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Abstract

This note provides a short proof of Afriat’s theorem and shows that the problem is
equivalent to the problem of identifying a negative length cycle in a related graph.

1 Introduction

Afriat’s (1967) theorem is an answer to the question of when a sequence of purchase decisions
is consistent with the purchaser maximizing a concave utility function u(·). Suppose a se-
quence of purchase decisions (pi, xi), i = 1, . . . , n, where pi ∈ �n

+ and xi ∈ �n
+ are price vectors

and purchased quantity vectors respectively. Asume the purchaser makes purchase decision
based on utility maximization. If pi · (xj −xi) ≤ 0, the utility function u must satisfy u(xj) ≤
u(xi), otherwise, with purchase prices of pi, bundle xj costs less but provides higher utility to
the purchaser. If we have a sequence of decisions (pi, xi), (pj , xj), (pk, xk), . . . , (pr, xr), with

pi · (xj − xi) ≤ 0, pj · (xk − xj) ≤ 0, . . . , pr · (xi − xr) ≤ 0,

then u(xi) = u(xj) = . . . = u(xr), and

pi · (xj − xi) = 0, pj · (xk − xj) = 0, . . . , pr · (xi − xr) = 0.

The above necessary condition can be described in graph theoretic terms as follows: let
A be a n × n matrix of real numbers with all zero’s on the diagonals. We associate with the
matrix A a directed graph D(A) as follows: introduce a vertex for each index and for each
ordered pair (i, j) an edge with length aij = pi · (xj −xi). The matrix A will be said to satisfy
the Afriat condition (AC) if every negative length cycle in D(A) contains at least one edge
of positive weight.

Associated with A is an inequality system:

yj ≤ yi + siaij ∀i �= j, 1 ≤ i, j ≤ n
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si > 0 ∀1 ≤ i ≤ n

which we label L(A). We now state Afriats theorem:

Theorem 1 L(A) is feasible iff. D(A) satisfies AC.

Whenever D(A) satisfies AC, we use the solution to L(A) to construct a utility function u(·)
consistent with the sequence of purchase decisions (pi, xi) by setting:

u(x) = min{y1 + s1p1(x − x1), y2 + s2p2(x − x2), . . . , snpn(x − xn)}.

A number of proofs of the theorem exist.1 This note provides a new proof that makes
explicit the network structure inherent in L(A). This structure appears to have been over-
looked (but used implicitly) in previous theorems. In fact, the most recent paper on the
subject by Fostel, Scarf and Todd (2003) describes the system L(A) as being unusual.

To each s ∈ �n
+ and matrix A with zeros on the diagonals, we associate a directed graph

D(A, s) as follows: introduce a vertex for each index and for each ordered pair (i, j) an edge
with length siaij . Notice that D(A) = D(A, e) where e is the n-vector of all 1’s.

Now fix s ∈ �n
+. Then feasibility of L(A) reduces to identifying y ∈ �n such that

yj − yi ≤ siaij for all i �= j. Readers familiar with network flows will recognize this system
as the constraint set to the dual of a shortest path problem. A standard result is that this
system is feasible iff. D(A, s) contains no negative cycles. Assuming feasibility, we can choose
the y’s as follows: set y1 = 0 and yj to be the length of the shortest path from 1 to i in
D(A, s). Afriat’s theorem can be rephrased as;

Theorem 2 There is an s ∈ �n
+ such that D(A, s) contains no negative cycles iff. D(A, e)

satisfies AC.

Proof: If there is an s ∈ �n
+ such that D(A, s) contains no negative cycles, the system

of inequalities L(A) (with s fixed) is feasible. So we can construct a utility function u(·)
consistent with the sequence of purchase decisions. Therefore, D(A, e) must satisfy AC. We
next prove the non-trivial direction. Suppose D(A, e) satisfies AC. We prove there exists
s ∈ �n

+ such that D(A, s) has no negative cycles.
Let S = {(i, j) : ai,j < 0}, E = {(i, j) : ai,j = 0}, and T = {(i, j) : ai,j > 0}. Consider the

weighted digraph G with edges in S ∪ E, where arcs (i, j) ∈ S are given weight wij = −1,
and arcs (i, j) ∈ E are given weight wij = 0. Since D(A, e) satisfies AC, G does not contain
a negative length cycle. Hence there exists a set of potentials {φj} on the nodes such that

φj ≤ φi + wij , ∀ (i, j) ∈ E(G).

Without loss of generality, we relabel the vertices so that φn ≤ φn−1 ≤ . . . ≤ φ1. Choose {si}
non-decreasing so that

si × min
(i,j)∈T

aij ≥ (n − 1) × si−1 max
(i,j)∈S

(−aij) if φi < φi−1,

1Afriat’s orginal proof assumed that aij �= 0 ∀i �= j. This was relaxed by Diewert (1973) and Varian (1982).
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and
si = si−1 if φi = φi−1

for all i > 2, with s1 = 1.
For any cycle C in the digraph D(A, s), let (v, u) be an edge in C such that (i) v has the

smallest potential among all vertices in C, and (ii) φu > φv. Such an edge exists, otherwise φi

is identical for all vertices i in C. In this case, all edges in C have non-negative edge weight
in D(A, s).

By selection, φu > φv. If (v, u) ∈ S∪E, then we have φu ≤ φv+wvu ≤ φv, a contradiction.
Hence (v, w) ∈ T . Now, note that all vertices q in C with the same potential as v must be
incident to an edge (q, t) in C such that φt ≥ φq. Hence the edge (q, t) must have non-negative
length. i.e., aq,t ≥ 0. Let p denote a vertex in C with the second smallest potential. Now, C

has length

svavu +
∑

(k,l)∈C,(k,l) �=(v,u)

skak,l ≥ svav,u + sp(n − 1) max
(i,j)∈S

{aij} ≥ 0,

i.e., C has non-negative length.
Since D(A, s) is a digraph without any negative length cycles, L(A) is feasible.

Given the matrix A, we can verify if condition AC is violated by checking if the graph G has
a negative length cycle. This can be done in O(n3) time (see Ahuja, Magnanti and Orlin
(1993)) using standard algorithms.2 Assuming AC holds, the node potentials can be com-
puted by a standard shortest path algorithm in O(n2) (again see Ahuja, Magnanti and Orlin
(1993)). This gives the s’s in O(n2) steps and another O(n2) steps to determine the value of
the y variables.
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