then

 Exit Do

 End If

 End If

 Loop

277

 On Error Resume Next ' (here to prevent overflow)

 dd = CInt("0" & sBuff(1))

 mm = CInt("0" & sBuff(2))

 yy = CInt("0" & sBuff(3))

 If (dd < 1) Or (dd > 31) Or (mm < 1) Or (mm > 12) Or (yy < 1000)

Then

 GoTo Err_Routine

 End If

 d = DateSerial(yy, mm, dd)

 If Err.Number <> 0 Then

 GoTo Err_Routine

 Else

 ParseDate = Format(d, fmtDMY)

 End If

Exit_Point:

 Exit Function

Err_Routine:

 ParseDate = ""

 GoTo Exit_Point

End Function

278

'---'

' Grid Specific Tools

'---'

Public Sub FormatGrid(grdToFormat As MSFlexGrid, ParamArray

sTokens() As Variant)

Dim p As Long, i As Long, j As Long

 ' sTokens is a set of pairs, one pair per column.

 ' a pair is (Caption, width, Align) values

 p = ((UBound(sTokens) + 1) / 3) - 1

 grdToFormat.Cols = p + 1

 grdToFormat.Rows = 1

 grdToFormat.Row = 0

 For i = 0 To p

 j = i * 3

 grdToFormat.Col = i

 grdToFormat.Text = sTokens(j)

 grdToFormat.ColWidth(i) = sTokens(j + 1)

 grdToFormat.ColAlignment(i) = sTokens(j + 2)

 grdToFormat.CellFontBold = True

 Next

End Sub

279

Public Function GridFiller(ByRef grdToFill As MSFlexGrid, ByRef

cFrom As sysDaoSqler, ByVal bPaging As Boolean, _

 sIdColumn As String, ParamArray sColumns() As Variant)

As Variant

 Dim arrGrid() As Variant

 Dim arrTots() As Variant

 Dim iIndex As Integer

 Dim sTmp1 As String

 Dim iLoc As Integer

 Dim sTmp2 As String

 Dim lRecCount As Long

 On Error GoTo Err_Routine

 p_clsErrors.ResetErr

 grdToFill.Rows = 1

 grdToFill.Cols = UBound(sColumns) + 2

 ReDim arrTots(0 To UBound(sColumns)) ' Required here for

cases when the rsForm is empty

280

 If cFrom.IsEmptyRs Then

 GoTo Exit_Point

 End If

 ReDim arrGrid(0 To UBound(sColumns), 0 To 2)

 lRecCount = 0

 For iIndex = 0 To UBound(sColumns)

 sTmp1 = sColumns(iIndex)

 Do While sTmp1 <> ""

 iLoc = InStr(sTmp1, ">")

 If iLoc = 0 Then

 sTmp1 = ""

 Else

 sTmp2 = Left(sTmp1, iLoc - 1)

 sTmp1 = Mid(sTmp1, iLoc + 1)

 End If

 Select Case Left(sTmp2, 3)

 Case "<N:": arrGrid(iIndex, FillerCols.flrName) =

Mid(sTmp2, 4)

281

 Case "<F:": arrGrid(iIndex, FillerCols.flrFormat) =

Mid(sTmp2, 4)

 Case "<S:": arrGrid(iIndex, FillerCols.flrHaveSum) =

Mid(sTmp2, 4)

 End Select

 Loop

 arrTots(iIndex) = 0

 Next

 If Not bPaging Then

 ' Read and fill the entire table

 cFrom.TheDataSource.MoveFirst

 'Else

 ' The current required page must be set by the calling routine

 End If

 Do While Not cFrom.TheDataSource.EOF

 sTmp1 = ""

 For iIndex = 0 To UBound(sColumns)

 If arrGrid(iIndex, FillerCols.flrName) = "" Then

 sTmp1 = sTmp1 & vbTab

 Else

282

 If arrGrid(iIndex, FillerCols.flrFormat) = "" Then

 sTmp1 = sTmp1 & vbTab &

cFrom.TheDataSource(arrGrid(iIndex, FillerCols.flrName))

 Else

 If Left(arrGrid(iIndex, FillerCols.flrFormat), 3) = "prp"

Then

 ' Proper Value:

 ' All Proper format strings must be prefixed with 'prp'

followed by the enum name

 sTmp1 = sTmp1 & vbTab &

p_clsPropers.ProperValue(Mid(arrGrid(iIndex, FillerCols.flrFormat), 4),

cFrom.TheDataSource(arrGrid(iIndex, FillerCols.flrName)))

 Else

 ' Format Value

 sTmp1 = sTmp1 & vbTab &

Format(cFrom.TheDataSource(arrGrid(iIndex, FillerCols.flrName)),

arrGrid(iIndex, FillerCols.flrFormat))

 End If

 End If

 End If

 If arrGrid(iIndex, FillerCols.flrHaveSum) = "Yes" Then

283

 arrTots(iIndex) = arrTots(iIndex) +

cFrom.TheDataSource(arrGrid(iIndex, FillerCols.flrName))

 End If

 Next

 grdToFill.AddItem sTmp1

 If sIdColumn <> "" Then

 grdToFill.RowData(grdToFill.Rows - 1) =

cFrom.TheDataSource(sIdColumn)

 End If

 cFrom.TheDataSource.MoveNext

 lRecCount = lRecCount + 1

 If bPaging Then

 If lRecCount >= cFrom.ThePageSize Then

 Exit Do

 End If

 End If

 Loop

Exit_Point:

 ' Pass back the total in all cases, even though the rsFrom is empty

284

 GridFiller = arrTots

 If p_clsErrors.HaveErrs Then

 On Error GoTo 0

 Err.Raise xbAppErr, "GridFiller", p_clsErrors.TechDetails

 End If

 Exit Function

Err_Routine:

 p_clsErrors.CollectLastVbErr

 GoTo Exit_Point

End Function

Public Sub FitGrid(ByRef grdToFit As MSFlexGrid, ByVal iCol As

Integer)

 Dim i As Long

 Dim t As Long

 If iCol >= grdToFit.Cols Then

 ' Grid is not formatted yet

 Exit Sub

 End If

285

 t = 450

 For i = 0 To grdToFit.Cols - 1

 If i <> iCol Then

 t = t + grdToFit.ColWidth(i)

 End If

 Next

 If grdToFit.Width > t Then

 grdToFit.ColWidth(iCol) = grdToFit.Width - t

 End If

End Sub

Public Sub SelectRow(ByRef grdToSel As MSFlexGrid, Optional

ByVal bWithFocus As Boolean = True)

 grdToSel.Col = 1

 grdToSel.RowSel = grdToSel.Row

 grdToSel.ColSel = grdToSel.Cols - 1

 If Not grdToSel.RowIsVisible(grdToSel.Row) Then

 grdToSel.TopRow = grdToSel.Row

 End If

 If grdToSel.Visible And bWithFocus Then

 grdToSel.SetFocus

286

 End If

End Sub

'---'

' Combo Specific Tools

'---'

Public Function FillSortCombo(ByRef cmbToFill As ComboBox, _

 ByVal iDefault As Integer, _

 ParamArray sTokens() As Variant) As Variant()

 Dim rData() As Variant

 Dim iMax As Integer

 Dim i As Integer

 Dim j As Integer

 On Error GoTo Err_Routine

 p_clsErrors.ResetErr

 cmbToFill.Clear

 iMax = ((UBound(sTokens) + 1) / 2) - 1

 If iMax = -1 Then

 FillSortCombo = rData

287

 GoTo Exit_Point

 End If

 ReDim rData(0 To iMax, 0 To 1)

 For i = 0 To iMax

 j = i * 2

 rData(i, 0) = sTokens(j)

 rData(i, 1) = sTokens(j + 1)

 cmbToFill.AddItem sTokens(j)

 Next

 cmbToFill.ListIndex = iDefault

 FillSortCombo = rData

Exit_Point:

 If p_clsErrors.HaveErrs Then

 On Error GoTo 0

 Err.Raise xbAppErr, "FillSortCombo", p_clsErrors.TechDetails

 End If

 Exit Function

Err_Routine:

 p_clsErrors.CollectLastVbErr

 GoTo Exit_Point

288

End Function

Public Sub FillXmlCombo(ByRef cmbToFill As ComboBox, ByRef

xmlFrom As MSXML2.IXMLDOMNodeList, ByVal sIdColumn As

String, ByVal lDefault As Long, ParamArray sColumns() As Variant)

Dim lSel As Long, N As MSXML2.IXMLDOMNode, i As Integer,

sData As String

 On Error GoTo Err_Routine

 p_clsErrors.ResetErr

 cmbToFill.Clear

 lSel = -1

 If xmlFrom.length = 0 Then

 GoTo Exit_Point

 End If

 For Each N In xmlFrom

 sData = ""

 For i = 0 To UBound(sColumns)

 sData = sData & Space(msComboSpacing) &

N.selectSingleNode(sColumns(i)).Text

 Next i

289

 cmbToFill.AddItem Trim(sData)

 cmbToFill.ItemData(cmbToFill.NewIndex) =

CLng(N.selectSingleNode(sIdColumn).Text)

 If lDefault = CLng(N.selectSingleNode(sIdColumn).Text) Then

 lSel = cmbToFill.NewIndex

 End If

 Next

Exit_Point:

 cmbToFill.ListIndex = lSel

 Set N = Nothing

 If p_clsErrors.HaveErrs Then

 On Error GoTo 0

 Err.Raise xbAppErr, "FillXmlCombo", p_clsErrors.TechDetails

 End If

 Exit Sub

Err_Routine:

 p_clsErrors.CollectLastVbErr

 GoTo Exit_Point

End Sub

Public Sub SearchCombo(cmbToSearch As ComboBox, lKey As Long)

290

Dim i As Long, lFound As Long

 If cmbToSearch.ListCount = 0 Then

 cmbToSearch.ListIndex = -1

 Exit Sub

 End If

 lFound = -1

 For i = 0 To cmbToSearch.ListCount - 1

 If cmbToSearch.ItemData(i) = lKey Then

 lFound = i

 Exit For

 End If

 Next

 cmbToSearch.ListIndex = lFound

End Sub

Public Sub AddCombo(cmbToAdd As ComboBox, sItem As String,

Optional iIndex As Integer = -1)

 cmbToAdd.AddItem sItem

 If iIndex <> -1 Then

 cmbToAdd.ItemData(cmbToAdd.NewIndex) = iIndex

 End If

291

End Sub

'---'

' Printer Specific Tools

'---'

Public Sub GetPrinters(ByVal cmbToFill As ComboBox, Optional

ByVal sDefault As String = "")

Dim objPrinter As Printer, lIndex As Long

 lIndex = -1

 For Each objPrinter In Printers

 cmbToFill.AddItem objPrinter.DeviceName

 If objPrinter.DeviceName = sDefault Then

 lIndex = cmbToFill.ListCount - 1

 End If

 Next

 cmbToFill.ListIndex = lIndex

End Sub

'---'

' Toolbar Specific Tools

'---'

292

Public Sub ShowButtons(ByRef tbrBar As ComctlLib.Toolbar)

Dim i As Integer

 On Error GoTo Err_Routine

 With tbrBar

 .ImageList = p_frmMain.imgOperations

 For i = 1 To .Buttons.Count

 If .Buttons(i).Style = tbrDefault Then

 .Buttons(i).Image = .Buttons(i).Key

 End If

 Next i

 End With

Exit_Point:

 Exit Sub

Err_Routine:

 MsgBox tbrBar.Buttons(i).Key & Err.Number & " " &

Err.Description

End Sub

'---'

' Math. Specific Tools

'---'

293

Public Function Ceiling(ByVal sNum As Single) As Long

 Ceiling = Int(sNum) + IIf(Int(sNum) < sNum, 1, 0)

End Function

Public Function StripTag(ByVal sSource As String, ByVal sTag As

String) As String

Dim iLoc As Integer, x As String

 iLoc = InStr(sSource, "<" & sTag & ">") + Len(sTag) + 1

 sSource = Right(sSource, Len(sSource) - iLoc)

 iLoc = InStr(sSource, "</" & sTag & ">")

 StripTag = Left(sSource, iLoc - 1)

End Function

'---'

' Misc.

'---'

Public Function RemAmper(ByVal sText) As String

Dim i As Integer

 i = InStr(sText, "&")

 If i = 0 Then

 RemAmper = sText

294

 Else

 RemAmper = Left(sText, i - 1) & Right(sText, Len(sText) - i)

 End If

End Function

'---'

' User recent choices

'---'

Public Sub PutFormInfo(ByRef f As Form, sWhat As String)

Dim sValue As String

 sValue = "I:" & f.Tag & ",S:" & f.WindowState

 If f.WindowState = vbNormal Then

 If InStr(sWhat, "H") <> 0 Then

 sValue = sValue & ",H:" & f.Height

 End If

 If InStr(sWhat, "W") <> 0 Then

 sValue = sValue & ",W:" & f.Width

 End If

 If InStr(sWhat, "L") <> 0 Then

 sValue = sValue & ",L:" & f.Left

295

 End If

 If InStr(sWhat, "T") <> 0 Then

 sValue = sValue & ",T:" & f.Top

 End If

 End If

 SaveSetting App.EXEName, "Forms", "F" & f.Tag, sValue

End Sub

Public Function GetFormInfo(ByRef f As Form) As Boolean

Dim sValue As String, iLoc As Integer, sKey As String, iState As

Integer

 GetFormInfo = False

 sValue = GetSetting(App.EXEName, "Forms", "F" & f.Tag, "")

 If sValue = "" Then

 GoTo Exit_Point

 End If

 ' We have a coded string to use (I:#,H:#,W:#,L:#,T:#)

 iState = -1

 Do While sValue <> ""

 iLoc = InStr(sValue, ",")

 If iLoc = 0 Then

296

 sKey = sValue

 sValue = ""

 Else

 sKey = Left(sValue, iLoc - 1)

 sValue = Right(sValue, Len(sValue) - iLoc)

 End If

 Select Case Left(sKey, 2)

 Case "I:": ' Do nothing

 Case "S:": iState = Val(Right(sKey, Len(sKey) - 2))

 Case "H:": f.Height = Val(Right(sKey, Len(sKey) - 2))

 Case "W:": f.Width = Val(Right(sKey, Len(sKey) - 2))

 Case "L:": f.Left = Val(Right(sKey, Len(sKey) - 2))

 Case "T:": f.Top = Val(Right(sKey, Len(sKey) - 2))

 End Select

 Loop

 If (iState = vbMinimized) Or (iState = vbMaximized) Then

 f.WindowState = iState

 End If

 GetFormInfo = True

Exit_Point:

End Function

297

' Module Name : Globals

' Author : Seif ElDuola F. El Haj

' Date : Jan. 10, 2008

' Last modified :

'

' Description : Global level definitions

'

Option Explicit

'---'

' Global variables

'---'

Public p_clsAccelr As sysAccelerator

Public p_clsErrors As sysErrorTrap

Public p_clsPropers As sysPrpValues

Public p_clsDbase As sysDatabase

Public p_frmMain As frmMain

'---'

' Enumerations

'---'

298

' General Enumerations

Public Enum EnumBounds

 reMaxDataTypes = 2

End Enum

Public Enum AboutModes

 xbModeNormal = 0

 xbModeSplash = 1

End Enum

Public Enum BufferStates

 xbSaveData = 0

 xbIgnoreContent = 1

End Enum

Public Enum FillerCols

 flrName = 0

 flrFormat = 1

 flrHaveSum = 2

End Enum

299

'---'

' App Specific Enumerations '

'---'

Public Enum FormIds

 id_frmMain = 0

 id_frmMsgBox = 1

 id_frmDocument = 2

 id_frmDocuments = 3

 id_frmLoader = 4

 id_frmBatch = 5

End Enum

