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ABSTRACT 

Introduction: Globally, 200 million pregnant women infected with malaria each year. 

Pregnant women are more susceptible to malaria infection than nonpregnant ones. It has 

been proposed that nonspecific immunosuppression may be caused by pregnancy-

associated hormones. Cortisol and prolactin are among the most important candidates 

which affect maternal immunity to Plasmodium falciparum malaria. Understanding the 

hormonal and cytokine interactions that underlie susceptibility to the disease should be 

helpful in elucidating the pathogenesis of Plasmodium falciparum malaria during 

pregnancy.  

Objectives: The current study was conducted in Wad Medani and New Halfa, areas 

characterized by unstable malarial transmission in central and eastern Sudan, 

respectively. Its aims were to investigate the role of and interactions between cortisol, 

prolactin, interferon-γ (IFN-γ), interleukin-4 (IL-4) and interleukin-10 (IL-10) in 

pregnant women with Plasmodium falciparum malaria and to investigate the cytokine 

profiles in peripheral, placental and cord blood in parturient women in these areas. 

Methods: In Wad Medani, the 82 pregnant subjects who were enrolled either had 

uncomplicated, Plasmodium falciparum malaria (the 45 cases) or were apparently 

uninfected and healthy women (the 37 controls) who were well matched to the cases. 

Five ml of venous blood were withdrawn in plain tube, centrifuged and kept at -20 until 

processed in the laboratory for cortisol, prolactin and cytokine analysis. Total serum 

cortisol concentrations were determined with the 125I-F RIA cortisol test kit, whereas125I-

PRL IRMA prolactin test kit was used to determine serum prolactin concentrations. 

Enzyme-linked immunosorbent assay was used to measure the concentrations of the three 

cytokines, IFN-γ, IL-4 and IL-10. In New Halfa, 5 mL of maternal, placental and cord 

blood was collected immediately after delivery, quickly withdrawn in plain tube and 

centrifuged and kept at -20 until processed. Enzyme-linked immunosorbent assay was 

used to measure the concentrations of the three cytokines, IFN-γ, IL-4 and IL-10, in the 

sera from peripheral, placental and cord blood of 87 parturient women (53 were found to 

have past placental malaria infections). 
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Results: Wad Medani, compared with the controls, the cases were found to have 

significantly higher serum concentrations of total cortisol and IL-10 and significantly 

lower levels of prolactin and IFN-γ (but similar concentrations of IL-4). The hormone 

and cytokine concentrations measured in the infected primigravidae were similar to those 

recorded in the infected multigravidae. Among the cases, there was a significant positive 

correlation between serum cortisol and IL-10 (r=0.188; P=0.025) and significant negative 

correlations between prolactin and both IL-4 (r=20.175; P=0.038) and IL-10 (r=20.186; 

P=0.027) but no significant correlation between prolactin and cortisol. In New Halfa, The 

concentrations of these cytokines were significantly higher in peripheral and placental 

sera from uninfected women than in sera from infected women. IFN-γ concentrations 

were higher in the cord sera from uninfected women in comparison to the infected ones 

too. The levels of these cytokines were not significantly different between the 

primigravidae and multigravidae. Cord sera in all the groups had the lower levels of these 

cytokines. Strong positive correlations were observed between peripheral and placental 

cytokines. 

Conclusions: In conclusion, it appears that, irrespective of parity, cortisol, prolactin and 

certain cytokines are key mediators in the host response to Plasmodium falciparum 

infection during pregnancy in women living in central Sudan, where malarial 

transmission is unstable. In eastern Sudan, the patterns of the immune responses that 

occur in placental, peripheral and cord blood were influenced by the malaria infections, 

irrespective to the parity. Additionally, immune response during Plasmodium falciparum 

infection is not different in the peripheral and placental compartments. 
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  المستخلص

  

فالنساء الحوامل هن الأآثر عرضةً . مليون إمرأة حامل بمرض الملاريا سنوياً 200حوالي  عالمياً تصاب: المقدمة

وقد أُقترح أنه من الممكن أن يتسبب الحمل المرتبط بالهرومونات  . للإصابة بمرض الملاريا من النساء غير الحوامل

شحات التي تؤثر في مناعة الأم الكورتزول والبرولاآتين هي من ضمن أهم المر. في آبت المناعة غير المحدد

فهم التفاعلات الهرمونية والسايتوآاين التي ترتكز علي القابلية للمرض هي . للملاريا من النوع بلازميديوم فالسبارم

  .النوع بلازميديوم فالسبارم أثناء الحملتولد ومنشأ مرض الملاريا من من الأشياء التي تساعد في شرح وتوضيح 

  

اء الدراسة الحالية بودمدني وحلفا الجديدة، وهي مناطق تتميز بانتقال مرض الملاريا غير المستقر تم إجر: الأهداف

وتتمثل أهداف هذه الدراسة في البحث عن الدور والتفاعلات بين الكورتزول والبرولاآتين . بوسط وشرق السودان

لدي المرأة الحامل المصابة ) IL-10( 10-و انترليوآين) IL-4( 4-وانترليوآين) IFN-γ(قاما -وانترفيرون

جزاء الطرفية و الحبل بالملاريا من النوع بلازميديوم فالسبارم وآذلك التقصي عن سيمات السايتوآاين في دم الأ

  . السري والمشيمة لدي المرأة عند المخاض في هذه المناطق

  

مرض الملاريا من النوع بلازميديوم  من النساء الحوامل بودمدني اللائي إما يعانين من 82تم تسجيل : المنهجية

مجموعة  37(أو اللائي يبدو عليهن أنهن ظاهريا غير مصابات وبصحة جيدة ) حالة 45(فالسبارم غير المعقدة 

مللتر من الدم الوريدي في أنبوب إختبار نظيف ثم تمت له  5تم سحب . و اللائي تمت مماثلتهن مع الحالات) ضابطة

حتي تمت المعالجة بالمختبر لتحليل الكورتزول والبرولاآتين  -20م حفظه عند عملية الطرد المرآزي وت

) F RIAI125-(تم تحديد ترآيزات الكورتيزول في مصل الدم بإستخدام أدوات إختبار الكورتيزول . والسايتوآاين

تم . في مصل الدملتحديد ترآيزات البرولاآتين ) I-PRL IRMA125(بينما تم إستخدام أدوات إختبار البرولاآتين 

 IFN-γ, IL-4 ،لقياس ترآيزات السايتوآلاينات الثلاثة  Enzyme-linked immunosorbent assayإستخدام

and IL-10 .مللتر من دم الأم المحيطي ودم الحبل السري والمشيمة مباشرة بعد الوضع و  5تم أخذ ، بحلفا الجديدة

تم . حتي تمت معالجته -20لعملية الطرد المرآزي وحفظه عند  تم وضعه حالاً في أنبوب أختبار نظيف ثم إخضاعة

 IFN-γ, IL-4لقياس ترآيزات السايتوآلانات الثلاثة   Enzyme-linked immunosorbent assayإستخدام

and IL-10  وجد أن ( 87في الأمصال من الدم الحبلي والمشيمي والطرفي من النساء عند المخاض البالغ عددهن

  ).لديهن اصابات سابقة بمرض الملاريا المشيمي منهن آانت 37

  

) IL-10(مقارنة بالمجموعة الضابطة، وجد أن الحالات لديها ترآيزات عالية للكورتيزول و ، فى ود مدني: النتائج

ترآيزات الهورمون والسايتوآاين ) IL-4لكن نفس ترآيزات ( INF-γفي مصل الدم و مستويات أقل للبرولاآتين و 
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التي تم قياسها عند المرأة المصابة ذات الحمل للمرة الأولي آانت مشابهة لتلك التي تم تدوينها عند المرأة المصابة 

في  IL-10من بين الحالات، هنالك علاقة إرتباط موجبة ذات دلالة بين ترآيزات الكورتيزول و. المتكررة الحمل

  IL-4 البرولاآتين وآل من ترآيزات وعلاقة ارتباط ذات دلالة سالبة بين ( r=0.188; P=0.025)مصل الدم 

(r=20.175; P=0.038)  و (r=20.186; P=0.027)   IL-10 ترآيزاتإلا أنه ليس هنالك علاقة ذات دلالة بين 

الدم المحيطي و المشيمة  ترآيزات هذه السايتوآاينات أعلي في مصل، في حلفا الجديدة. البرولاآتين والكورتيزول

آانت أعلي في أمصال الدم من الحبل السري  IFN-γترآيزات  .عند المرأة غير المصابة مقارنة بالنساء المصابات

وجد أن مستويات هذه السايتوآاينات غير مختلفة بصورة . عند المرأة غير المصابة مقارنة بالنساء المصابات أيضاً

أمصال الدم من الحبل السري في آل المجموعات . للمرة الاولي والمرأة متكررت الحملآبيرة بين المرأة ذات الحمل 

وتمت ملاحظة علاقات قوية موجبة بين السايتوآاينات في الأجزاء الطرفية . لديها مستويات أقل من هذه السايتوآاينات

  .والمشيمية

  

آتين و بعض السايتوآاينات هي الوسائط الرئيسية الكورتيزول والبرولا، يبدو أنه بغض النظر عن الإنجابية: الخلاصة

لإستجابة العائل للإصابة بالملاريا من النوع بلازميديوم فالسبارم أثناء الحمل لدي النساء اللائي يقطن في وسط 

م وفي شرق السودان وجد أن أنماط الإستجابة المناعية التي تحدث في الد. السودان حيث انتقال الملاريا غير المستقر

إضافةً الي ذلك، فإن . المشيمي والطرفي والحبل السري تتأثر بالإصابة بمرض الملاريا بغض النظر عن الإنجابية

  .الإستجابة المناعية أثناء الإصابة بالبلازميديوم فالسبارم لا تختلف في الأجزاء الطرفية والمشيمية
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CHAPTER ONE 

INTRODUCTION 

 

1. INTRODUCTION 

1.1. Global Malaria Situation 

Malaria is a major cause of illness and death globally and it is a common and serious 

tropical parasitic disease. It is caused by parasites of the genus Plasmodium of which four 

species are known to infect humans’ namely P. falciparum, P. vivax, P. ovale, and P. 

malariae (1). 

3.3 billion people live under the threat of malaria (50% of the world population) with a 

worldwide incidence of 247 million cases per year (86% in Africa) (2).  It kills over a 

million each year – mostly children. Over 90 % of malaria death occurs in Africa (2) 

where around 66% of the populations are thought to be at risk. In contrast, less than 15% 

of the global total of malaria death occurs in Asia (including Eastern Europe), despite the 

fact that an estimated 49% of the people in this region are living under threat from the 

disease. In the Americas 14% of the population are at risk (1). 

 

1.2. Malaria in Sudan 

Malaria is a leading cause of morbidity and mortality in Sudan. It contributes an 

estimated 50% of all malaria cases in the region, an estimated 7.5 million cases and 

35,000 death annually reported by World Health Organization (3). Never the less Abdalla 

SI et al. (2007) reported that the incidence of malaria in Sudan was estimated to be about 

9 million episodes in 2002 and the number of deaths due to malaria was about 44,000. 

Children under five years of age had the highest burden. Males had the highest incidence 
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and mortality (4).  Symptomatic malaria accounts for 20-40% of outpatient clinic visits 

and approximately 30% of hospital admissions (5,6).   

The entire population of Sudan is at risk of malaria, although this occurs with different 

degrees. In the northern and western states malaria is mainly low to moderate with 

predominantly seasonal transmission and epidemic outbreaks. In southern Sudan, malaria 

is moderate to high or highly intense, generally with perennial transmission (6). In 

eastern Sudan, transmission and intensity of malaria is perennial and moderate rather than 

low (7). And there was a significant positive correlation between malaria cases and 

rainfall in the area, and epidemic malaria was found to associate with heavy rains (8). 

The predominant parasite species is Plasmodium falciparum, whereas Plasmodium ovale 

is sporadically distributed. Plasmodium malariae is particularly considered with Southern 

Sudan, while in Eastern Sudan Plasmodium vivax is widely spread and close to the 

Ethiopian border it may reach up to 20 % (5,9). Nevertheless, Himeidan and collages 

proved that in eastern Sudan Plasmodium falciparum accounts of about 95% of malaria 

cases, whereas Plasmodium vivax and Plasmodium ovale accounts of 3% and 2% of 

malaria cases respectively (7). In New Halfa, eastern Sudan, cerebral malaria is more 

frequent during adolescence and early adulthood, and it is the major cause of malaria 

mortality (10). Uniquely in this area, cerebral malaria may be associated with latent 

parasitaemia in partially immune adults (11). 

 

1.3. Malaria Parasite Life Cycle 

Malaria parasites are transmitted by Anopheline mosquitoes. While feeding on its host, 

the mosquito releases the sporozoite forms of the parasite into the bloodstream, and 

within minutes the sporozoites invade hepatocytes. Over the ensuing week, the parasite 

multiplies 10,000-fold within the liver cell, which then ruptures, releasing merozoite 

forms of the parasite that rapidly invade red blood cells. The parasite matures and divides 

within the erythrocyte for 48-72 h (depending on the Plasmodium species), then causes 

the cell to rupture and release a new broad of merozoites that invade fresh red cells and 



 3

 

 

 

 

Figure 1.1: Malaria parasite life cycle 

http://www.emro.who.int/rbm/AboutMalaria-QuickOverview.htm 
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resume the cycle (figure 1.1). Symptoms accompany the rupture of the red cells which 

explain the periodicity of malaria fevers. 

 

1.4. Malaria in Pregnancy 

Malaria is a public health problem throughout the world. More than 90% of the cases 

occur in sub-Saharan Africa where 25 million pregnant women are at risk of Plasmodium 

falciparum infection every year, and one in four women has evidence of placental 

infection at the time of delivery (12). It affects millions in developing countries, 

principally young children and pregnant women. Pregnant women are more likely to 

become infected than non-pregnant ones, and they are more susceptible in their first or 

second pregnancies (13,14,15). 

In Africa, 30 million women living in malaria-endemic areas become pregnant each year. 

Malaria infection during pregnancy poses substantial risk to the mother, the fetus, and the 

neonate. It results in about 200,000 newborn deaths each year (12,16). 

In malaria low transmission areas, levels of acquired immunity are low and pregnant 

women are susceptible to episodes of severe malaria, which can result in stillbirths or 

spontaneous abortion or in mother or fetus death (12). In high transmission areas where 

levels of acquired immunity tend to be high, women present an asymptomatic infection, 

which was more common in primigravidae (17). Nevertheless, pregnant women in high 

transmission areas suffer from substantial malaria-related morbidity and mortality, 

especially among low parity women. The association of susceptibility to malaria in 

pregnant women to parity suggests that protective immunity to this type of malaria can be 

developed (18). 

In New Halfa, eastern Sudan, an area of unstable malaria transmission, Adam I et al. 

(2005) reported that the prevalence of Plasmodium falciparum malaria is considerable in 

pregnant women and severe cases occur (19). Pregnant women with blood group O were 

at higher risk of past-chronic placental malaria infection in the area (20) and maternal 

death due to severe pulmonary oedema caused by Plasmodium falciparum malaria was 
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recorded (21). Moreover it has been shown that primigravidae and all parities were 

infected with falciparum malaria, different severity manifestations were observed, and 

there were higher perinatal mortalities recorded in the area (22). Further study in the 

same area illustrated that there was a high prevalence of anaemia and folate deficiency 

and that ferritin, serum folate and vitamin B12 levels were not significantly associated 

with anaemia (23). In Gadarif area of eastern Sudan, placental malaria infections have 

been found to affect pregnant women irrespective of their age or parity (24). In Wad 

Medani, central Sudan, more than 50% of the women were parous and different forms of 

clinical presentations of severe malaria were observed, including cerebral malaria and 

hyperpyrexia (25).   

Malaria during pregnancy increases the chance of anaemia in mothers (26) which, if 

severe, can increase the risk of maternal death. In Africa, anaemia due to malaria may 

cause as many as 10,000 maternal deaths every year (13). In Sudan, it has been shown 

that maternal anaemia was the most important and frequent complication of malaria 

during pregnancy (27). Similar results were observed in Malawi (28), Ethiopia (29), 

Thailand (30), Gabon (15), and the Republic of Yemen (31).  

During pregnancy, malaria parasites in the placenta can interfere with the transfer of 

oxygen and nutrients from the mother to the unborn baby. Malaria infection in the 

mother, therefore, increases the risk of spontaneous abortion, stillbirth, preterm birth, and 

low birthweight (32). Shulman and Dorman (2003) reported that in malaria endemic 

areas pregnant women may not present with a high fever but are at high risk of severe 

anaemia and of delivering a low birthweight baby (33). In Africa about 5-14% of all low 

birthweight babies are born to mothers infected with malaria, and an estimated 3-5% of 

all infant deaths can also be traced to malaria infection in mothers. In some cases, malaria 

parasites can cross from the placenta into the baby’s blood and cause anaemia in the baby 

(9). In Tanzania nearly 1 in 5 children born had a low birth weight (LBW), and >20% of 

these children were born prematurely (34). In Uganda it has been reported that malaria is 

an important cause of stillbirth and LBW (35). In Sudan LBW associated with malaria 

infection has been observed in central (36) and eastern (37) parts of the country. 
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1.5. Malaria Immunity  

Humans with no previous experience of malaria infection immutably become ill on their 

first exposure to the parasite. They develop a febrile illness, which may become severe 

and, in some cases, may lead to death (38). Repeated or prolonged exposure to malaria 

infection ultimately leads to the development of clinical immunity such that, despite 

remaining susceptible to infection, parasite replication is controlled and the infection is 

eliminated without the development of clinical signs and symptoms (39). 

Effective immunity to malaria has been clearly demonstrated among individuals naturally 

exposed to malaria (40), it is complex, and is essentially both species and stage specific. 

It is regulated by the synchronized action of the innate and adaptive immune systems in 

addition to environmental factors although the relative importance of each remains 

unclear (40,41). The cellular arm of the immune system is considered more important in 

controlling liver-stage infections, although antibodies contribute to protection; humoral 

immune mechanisms may be more important in controlling the blood stages (42). 

Immunity to malaria is only partial and it is rarely sterile, but it is associated with low-

grade parasites via an episode of clinical disease through life or at least as long as the 

individual remains continuously in the endemic area.  

In endemic areas, children born to immune mothers are protected by the passive transfer 

of maternal immunity for the first 6 months of life. As this attenuated, there is a 

progressive increase of acquired immunity with age but this is predisposed by 1 or 2 

years of increased susceptibility to malaria before acquisition of active immunity. It was 

shown that the risk of becoming infected with malaria increased significantly at about the 

age of 18 weeks, indicating that children under the age of 18 weeks had a lower risk of 

becoming infected than children above that age and the vast majority of malaria 

infections in children under 5 months of age are of very low density and completely 

asymptomatic (43). In such areas, young children are particularly susceptible to malaria 

infection, and it has been estimated that a quarter of all childhood deaths are due to 

malaria. However, with continuous exposure, older children and adults ultimately 

develop complete protection from severe illness and death, although as mentioned above 
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sterile immunity is probably never achieved (38). Generally, acquisition of active 

immunity is slow and needs repeated parasite exposure to be maintained.  

 

1.5.1. Malaria Immunity During Pregnancy 

Pregnancy causes a number of physiological changes that affect the way the Plasmodium 

parasite invade its host. During pregnancy, an immune adaptation (Down regulation of 

normal maternal immune response) occurs to prevent the rejection of the fetus (44). 

However, in spite of this depression, the maternal immune system continues to respond to 

the parasite and antibodies preventing Plasmodium falciparum's attachment to the 

placenta can be produced and associated with better outcomes for the fetus (45). 

Additionally, it has been shown that there were a significant variations in risk and 

severity of infection between primigravides and multigravides with risk and severity 

decreasing in proportion to the number of pregnancies (44,46). This suggests that 

immune build-up is achieved after several pregnancies and infections (47). 

Cell mediated immunity is particularly suppressed during pregnancy, and the mother is 

increasingly reliant on humoral immunity. This immunosuppression was believed to 

account for pregnant women increased risk of infection, including malaria (47). 

During pregnancy infection with Plasmodium falciparum malaria is associated with poor 

birth outcomes, including low birth weight (LBW) due to preterm delivery and 

intrauterine growth retardation, particularly among primigravidae (48). Malaria parasites 

sequester in the placenta during pregnancy (49). Placental parasite infection is associated 

with local immune responses, including elevated proinflammatory cytokine levels (50,51) 

and monocyte infiltration into the placental intervillous space (52). 

In the endemic countries of Africa, children under the age of five years and pregnant 

women bear the brunt of the burden of malaria disease (16). This is because they have 

lower immunity to the disease compared to other people in the same environment. In 

pregnant women this may be due to the transient depression of their cell-mediated 

immunity that occurs to allow retention of the fetal allograft (53). This was supported by 
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the finding that cellular immune responses to Plasmodium falciparum are depressed in 

pregnant women in comparison with non-pregnant control ones (48,54). 

Susceptibility to pregnancy-associated malaria probably represents a combination of 

immunological and hormonal changes associated with pregnancy, in addition to the 

unique ability of a subset of infected erythrocytes to sequester in the placenta (55,56). 

The observation that infected erythrocytes accumulate in the maternal vascular area of the 

placenta (the intervillous space) in much higher densities than in the peripheral 

circulation is central to the pathogenesis of Plasmodium falciparum infection in 

pregnancy (57). Also sequester in the placenta are the trophozoite and schizont stages 

which are absent from peripheral blood (58). Additionally, Walter et al. (1982) observed 

that in pregnancy-associated malaria there is an increased numbers of maternal 

phagocytic cells especially monocytes in the intervillous space (49). 

As we mentioned before malaria immunity is regulated by the synchronized action of the 

innate and adaptive immune systems in addition to environmental factors. 

 

1.5.2. Innate Immunity to Malaria 

Innate immunity to malaria which is the defense first line, can limit the peak of 

parasitaemia, prevent severe pathology and reduce the load of circulating infected cells 

(59). But it fails to eliminate the infection completely, leading to persistent low-grade 

parasitaemia, which might frequently fall below the limit of detection by microscopy, but 

it might persist for many months or years (60). However some individuals are naturally 

resistant to malaria infection while others are less likely to develop a severe form of the 

disease. The rupture of erythrocytic schizonts is usually accompanied by bouts of fever, 

nausea, headaches and other symptoms of a systemic proinflammatory cytokine response, 

much of which is now believed to be produced by cells of the innate immune system 

(61). 

Dendritic cells, macrophages, natural killer (NK) cells, NK T cells, and γδ T cells help 

establishing the nature of the adaptive immune response to malaria. Early production of 
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immunoregulatory cytokines by these cells and antigen presentation by dendritic cells are 

probably important determinants of response to infection. In the placenta, macrophages 

aid in parasite elimination by phagocytosis and release of reactive oxygen intermediates 

as well as by enhancing innate responses through cytokines (62). 

Innate immune response against Plasmodium falciparum is the result of several thousand 

years of co-evolution between the parasite and his host. An early IFN-γ production during 

infection is associated with a better evolution of the disease. Natural killer (NK) cells are 

among the first cells in peripheral blood to produce IFN-γ in response to Plasmodium 

falciparum-infected erythrocytes (63). IFN-γ is a parasiticidal macrophage activator and 

this may be of greater importance for innate malaria immunity. NK cells increase in 

number early in malaria infection and they are able to lyse Plasmodium falciparum-

infected erythrocytes in vitro. They are found in blood, in secondary lymphoid organs as 

well as in peripheral non-lymphoid tissues (41,63). Activation of human NK cells by 

Plasmodium falciparum iRBCs (infected red blood cells) produce an early burst of IFN-γ 

and it requires two signals: 1.The first one is dependent upon contact between the NK cell 

and iRBC and 2. The second one is cytokine mediated and likely dependent upon 

interactions between iRBCs and dendritic cells or monocyte-macrophages. It has been 

shown that human NK cells form stable conjugates with iRBC but not with uninfected 

RBC and that production of IFN-γ is dependent upon direct contact between the NK cell 

and the iRBC. NK cells respond to iRBC only in the presence of a source of IL-12/IL-18 

and there is heterogeneity in the ability between donors to respond to iRBC (39). 

Innate resistance to Plasmodium falciparum malaria infection is usually partial, and may 

be associated with two factors: First the fact that malaria parasite fail to invade certain 

types of human RBCs as in the case of Melanesian Ovalocytosis an erythrocyte 

membrane defect, which generate ovalocytic cells that are resistant to invasion by all 

human malaria parasites (64). Also the Duffy negative cells are resistant to invasion by 

Plasmodium vivax only, because the receptor for the Plasmodium vivax merozoites on the 

red blood cell is associated with antigens of the Duffy blood groups. Second: the fact that 

certain host erythrocytes have a reduced ability to maintain parasites growth as in the 

case of individuals with G6PD (Glucose-6 phosphate dehydrogenase) deficiency or with 
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certain abnormalities of haemoglobin, such as sickle cell anaemia or β thalassemia (53). 

Bayoumi et al. (1990) supported the hypotheses that the sickle cell trait protects 

individuals from Plasmodium falciparum infections, at least in part, by modulating the 

immune response. Furthermore, they mentioned that lymphocytes of individuals carrying 

the HbAS genotype present higher reactivity to malaria antigens in proliferative assay 

than lymphocytes from HbAA controls living in the same area (65). 

Malaria infection gives rise to highly increased concentration of non-malaria-specific 

immunoglobulin. This is also true for the CD4+ T cells from malaria-naïve donors 

responding by in vitro proliferation and cytokine production upon exposure to malaria 

antigens (41).  

 

1.5.3. Acquired Immunity to Malaria 

Plasmodium falciparum infection can lead to substantial protective immunity to malaria. 

Naturally acquired immunity to falciparum malaria protects millions of people routinely 

exposed to Plasmodium falciparum infection from severe disease and death and available 

evidence suggests that acquisition of protection against some severe malaria syndromes 

can be fairly rapid. Acquisition of protection following natural parasite exposure is a slow 

process that may take years or decades to develop and probably sterile immunity never 

results from it (66). However Doolan et al. (2009) mentioned that naturally acquired 

immunity should be appreciated as being virtually 100% effective against severe disease 

and death among heavily exposed adults. Even in exposed infants the immunity that 

occurs may exceed 90% effectiveness. Among high-risk infants in sub-Saharan Africa, 

the induction of an adult-like immune status would greatly diminish disease and death 

caused by Plasmodium falciparum infection (67). Children who start building immunity 

after the age of 1 year do so at a slower rate than those who start in infancy (68). The age 

at which acquired immunity becomes evident varies depending on the level of exposure, 

with higher exposure resulting in earlier development of clinical immunity. Children 

living in areas of high endemicity experience less frequent episodes of malaria after the 
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age of 5 years, while people in areas of hypoendemicity may never develop clinical 

immunity (69). 

There are two types of adaptive immune response, called humoral immunity and cell 

mediated immunity, which are mediated by different components of the immune system 

and function to eliminate the infection. 

 

1.5.3.1. Humoral Immunity  

The humoral immunity is the aspect of immunity that is mediated by secreted antibodies 

produced in the cells of the B lymphocytes (B cell). These secreted antibodies bind to 

antigens on the surfaces of invading parasites, which flags them for destruction.  

In endemic areas, Plasmodium falciparum infection lead to a potent humoral immune 

responses, involving the production of immunoglobulins (Igs, antibodies Ab) by B 

lymphocytes, of which IgM and IgG predominates. It was found that both anti-malarial 

IgG and IgM antibodies were increased after malaria outbreaks (70). Moreover, a 

potential role for protection is provided by IgG isotypes, both in animal models and in 

humans (71). Roussilhon et al. (2007) proved that IgG3 antibodies can naturally develop 

along with protection against Plasmodium falciparum infection in young children, and 

that these antibodies have been found to achieve parasite killing under in vitro and in vivo 

conditions, and they can be readily elicited by immunization in naïve volunteers (72). In 

Brazil endemic areas highest levels of IgG, IgG1, IgG2 and IgG3 antibodies were 

observed in individuals with asymptomatic and uncomplicated malaria, while highest 

levels of IgG4, IgE and IgM antibodies were predominant among individuals with 

complicated malaria. A predominance of IgG1, IgG2 and IgG3 antibodies were found in 

individuals reporting more than five previous clinical malaria attacks, while IgM, IgA 

and IgE antibodies predominated among individuals reporting five or less previous 

clinical malaria attacks. It has been elucidated that there was differential regulation in the 

anti- Plasmodium falciparum antibody pattern in different clinical expressions of malaria 



 12

and that even in unstable transmission areas, protective immunity against malaria can be 

observed, when the appropriated antibodies are produced (73). 

The role of antibodies in clinical protection against malaria erythrocytic stages has long 

been recognized by in vivo transfer of antibodies from protected adults to nonprotected 

individuals infected with Plasmodium falciparum malaria (74,75). Additionally, the 

induction of these antibodies might differ according to the nature of the malaria parasite 

antigen and the level of malaria transmission (76).  

Large proportion of these immunoglobulins is not malaria-specific, however 5% or more 

is species, and stage specific reacting with a wide variety of the parasite antigens (41). 

Passive transfer of IgG from immune donors indicates that antibodies may be protective 

by decreasing parasitaemia and clinical disease (75). Edozein et al. (1962) observed that 

the treatment of children having acute Plasmodium falciparum  malaria with  γ-globulin 

result in a constant fall in the trophozoite-counts by the 4th day, and that their blood was 

found to be negative by the 8th day (77). 

Crucial to the acquired protective immunity to Plasmodium falciparum malaria is the 

cooperation between monocytes and antibodies. The antidodies produced in response to 

Plasmodium falciparum infection are of particular importance, since certain isotypes 

known as cytophilic antidodies can cooperate with monocytes via FcγRI and FcγRII 

receptors in opsonization and phagocytosis or participate in both antibody-dependent 

cellular inhibition (ADCI), as well as antibody-dependent cellular cytotoxicity (ADCC) 

(78-80). FcγR (fragment crystalline gamma receptor) is a specific cell surface receptor 

for IgG molecules. They are largely expressed by neutrophils, monocytes and 

macrophages, natural killer (NK) cells, platelets, eosinophils, basophils, mast cells and B 

cells. Some of these cells express only one or two of the three possible FcγR receptors, 

the high affinity FcγR-I, and the low affinity FcγR-II and FcγR-III (81). 

Guitard et al. (2008) reported that primigravidae infected during pregnancy present 

higher level of IgG3 at delivery than at enrolment. This suggests that this IgG subtype is 

predominantly implicated in the protection and acquisition of immunity against a 

placental infection (82).  
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In Kenya, antibodies that inhibit Plasmodium falciparum adhesion to the placental 

receptor chondroitin sulfate A (CSA) are found to be associated with a reduced risk of 

placental malaria. Furthermore, these antibodies to placental parasites are associated with 

reduced levels of placental parasitemia and increased birth weights and gestational ages 

of newborns (45). Consequently, antibodies inhibiting CSA-specific parasite 

sequestration in the placenta are considered to be important in acquisition of protection 

against PAM (Pregnancy-associated malaria) (83). Moreover, it is proved that the 

isotype/subtype profile of anti-VSA antibodies (anti-variant surface antigens antibodies) 

IgG1 and IgG3 does not alter with age, gravidity, or repeated infection (84).  

It has been suggested that there is no effect of transmission intensity in the protective 

effect of antibodies inhibit Plasmodium falciparum adhesion to the placental receptor 

chondroitin sulfate A (45). In contrast, it has been reported that the anti-VSA IgG levels 

depend on transmission intensity (85). 

 

1.5.3.2. Cell Mediated Immunity 

Cell-mediated immunity is an immune response that mediated by cells known as T 

lymphocytes. It involves the activation of macrophages, natural killer cells (NK), antigen-

specific cytotoxic T lymphocytes, and the release of various cytokines in response to an 

antigen. T lymphocytes can be distinguished from other lymphocyte types, such as B 

cells and natural killer cells by the presence of a special receptor on their cell surface 

called T cell receptors (TCR).  

T lymphocytes, are further subdivided into functionally distinct populations, the best 

defined of which are helper T cells (Th) and cytotoxic T cells. Helper (CD4+) and 

cytotoxic (CD8+) T cells recognize antigens presented by the major histocompatibility 

complex (MHC) on the surfaces of other cells. The CD4+ or T helper (Th) cells play a 

central role in most immune reactions, they comprise at least two functionally distinct 

cell types Th1 and Th2 distinguished on the basis of their cytokine production. Th1 cells 

produce proinflammatory cytokines such as interferon-γ (IFN-γ) and mediate cellular 
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immunity; in contrast, Th2 cells produce cytokines (interleukin-4 (IL-4), IL-5, IL-9, IL-

10, IL-13, and so on) which regulate B-cell proliferation and antibody class-switching 

and consequently regulate humoral immunity (86).  

Cellular immune mechanisms regulate immunity to malaria acute infections by 

mechanisms possibly augmented by cytophilic Abs, which are absolutely dependent on 

the macrophage-activating cytokine IFN-γ. Cell-mediated immune effector mechanisms 

to Plasmodium falciparum infection, involve macrophage activation by NK cell-, γδT 

cell- or Th1-derived IFN-γ for enhanced phagocytosis and killing of parasitized 

erythrocytes (87), and  inhibition of parasite growth and development inside hepatocytes 

by CD8 + cytotoxic cells (88). Nitric oxide (NO), produced by macrophages in response 

to parasitic components and T cell production, can have antiparasitic effects (89). It has 

been shown to kill Plasmodium falciparum parasites in vitro at high concentrations (90). 

T cells from different subsets play a major role in protective immunity against pre-

erythrocytic stages of malaria parasites. CD4+ T cells play a triple role in protective 

immunity against the liver stages of the malaria parasite. CD4+ T cells: 1- help B cells to 

induce a high level of antimalaria humoral response; 2- assist in the induction of CD8+ T 

cell responses; and 3- directly inhibit the development of liver-stage parasites. 

Additionally exposure of humans and animals to malaria sporozoites induces αβ CD8+ 

and CD4+ T cells specific for antigens expressed in pre-erythrocytic stages of the 

parasite. These T cells inhibit parasite development in the liver (88). MHC class-I-

restricted CD8+ cytotoxic T cells have a great significance in pre-erythroctic immunity 

and contribute to protection against severe malaria. It has been proposed that CD8+ T 

cells may be involved in immunosuppression activity in acute malaria and down 

modulate inflammatory response. CD8+ cytotoxic T lymphocytes have no effect on 

human erythrocytes because they do not express MHC class I molecules. In contrast to 

the CD8+ T cells, CD4+ cells have an important regulatory and effector function (91,92). 

During pregnancy, the immune system may be biased toward type 2 humoral defense 

mechanisms rather than towards type 1 cellular responses, this may be fundamental for 

fetal wellbeing (93). This was convinced by the finding that Th2 type responses were 
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associated with successful pregnancy, whereas Th1 type responses were associated with 

some forms of pregnancy failure (55). The balance between cytokines produced by 

different cell types is critical for the course of infection (92). 

 

1.6. Cytokines 

Cytokines are regulatory polypeptides or glycoproteins that can be produced by virtually 

every nucleated cell type in the body and have pleiotropic regulatory effects on 

hematopoietic, endocrine, neural and many other cell types (94). Cytokines usually act 

close to where they are produced, either on the same cell that secrets the cytokine 

(autocrine) or on a nearby cell (paracrine). When occasionally produced in large amounts, 

cytokines spilling over into the circulation to act at a distance from the site of production 

as endocrine mediators (95). 

In the immune system, CD4+ T cells play a central role because they produce large 

amounts of cytokines and regulate a variety of immune functions (86). As mentioned 

above, CD4+ T cells can be classified into Th1 and Th2 types according to their pattern of 

cytokine production (96).  

The Th1 type cells are associated with cytotoxic T cell functions, whereas Th2 cells are 

involved in the antibody production response (97). These T cell subsets reciprocally 

regulate one another since the proliferation and functions of Th2 cells were inhibited by 

IFN-γ, one of the Th1 products, whereas the Th2 products, IL-4 and IL-10, suppress 

cytokine production by Th1 cells (98,99). The balance between these subsets is critical 

for the outcome of an infection (100). 

Angulo and Fresno (2002) in their review concluded that each cytokine has a different 

role at different stages of the infectious process (101). Significant to parasite clearance in 

Plasmodium falciparum malaria is the secretion of proinflammatory cytokines; however 

these inflammatory cytokines must be downregulated at the appropriate point in the 

infection to prevent pathology. The timing and possibly the site of cytokine release and 

the relative concentrations of the counteractive groups of cytokines, contribute to 
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successful resolution of the infection (102). It is conceivable that an early production of 

Th1 proinflammatory cytokines such as IL-12, IFN-γ and IL-18 is crucial to a better 

response and resolution of malaria infection (103), nevertheless it leads to up-regulation 

of TNF-α, which is believed to be the principle mediator of malaria pathology (102).  

During the acute phase of uncomplicated Plasmodium falciparum malaria increase of the 

Th1 cytokine IFN-γ may play a role in limiting progression from uncomplicated malaria 

to severe and life-threatening complications (92). It has been shown that CD4+ T cells, of 

either Th1 or Th2 type have regulatory functions in human Plasmodium falciparum 

malaria. Both Th1 and Th2 responses seem to be required for the control of infection, but 

they need to be sufficiently harmonized in intensity and time (92,100). 

Manifestations of malaria disease varied and appear to be regulated by age and the 

acquisition of immunity, host and parasite genetic polymorphisms, and regional variation 

(104). It has been mentioned that an early proinflammatory cytokine response mediates 

protective immunity, whereas a late response contributes to pathology (105). Absolute 

levels and ratios of proinflammatory and anti-inflammatory cytokines influence 

susceptibility to infection, clinical disease, and anaemia. High ratios of proinflammatory 

to anti-inflammatory cytokines were proved to be associated with increased risk of fever 

(102). Inflammatory cytokines play a significant role in human immune responses to 

malaria, inspite of the fact that the balance between pro- and anti-inflammatory cytokines 

and the pathogenic effects that can result from dysregulation are poorly understood. 

Many studies proved that the severity of malarial disease is affected by the balance of 

proinflammatory to anti-inflammatory cytokines in plasma (104,106-111).  

Pregnancy is an event of immunologic tolerance, whereby a woman accepts the 

implantation of the fetal allograft in her uterus (112). The implantation process of the 

human placenta associated with a release of cytokines at and around the site of 

implantation (113). It is believed that these cytokines may play an important role in the 

development of pregnancy (114). During pregnancy, the immune system may be biased 

toward type 2 humoral defense mechanisms rather than towards type 1 cellular responses, 

this may be fundamental for fetal wellbeing (99). The systemic suppression of 
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proinflammatory responses from T helper 1 (Th1) cells, i.e., decreased circulating levels 

of IFN-γ and tumor necrosis factor α, along with increased local expression of anti-

inflammatory cytokines such as interleukin (IL)-4, IL-6, and IL-10, has been reported 

(112). 

Placental malaria is associated with cell mediated inflammatory responses and alters the 

cytokine balance in favor of Th1 types (e.g. proinflammatory) (113,114). The placental 

production of chemokines may be an important trigger for monocyte accumulation in the 

placenta (115). IFN-γ appears to play a key role in protecting against placental 

parasitemia, as does IL-10, in preventing pathogenesis (116). Additionally, it has been 

shown that placental cytokine changes are associated with poor pregnancy outcomes in 

humans (50). Alterations in cytokine levels may contribute to preterm deliveries (PTDs) 

through the induction of anaemia and/or altering to cellular immune responses required 

for eliminating placental parasites. In pregnant women, malarial parasites sequester in the 

placenta and stimulate the accumulation of activated macrophages in the intervillous 

space where they secrete large amounts of TNF-α. In response to this inflammatory 

challenge, maternal and fetal cells secrete IL-10 to limit pathology and to protect the fetal 

allograft. Although IL-10 is important in modulating the possible deleterious effects of 

inflammatory cytokines, its over-expression may have detrimental consequences 

resulting in PTD by enhancing maternal anaemia and suppressing anti-parasite 

inflammatory responses leading to persistent placental parasitemia (117). 

 

1.6.1. Interferon Gamma (IFN-γ) 

IFN-γ serves critical functions in innate and cell-mediated immunity. It is the principle 

macrophage-activating cytokine. It is produced by CD4+ T helper cell type 1 (Th1) 

lymphocytes, CD8+ cytotoxic lymphocytes, and NK cells (95). However, there is now 

evidence that other cells, such as B cells, NKT cells, and professional antigen-presenting 

cells (APCs) secrete IFN-γ (118). Recently, it has been proved that IFN-γ production can 

also occur in other cell types, including monocyte/macrophages (119). Furthermore, 

production of IFN-γ by professional antigen presenting cells (APCs) such as 
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monocyte/macrophage, dendritic cells (DCs) acting locally, may be important in cell self-

activation and activation of nearby cells (119,120). In early host defense against 

infection, NK cells and possibly professional APCs is likely to be important producers of 

IFN-γ, whereas, in the adaptive immune response, T lymphocytes become the major 

source of it (120,121). 

IFN-γ, or type II interferon, is an important cytokine in cell-mediated immunity against 

intracellular microbes. It enhances the microbicidal function of macrophages by inducing 

the synthesis of reactive oxygen intermediates and nitric oxide in addition to stimulating 

expression of class Ι and class II MHC molecules and costimulators on APCs. Moreover, 

the differentiation of naïve CD4+ T cells to the Th1 subset and the inhibition of the 

proliferation of Th2 cells were found to be promoted by IFN-γ. Furthermore, IFN-γ 

control IgG class switching in B cells, activates neutrophils, and stimulates the cytolytic 

activity of NK cells (95). 

It has been reported that, cytokines secreted by APCs control IFN-γ production, most 

notably interleukin IL-12 and IL-18. These cytokines serve as a bridge to link IFN-γ 

production with infection in the innate immune response (122-128). The recognition of 

many pathogens by macrophages induces secretion of IL-12 and Chemokines. These 

chemokines causes attraction of NK cells to the site of inflammation, and IL-12 promotes 

IFN-γ synthesis in these cells (129,130). 

Upon appropriate activation by pathogens, macrophages are known to be important 

producers of IL-12 or IL-18. Combined stimulation of macrophages with IL-12 and IL-18 

promote macrophages to secrete high levels of IFN-γ leading to autocrine macrophage 

activation (125,131). Although T cells are the major source of IFN-γ, IL-18 and IL-12 act 

synergistically to increase IFN-γ production from murine bone marrow–derived 

macrophages. Moreover several studies proved that, the combined action of IL-18 plus 

IL-12 was far more effective in inducing IFN-γ production from these macrophagic cells 

than either cytokine alone (125,128). It has been shown that, IL-12 is needed for IL-18–

induced IFN-γ production and that IL-18 induces IFN-γ production only when its 

receptor is unregulated by IL-12 (128). Production of IFN-γ is increased by IL-1, IL-2, 
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growth factors, estrogen, and IFN-γ itself and is inhibited by glucocorticoids, 

transforming growth factor-β (TGF-β), IL-4 and IL-10 (121,131). Nevertheless, Fukao et 

al. (2000) reported that IL-4 and IL-18 increasing IFN-γ production by denderitic cells 

(DCs) (122).  

In humans, serum IFN-γ levels have been correlated with protection and resistance to re-

infection with Plasmodium falciparum (132). In pre-erythrocytic immunity, IFN-γ is 

clearly associated with protective immunity. In Africa, IFN-γ production by CD4+ T cells 

to specific erythrocytic antigens is associated with protection against malaria re-infection. 

In murine malaria, T cell clones secreting IFN-γ have protected role possibly mediated by 

macrophages and neutrophils. Cytophilic IgG blood-stage-specific antibodies production 

may be induced by IFN-γ which may also assist in antibody-dependent cellular inhibitory 

mechanisms (133).  

IFN-γ was associated with protection from high-density infection but not from low-

density infection. The predominant sources of early IFN-γ were γδ T and αβ T cells, 

suggesting that IFN-γ –associated protection is mediated, in part, by γδ T and αβ T cells. 

The αβ T cells seem to be malaria-specific memory T cells, while on the other hand the 

γδ T cells may be previously unprimed cells, memory cells, or both (134). 

On the other hand, IFN-γ has been clearly linked to the onset of pathology in mice as well 

as in humans. The detrimental effects of IFN-γ are believed to be due to its ability to 

activate macrophages which, in turn, produce endogenous pyrogens such as TNF-α, IL-1 

and IL-6, leading to an inflammatory cascade (108,135). Moreover, the role of IFN-γ as 

an endogenous pyrogen is consolidated by the findings of Harpaz et al. (1992). (136). 

Thus, developing clinical immunity may depend on the ability to down-regulate the 

nonprotective cross-reactive T cell response, leaving the innate response and protective T 

cells specifically primed by malaria infection to control parasitemia. As a consequence of 

the dual role of IFNγ, its production needs to be tightly regulated in order to achieve 

clearance of infection while on the contrary avoiding detrimental effects, a state which is 

characteristic of clinical immunity. This indicates that the cellular sources of IFN-γ and 

the balance between innate and adaptive sources of IFN-γ may change depending on 
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level of immunity, which may in turn influence the absolute levels that are produced 

(137). 

 

1.6.2. Interleukin-10 (IL-10) 

IL-10 is a pleiotropic cytokine produced by monocytes, macrophages, and lymphocytes. 

It has been implicated as an important regulator of the functions of lymphoid and myeloid 

cells. It is a potent suppressor of the effector functions of macrophages, T cells, and NK 

cells as a consequence of its ability to block activation of cytokine synthesis and several 

accessory cell functions of macrophages. Additionally, IL-10 seems to contribute to the 

regulation of proliferation and differentiation of B cells, mast cells, and thymocytes 

(138). It is also has a role in the downregulation of class II MHC expression and in the 

inhibition of the production of proinflammatory cytokines by monocytes (139). 

Pregnancy is proposed to be a Th2 phenomenon, where Th2 cytokines inhibit Th1 

responses to allow foetal survival. The significance of IL-10 as an immunomodulatory 

cytokine produced by Th2 cells, in the maintenance of normal pregnancy is becoming 

increasingly evident (140). It has been reported that IL-10 characterizes normal human 

pregnancy and is believed to prevent inflammatory responses that might interfere with the 

integrity of the materno-fetal placental barrier (93,141). During placental malaria, in spite 

of the placental shift toward Th1-type cytokines, IL-10 concentrations are elevated 

compared with healthy placentas (50,117,140). Nevertheless, in Kenya, normal placentas 

showed a bias toward type 2 cytokines; type 1 cytokines IFN-γ and IL-2 were absent in 

placentas not exposed to malaria but present in a large proportion of placentas from a 

holoendemic area. TNF-α and TGF-β (transforming growth factor-β) concentrations were 

significantly higher, and IL-10 concentrations significantly lower, in placentas from the 

holoendemic area. Consequently, maternal malaria decreases IL-10 concentrations and 

elicits IFN-γ, IL-2, and TNF-α in the placenta, shifting the balance toward type 1 

cytokines. Among primigravidas, elevations of placental IFN-γ at all stages of infection, 

in association with elevated concentrations of TNF-α and possibly IL-2, are associated 

with poor outcomes for both mother and child (50). 
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In Plasmodium falciparum malaria, the balance between Th1 cytokines such as TNF-α, 

IFN-γ and Th2 cytokines such as IL-10, IL-4 may be critical in the development of severe 

malaria. It has been reported that higher plasma IL-10 concentrations over TNF-α levels 

might provide protection against severe malarial anaemia by down-regulating the severe 

pathologic effects of TNF-α. Consequently, higher levels of IL-10 versus TNF-α may 

prevent development of malaria anaemia by controlling the extreme inflammatory 

activities of TNF-α (107). Moreover, in experimental cerebral malaria, IL-10 was found 

to play a protective role (142).  

Additionally, IL-10 was found in the cord blood serum, and its levels were conversely 

correlated with gestational age (143). The presence of IL-10 during T cell priming, 

further suppresses the generation of a Th1 response by down-regulating MHC class I and 

II expression, thus reducing APC function (139,144,145). Moreover, IL-10 may promote 

T cells differentiation into regulatory, IL-10-secreting T cells which suppress Ag-specific 

(antigen specific) effector responses (146-150). It has been shown that IL-10 production 

was suppressed by IFN-γ and that IFN-γ, and IL-10 antagonizes each other's production 

and function (151). Nevertheless, IL-10 was found to be produced by human uterine 

natural killer cells but does not affect their production of IFN-γ (152). 

Peyron F et al. (1994) found an association between circulating IL-10 and the presence of 

clinical symptoms. Elevated levels of circulating IL-10 has been observed in patients 

with mild malaria, even much less than observed in patients with severe disease. 

Nevertheless, there was no correlation between the levels of IL-10 and fever or 

parasitaemia (153). Moreover, in rodent malaria IL-10 as a regulatory cytokine is found 

to be associated with disease exacerbation (154). Nevertheless, a defect in interleukin-10 

leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice 

(155). 

The balance between proinflammatory and regulatory immune responses is fundamental 

to the outcome of malaria infection. Failure to develop an effective proinflammatory 

response can result in unrestricted parasite replication, while failure of the regulation of 

this response results in the development of severe immunopathology. IL-10 and TGF-β 
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are reported as important components of the regulatory response. IL-10 is considered to 

control inflammation during malaria infections and thus protect against immuno-

pathology, but, on the other hand, it reduces the effectiveness of other immune 

mechanisms which remove the parasites. During malaria infection the major source of 

IL-10 is adaptive regulatory CD4+ T cells. IL-10 produced by these adaptive CD4+ T 

cells prevents hepatic immunopathology but also suppresses the effector T cell response, 

preventing parasite clearance (156). 

 

1.6.3. Interleukin-4 (IL-4) 

IL-4 is a highly pleiotropic, anti-inflammatory cytokine (157). It is the major stimulus for 

the production of IgE antibodies (95). γδ T cells are seemed to be essential for inducing 

IL-4-dependent IgE and IgG1 responses (158). IL-4 was found to be the essential 

differentiation factor for Th2 cells development from naïve CD4+ T helper cells and at 

the same time it acts as a potent inhibitor of the development of Th1 induced by IFN-γ 

and IL-12.  On the other hand, it has been suggested that a combination of IL-4 and TGF-

β may provide an alternative IL-12-independent pathway of Th1 development (159). 

Additionally, IL-4 is a critical regulator of the commitment of CD4+ T cells to the 

production of IL-4 and to the inhibition of their production of IFN-γ (160). Furthermore, 

IL-4 is a major inducer and mediator of allergic and parasitic immune responses. 

Promoting the differentiation of naïve CD4+ T cells into Th2 cells is a major mechanism 

through which it mediates this function (160-164). Chen et al. (2004) suggested that IL-4 

is a potent directing factor for bone marrow progenitor cells to differentiate into Th2 

cytokine-producing eosinophils (165). Additionally, tissue basophils are known to be the 

principle source of in vivo IL-4 production in parasitic infections which induces a Th2-

type response causes their accumulation (166). 

IL-4 is found to be produced by many types of cells include cells of the mast 

cell/basophil lineage, eosinophils, NK1.1+, CD4+ T cells, NK T cells, γδ T cells, and 

conventional CD4+ T cells (167). Initial IL-4 producers are of great importance because 

they are thought to produce the first burst of IL-4 to prime naïve CD4+ T cells into Th2 
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cells and results in the initiation of the Th2 response. It has been shown that a small 

percent of CD4+ T cells that have no previous experience of antigenic stimulation might 

produce IL-4 which initiate Th2 immune response (168). Thus, autocrine IL-4 production 

by naïve CD4 T cells can drive the appearance of Th2 cells (167). IL-4 antagonize the 

IFN-γ macrophage-activating effects and consequently inhibits cell-mediated immune 

reactions and this is considered as one of the mechanisms by which Th2 cells acts as 

inhibitors of immune inflammation (95).   

During malaria infection, IL-4 secreted by CD4+ T cells was found to be crucial to the 

development of CD8+ T cell responses against hepatocytes infected with malaria 

parasites. CD8+ T cell can inhibit the development of malaria liver stages. The main 

function of IL-4-secreting CD4+ T cells may be to maintain the proliferative activity of 

recently activated CD8 cells, to prevent their death after activation, or both (169). In 

West Africa, it has been reported that the malaria protected Fulani had significantly 

higher serum levels of anti-malaria IgG and IgE antibodies and higher proportions of 

malaria specific IL-4 and IFN-γ producing cells, when compared to their sympatric ethnic 

neighbors, the Dogon. This association of higher anti-malarial IgE and IgG antibodies 

and increased numbers of specific IL-4- and IFN-γ-producing cells may assist in 

explaining the difference in the antibody responses observed between the two study 

groups and the lower susceptibility to malaria observed in the Fulani. Additionally, the 

higher proportions of malaria specific IL-4 and IFN-γ producing cells was explained by 

the role of CD1- restricted NKT cells in immune protection (170). Studies in Plasmodium 

chabaudi IL-4-deficient mice showed that IL-4 per se is not required for parasite 

elimination and limitation of cytokine-induced tissue damage (171,172). 

As mentioned before, during pregnancy, the immune system may be biased toward type 2 

humoral defense mechanisms rather than towards type 1 cellular responses, this may be 

fundamental for fetal wellbeing (99). This is supported by the findings of Fried et al. 

(1998) who proved the predominance of type 2 cytokines (IL-4, IL-6, and IL-10) and the 

absence of type 1 cytokines (IFN-γ and IL-2) in placentas from Nairobi, Kenya (50). 

Moreover, it has been evident that maternal T lymphocytes at foeto–maternal interface 

play an important role in the fetal development and survival. Additionally, cells from the 
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cumulus oophorus were found to constitutively produce IL-4 but the mechanisms 

responsible for this production are still unknown (167). It has been reported that 

progesterone which is highly produced by the cumulus oophorus/oocyte complex, up-

regulates the production of LIF (leukemia inhibitory factor) by T cells (of the cumulus 

oophorus) and that the progesterone-induced LIF production is mediated by IL-4. 

Progesterone produced by cumulus granulosa cells may favor IL-4 production by T cells, 

which in turn can produce LIF. As a consequence of the role of LIF in the enhancement 

of the in vitro growth and development of mammalian embryos, it has been suggested 

that T cells present in the cumulus oophorus produce cytokines that may provide a 

microenvironment suitable for pre-implantation development of the mammalian embryo 

(173). T cells in the cumulus oophorus were found to produce higher levels of IL-4 than 

the T cells of peripheral blood from the same women. Additionally, the development and 

function of Th1 cells and macrophages can be inhibited by IL-4 and IL-10 and this will 

consequently lead to prevention of the allograft rejection (167). 

 

1.7. Hormones 

The word hormone is derived from the Greek hormao meaning ‘I excite or arouse’. They 

are chemicals released by cells that affect cells in other parts of the body. Only a small 

amount of hormone is required to alter cell metabolism. It is essentially a chemical 

messenger that transports a signal from one cell to another. All multicellular organisms 

produce hormones. Hormones communicate their effect by their unique chemical 

structures recognized by specific receptors on their target cells, by their patterns of 

secretion and their concentrations in the general or localized circulation. A single 

hormone may affect more than one function and each function may be controlled by 

several hormones. 

Endocrine hormone molecules are secreted directly into the bloodstream, while exocrine 

hormones (or ectohormones) are secreted directly into a duct, and from the duct they 

either flow into the bloodstream or they flow from cell to cell by diffusion in a process 

known as paracrine signaling (174,175). 
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1.7.1. Hormones and cytokines 

Accumulated information illustrates that the immune system have an influence on the 

endocrine system and vice versa. It has been proved that cytokines interact and modulate 

steroidogenesis at the levels of the adrenal glands, testes, and ovaries, affecting their 

function and development (176). The modulation action of the immune system on the 

endocrine system was shown by the use of antigenic stimuli or cytokines in experimental 

animals resulting in an obvious alteration in the hypothalamus–pituitary–adrenal (HPA) 

axis activity. This was consolidated by results from human studies after administration of 

IL-6 or TNF. Additionally, synthesis of steroid hormones by cells of the endocrine 

system was conspicuously affected by certain cytokines such as TNF and TGFβ1. On the 

other hand, the endocrine system hormones have a modulatory effect on the functions of 

the immune system exemplified by the inhibition of cytokines by cortisol, estrogens, 

testosterone, and dehydroepiandrosterone. This illustrates that the functions of the two 

systems are closely linked together (177).  

 

1.7.2. Pregnancy associated hormones, cytokines and susceptibility to malaria 

Pregnant women are more susceptible to Plasmodium falciparum malaria than 

nonpregnant ones. The mechanisms responsible for their incremented susceptibility to 

asymptomatic infection, elevated parasitaemia and clinical episodes are unknown. 

Nevertheless, pregnancy-associated hormones are regarded to have a role since they 

down-regulate innate and acquired immune responses.  

Cytokines play a significant role in the modulation of immune responses. Studies on 

cytokines produced at the maternal–fetal interface and their regulation illustrates that a 

local shift in the cytokine pattern from Th1 towards Th2 associated with successful 

pregnancy (99). 

Naïve CD4+ T cells are referred to as precursors of Th cells, their development into type1 

Th1 and type 2 Th2 effector cells can be affected by many factors including hormones 

(178). Some evidence suggests that the differentiation of Th cells into polarized Th1 or 
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Th2 cells is influenced by steroidal and non-steroidal hormones (178,179,180). At the 

placental level progesteron production may be responsible in part, for increased 

production of Th2-type cytokines which have been involved in survival of the fetal 

allograft and maintenance of successful pregnancy (179). The production of IL-4 

cytokine was found to be promoted by progesterone, while the production of IFN-γ by T 

cells was promoted by relaxin. Leukemia inhibitory factor (LIF) which is important in 

embryo implantation is up-regulated by IL-4 and progesterone. Furthermore, the 

production by decidual T cells of LIF and/or Th2 cytokines participate in the retention of 

pregnancy (178). Both IL-4 and IL-10 can inhibit the development and function of Th1 

cells and macrophages and consequently prevent the rejection of the fetal allograft. A 

defect in the integrity of the hormonal-cytokine network at the maternofetal interface can 

result in fetal loss (181). Piccinni and collages proved that during pregnancy progesterone 

levels were higher than physiological concentrations excreting a positive modulatory 

effect on the production of Th2-type cytokines (e.g. IL-4). Moreover, they showed that 

relaxin may counterbalance this effect on Th2 excerted by progesterone, and it protects 

the mother against intracellular pathogens by promoting a Th1 response whenever it is 

required (178,181). Cellular immune functions, including the cytotoxic activity of natural 

killer cells has been found to be affected by many hormones. Cortisol an adrenocortical 

hormone in humans, and prolactin a 24 kDa single chain hormone secreted by the 

anterior pituitary gland, are among the most important nominators which affect maternal 

immunity to Plasmodium falciparum malaria during pregnancy (182,183).   

 

1.7.2.1. Cortisol 

Cortisol is a corticosteroid hormone or glucocorticoid produced by the adrenal cortex, 

which is part of the adrenal gland. It is usually referred to as the stress hormone as it is 

involved in response to stress and anxiety (184). Any type of stress either physical or 

neurogenic results in an immediate and remarkable elevation in ACTH 

(adrenocorticotropic hormone) by the anterior pituitary gland, which stimulate a greatly 

increased production of cortisol. Cortisol has an anti-inflammatory effect. Secretion or 
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injection of large amounts of cortisol has two fundamental anti-inflammatory effects: 1. it 

can block the early stages of inflammation even before its beginning, 2. if inflammation 

was already begins, it causes rapid resolution of inflammation and promote rapid healing 

(185).  

The anti-inflammatory effects of cortisol results from its ability to stabilizes the 

lysosomal membranes, decreases the permeability of the capillaries, decreases both 

migration of white blood cells into the site of inflammation and phagocytosis of the 

damaged cells, suppresses the immune system causing a remarkable decrease in 

lymphocyte reproduction, and lowers fever as a consequence to its ability to reduce the 

release of IL-1 from the white blood cells (185). Furthermore, it increases blood pressure 

and blood sugar (184). 

 

1.7.2.2. Prolactin 

Prolactin is a pleiotropic hormone produced by the anterior pituitary gland. It is primarily 

associated with lactation but it has also been considered to play a role in the regulation of 

immune functions. Prolactin levels increases steadily from the 5th week of pregnancy till 

delivery, when its concentrations reach 10 to 20 times the normal nonpregnant level. Few 

weeks after delivery, prolactin levels return to normal nonpregnant level. Nevertheless, 

10 to 20- fold surges in prolactin secretion occur each time the mother nurses her baby 

and lasts for about one hour (185).  Prolactin is known to have a potent proinflammatory 

effects and proinflammatory cytokines is clearly influences its secretion. These cytokines 

can stimulate or depress prolactin secretion depending on the animal species studied and 

the severity of inflammation. Prolactin differ between genders, it is higher in women than 

in men (186). In spite of the association of prolactin with the development of mammary 

glands and initiation and maintenance of lactation, its receptors were found to be widely 

distributed among many different tissues (187).  
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1.7.2.3. Cortisol, Prolactin and susceptibility to malaria 

There are indications that changes in the serum concentrations of cortisol and prolactin 

may be associated with the loss of antimalarial immunity observed during pregnancy 

(182,183). Cortisol has a role in the regulation of malaria immunity during pregnancy. It 

has considerable immunosuppressive activities in man, and it has been shown that its 

level was higher in primigravidae than in multigravidae. During pregnancy increased 

cortisol levels was found to be associated with suppression in cellular immune reactivity 

in order to prevent destruction of the fetal allograft in addition to promoting the maternal 

immune system to reinforce or to induce other immune reactions such as humoral 

responses (188). Moreover, cortisol has been found to reduce the adherence of infected 

erythrocytes to monocytes (182).  

In Sudan Adam I, and collages reported that cortisol levels were not significantly 

different between pregnant women infected with Plasmodium falciparum malaria and 

noninfected ones and between infected primigravidae and infected multigravidae. 

Moreover, they showed that there was no significant difference in prolactin levels 

between Plasmodium falciparum infected and noninfected pregnant women, or between 

infected and noninfected primigravidas and multigravidas. They mentioned that prolactin 

levels increased with pregnancy duration but there were no significant correlations 

between cortisol levels and pregnancy duration observed (189). 

In Gambia, it has been reported that cortisol concentration in primigravidae is conversely 

related to mononuclear cell proliferation in response to malarial antigens (182). In 

Tanzania, the serum concentration of total cortisol was found to be significantly higher in 

women with clinical malaria than in women without recorded malaria during pregnancy 

(188). These findings agree with that of another study in a holoendemic area in Kenya 

(183). Ordi et al. (2001) reported that there was a selective absence of NK cells in 

maternal malaria and they presumed that this absence may have a role in the hindrance of 

parasite clearance during the course of the infection (190). Moreover, increased maternal 

cortisol has also been found to be associated with increased risk of spontaneous abortion 

within the first 3 weeks of pregnancy (191).  
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Pearson insinuated to the increased pulsatile levels of prolactin which is initiated at the 

second trimester and continued through to the postpartum period positing a possible effect 

of prolactin on NK cells in maternal malaria (192,193). Citing various studies, he pointed 

out that higher cortisol levels and lower prolactin levels are found during normal labor in 

primiparous women (194).  

The "cortisol hypothesis" of McGregor (195) and Vluegels et al. (188) has been revived 

by Bouyou-Akotet et al. (196) who measured NK cell cytotoxicity and cortisol and 

prolactin concentrations in peripheral venous blood samples obtained from pregnant 

Gabonese women at the time of delivery. Cortisol concentrations were found to be 

significantly higher in primigravidae than in multigravidae, and prolactin concentrations 

were significantly lower. They found that NK cell-mediated cytotoxicity against 

Plasmodium falciparum-infected erythrocytes in vitro was lower in samples obtained 

from primigravidae than in multigravidae ones. Also there was an inverse correlation 

between the magnitude of the NK cell cytolytic effect and cortisol production, while a 

positive correlation was found between this effect and prolactin production. 

Consequently, they reported that depressed NK cell cytotoxic activity against 

Plasmodium falciparum infected erythrocytes is correlated with high cortisol 

concentrations and may contribute to increased susceptibility to malaria during pregnancy. 

These findings were discussed and refuted by Pearson (194) who supported the prolactin 

hypothesis but he mentioned that delivery was not an appropriate time to assay for 

prolactin levels because it naturally fall 24 hours preceding the onset of delivery and 

Bouyou-Akotet et al. (197) have conceded this fact. However, they recently reported that 

cortisol and prolactin concentrations increase during pregnancy, regardless of parity and 

that primigravidae showed increased plasma cortisol concentration than multigravidae 

from the second trimester of pregnancy onwards. Inversely, they reported that plasma 

concentration of prolactin was higher in multigravidae throughout pregnancy. 

Synchronized increase of cortisol and prolactin concentrations with the period of 

pregnancy proposing that a sustained increase in cortisol level causes increased 

susceptibility of pregnant women to malaria, specifically in primigravidae. They 

observed a strong association between cortisol concentration and Plasmodium falciparum 
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infection. Cortisol concentrations were found to be higher in Plasmodium falciparum-

infected primigravidae than in uninfected primigravidae throughout pregnancy and at the 

time of delivery. In contrast, Plasmodium falciparum state did not affect prolactin 

concentration. Furthermore, cortisol has been found to affect parasite load and this is 

clearly explained by the significant positive correlation observed between cortisol 

concentration and parasite load in Plasmodium falciparum-infected primigravidae (182).   

Furthermore, it has been elucidated that the surface expression and function of the 

triggering receptors (e.g. NKp46 and NKp30) responsible for NK-mediated recognition 

and killing of susceptible target cells is regulated by hormones (182,193). Prolactin up-

regulates and cortisol down-regulates the surface expression of NKp46 and NKp30. 

These findings are important because the action of NKp30 together with NKp46 lead to 

the induction of cytotoxic activity against a variety of target cells. These results are 

significantly important for the understanding of the involvement of NK cells in the 

susceptibility of pregnant women to Plasmodium falciparum malaria (198).  

Eventually, Mavoungou (199) in his review concluded that, natural killer cells are 

important cells of the immune system and that their functions in infectious diseases and 

pregnancy are tightly regulated by several activating and inhibitory receptors which 

control cell proliferation, cytotoxicity and cytokine production. He explained that the 

production of hormones and other pregnancy regulatory factors in primigravidae may 

alter cell function, thereby conferring an advantage for malaria infection. Furthermore, he 

shed light upon the causal relationship between high cortisol levels and depressed NK 

cell cytotoxicity against Plasmodium falciparum-parasitized erythrocytes and 

susceptibility to malaria. Additionally he considered that Plasmodium falciparum

infected erythrocytes become sensitive to NK cytolysis, and prolactin, and cortisol serum 

levels were related with NK cells cytolytic activity. 

It seems that there is few information exists on the relationship between the cytokine 

interactions that underlie both control and disease, pathogenesis of malaria during 

pregnancy, susceptibility to malaria and pregnancy associated hormones particularly 

cortisol and prolactin. Glucocorticoids can induce an in vitro shift in cytokine balance 
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toward a predominant type 2 immune response. It has been illustrated that they decrease 

IFN-γ and increase IL-4 and IL-10 production (200,201). Suguitan Jr. et al. reviewed that 

cortisol inhibits cell-mediated immune responses, lymphocyte proliferation and the 

production of IL-2, IFN-γ and TNF-α by macrphages and T cells. In contrast they 

reviewed that prolactin increases T cell activation and the production of IL-2, IFN-γ and 

TNF-α (202). Moreover, Lina Matera in her review mentioned that prolactin when occur 

in high concentrations has been found to increase IL-4 and IL-10 production (203).  On 

the other hand TNF-α was proved to have a suppressive effect on the synthesis of cortisol 

(204). 

Justifications  
The immunosuppression associated with pregnancy leads to an increased risk of 

infection, including malaria. Various hormones have been found to produce a nonspecific 

immunosuppression. Cortisol and prolactin are among the most important candidates 

which affect maternal immunity to Plasmodium falciparum malaria. 

In Sudan, malaria in pregnancy has received relatively little attention and this result in a 

very limited available data. Accordingly, this study will be achieved to provide critically 

needed data in this field. 
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THE OBJECTIVES 

General Objectives 

Its aim was to asses the role of the interactions between hormones and cytokines in 

pathogenesis of Plasmodium falciparum malaria during pregnancy and to investigate the 

cytokine profiles in peripheral, placental and cord blood in parturient women of eastern 

Sudan.  

 

Specific Objectives 

1. To measure the concentrations of cortisol and prolactin in pregnant Sudanese 

women with Plasmodium falciparum malaria at the time of delivery in Wad 

Medani. 

2. To investigate the relationship between the concentrations of cortisol, prolactin 

and cytokines during pregnancy and to compare cytokine concentrations at the 

time of delivery, in infected and uninfected pregnant women in Wad Medani and 

New Halfa respectively.  

3. To investigate the relationship between the concentrations of cortisol, prolactin 

and cytokines during pregnancy and to compare cytokine concentrations at the 

time of delivery, in primigravidae and multigravidae in Wad Medani and New 

Halfa respectively. 

4. To describe the cytokine profile in peripheral, placental and cord blood in 

parturient Sudanese women of eastern Sudan. 

5. To identify the patterns of the immune response during Plasmodium falciparum 

infection in the peripheral and placental compartments. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1. Study site and duration 

This study was carried out in the period between October 2006 through December 2007. 

Part of the study was conducted at the antenatal clinic of Wad Medani hospital, central 

Sudan. Wad Medani, a city lies on the west bank of the Blue Nile, at an altitude of about 

411 meters; 136 km southeast of the capital, Khartoum, Gezira State, east-central Sudan. 

The region is mesoendemic for Plasmodium falciparum malaria and it is characterized by 

unstable malaria transmission. The predominant malaria parasite species is Plasmodium 

falciparum (205). 

The reminder of the study was conducted at the labour ward of New Halfa teaching 

hospital, eastern Sudan. Eastern Sudan is an area that is characterized by unstable malaria 

transmission. It is mesoendemic for Plasmodium falciparum malaria which is the 

predominant malaria species in the area. Anopheles arabiensis was the main vector 

(99.9%) found in the area and it is perennial rather than seasonal. The New Halfa area is 

located in the semi-arid belt of the Sudan approximately 500 km east of Khartoum in the 

middle of an agricultural scheme [altitude 450 m, 15o 19´N & 35o 36´E] (206). 

 

2.2. Ethical considerations 

Witnessed, written informed consent was obtained from all patients participating in the 

study. The study received ethical clearance from the Research Board of the University of 

Khartoum’s Faculty of Medicine. 
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2.3. Study Design 

The case control part of the study was carried out to asses the role of the interactions 

between hormones and cytokines in pathogenesis of Plasmodium falciparum malaria 

during pregnancy and the cross sectional part was conducted to investigate the cytokine 

profiles in peripheral, placental and cord blood in parturient women of eastern Sudan.  

For endocrine study pregnant women attending the delivery unit, of Wad Madni hospital 

were approached to participate in the study in the period between October through 

December 2007. Healthy pregnant women from the same area and from the same age 

group were recruited as controls. 

Pregnant women with a singleton baby attending the delivery unit of New Halfa 

Teaching Hospital, were approached to participate in the cytokine profile study in the 

period between October 2006 and March 2007. Those with antepartum haemorrhage, 

hypertensive disorder of pregnancy (diastolic blood pressure > 90 mm Hg) and diabetes 

mellitus were excluded.  

A structured questionnaire was administered to collect information about maternal socio–

demographic characters and medical history, and the results of the clinical and 

haematological examinations data.  

 

2.4. Study population 

2.4.1. Patients 

A total of ninety eight pregnant women infected with Plasmodium falciparum malaria 

were enrolled in this study. Forty five were involved in the assessment of the role of 

interactions between hormones and cytokines in the pathogenesis of Plasmodium 

falciparum malaria during pregnancy. Fifty three were involved in the study of cytokine 

profile.  
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2.4.2. Controls 

A total of thirty seven healthy pregnant women (free of malaria) that matched for age, 

parity, weight, haemoglobin and gestational age were taken as controls. They were 

included in the assessment of the role of interactions between hormones and cytokines in 

the pathogenesis of Plasmodium falciparum malaria during pregnancy.  

 

2.5. Malaria diagnosis 

Thick and thin blood films were prepared from a finger prick, stained with Giemsa and 

examined by light microscopy under an oil-immersion objective, at × 1000 

magnification. Parasite density was calculated by counting the number of asexual 

parasites per 300 white blood cells, assuming a mean white blood cell count of 6,000/µL. 

All blood smears were examined by two independent microscopists. If there was a 

difference in species diagnosis or if the parasite density differed by 50% between the two, 

a third microscopist re-examine the smears for a final species diagnosis. The final parasite 

density was the mean of the counts of the two initial microscopists or an average of the 

two closest counts. Maternal haemoglobin concentrations were estimated by Hemocue 

haemoglobinometer (HemoCue AB, Angelhom, Sweden).  

 

2.6. Histopathology 

Full thickness placental blocks of around 2-3 cm were taken from the placentae, kept in 

neutral buffer formalin for histopathology examinations. The presence of placental 

malaria infection was based on the pathological classification of Bulmer et al. (207); 

uninfected (no parasites or pigment), acute (parasites in intervillous spaces), chronic 

(parasites in maternal erythrocytes and pigment in fibrin or cells within fibrin and/or 

chorionic villous syncytiotrophoblast or stroma), past (no parasites but pigment confined 

to fibrin or cells within fibrin). 
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2.7. Hormonal analysis 

2.7.1. Sample collection  

Five ml of venous blood were withdrawn in plain tube, centrifuged and kept at -20 until 

processed in the laboratory for cortisol and prolactin analysis. 

 

2.7.2. Hormonal Measurements 

2.7.2.1. Cortisol Measurement 

Total serum cortisol concentrations were determined with the 125I-F RIA cortisol test kit 

(IMK-484). The test consists of a quantitative radioimmunoassay for the determination of 

cortisol in human serum, using 125I-F (radio labeled iodine-cortisol) as tracer. The 

sensitivity of this radioimmunoassay was 0.8 ng/ml and the range of curve was 10-600 

ng/ml. 

Reagents and samples were equilibrated to room temperature before use. Test tubes were 

labeled in duplicates for total counts (T), nonspecific binding (NSB), standards (SA-SG) 

and samples. Standards were A: 0, B: 10, C: 30, D: 75, E: 150, F: 800 and G: 600 ng/ml. 

0.5 ml of distilled water was added to each vial of standards except standard A (SA) to 

which 1.0 ml of distilled water was added. All reagents and samples were homogenized 

by gentle mixing avoiding foaming. Starting with SA 50µl of each standard (SA-SG) was 

pipetted into the appropriately labeled tubes. 50µl of SA was pipetted into the nonspecific 

binding (NSB) labeled tubes. 50µl of each sample was pipetted into the appropriately 

labeled tubes. 200µl of 125I-F was pipetted to all tubes. 100µl of F antibody (F = cortisol) 

to the standards and samples labeled tubes. 100µl of normal saline was added to the NSB 

labeled tubes. 200µl of magnetic second antibody was pipetted to all tubes except tubes 

labeled for total counts. All tubes were vortexed, mixed, covered and incubated for 1 

hour at 37°C.  Tubes were centrifuged at 2000X for 20 minutes. After centrifugation, 

tubes were placed carefully into suitable decantation racks, and then the supernatants 

were discarded. Then the tubes were inverted and placed on a pad of absorbent tissues 
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and allowed to drain for 5 minutes. Then the radioactivity of each tube was counted (60 

sec/tube) using a γ counter (STRATEC Biomedical Systems, Birkenfeld, Germany). The 

average count of each set of duplicate tubes was calculated. A standard curve was 

generated and used for the calculation of the final concentration per tube value of the 

samples. 

 

2.7.2.2. Prolactin Measurement 

Total serum prolactin concentrations were determined with the 125I-PRL IRMA prolactin 

test kit. The test consists of a quantitative immunoradiometric assay system for the direct 

quantitative in vitro determination of human prolactin in human serum using 125I-Anti-

PRL-Ab (radio labeled iodine-anti-prolactin-antibody) as tracer.  

Reagents and samples were equilibrated to room temperature before use. PRL-Ab 

precoated tubes were labeled in duplicates for total counts (T), standards (S0-S6) and 

samples. Standards were S0: 0, S1: 50, S2: 125, S3: 300, S4: 800, S5: 2000 and S6: 4000 

µlU/ml. 0.5 ml of distilled water was added to each vial of standards except standard zero 

(S0) 30 minutes before use. All reagents and samples were homogenized by gentle mixing 

avoiding foaming. Starting with S0 50µl of each standard (S0-S6) was pipetted into the 

appropriately labeled tubes. 50µl of each sample was pipetted into the appropriately 

labeled tubes. 200µl of 125I-Anti-PRL-Ab was pipetted to all tubes. All tubes were 

vortexed, mixed, covered and incubated for 2 hour at 37°C.  Fluid was decanted from all 

tubes except the total and blot on an absorbent pad. Then all tubes except the total were 

washed two times with 2 ml distilled water. Then the radioactivity of each tube was 

counted (60 sec/tube) using a γ counter (STRATEC Biomedical Systems, Birkenfeld, 

Germany). The average count of each set of duplicate tubes was calculated. A standard 

curve was generated and used for the calculation of the final concentration per tube value 

of the samples. 
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2.8. Cytokine Analysis 

2.8.1. Sample collection 

Immediately after delivery, 5 mL of maternal, placental and cord blood was collected 

(using the biopsy-pool method for the placental cytokine analysis). Briefly, a block of 

tissue (5 cm × 5 cm × 5 cm) was excised from the basal side of the placenta, resulting in 

the formation of a large pool of intervillous blood at the excision site.  Blood was quickly 

withdrawn in plain tube and centrifuged and kept at -20 until processed in the laboratory 

for cytokines. 

 

2.8.2. Cytokines measurement 

Sera samples obtained at delivery were analyzed by standard sandwich enzyme-linked 

immunosorbent assay (ELISA) for interferon gamma (IFN-γ), interleukin-4 (IL-4) and 

interleukin-10 (IL-10) using pairs of cytokine-specific, monoclonal antibodies according 

to the manufacturer’s instructions (eBioscience, Germany).  

In brief NUNC Maxisorp flat bottom 96 well ELISA plates were coated with 100 µl/well 

of capture antibody in Coating Buffer (Coating Buffer is a dried powder formulation of 

phosphate buffered saline (PBS) reconstituted in 1 Liter of distilled, deionized water). 

Capture antibody used was pretitrated, purified antibody: for IFN-γ clone NIB42, for IL-4 

clone 8D4-8, for IL-10 clone JES3-9D7. 

Plates were sealed and incubated overnight at 4°C; the wells were washed five times with 

>250 µl/well washing buffer (Washing Buffer is a dried powder formulation of phosphate 

buffered saline with 0.05% Tween-20 reconstituted in 1 Liter of distilled, deionized 

water). Unoccupied binding sites on the plates were blocked by 200 µl/well of 1X Assay 

Diluent, incubated at room temperature for 1 hour, then again the wells washed five 

times. Standards were diluted using 1X Assay Diluent and 100 µl/well of standard were 

added to the appropriate wells. Two-fold serial dilutions were performed of the top 

standards to make the standard curve. 100 µl/well of sera were added to the appropriate 
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wells and incubated over night at 4°C. After five washes, the wells were incubated for 

one hour at room temperature with 100 µl/well of detection antibody diluted in 1X Assay 

Diluent. 

Detection Antibody used was pretitrated biotin conjugated antibody: clone 4S.B3 for 

IFN-γ, clone MP4-25D2 for IL-4 and clones JES3-12G8 for IL-10. 

The plates were then washed again and incubated for 30 minutes with 100 µl/well of  

Avidin-HRP (Avidin-horseradish peroxidase) diluted in 1X Assay Diluent. After another 

washing cycle (5 times) 100 µl/well of Substrate Solution (Tetramethylbenzidine (TMB)) 

were added to each well and incubated at room temperature for 15 minutes. The reaction 

was stopped by the addition of 50 µl of stop solution (1M H3PO4 or 2N H2SO4) to each 

well. The optical densities were measured at 450 nm, using the ELISA reader 

(Labsystems Multiskan MCC/340). All samples were run in duplicates and the mean 

value was used in all analyses.  

For IFN-γ the assay sensitivity was 4 pg/ml and the standard curve range was 4-500 

pg/ml. For IL-4 assay sensitivity was 2 pg/ml, and the standard curve range was 2-200 

pg/ml. For IL-10 assay sensitivity was 2 pg/ml, and the standard curve range was 2-300 

pg/ml. 

 

2.9. Statistics 

Data were entered in computer using SPSS for windows and double-checked before 

analysis. Data were checked for normality. For the endocrine phase of the study 

conducted in Wad Madni, cortisol data were normally distributed and student t-test was 

used for comparing the mean (SD). Cytokines and prolactin were found to be not 

normally distributed; Mann-Whitney U test was used to determine the significance of 

differences between the infected and non-infected groups. Correlations between 

continuous variables were assessed by the Spearman rank test.  P < 0.05 was regarded as 

significant. 



 40

For the second phase studying cytokine profile conducted in New Halfa, data (cytokines) 

were not normally distributed; Mann-Whitney U test (2-group comparisons) or Kruskal-

Wallis (> 2-group comparisons) tests were used to determine the significance of 

differences between the variables. Post hoc test for multiple means comparisons was used 

for multivariate analysis. Correlations between continuous variables were assessed by the 

Spearman rank test.  P < 0.05 was regarded as significant. 
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CHAPTER THREE 

RESULTS 

 

In the case control part of the study carried out in Wad Medani to asses the role of the 

interactions between hormones and cytokines in pathogenesis of Plasmodium falciparum 

malaria during pregnancy 45 pregnant women with uncomplicated, Plasmodium 

falciparum malaria (18 of them primigravidae) and 37 similar but apparently uninfected 

pregnant controls were enrolled (Table 3.1). The costs of the assay kits precluded the 

enrollment of one control for each case. Parasitaemias in the cases ranged from 1760 to 

29,629 asexual stages/ml. The mean (S.D.) serum concentration of cortisol in the infected 

cases was significantly higher than that in the uninfected controls [439.4 (172.0) v. 318.2 

(210.3) ng/ml; P=0.005] (figure 3.1). The cases also had significantly lower prolactin and 

IFN-γ levels and significantly higher IL-10 levels than the controls, although the cases 

and controls were similar in terms of their IL-4 concentrations (Table 3.2). 

Among the cases, all the assay results for the primigravidae were similar to those for the 

multigravidae, not only in terms of the mean (S.D.) cortisol concentrations [383.8 (146.9) 

v. 458.0 (183.7) ng/ml; P>0.05] but also in terms of the median prolactin and cytokine 

concentrations (Table 3.3). 

Also among the cases, there were significant positive correlations between the cortisol 

and IL-10 concentrations (r=0.188; P=0.025) (figure 3.2) and significant negative 

correlations between prolactin and both IL-4 (r=20.175; P=0.038) and IL-10 (r=20.186; 

P=0.027). There were, however, no significant correlations between cortisol and 

prolactin, IL-4 or IFN- γ, or between prolactin and IFN- γ. There were also significant 

positive correlations, among the cases, between IL-10 and IL-4 concentrations (r=0.374; 

P<0.001) and between IFN- γ and IL-4 concentrations (r=0.687; P<0.001), although the 

IL-10 and IFN- γ concentrations of the cases did not appear to be correlated.  
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In the cross-sectional part conducted in New Halfa to investigate the cytokine profiles in 

peripheral, placental and cord blood in parturient women of eastern Sudan, triplet 

samples, maternal peripheral, placenta and cord sera were analyzed in 87 parturient 

women. While 53 women had past placental malaria infections, 34 showed no infections, 

according to placental histopathological examinations. 33, 54 were primigravidae and 

multigravidae, respectively. 

Table 3.4 and table 3.5 show the concentrations of IFN-γ, IL-4 and IL10 in the 

peripheral, placental and cord sera from all the recruited women. Cord sera contained 

significantly less concentrations of these cytokines than the peripheral and placental sera.  

The difference was not significant when the peripheral and placental sera concentrations 

were compared.  

When comparisons were made according to the parity, similar pattern was observed. The 

levels of these cytokines were not different when the primigravidae were compared to 

multigravidae. The same findings were observed (no difference between the cytokines 

levels between primigravidae and multigravidae) when data of the infected women were 

analyzed separately.  

Strong positive correlations were observed between peripheral and placental r= 0.89, P < 

0.000 (figure 3.3), and the cord r=0.82, P < 0.000(figure 3.4) and between the placental 

and the cord r =0.66 P< 0.000 IFN-γ (figure 3.5). Likewise strong positive correlations 

were observed between peripheral and placental r=0.82, P < 0.000 IL-4 (figure 3.6) and 

IL-10, r= 0.15, P< 0.000 (figure 3.7).  

There was no correlation between peripheral and cord r= 0.2, P= 0.06 or placental and 

cord, r =0.13, P = 0.2 IL-4. This was true with to regard peripheral and cord r= 0.12, P = 

0.2 or placental and cord, r= 0.1, P =0.3 IL-10. The same findings were observed when 

the data of infected women were analyzed separately.  
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Table 3.1: The baseline characteristics of the 82 pregnant women with and without 

Plasmodium falciparum malaria who provided blood samples. 

 
 

Variables Women with malarial 

infection 

(the cases) 

Women without malarial 

infection  

(the controls) 

 

P 

No. of subjects 45 37  

Mean value and SD for:  

Age, years 26.8(6.9) 26.1(6.7) 0.6 

Gravidity 3.1(3.5) 2.5(2.4) 0.4 

Gestational age, weeks 29.5(8.6) 27.7(9.7) 0.5 

Weight, kg 65.4(6.6) 67. 6(11.2) 0.3 

Haemoglobin, g/dl 10.2 (1.0) 10.8(0.9) 0.6 
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Table 3.2: The cytokine and prolactin concentrations detected in the sera of the 82 

pregnant women with and without Plasmodium falciparum malaria who provided blood 

samples. 

 

Median concentration and (interquartile range) 

 

 Variable  

 

Women with malarial 

infection  

(the cases) 

Women without malarial 

infection  

(the controls) 

 

P 

IFN-γ (pg/ml) 

 

150.5(142.4-412.2 ) 311.5 (66.1-608.1) 0.016 

IL-4 (pg/ml) 49.0 (19.1-74.5) 45.3(40.3-60.0) 0.856 

IL-10 (pg/ml) 506.2 (252.0-1435.2) 39.8 (10.0-112.7) <0.001

Prolactin (mU/litre) 

 

5365.0(4362.0-7730.0) 7130.0 (5244.0-  9322.5 ) 0.02 
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Table 3.3: The cytokine and prolactin concentrations detected in the sera of the 18 

primigravidae and 27 multigravidae with Plasmodium falciparum malaria who provided 

blood samples. 

 
 

 
 
 
 

Median concentration and (interquartile range) 

 

 Variable  

 

Primigravidae 

 

Multigravidae 

 

P 

IFN-γ (pg/ml) 

 

73.0 (72.6–168.4)  

 

78.3 (41.7–122.4)  0.3 

IL-4 (pg/ml) 43.7 (33.5–75.1)  

 

57.9 (15.0–76.6)  0.9 

IL-10 (pg/ml) 129.4 (52.1–270.2)  

 

72.5 (33.1–107.1)  0.1 

Prolactin (mU/litre) 

 

5175.0 (4817.6–8008.7)  

 

5480.0 (4343.7–7848.7)  0.9 
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Table 3.4: The median (interquartile range) of sera cytokine levels in infected (n = 53) 

and uninfected (n = 34) parturient Sudanese women. 

 

 
 
 
 

Cytokines, pg/ml  

 

Mother Placenta Cord P 

IFN-γ   

         Total 

          infected 

         non-infected 

       P  

 

261.2(169.6-461.7) 

215.4(112.3-  375.8 ) 

358.6 (201.1-662.4) 

0.01 

 

249.8(169.6-  388.6 ) 

226.8 (135.2-  387.2 )

278.4 (203.9-  470.2 )

0.04 

 

123.8(66.5-192.5) 

123.8(80.8-224.0) 

89.4(32.1-  169.6 ) 

0.03 

 

0.02 

0.03 

<0.000 

IL-4  

          Total 

          infected 

         non-infected 

        P  

 

25.0(15.6-41.0) 

22.3(10.3-30.3) 

41.0(23.6-82.0) 

<0.000 

 

26.3(15.6-  39.6 ) 

21.0(11.6-34.3) 

33.0 (25.0-62.9) 

0.002 

 

5.0(1.0-13.4) 

5.7(2.6-13.0) 

5.0 (5.0-16.0) 

0.4 

 

<0.000 

<0.000 

<0.000 

IL-10 

         Total 

          infected 

         non-infected 

     P  

 

121.4(82.3-  254.3 ) 

109.7 (74.5-207.4) 

162.4 (97.0-  469.1 ) 

0.008 

 

 

148.7(86.2-  276.3 ) 

121.4(78.4-211.3) 

203.5 (110.6-  367.6 )

0.01 

 

54.9(34.4-  101.8 ) 

60.8 (36.4-106.2) 

54.2 (27.6-  86.2 ) 

0.3 

 

<0.000 

<0.000 

0.1 
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 Table 3.5: The median (interquartile range) of sera cytokine levels in primigravidae (n = 

33) and multigravidae (n = 54) parturient Sudanese women. 

 

 

 

 

Cytokines, 

pg/ml  

 

Mother Placenta Cord P 

IFN-γ   

        

Primigravidae      

Multigravidae      

P  

 

238.3(175.3-438.7) 

278.4 (146.7-467.4) 

0.6 

 

272.7 (140.9-387.2) 

249.8(181.0-415.8) 

0.2 

 

152.4(89.4-218.3) 

100.9(49.3-165.2) 

0.6 

 

0.04 

0.03 

 

IL-4                      

Primigravidae 

Multigravidae      

P  

 

23.0 (16.3-35.6) 

 26.3(13.6-48.0) 

0.6 

 

23.6(12.3-37.6) 

27.6 (17.3-43.0 

0.2 

 

5.0 (1.0-9.6) 

6.3 (1.0-17.0) 

0.5 

 

<0.000 

<0.000 

IL-10 

Primigravidae      

Multigravidae   

        P  

 

125.3 (84.2-271.1) 

119.4 (82.3-240.7) 

0.6 

 

 

172.2(86.2-334.4) 

137.0(85.2-234.7) 

0.6 

 

54.9(45.2-113.6) 

54.9(27.6-96.0) 

0.1 

 

<0.000 

0.0002 
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Figure 3.1: The mean (S.D.) sera concentrations of cortisol in the infected cases were 

significantly higher than that in the uninfected controls [439.4 (172.0) v. 318.2 (210.3) 

ng/ml; P=0.005]. 
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Figure 3.2: Among cases there were significant positive correlations between the cortisol 

and IL-10 concentrations (r=0.188; P=0.025). 
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Figure 3.3: There were strong positive correlations between peripheral and placental 

IFN-γ concentrations r= 0.89, P < 0.000. 
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Figure 3.4: There were strong positive correlations between peripheral and cord IFN-γ 

concentrations r=0.82, P < 0.000. 
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Figure 3.5: There were strong positive correlations between cord and placental IFN-γ 

concentrations r =0.66 P< 0.000. 
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Figure 3.6: There were strong positive correlations between peripheral and placental IL-

4 concentrations r=0.82, P < 0.000. 
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Figure 3.7: There were strong positive correlations between peripheral and placental IL-

10 concentrations r= 0.15, P< 0.000. 

 

 

Pe
ri

ph
er

al
 IL

-1
0 

co
nc

en
tr

at
io

ns
 



 55

CHAPTER FOUR 

DISCUSSION  

 

Effective immune responses against pathogens are sometimes associated with strong 

inflammatory reactions. To minimize damage to self, the activation of the immune 

system also triggers anti-inflammatory events. Both inflammatory and anti-inflammatory 

reactions are normal constituents of the same immune response, which coordinately fight 

infections while preventing immune pathology. 

Pregnancy is an immunological balancing state in which the mother's immune system has 

to remain tolerant to the foetus in addition to maintain immune competence for defense 

against microorganisms (208). A complex network of hormones, cytokines and cells at 

the foeto–maternal interface is suggested to act collectively to maintain pregnancy. It has 

been proved that cytokines play a very important role in the maintenance of pregnancy by 

modulating immune and endocrine systems (97). In malaria, extensive evidence supports 

a role for cytokines in both protection from, and immunopathology of, different stages of 

infection (136). Moreover, malaria infections during pregnancy appear to cause 

significant alterations in the pattern of cytokine synthesis especially in primigravidae 

(51). 

The current study was conducted to asses the role of — and the interactions between — 

cortisol, prolactin, IFN-γ, IL-4 and IL-10 in the pathogenesis of malaria during 

pregnancy, and to investigate the cytokine profiles in peripheral, placental and cord blood 

in parturient women in an area characterized by unstable malarial transmission in eastern 

Sudan. 

The main findings of the assessment of the role of — and the interactions between — 

cortisol, prolactin, IFN-γ, IL-4 and IL-10 in the pathogenesis of malaria during 

pregnancy, were the significant differences, in the levels of both hormones investigated 

and IFN-γ and IL-10 (but not IL-4), observed between the pregnant women with 
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uncomplicated malaria and their uninfected counterparts. In terms of the hormones and 

cytokines investigated, the infected primigravidae were very similar to the infected 

multigravidae. Among the infected pregnant women, there were significant correlations 

between the IL-10 concentrations and both cortisol and prolactin concentrations.  

The study of cytokine profile in New Halfa resulted in that, IFN-γ, IL-4 and IL-10 

concentrations (mainly peripheral and placental) were higher in uninfected women than 

in the infected women. There were no differences in the levels of these cytokines in 

primigravidae and multigravidae. Furthermore, cord sera had lower levels of these 

cytokines in comparison to sera from placenta and maternal peripheral blood. 

During pregnancy cortisol and prolactin concentrations increased regardless of parity 

(182). It has been reported that prolactin concentrations did not differ in Plasmodium 

falciparum–positive and –negative pregnant women (182,189,196) or between infected 

and noninfected primigravidas and multigravidas (189). In contrary to the previous 

findings, we found that prolactin concentrations were lower in pregnant women with 

Plasmodium falciparum malaria than uninfected ones. Our results are in agreement with 

previous studies reporting that there was no significant difference in prolactin levels 

between infected and noninfected primigravidas and multigravidas (189). The 

observation that pregnant women with Plasmodium falciparum malaria have higher 

serum levels of cortisol than their uninfected counterparts has been made several times 

(183,188,209). In contrast Adam I, et al. reported that there was no significant difference 

in cortisol levels between pregnant women with Plasmodium falciparum malaria and 

their uninfected counterparts (189). It has been reported that serum cortisol has a role in 

the regulation of malaria immunity during pregnancy. It suppresses cellular immune 

reactivity to prevent destruction of the fetal implant, in addition to creating the possibility 

for the maternal immune system to reinforce or to induce other immune reactions such as 

humoral responses (188).  

In malaria-endemic areas, it might be expected that multigravidae, who have experienced 

previous foeto–maternal interactions and have, on average, presumably been more 

exposed to Plasmodium falciparum than the generally younger primigravidae in the same 
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area, would portray have different hormonal and cytokine pictures to those of the 

primigravidae. This difference would be a result of both immune cell priming, especially 

against malarial parasites, and the development of antibodies against the adhesion 

molecules that are responsible for the placental sequestration of malarial parasites (210). 

Moreover, the discrete pattern of cytokines seen in primigravidas may be the result of 

more frequent parasitaemia or could represent cellular responses occurring in the absence 

of established acquired immunity (50). So far, however, only Vleugels et al. (1986) have 

reported significantly higher cortisol levels in primigravidae with malaria than in 

multigravidae with the same disease (209).   

Such gravidity-related differences may be related to the level of malarial endemicity in 

the area. In eastern Sudan, and possibly in other areas where malarial transmission is 

unstable, the epidemiology and pathogenesis of malaria during pregnancy appears the 

same, irrespective of parity (20,189). The pregnant women in this region appear to be 

particularly susceptible to Plasmodium falciparum malaria, irrespective of their age and 

parity (19), and may even develop severe forms of the disease, such as cerebral malaria 

(25). In the present study, the relatively high serum level of cortisol and relatively low 

serum level of prolactin seen in the infected women, and the correlation of the 

concentrations of both of these hormones with that of IL-10, indicate the effects of an 

integrated hypothalamus–pituitary–adrenal axis in these subjects. Activation of this axis 

in malaria may be the result of the release of cytokines and/or the stress generated by the 

disease itself. Moreover, it has been reported that cytokine concentrations are associated 

with the basal and peak levels of some hormones (211). As discussed above, both cortisol 

and prolactin appear to modulate the immune system and influence the activity of NK 

cells (196,212,213). Several cytokines have been reported to influence endocrine 

functions and, in malaria, serum concentrations of some cytokines are generally raised 

(135,204,214,215). In addition, IL-10 production is up-regulated by prolactin (216), 

perhaps via the activation of lymphocytes and macrophages (217). During malaria, it is 

difficult to determine accurately when circulating IL-10 becomes detectable, and 

cytokine secretion may be abrupt or gradual, sometimes preceding the onset of clinical 

manifestations (136). The low levels of IL-4 may be due to that IL-4 is a very potent 

cytokine that is secreted in small amounts relative to other cytokines. In addition, it is 
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subjected to high in vitro consumption due to a wide distribution of IL-4 receptors on 

different cell types and is therefore, hard to detect (218). Based on all these findings, we 

could suggest a hormone-cytokine network at foeto–maternal interface that could interact 

with the other immune arms and associated with better pregnancy outcomes. 

The high levels of IFN-γ, IL-4 and IL-10 in sera of uninfected women in New Halfa, 

might suggest that these cytokines are involved in the control of parasitaemia in 

peripheral blood and in placenta. The low amounts of these cytokines found in 

Plasmodium falciparum-infected women further supports this idea. It has been reported 

that Th1 cells produce high levels of IFN-γ as a result of their activation in the presence 

of IL-12. Th1 cells are important effectors involved in the eradication of infectious 

pathogens, but its inappropriate activation can lead to immunopathology. On the contrary, 

IL-4 induces the development Th2 cells, which have been implicated in humoral immune 

responses and the eradication of helminths, but they may also result in inflammatory 

damage during allergic manifestations and atopy. It has been suggested that Th2 cells by 

their production of anti-inflammatory cytokines, such as IL-4 and IL-10, contribute to the 

protection of tissues and organs from autoimmune attack.  This regulation is found to be 

achieved by alternative subsets of regulatory T cells by the production of TGF-β, which 

is able to inhibit both the development of Th1 and Th2 responses. Conclusively, IFN-γ 

and IL-4 are typical cytokines produced by Th1 and Th2 cells, respectively, and suppress 

the differentiation of Th2 and Th1, respectively (218-220). Our findings clearly 

counteracting the general opinion that IL-4 suppresses IFN-γ production. Nevertheless, it 

should be noted that several studies have previously reported results that are consistent 

with our findings. IL-4 seems to play a pro-inflammatory role in flare-up reactions of 

chronic arthritis. And it has been reported that treatment with anti-IL-4 was even more 

effective in blocking joint swelling and cell influx (157). Moreover, Ramanathan et al. 

demonstrated that IL-4 can induce the production of IFN-γ and of inflammatory cytokines 

under certain conditions, and illustrated that IL-4 can exert a dose-dependent differential 

effect on the induction of immune responses and on autoimmunity in experimental 

autoimmune uveoretinitis (221). Additionally, the protective antifungal responses of IL-4 

induced by CD4+ Th1 in Candida albicans infections has been proved, possibly through 

the combined activity on cells of the innate and adaptive immune systems (222).  
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Our finding of higher peripheral blood IL-10 levels in Plasmodium falciparum-infected 

mothers is in agreement to the previous recent observations (223). IL-10 characterizes 

normal human pregnancy and is thought to prevent inflammatory responses that might 

damage the integrity of the materno-fetal placental barrier (50,93). During placental 

malaria, despite the placental shift toward Th1-type cytokines, IL-10 concentrations are 

elevated compared with healthy placentas (117). IL-10 has a major role in controlling 

inflammatory responses and preventing materno-fetal placental barrier damages 

(50,51,117). 

During pregnancy the enhanced IL-10 and IL-4 expression, perhaps in concert with other 

anti-inflammatory immunomodulatory cytokines, curtails the potentially hazardous 

effects of Th1-related cytokine production on systemic immunity during pregnancy, thus 

ensuring the retention of the fetal allograft (224). Perhaps, IL-4 blocks NK activity of the 

decidua which may have potentially deleterious effect on the fetus like thrombosis, 

inflammation, and abortion (225). Furthermore, an anti-inflammatory cytokine 

environment is thought to be maintained during pregnancy, in part, by high progesterone 

levels, which induce Th0 to Th2 conversion (93,226).   

In the present study, in Wad Madni, the serum concentrations of IFN-γ were lower in the 

infected women than in the uninfected controls (although, in the infected women, the 

IFN-γ concentrations were not correlated with those of cortisol or prolactin). Previously, 

IFN-γ has been associated with protection from malaria, with impaired IFN-γ production 

mooted as a cause for increased susceptibility to placental malaria (116). Although 

Rogerson et al. (2003) (227) found no detectable IFN-γ in placental biopsy specimens 

from Malawian primigravidae, IFN-γ was found in about 40% of placental plasma 

samples collected in neighboring Kenya, being associated with malarial infection and 

poor foetal outcome (51). The contrasting results of these two studies may again reflect 

differences in malarial endemicity in the study areas. The malarial infections investigated 

in the later study were current/ acute, not the chronic or past infections often revealed by 

placental histopathology.  
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Likewise, high levels of IL-12 have been reported in uninfected women (228). However, 

these studies should be compared cautiously, because of the difference in the endemicity. 

Furthermore, in the later study malaria infections were diagnosed by microscopy (current 

infections), while in our study the placental histopathology was the tool used to diagnose 

malaria placental infections and these were past infection. 

The influence of endemicity on the results of our study is obvious as there were no 

significant differences in the levels of these cytokines between the primigravidae and 

multigravidae. Thus, in this area of eastern Sudan, the pathogenesis of malaria is the 

same irrespective to the parity. Previously we have observed that, pregnant women of 

eastern Sudan are susceptible to peripheral malaria as well as placental malaria 

irrespective to their age and parity (19,20). 

Yet, gravidity-based differences in cytokine responses to malaria have been proposed to 

explain the difference in susceptibility to malaria between primigravidae and 

multigravidae women (116). 

In contrast to the previous findings (228), our study showed that, cord sera had the lower 

cytokines levels. This might support the previous assumption, that because we 

investigated these cytokines in past malaria infections mainly. Yet, we investigated IFN-

γ, IL-4 and IL-10, while the former study investigated IL-12 and IL-15 and the difference 

in their passage through placental barrier and neonatal antigenicity may be varied in 

various cytokines. Moreover, the fact that the blood within the umbilical cord is rich in 

primitive, undifferentiated stem cells may also clarify our results. 

Unlike Bouyou-Akotet et al. reports (228), we found strong positive correlations between 

the peripheral and placenta sera concentrations of cytokines, suggesting that anti-malaria 

immune responses occurring in the placenta are influenced by the cytokines from 

mother’s blood, and that the immune response during Plasmodium  falciparum infection 

is not different  in the peripheral and placental compartments.  
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4.1. Conclusions 

In conclusion, it appears that, irrespective of parity, cortisol, prolactin and certain 

cytokines are key mediators in the host response to Plasmodium falciparum infection 

during pregnancy in women living in central Sudan, where malarial transmission is 

unstable. It remains possible, however, that the hormonal and cytokine perturbations seen 

in the infected pregnant women living in this region are simply the result of malarial 

infection, and not factors in the etiology of the malaria.  

In eastern Sudan, the patterns of the immune responses that occur in placental, peripheral 

and cord blood were influenced by the malaria infections, irrespective to the parity. IFN-

γ, IL-4 and IL10 are key mediators in the host response to Plasmodium falciparum 

infection during pregnancy in women living in unstable malaria transmission. Immune 

response during Plasmodium falciparum infection is not different in the peripheral and 

placental compartments.  

4.2. Recommendation 

• The strong correlation between the peripheral and placental sera concentrations of 

cytokines, need further biochemical explanation.  

• Study of the antibody classes and if possible subclasses. 

• Study of the effect of the ethnic background on the cytokine profile. 

• The very complex nature of malaria during pregnancy needs further research to be 

elucidated. 
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Abstract 

Background: understanding the cytokine interactions that underlie both control and 

disease should be helpful when investigating the pathogenesis of malaria during 

pregnancy, as the levels of some cytokine are associated with poor pregnancy outcomes. 

Aim: the study aimed to investigate the cytokine profiles in peripheral, placental and cord 

blood in parturient women of eastern Sudan, which is characterized by unstable malaria 

transmission. 

Methods: enzyme-linked immunosorbent assay was used to measure the concentrations 

of three pro-inflammatory cytokines, interferon gamma (IFN-γ), interleukin-4 (IL-4) and 

interleukin-10 (IL-10), in sera from peripheral, placental and cord blood of eighty- seven 

Sudanese women. 
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Results: the concentrations of these cytokines were significantly higher in peripheral, 

placental sera from uninfected women than in sera from infected women. IFN-γ 

concentrations were higher in the cord sera from uninfected women in comparison to the 

infected ones too. The levels of these cytokines were not significantly different between 

the primiparae and multipare. Cord sera in all the groups had the lower levels of these 

cytokines. Strong positive correlations were observed between peripheral and placental 

cytokines.  

Conclusion: the immune responses that occur in placental, peripheral and cord blood 

were influenced by the malaria infections, irrespective of the parity. Immune response 

during P. falciparum infection is not different in the peripheral and placental 

compartments, further studies are required. 

 

Introduction 

It has been estimated that 90% of the global malaria burden occurs in Sub-Saharan 

Africa, where during pregnancy 40% women are exposed to malaria infections [1]. 

Malaria during pregnancy poses a substantial risk to the mother, her fetus and the neonate 

[2]. Malaria during pregnancy is a major health problem in Sudan, where it has been 

reported to be associated with maternal anaemia, low birth weight infants and as the main 

cause of maternal mortality [3-6].  

During pregnancy, the immune system may be biased toward type 2 humoral defense 

mechanisms rather than towards type 1 cellular responses, this may be fundamental for 

fetal wellbeing [7]. The systemic suppression of pro-inflammatory responses from T 

helper 1 (Th1) cells, i.e., increased circulating levels of IFN-γ and tumor necrosis factor 

α, along with increased local  expression of anti-inflammatory cytokines such as 

interleukin (IL)-4, IL-6, and IL-10, has been reported [8].  

Placental malaria is associated with cell mediated inflammatory responses and alters the 

cytokine balance in favor of Th1 types (i.e., pro-inflammatory) [9, 10]. The placental 
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production of chemokines, may be an important trigger for monocyte accumulation in the 

placenta [11].  Understanding the cytokine interactions that underlie both control and 

disease should be helpful when investigating the pathogenesis of malaria during 

pregnancy. 

The current study was conducted an area that is characterized by unstable malaria 

transmission in eastern Sudan [12], where malaria is substantial burden affecting 

pregnant women irrespective to their age or parity [3]. The study aimed to investigate the 

cytokine profiles in peripheral, placental and cord blood in parturient women so as to add 

to on-going data on the pathogenesis of malaria during pregnancy in the area [13, 14]. 

 

Methods 

Patients 

The study was conducted between October 2006 and March 2007 at the labour ward of 

New Halfa teaching hospital, eastern Sudan. The details of the study design have been 

mentioned elsewhere [14]. In summary, after taking an informed consent, women with a 

singleton baby were approached to participate in the study. Those with antepartum 

haemorrhage, hypertensive disorder of pregnancy (diastolic blood pressure > 90 mm Hg) 

and diabetes mellitus were excluded.  

A structured questionnaire was administered to collect information about socio-

demographic characteristics and parity.  

Haematology.  

Maternal, placental and cord blood films were prepared, the slides were Giemsa stained 

and the number of asexual P. falciparum parasites per 200 white blood cells were counted 

and double checked blindly by an expert microscopist. Maternal haemoglobin 

concentrations were estimated by Hemocue haemoglobinometer (HemoCue AB, 

Angelhom, Sweden).  
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Sample collection 

Immediately after delivery, 5 mL of maternal, placental and cord blood was collected 

using the biopsy-pool method (for the placental) cytokine analysis. Briefly, a block of 

tissue (5 cm × 5 cm × 5 cm) was excised from the basal side of the placenta, resulting in 

the formation of a large pool of intervillous blood at the excision site.  Blood was quickly 

withdrawn in plan tube and centrifuged and kept at -20 until processed in the laboratory 

for cytokines. 

Histopathology 

Full thickness placental blocks of around 2-3 cm were taken from the placentae, kept in 

neutral buffer formalin for histopathology examinations. The presence of placental 

malaria infection was based on the pathological classification of Bulmer et al [15]; 

uninfected (no parasites or pigment), acute (parasites in intervillous spaces), chronic 

(parasites in maternal erythrocytes and pigment in fibrin or cells within fibrin and/or 

chorionic villous syncytiotrophoblast or stroma), past (no parasites and pigment confined 

to fibrin or cells within fibrin). 

Cytokines measurement 

Sera samples obtained at enrollment were analyzed by standard sandwich enzyme-linked 

immunosorbent assay (ELISA) for interferon gamma (IFN-γ), interleukin-4 (IL-4) and 

interleukin-10 (IL-10) using pairs of cytokine-specific, monoclonal antibodies according 

to the manufacturer’s instructions (Bioscincel, Germany). Each plate included a standard 

curve of recombinant human cytokine. All samples were run in duplicates and the mean 

value was used in all analyses.  

 Statistics 

Data were entered in computer using SPSS for windows and double-checked before 

analysis. Data (cytokines) were not normally distributed; Mann-Whitney test U (2-group 

comparisons) or Kruskal-Wallis (> 2-group comparisons) tests were used to determine 

the significance of differences between the variables. Post hoc test for multiple means 
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comparisons was used for multivariate analysis. Correlations between continuous 

variables were assessed by the Spearman rank test.  P < 0.05 was regarded as significant. 

Ethics 

The study received ethical clearance from the Research Board at the Faculty of Medicine, 

University of Khartoum.  

Results 

The triplet samples, maternal peripheral, placenta and cord sera were analyzed in 87 

parturient women. While 53 women had past placental malaria infections, 34 showed no 

infections, according to placental histopathological examinations. 33, 54 were primiparae 

and multipare, respectively. 

Cytokine concentrations differ between peripheral, placental and cord plasma 

Table 1 and table 2 show the concentrations of IFN-γ, IL-4 and IL10 in the peripheral, 

placental and cord sera from all the recruited women. Cord sera contained significantly 

less concentrations of these cytokines than the peripheral and placental sera.  The 

difference was not significant when the peripheral and placental sera concentrations were 

compared.  

When comparisons were made according to the parity, similar pattern was observed. The 

levels of these cytokines were not different when the primiparae were compared to 

multiparae. The same findings were observed (no difference between the cytokines levels 

between primiparae and multipare) when data of the infected women were analyzed 

separately (data not shown). 

Correlation between peripheral, placental and cord plasma concentrations of cytokines 

 Strong positive correlations were observed between peripheral and placental r= 0.89, P < 

0.000, and the cord r=0.82, P < 0.000 and between the placental and the cord, r =0.66 P< 

0.000 IFN-γ. Likewise strong positive correlations were observed between peripheral and 

placental r=0.82, P < 0.000 IL-4 and IL-10, r= 0.15, P< 0.000.  
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There was no correlation between peripheral and cord r= 0.2, P= 0.06 or placental and 

cord, r=0.13, P= 0.2 IL-4. This was true with to regard peripheral and cord r= 0.12, 

P=0.2 or placental and cord, r=0.1, P=0.3 IL-10. The same findings were observed when 

the data of infected women were analyzed separately (data not shown).  

 

Discussion 

 In the current study, IFN-γ, IL-4 and IL-10 concentrations (mainly peripheral and 

placental) were higher in uninfected women than in the infected women. There were no 

differences in the levels of these cytokines in primiparae than in multipare.  Furthermore, 

cord sera had lower levels of these cytokines in comparison to sera from placenta and 

maternal peripheral blood. The high levels of these cytokines in sera of uninfected 

women, might suggest that these cytokines are involved in the control of parasitemia in 

peripheral blood and in placenta. The low amounts of these cytokines found in P. 

falciparum-infected women further supports this idea. The anti-inflammatory cytokine 

environment is thought to be maintained, in part, by the high progesterone levels in 

pregnancy, which induces both Th0 to Th2 conversion [16].  

 IFN-γ production by intervillous blood cells was associated with protection from 

malaria, and impaired IFN-γ production was mooted as a cause for the increased 

susceptibility to placental malaria [17]. In consistence with our previous findings, 

malaria-infected placentas had higher IFN-γ levels than did uninfected placentas [18]. In 

contrary, Moorman et al. found no detectable IFN-γ in placental biopsy specimens from 

primigravid specimens from Malawian women [19]. Differences in IFN-γ responses to 

malaria infection during pregnancy were reported between different African settings. In 

Neighboring Kenya IFN-γ levels were found in about 40% of placental plasma samples 

and were associated with malaria infection and poor fetal outcome [20]. 

The enhanced IL-4 and IL -10 expression, perhaps in concert with other anti-

inflammatory immunomodulatory cytokines, curtails the potentially hazardous effects of 

Th1-related cytokine production on systemic immunity during pregnancy, thus ensuring 
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the retention of the fetal allograft [21]. Perhaps, IL-4 blocks NK activity of the decidua 

which may have potentially deleterious effect on the fetus like thrombosis, inflammation, 

and abortion [22]. 

Our finding of higher peripheral blood IL-10 levels in P. falciparum-infected mothers is 

in contrast to the previous recent observations [23]. IL-10 characterizes normal human 

pregnancy and is thought to prevent inflammatory responses that might damage the 

integrity of the materno-fetal placental barrier [20, 24]. During placental malaria, despite 

the placental shift toward Th1-type cytokines, IL-10 concentrations are elevated 

compared with healthy placentas [25].  IL-10 has a major role in controlling 

inflammatory responses and preventing materno-fetal placental barrier damages 

[9,19,25]. 

Likewise, high levels of IL-12 have been reported in uninfected women [26]. However, 

these studies should be compared cautiously, because of the difference in the endemicity. 

Furthermore, in the later study malaria infections were diagnosed by microscopy (current 

infections), while in our study the placental histopathology was the tool used to diagnose 

malaria placental infections and these were past infection. 

The influence of endemicity on the results of our study is obvious as there were no 

significant differences in the levels of these cytokines between the primiparae and 

multiparae.  Thus, in this area of eastern Sudan, the pathogenesis of malaria is the same 

irrespective to the parity. Previously we have observed that, pregnant women of eastern 

Sudan are susceptible to peripheral malaria as well as placental malaria irrespective to 

their age and parity [3,14].  

Yet, gravidity-based differences in cytokine responses to malaria have been proposed to 

explain the difference in susceptibility to malaria between primigravid and multigravid 

women [17].  

In contrast to the previous findings [26], our study showed that, cord sera had the lower 

cytokines levels. This might support the previous assumption, that because we 

investigated these cytokines in past malaria infections mainly. Yet, we investigated IFN-
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γ, IL-4 and IL-10, while the former study investigated IL-12 and IL -15 and the 

difference  in their passage through placental barrier and neonatal antigenicity may be 

varied in various cytokines.  

Unlike Bouyou-Akotet et al., reports [26], we found strong positive correlations between 

the peripheral and placenta sera concentrations of cytokines, suggesting that anti-malaria 

immune responses occurring in the placenta are influenced by the cytokines from 

mother’s blood, and that the immune response during P. falciparum infection is not 

different  in the peripheral and placental compartments.  

Conclusions: the patterns of the immune responses that occur in placental, peripheral and 

cord blood were influenced by the malaria infections, irrespective to the parity. IFN-γ,  

IL-4 and IL10 are key mediators in the host response to P. falciparum infection during 

pregnancy in women living unstable malaria transmission. Immune response during P. 

falciparum infection is not different in the peripheral and placental compartments, further 

studies are required. 
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Table 1 The median (interquartile range) of plasma cytokine levels in infected (n = 53) 

and uninfected (n = 34) parturient Sudanese women 

 

Cytokines, pg/ml  

 

Mother Placenta Cord P 

IFN-γ   

         Total 

          infected 

         non-infected 

       P  

 

 261.2(169.6-461.7) 

215.4(112.3-  375.8 ) 

358.6 (201.1-662.4) 

0.01 

 

249.8(169.6-  388.6 ) 

226.8 (135.2-  387.2 ) 

278.4 (203.9-  470.2 ) 

0.04 

 

123.8(66.5-192.5) 

123.8(80.8-224.0) 

89.4(32.1-  169.6 ) 

0.03 

 

0.02 

0.03 

<0.000 

IL4  

          Total 

          infected 

         non-infected 

        P  

 

25.0(15.6-41.0) 

22.3(10.3-30.3) 

41.0(23.6-82.0) 

<0.000 

 

26.3(15.6-  39.6 ) 

21.0(11.6-34.3) 

33.0 (25.0-62.9) 

0.002 

 

5.0(1.0-13.4) 

5.7(2.6-13.0) 

5.0 (5.0-16.0) 

0.4 

 

<0.000 

<0.000 

<0.000 

IL10 

         Total 

          infected 

         non-infected 

     P  

 

121.4(82.3-  254.3 ) 

109.7 (74.5-207.4) 

162.4 (97.0-  469.1 ) 

0.008 

 

 

148.7(86.2-  276.3 ) 

121.4(78.4-211.3) 

203.5 (110.6-  367.6 ) 

0.01 

 

54.9(34.4-  101.8 ) 

60.8 (36.4-106.2) 

54.2 (27.6-  86.2 ) 

0.3 

 

<0.000 

<0.000 

0.1 
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Table 2 The median (interquartile range) of plasma cytokine levels in primiparae (n = 33) 

and multipare (n = 54) parturient Sudanese women 

 

Cytokines, 

pg/ml  

 

Mother Placenta Cord P 

IFN-γ   

        Primipare     

        multipare 

        P  

 

238.3(175.3-438.7) 

278.4 (146.7-467.4) 

0.6 

 

272.7 (140.9-387.2) 

249.8(181.0-415.8) 

0.2 

 

152.4(89.4-218.3) 

100.9(49.3-165.2) 

0.6 

 

0.04 

0.03 

 

IL4                      

        Primipare     

        multipare 

        P  

 

23.0 (16.3-35.6) 

 26.3(13.6-48.0) 

0.6 

 

23.6(12.3-37.6) 

27.6 (17.3-43.0 

0.2 

 

5.0 (1.0-9.6) 

6.3 (1.0-17.0) 

0.5 

 

<0.000 

<0.000 

IL10 

          Primipare   

        multipare 

        P  

 

125.3 (84.2-271.1) 

119.4 (82.3-240.7) 

0.6 

 

 

172.2(86.2-334.4) 

137.0(85.2-234.7) 

0.6 

 

54.9(45.2-113.6) 

54.9(27.6-96.0) 

0.1 

 

<0.000 

0.0002 
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Abstract 

Understanding the hormonal and cytokine interactions that underlie susceptibility to the 

disease should be helpful in elucidating the pathogenesis of malaria during pregnancy. 

The current study was conducted in the Wad Medani hospital, in an area of central Sudan 

that is characterised by unstable malarial transmission. Its aims were to investigate the 

roles and interactions of cortisol, prolactin, interferon-γ (IFN- γ), interleukin-4 (IL-4) and 

interleukin-10 (IL-10) in pregnant women with Plasmodium falciparum malaria. The 82 

pregnant subjects who were enrolled either had uncomplicated, P. falciparum malaria 

(the 47 cases) or were apparently uninfected and healthy women (the 37 controls) who 

were similar to the cases in terms of their mean age, weight, gravidity, gestational age 

and haemoglobin concentration. Compared with the controls, the cases were found to 

have significantly higher serum concentrations of total cortisol and IL-10 and 

significantly lower levels of prolactin and IFN-γ (but similar concentrations of IL-4). The 

hormone and cytokine concentrations measured in the infected primigravidae were 

similar to those recorded in the infected multigravidae. Among the cases, there was a 

significant positive correlation between serum cortisol and IL-10 (r=0.188; P=0.025) and 

significant negative correlations between prolactin and both IL-4 (r=20.175; P=0.038) 

and IL-10 (r=20.186; P=0.027) but no significant correlation between prolactin and 

cortisol. 
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Introduction 

During pregnancy, immune responses appear to be influenced by P. falciparum 

infections, irrespective of parity. Cortisol, prolactin and some cytokines appear to be key 

mediators in the host response to P. falciparum infection, although further research on 

this subject is clearly needed. It has been estimated that 90% of the global malaria burden 

occurs in sub-Saharan Africa, where, during pregnancy, 40% of women are exposed to 

malarial infection (Steketee et al., 2001). Malaria during pregnancy poses a substantial 

risk not only to the mother but also to her foetus and the neonate (Cot and Deloron, 

2003). Malaria is the major health problem in Sudan, especially among pregnant women, 

who, irrespective of their age and parity, are more susceptible to Plasmodium falciparum 

malaria than their non-pregnant counterparts (Adam et al., 2005). 

Despite its obvious importance, the pathogenesis of human malaria during pregnancy is 

not completely understood. There are indications that changes in the serum 

concentrations of cortisol and prolactin may be associated with the loss of antimalarial 

immunity observed during pregnancy (Vleugels et al., 1989; Bouyou- Akotet et al.,  

2005). Cortisol suppresses the immune system and directly inhibits the activity of natural 

killer (NK) cells whereas prolactin is immunostimulatory and tends to increase the 

activity of NK cells (Gatti et al., 1987; Jara et al., 1991; Bouyou-Akotet et al., 2004). 

Several cytokines have been reported to influence endocrine functions and, in malaria, 

cytokine concentrations are generally elevated (Kern et al., 1989; Jaatella et al., 1991; 

Perlstein et al., 1993; Späth-Schwalbe et al., 1994). 

During pregnancy, the immune system may be biased towards type-2, humoral defence 

mechanisms rather than towards the type-1, cellular responses — a characteristic that 

may be fundamental for foetal wellbeing (Wegmann et al., 1993). The systemic 

suppression of pro-inflammatory responses from T-helper-1 (Th1) cells [with increased 

circulating levels of interferon-c (IFN-γ) and tumour necrosis factor, and increased local 

expression of anti-inflammatory cytokines such as interleukin-4 (IL-4), IL-6 and IL-10] 

has been reported (Raghupathy, 1997). In investigating the pathogenesis of malaria 

during pregnancy, a better understanding of the hormonal and cytokine interactions that 
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underlie both infection control and disease should be helpful. The aims of the current 

study, conducted in a part of Sudan that experiences unstable malarial transmission 

(Malik et al., 2004), were to investigate the cortisol, prolactin, IFN-γ, IL-4 and IL-10 

levels of P. falciparum-infected and uninfected pregnant women, and so add to the results 

of recent, local research on the pathogenesis of malaria during pregnancy (Adam et al., 

2007a, b; Bayoumi et al., 2008). 

SUBJECTS AND METHODS 

The study was conducted, between the October and December of 2007, at the antenatal 

clinic of Wad Medani Teaching Hospital, in central Sudan. Pregnant women with 

singleton babies who presented with uncomplicated, P. falciparum malaria (‘cases’) were 

invited to participate in the study. Other pregnant volunteers who appeared to be healthy 

and uninfected with malarial parasites were used as controls, with the cases and controls 

roughly matched for age, parity, weight, haemoglobin and gestational age. Any woman 

who had antepartum haemorrhage, hypertensive disorder of pregnancy (with a diastolic 

blood pressure .90 mmHg) and/or diabetes mellitus was excluded. 

 After taking witnessed, written, informed consent, relevant data on each subject’s socio–

demographic characteristics and parity were collected in an interview based on a 

structured questionnaire. Thin and thick smears were prepared from fingerprick blood 

samples and Giemsa-stained. The thick smears were used to evaluate malarial 

parasitaemias (asexual stages/ml), by counting the asexual stages against 200 leucocytes 

and assuming each subject had 8000 leucocytes/ml. Parasites were counted twice (once 

each by two microscopists) and the mean count was recorded.  

Maternal haemoglobin concentrations were estimated in a Hemocue haemoglobinometer  

(HemoCue AB, A¨ ngelhom, Sweden). Venous blood (5 ml) was collected from each 

subject, into a plain tube, allowed to clot and then centrifuged so that the serum could be 

collected and kept at 220uC until assayed for cortisol, prolactin, IFN-γ, IL-4 and IL-10. 

The cortisol and prolactin concentrations in each serum sample were evaluated using 

commercial radio- immunoassays (Izotop, Budapest) and a gamma counter (STRATEC 
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Biomedical Systems, Birkenfeld, Germany). Commercial sandwich ELISA (eBioscience, 

San Diego, CA), each based on a pair of cytokine-specific, monoclonal antibodies and 

each using the appropriate recombinant human cytokine as a positive control, were used 

to measure IFN-γ, IL-4 and IL-10 concentrations. All samples were run in duplicate, with 

the mean results used in the statistical analyses. Those performing the hormone and 

cytokine assays were unaware of the case/control status of the donor of each serum 

sample.  

All the data were entered in a computer database, created using the SPSS for Windows 

software package (SPSS Inc., Chicago, IL), and double-checked before analysis. The 

cortisol data were found to be normally distributed and Student’s t-tests were therefore 

used for comparing the mean values for each group of subjects. As the cytokine and 

prolactin concentrations were found to be not normally distributed, their median values 

were compared using Mann– Whitney U-tests. The levels of correlation between the 

continuous variables were assessed using Spearman rank tests. A P-value of <0.05 was 

considered indicative of a statistically significant difference. 

The study received ethical clearance from the Research Board of the University of 

Khartoum’s Faculty of Medicine.  

RESULTS 

During the study period, 45 pregnant women with uncomplicated, P. falciparum malaria 

(18 of them primigravidae) and 37 similar but apparently uninfected pregnant controls 

were enrolled (Table 1). The costs of the assay kits precluded the enrollment of one 

control for each case. Parasitaemias in the cases ranged from 1760 to 29,629 asexual 

stages/µl.  

The mean (S.D.) serum concentration of cortisol in the infected cases was significantly 

higher than that in the uninfected controls [439.4 (172.0) v. 318.2 (210.3) ng/ml; 

P=0.005]. The cases also had significantly lower prolactin and IFN-γ levels and 

significantly higher IL-10 levels than the controls, although the cases and controls were 

similar in terms of their IL-4 concentrations (Table 2).  
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Among the cases, all the assay results for the primigravidae were similar to those for the 

multigravidae, not only in terms of the mean (S.D.) cortisol concentrations [383.8 (146.9) 

v. 458.0 (183.7) ng/ml; P>0.05] but also in terms of the median prolactin and cytokine 

concentrations (Table 3). 

 Also among the cases, there were significant positive correlations between the cortisol 

and IL-10 concentrations (r=0.188; P=0.025) and significant negative correlations 

between prolactin and both IL-4 (r=20.175; P=0.038) and IL-10 (r=20.186; P=0.027). 

There were, however, no significant correlations between cortisol and prolactin, IL-4 or 

IFN-γ, or between prolactin and IFN-γ.  

There were also significant positive correlations, among the cases, between IL-10 and IL-

4 concentrations (r=0.374; P<0.001) and between IFN-γ and IL-4 concentrations 

(r=0.687; P<0.001), although the IL-10 and IFN- γ concentrations of the cases did not 

appear to be correlated.  

DISCUSSION 

The current study was conducted to investigate the role of — and the interactions 

between — cortisol, prolactin, IFN-γ, IL-4 and IL-10 in the pathogenesis of malaria 

during pregnancy, in an area of Sudan characterised by unstable malarial transmission. 

The main findings of the study were the significant differences, in the levels of both 

hormones investigated and IFN-γ and IL-10 (but not IL-4), observed between the 

pregnant women with uncomplicated malaria and their uninfected counterparts. In terms 

of the hormones and cytokines investigated, the infected primigravidae were very similar 

to the infected multigravidae. Among the infected pregnant women, there were 

significant correlations between the IL-10 concentrations and both cortisol and prolactin 

concentrations.  

The observation that pregnant women with P. falciparum malaria have higher serum 

levels of cortisol and lower levels of prolactin than their uninfected  counterparts has 

been made several times (Vleugels et al., 1986, 1987, 1989; Bouyou-Akotet et al., 2005; 

present study). In malaria-endemic areas, it might be expected that multigravidae, who 
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have experienced previous foeto–maternal interactions and have, on average, presumably 

been more exposed to P. falciparum than the generally younger primigravidae in the 

same area, would portray different hormonal and cytokine pictures to those of the 

primigravidae. This difference would be a result of both immune cell priming, especially 

against malarial parasites, and the development of antibodies against the adhesion 

molecules that are responsible for the placental sequestration of malarial parasites 

(O’Neil-Dunne et al., 2001). So far, however, only Vleugels et al. (1986) have reported 

significantly higher cortisol levels in primigravidae with malaria than in multigravidae 

with the same disease. Such gravidity-related differences may be related to the level of 

malarial endemicity in the area. In central Sudan, and possibly in other areas where 

malarial transmission is unstable, the epidemiology and pathogenesis of malaria during 

pregnancy appears the same, irrespective of parity (Adam et al., 2007a, b; Bayoumi et al., 

2008). The pregnant women in this region appear to be particularly susceptible to P. 

falciparum malaria, irrespective of their age and parity (Adam et al., 2005), and may 

even develop severe forms of the disease, such as cerebral malaria (Adam et al., 2004). 

In the present study, the relatively high serum level of cortisol and relatively low serum 

level of prolactin seen in the infected women, and the correlation of the concentrations of 

both of these hormones with that of IL-10, indicate the effects of an integrated 

hypothalamus–pituitary–adrenal axis in these subjects. Activation of this axis in malaria 

may be the result of the release of cytokines and/or the stress generated by the disease 

itself. Cytokine concentrations are associated with the basal and peak levels of some 

hormones (Wilson et al., 2001). As discussed above, both cortisol and prolactin appear to 

modulate the immune system and influence the activity of NK cells (Gatti et al., 1987; 

Jara et al., 1991; Bouyou-Akotet et al., 2004). Several cytokines have been reported to 

influence endocrine functions and, in malaria, serum concentrations of some cytokines 

are generally raised (Kern et al., 1989; Jaatella et al., 1991; Perlstein et al., 1993; Späth-

Schwalbe et al., 1994). In addition, IL-10 production is up-regulated by prolactin (Kim et 

al., 2003), perhaps via the activation of lymphocytes and macrophages (Matalka, 2003). 

During pregnancy, the enhanced expression of cytokines such as IL-10 curtails the 

potentially hazardous effects of Th1-related cytokine production on systemic immunity, 
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thus ensuring the retention of the foetal allograft (Matthiesen et al., 2003). Possibly, IL-

10 blocks the activity of NK cells in the decidua, which could otherwise cause 

thrombosis, inflammation, and/or miscarriage (Clark et al., 1998). An anti-inflammatory 

cytokine environment is thought to be maintained during pregnancy, in part, by high 

progesterone levels, which induce Th0 to Th2 conversion (Szekeres-Bartho and 

Wegmann, 1996). 

In the present study, the serum concentrations of IFN-γ were lower in the infected women 

than in the uninfected controls (although, in the infected women, the IFN-γ 

concentrations were not correlated with those of cortisol or prolactin). Previously, IFN-γ 

has been associated with protection from malaria, with impaired IFN-γ production 

mooted as a cause for increased susceptibility to placental malaria (Moore et al., 1999). 

Although Rogerson et al. (2003) found no detectable IFN-γ in placental biopsy 

specimens from Malawian primigravidae, IFN-γ was found in about 40% of placental 

plasma samples collected in neighboring Kenya, being associated with malarial infection 

and poor foetal outcome (Moorman et al., 1999). The contrasting results of these two 

studies may again reflect differences in malarial endemicity in the study areas. The 

malarial infections investigated in the present study were current/acute, not the chronic or 

past infections often revealed by placental histopathology. 

In conclusion, it appears that, irrespective of parity, cortisol, prolactin and certain 

cytokines are key mediators in the host response to P. falciparum infection during 

pregnancy in women living in central Sudan, where malarial transmission is unstable. It 

remains possible, however, that the hormonal and cytokine perturbations seen in the 

infected pregnant women living in this region are simply the result of malarial infection, 

and not factors in the aetiology of the malaria. Further research is needed to elucidate the 

very complex nature of malaria during pregnancy. 
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Table 1: The baseline characteristics of the 82 pregnant women with and without 

Plasmodium falciparum malaria who provided blood samples. 

Variables Women with malarial 

infection 

(the cases) 

Women without malarial 

infection 

(the controls) 

 

P 

No. of subjects 45 37  

Mean value and SD for:  

Age, years 26.8(6.9) 26.1(6.7) 0.6 

Gravidity 3.1(3.5) 2.5(2.4) 0.4 

Gestational age, weeks 29.5(8.6) 27.7(9.7) 0.5 

Weight, kg 65.4(6.6) 67. 6(11.2) 0.3 

Haemoglobin, g/dl 10.2 (1.0) 10.8(0.9) 0.6 
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Table 2: The cytokine and prolactin concentrations detected in the sera of the 82 

pregnant women with and without Plasmodium falciparum malaria who provided blood 

samples. 

Median concentration and (interquartile range) 

 

 Variable  

 

Women with malarial 

infection 

(the cases) 

 

Women without malarial 

infection 

(the controls) 

 

P 

IFN-γ (pg/ml) 

 

150.5(142.4-  412.2 ) 311.5 (66.1-608.1) 0.016 

IL-4 (pg/ml) 49.0 (19.1-74.5) 45.3(40.3-60.0) 0.856 

IL-10 (pg/ml) 506.2 (252.0-1435.2) 39.8 (10.0-112.7) <0.001 

Prolactin (mU/litre) 

 

5365.0(4362.0-7730.0) 7130.0 (5244.0-  9322.5 ) 0.02 
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Table 3.3: The cytokine and prolactin concentrations detected in the sera of the 18 

primigravidae and 27 multigravidae with Plasmodium falciparum malaria who provided 

blood samples. 

Median concentration and (interquartile range) 

 

 Variable  

 

Primigravidae 

 

Multigravidae 

 

P 

IFN-γ (pg/ml) 

 

73.0 (72.6–168.4) 

 

78.3 (41.7–122.4) 0.3 

IL-4 (pg/ml) 43.7 (33.5–75.1) 

 

57.9 (15.0–76.6) 0.9 

IL-10 (pg/ml) 129.4 (52.1–270.2) 

 

72.5 (33.1–107.1) 0.1 

Prolactin (mU/litre) 

 

5175.0 (4817.6–8008.7) 

 

5480.0 (4343.7–7848.7) 0.9 
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ABSTRACT  

Background: Cesarean section delivery can lead to much maternal morbidity. Different 

cytokines have been reported to be influenced by the mode of delivery. Objective: To 

investigate the influence of mode of delivery on maternal, placental and cord sera of 

interferon gamma (IFN-γ), interleukin-4 (IL-4) and interleukin-10 (IL-10) levels. 

Methods: These three cytokines were measured using ELISA in peripheral, placental and 

cord sera of two groups of women (38 in each group), either delivering vaginally or by 

elective cesarean section. Results: Concentrations of IFN-γ, IL-4 and IL-10 in the 

peripheral and placental sera were higher in vaginal delivery, while cord cytokines were 

not significantly different in the two groups. Cord sera contained significantly less con-

centrations of these cytokines than the peripheral and placental sera. Conclusion: It ap-

pears that the levels of IFN-γ, IL-4 and IL-10 are influenced by the mode of delivery.  

Keywords: Cytokines, Cesarean, Labor, Vaginal  

INTRODUCTION  

The rate of cesarean section is rising worldwide and Sudan is not an exception (1, 2). 

Cesarean section delivery can lead to higher maternal morbidity and is associated with 

increased risks of asthma and atopy in the delivered children (3, 4).  

Cytokines play an important role during labor and they influence immunity of the fetus 

and neonate. The mode of delivery might influence the establishment of the infant’s  
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microflora (1). Thus, during the transitional period from the normally sterile intrauterine 

environment to the extrauterine one- which is characterized by exposure to multiple 

antigenic stimuli- neonatal defense is going to be built accordingly (2). Recently, 

production of different cytokines and their balance have been reported to be influenced 

by the mode of delivery (7-9). Further understanding of the relationship between mode of 

delivery and immune system of the newborn is needed. The current study was conducted 

to investigate the influence of mode of delivery on maternal, placental and cord sera IFN-

γ, IL-4 and IL-10 levels.  

MATERIALS AND METHODS  

The study was conducted at the labor ward of New Halfa hospital, eastern Sudan in the 

period of October 2006 through March 2007 to investigate whether maternal, placental 

and cord cytokine profiles depend on mode of delivery.  

Healthy women -vaginal or elective cesarean delivery- and their singleton neonate were 

approached to participate in the study. A structured questionnaire was administered to 

gather socio-demographic characteristics.  

The study received ethical clearance from the Research Board at the Faculty of Medi-

cine, University of Khartoum.  

Immediately after delivery, 5 mL of maternal, placental and cord blood were collected, 

using the biopsy-pool method for placental blood. The samples were centrifuged and the 

sera were kept at -20 until processed for cytokines in the laboratory.  

Sera were analyzed by ELISA for IFN-γ, IL-4 and IL-10 levels according to the manu-

facturer’s instructions (eBioscience, Inc. 6042 Cornerstone Court West San Diego, CA 

92121, USA).  

Statistical Analysis: Data were analyzed using SPSS for Windows. The socio-

demographic characteristics were compared using Student's t-test. Cytokines data, which 

were not normally distributed, were compared by Mann-Whitney U and Kruskal-Wallis 
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tests. Correlations between continuous variables were assessed by the Spearman rank 

test. P-values less than 0.05 were regarded as significant.  

RESULTS AND DISCUSSION  

Seventy six (38 in each group) women and their neonates were enrolled. The two groups 

were well matched in the basic data; age, parity, gestational age, haemoglobin and birth 

weight (Table 1).  

Concentrations of IFN-γ, IL-4 and IL-10 in the peripheral and placental sera were higher 

in vaginal delivery, while the levels of these cytokines were not significantly different in 

the cord sera. Significantly less concentration of these cytokines were noted in cord sera 

than in the peripheral and placental ones (Table 2).  

Strong positive correlations were observed between each cytokine in peripheral and pla-

cental sera: IFN-γ (r= 0.89, P < 0.05); IL-4 (r=0.82, P< 0.05); and IL-10 (r= 0.15, P < 

0.05). There was no correlation between peripheral and cord (r= 0.2, P = 0.06), or pla-

cental and cord sera concentrations (r= 0.12, P = 0.2) of IL-4. Similarly a lack of corre-

lation between peripheral and cord sera IL-10, (r =0.13, P = 0.2), or between placental 

and cord sera concentrations of this cytokine(r= 0.1, P =0.3) was observed.  

The current study was conducted to investigate the influence of the mode of delivery on 

cytokine levels. The peripheral and placental levels of IFN-γ, IL-4 and IL-10 were 

significantly higher in women who delivered vaginally, with strong positive correlations 

between peripheral and placental levels. The cord levels of these cytokines were not 

significantly different between the two groups, but cord levels were lower than the 

peripheral and placental levels. These results are in agreement with previous reports 

demonstrating that peripheral and placental and not the umbilical cord cytokine 

productions depend on the mode of delivery (7, 8). Cytokines play an important role in 

the defense against infections and the regulation of the immune response; therefore, their 

increase during labor is implicated in the protection of the mother and the neonate against 

perinatal infections.  
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In a previous report, no association was reported between cesarean section and the neo-

natal levels of IL-10 (9), a cytokine with inhibitory effects on the secretion of Th1 and 

Th2 cytokines (10). Yet an elevated level of IFN-γ at birth was found to associate with 

asthma and atopy in childhood (11).  

Our study did not show any difference in the cord sera concentrations of these cytokines. 

Ly et al., reported that the cytokine levels were significantly higher in cesarean delivery 

(9). Interestingly, in the current study, there were positive correlations between the 

peripheral and placental cytokines. This indicates the interactions between the two 

sources of these cytokines mainly the maternal and the placental ones. In summary, it 

seems that levels of IFN-γ, IL-4 and IL-10 are influenced by mode of delivery.  
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Table 1 The mean (SD) of the demographic characteristic of the two groups of women, 

those who delivered vaginally and those delivered by elective cesarean section. 

 

Variable  Vaginal delivery Cesarean section 

Age, years 25.7(7.3) 26.3(6.1) 

Parity 3.1(2.5) 2.4(2.1) 

Weight, Kg 51.1(13.1) 59.9(12.5) 

Birth weight, gm 2932.0(585.4) 2922.2(502.9) 
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Table 2 The median (interquartile range) of cytokine levels in vaginal and cesarean 

section delivery 

Cytokines, pg/ml  

 

Mother Placenta Cord P 

IFN-γ   

        vaginal 

       cesarean section  

       P  

 

352.8(169.6-  732.2 ) 

215.4(169.6-307.0) 

S 

 

289.8(181.0-  559.0 ) 

244.0(186.8-344.3) 

S 

 

123.8(77.9-238.3) 

83.7(40.7-  166.3 ) 

NS 

 

S 

S 

IL4  

        vaginal 

       cesarean section 

        P  

 

28.3(17.6-65.6) 

23.6(18.3-31.0) 

S 

 

30.3(17.3-60.9) 

24.3 (18.0-31.6) 

S 

 

5.0(1.0-13.0) 

7.6 (1.0-16.0) 

NS 

 

S 

S 

IL10 

        vaginal 

       cesarean section 

     P  

 

168.3 (94.0-387.1) 

105.7(82.3-156.6) 

S 

 

 

180(103.7-277.7) 

109.7(85.2-217.1) 

S 

 

51.0 (31.5-90.1) 

70.6 (33.4-106.7) 

NS 

 

S 

S 

* N = not, S = significant  
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Cytokines Profiles in Sudanese Women with Preeclampsia 

Khalid H. Bakheit, Nada K. Bayoumi, Ahmed M. Eltom, Mustafa I. Elbashir, and Ishag 

Adam 

Faculty of Medicine, University of Khartoum, Sudan 

Background: Cytokine imbalance in preeclampsia may be one of the etiological factors 

for preeclampsia. Objectives: The study was conducted to investigate interferon gamma 

(IFN-γ), interleukin-4 (IL-4) and interleukin-10 (IL-10) in preeclampsia. Enzyme-linked 

immunosorbent assay (ELISA) was used to measure the concentrations of these three 

pro-inflammatory cytokines in sera from 33 Sudanese women with preeclampsia (at 

presentation and 7 days later) and 32 women with normal pregnancy as a control group. 

Results. The levels of IFN-γ and IL-4 were slightly— not statistically significant— 

higher in the women with preeclampsia. IL-10 was significantly higher in the women 

with preeclampsia. Women with preeclampsia had significantly lower levels of IFN-γ and 

IL-4 and significantly higher levels of IL-10 7days later in comparison with the 

presenting levels. Conclusion. Thus, the significantly raised levels of IL-10 in women 

with preeclampsia suggest its role in pathogenesis of preeclampsia, and further research 

is needed. 

Keywords: Cytokines, Preeclampsia, Pathogenesis, Sudan. 

INTRODUCTION 

Hypertensive disorders of pregnancy occur primarily in humans, and are estimated to 

cause 10%–15% of maternal deaths (1). Preeclampsia, defined by hypertension and 
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proteinuria, is the well-described disorder (2). It is an important cause of maternal, 

perinatal morbidity and mortality worldwide (3).The pathogenesis of preeclampsia is 

obscure, although abnormal placentation is currently considered among the more 

plausible hypotheses. Recent findings and theories have variously imputed roles for 

systemic inflammation, abnormalities in cardiovascular adaptation to pregnancy. 

The immune system has been implicated in the pathophysiology of preeclampsia with 

modifications in the cellular immunity and cytokines production (4), which are sought to 

have an important role in the maintenance of pregnancy (5).The current study was 

conducted to investigate the role of interferon gamma (IFN-γ), interleukin-4 (IL-4) and 

interleukin-10 (IL-10) in the pathogenesis of preeclampsia, to add to our ongoing 

research on preeclampsia and these cytokines (6). 

 

MATERIALS AND METHODS 

Patients 

The study was conducted in Khartoum teaching hospital, Sudan during the period of 

March through July 2007. Patients with preeclampsia were approached to participate in 

the study. Volunteer women with normal pregnancy at the same gestational age were 

selected as a control group. Well structured questionnaires were used to gather 

sociodemographic characteristics. Preeclampsia was defined as persistently high blood 

pressure ≥140/90 mmHg on 2 or more occasions 6 hours apart and proteinuria ≥ +2 by 

dipstick or ≥300 mg/day in 24 hours’ urine collection. Gestational age was calculated 

from the last menstrual period and confirmed by ultrasound in suspected cases. Blood 

pressure was measured in all patients and controls with mercury sphygmomanometer. 

Sample Collection 

Five ml of blood was collected from both groups by venipuncture in plain tubes, in 

women with preeclampsia, another 5 ml of blood were collected 7 days later. Samples 

were kept at room temperature for 30 minutes, centrifuged at 2000 rpm for 10 minutes 
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and serum was stored at -20 degrees until the assay. All of these women were pregnant 

and not in labour at presentations or 7 days later. 

Cytokines Measurement  

The levels of INF-γ, IL-4 and IL-10 were measured for the patient and control group by 

standard sandwich enzyme linked immunosorbent assay (ELISA) using pairs of cytokine-

specific, monoclonal antibodies according to the manufacturer’s instructions 

(eBioscience, Inc. 6042 Cornerstone Court West San Diego, CA 92121 USA). All 

samples were run in duplicates and the mean value was used in all analysis. 

Statistics  

Data were entered in computer using SPSS for windows and double-checked before 

analysis. Data was not normally distributed; the Mann-Whitney U-test was used to 

determine the significance of difference between the variables. Correlations between 

continuous variables were assessed by the Spearman rank test. P < 0.05 was regarded as 

significant. 

Ethics  

The study received ethical clearance from the Research Board at the Faculty of Medicine, 

University of Khartoum. 

 

RESULTS 

The two groups were well- matched in their age, gravidity, weight and gestational age 

Table 1 shows the medians and intercortiles for IFN-γ, IL-4 and IL-10 levels in sera of 

patients with preeclampsia and in the control group at presentation. The levels of IFN- γ 

and IL-4 were slightly higher—not statistically significant—in women with 

preeclampsia. The level of IL-10 was significantly higher (P = 0.002) in women with 

preeclampsia. In women with preeclampsia, the levels of IFN-γ and IL-4 were 
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significantly lower; level of IL-10 was significantly higher seven days later in 

comparison with the presenting levels, Table 2. 

Correlation Between the Three Cytokines at Presentation A significantly positive 

correlation was observed between IFN-γ and IL-4 ( r = 0.495, P = 0.007) and IL-4 and 

IL-10( r = 0.445, P = 0.009). There was no correlation between IFN-γ and IL-10 ( r = 

0.094, P = 0.602). 

 

DISCUSSION 

The study was conducted to investigate the pattern of cytokine production in Sudanese 

patients with preeclampsia. The main finding of this study is the slightly raised level of 

IFN-γ, IL4 and significantly raised level of IL10 in the preeclamptic group. Recently, 

Mansouri and colleagues reported significantly higher levels of IFN-γ, IL4 without 

significant difference in the level of IL10 in Iranian women with preeclampsia (7). 

However, on the contrary IL10 production has been reported to be significantly lower in 

women with preeclampsia in comparison with the control group (8). On the other hand, 

no significant difference was reported in the level of IFN-γ in women with preeclampsia 

(9). Likewise, IL4 is raised slightly and a positive correlation was observed in the current 

study. Perhaps the increase levels and the correlation between IFN-γ and IL4 indicate a 

compensatory mechanism. The enhanced cytokines expression, perhaps in concert with 

other anti-inflammatory immunomodulatory cytokines, curtails the potentially hazardous 

effects of Th1-related cytokine production on systemic immunity during pregnancy, thus 

ensuring the retention of the fetal allograft (10). Perhaps, these cytokines blocks NK 

activity of the decidua which may have potentially deleterious effect on the fetus like 

thrombosis, inflammation, and miscarriage (11). Interestingly, in our study IL10 was 

significantly higher in women with preeclampsia. This is in line with the previous reports 

(12). Yet, Borekci et al., reported a significantly lower level of IL10 in women with 

preeclampsia and Mansouri et al., 2007, reported no difference in IL10 level in women 

with preeclampsia too (7, 13). Furthermore, in this study the levels of IFN-γ and IL4 

cytokines were significantly lower 7 days later, but IL10 was higher. These patients 
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received different antihypertensive drugs (mainly methyldopa, hydralazine and 

nifedipine). Drugs might have altered Th1/Th2 cytokine balance in women with 

preeclampsia (14), or the levels of these cytokines levels have changed according to the 

blood pressure itself rather than the drugs (12). This area needs to be investigated in the 

future. Preeclampsia is associated with both local and systemic changes in type1/ type2 

cytokine balance compared to normal pregnancy. Decidual and peripheral blood 

mononuclear cells from patients with pre-eclampsia are generally primed to synthesize 

high levels of the Th1 cytokines, (15). These variations may be due to the unknown 

aetiology and pathophysiology of preeclampsia, and this raises a big question to be 

answered by further research in this field, whether these cytokines play an etiological role 

or their pattern of production is sequelae to the pathology. Interesting the levels of these 

cytokines were low in comparison with their levels in an other important maternal 

morbidity—malaria—that we are investigating too (16). Recently, some evident 

emerging out concern the interactions between malaria and hypertension (17), but still 

this area needs to be investigated in the future. 

A major problem with preeclampsia is the lack of understanding of the aetiology and 

pathophysiology of the condition. The Th1/Th2 cytokine imbalance in preeclampsia may 

be considered as sequelae to the hypoxic nature of the disease or an aetiological factor 

and further research is needed to understand the very complex nature of preeclampsia. 
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Table1: showing the mean (SD) of characteristics of the women with preeclampsia and 

controls 

Variables Women with 

preeclampsia (n=33) 

Control              

(n=32) 

 

P 

Age 29.5(5.7) 29.5(5.90 0.9 

Gravidity 2.1(2.1) 1.8(1.9) 0.3 

Gestational 

age, weeks 

35.2(2.8) 35.6(2.9) 0.5 

Weight, kg 59.7(7.4) 57.0(6.8) 0.6 
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Table (2): The median ((interquartile range ) of cytokines in women with preeclampsia 

and control group 

Cytokine 

pg/ml  

 

Women with 

preeclampsia (n=33) 

Control              

(n=32) 

 

P 

IFN-γ 210 (142.40-287.06) 125.38 (85.67-184.95) 0.437 

IL-4 10.3 (3.33-18.35) 9.69 (3.69-14.63) 0.780 

IL-10 8.6 (2.39-16.66) 6.99 (3.39-16.84) 0.002 
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Table (3) the median (interquartile range) of cytokines in patients with preeclampsia at 

presentation and day seven. 

Cytokine, 

pg/ml  

 

  At presentation           Day seven  P  

IFN-γ 210.48 (142.40-287.06) 136.73 (81.42-192.04) 0.035 

IL-4 10.36 (3.33-18.35) 9.99 (2.15-15.36) 0.000 

IL-10 8.61 (2.93-16.66) 10.63 (6.18-25.41) 0.000 

 

 

 

 

 

 

 

 

 

 


