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Abstract

This paper develops a general framework for modeling choice under uncertainty that
extends subjective expected utility to include non-separabilities, state-dependence,
and/or acts that do not admit a natural state-contingent structure. The theory 1s
also consistent with the fact that decision makers may not be able to list or analyze
all possible consequences of an act. Given a minimal monotonicity assumption on
conditional preferences, it is shown that ordinal conditional utilities of acts can be
chosen so that the conditional utility of any act with respect to any information, G,
can be computed from the conditional utility of the act given any information finer
than G, using an “aggregator” map that depends only on G. General conditions
are provided, under which aggregators take the form of conditional expectations.
Various applications are discussed by further specifying the structure of acts and
conditional preferences, including disappointment aversion, and the subjective value
of information. The formal framework also serves as a basis for thinking about issues

of bounded rationality and Knightian uncertainty.



1. Introduction

This paper presents a general framework for modeling choice under uncertainty that
overcomes some of the limitations of Savage’s (1954) approach, but also includes

the latter as a special case.

Savage defined preferences over acts that are mappings from states of nature
to consequences. These preferences are separable,! in the sense that the ranking
of two acts given an event (set of states) does not depend on the consequences
of these acts at states outside the event. The relaxation of separability has been
discussed in connection to systematic empirical violations of the expected utility
hypothesis, notably by Machina (1989). Numerous “non-expected” utility theories
unplicitly or explicitly violate the assumption of separability. (Relevant surveys
include Fishburn (1988), and Karni and Schmeidler (1990).) Savage’s theory also
assuines that preferences are state-independent, that is, the ranking of consequences
given a state does not depend on the state. The limitations of state independence,
and models of state-dependent preferences are surveyed by Karni (1987), and Karni
and Schmeidler (1990), (see also Karni (1993a,b)). Another important limitation
of Savage’s framework arises from the fact that humans have only limited ability
to imagine, let alone analyze, all possibilities arising in a situation. It can even
be argued that an exhaustive description of all possible states and consequences is
inherently impossible since further analysis and information can always be used to

refine or fundamentally alter current perceptions.

In defense of Savage’s theory, there is a class of arguments whose central po-
sition is that apparent limitations of the theory disappear once consequences are
interpreted broadly enough. (See, for example, Raiffa (1968} and Hanunond (1989).)
A problem with this type of arguments is their incorporation of subjective conse-
quences such as disappointment, regret, ambiguity, frame of mind, and so on. A well
known difficulty with subjective consequences in the Savage setting is that they may

give rise to impossible acts. (An example is an act whose consequence in the state

! The term “separable” is of course used in the literature in various contexts
and with various meanings. Our use of the term, outlined here, will be given a
precise definition later on. In particular, separability is to be regarded distinct from
additivity.



of excellent weather is disappointment at the weather.) More fundamentally, one
would like all subjective aspects of choice to be captured by the properties of prefer-
ences, rather than the nature of acts or events.? This paper develops a formulation
of conditional preferences and their aggregation that allows for non-separability and
state-dependence, without the use of subjective consequences. Moreover, the the-
ory is consistent with the notion that a decision maker may have himited ability to

perceive states of nature and their consequences.

The basic theory starts with a set of primitives that includes states, events,
acts, conditional preferences, but no consequences. States and events are used
pretty much in the standard sense, although the decision maker need not be able
to condition with respect to every event. On the other hand, acts are given no
structure whatsoever, they are assumed to be merely labels of possible courses of
action. Given an event F' that is perceived by the decision maker, there is a complete
and transitive preference order =¥ over the space of acts X. Given acts z and vy, the
statement = =% y has the interpretation that the decision maker can visualize the
situation of event F' occurring, and he imagines that, given that situation, x would
have been a preferred course of action than y. With conditional preferences taken
as given, the paper discusses how conditional preferences with respect to events
are aggregated to give the conditional preferences with respect to coarser events,

through ordinal utility representations.

A special type of act is a state-contingent act, defined as an act that is a
mapping of the form z : Q@ — C, where Q is a state-space and C is some consequence
space. Given the assumption of state-contingent acts, we call preferences separable
if for every event F', z = y on F implies that z ~*" y, where ~ is the indifference
relation associated with =f. In this paper we do not assume that preferences
are necessarily separable. That means that Savage’s construction of conditional

preferences does not apply in general, and z > y cannot be reduced to a statement

2 This methodological restriction is consistent with the development of subjective
probability. Theories of subjective expected utility such as Savage’s were motivated
by the fact that probabilities are usually subjective in nature, and therefore should
not be part of the description of an act. Instead, subjective probability assessments
should be revealed by preferences over unambiguous acts. The same approach seems
appropriate for any subjective aspect of acts, including consequences and events.
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about the relative ranking of the restrictions of z and y on F'. Moreover, the paper’s
main results also apply in settings in which acts do not have a state-contingent

structure at all (and hence separability is not even defined).

Applications and extensions of the formal theory are discussed in Section 5.

One set of applications involves state-contingent acts without the assumption of
preference separability. An example of this type, considered in Section 5.1, is a
theory of disappointment aversion that extends the utility theories of Dekel (1986)
and Gul (1991). Another set of applications involves acts that do not have a state-
contingent structure at all. Representative of this type of application is a theory of
the subjective value of information, to be found in Section 5.2. An important reason
for eliminating consequences from the set of primitives is the subjective and ambigu-
ous nature of the consequences of acts given various events in most realistic decision
situations. Conditional preferences indirectly represent an agent’s imperfect percep-
tion of consequences. This “bounded rationality” aspect of conditional preferences
is further discussed in Section 5.3, and is related to Knightian uncertainty, as ex-
hibited in Ellsberg’s (1961) well known examples, in Section 5.4. Other extensions
include dynamic formulations and subjective probability under non-separable pref-
erences, studied in Skiadas (1994a,b). While the paper focuses entirely on personal
choice, 1t will be clear that the formal setting admits a reinterpretation in terms of

social choice (where “states” become indices of agents).

The central results of the paper are best introduced in a finite setting. Suppose
that an agent perceives all the events in a finite algebra,® F, of subsets of some state-
space 1. Conditional preferences with respect to events in F are assumed to be
coherent, meaning that for any disjoint events F and G, x = y and = = y implies
x =FYG 4 (A strict version of this will also be assumed, but is ignored here for
simplicity.) For example, suppose that the agent imagines the possibilities of good
weather and bad weather, and decides that under either scenario z would be a
preferred course of action than y. Then x should be preferred to y unconditionally.

In the case of state-contingent acts, coherence is one of the ingredients of Savage’s

“sure-thing principle,” but it is emphatically more general, because separability

3 An algebra is a set of sets that is closed with respect to the Boolean operations
of union, intersection, and complementation.
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1s not assumed. Given any algebra of events G C F, it will be convenient to
define a state-contingent preference order >¥, representing the agent’s conditional
preferences given information G. This is accomplished by letting =9 be equal to
=€, where G is the smallest event in G that contains the state w. If the space of acts
X is also finite, =9 has a state-contingent utility representation U9 : Q@ x X — IR,
in the sense that z =9 y if and only if U%(w, z) > U%(w,y).

One of the main results of this paper is that conditional utilities can be chosen
so that, for every subalgebra G of F, there is a function A[- | G|, mapping F-
measurable random variables to G-measurable ones, such that U9(z) = A[UM(z) |
G| whenever G C 'H C F. Moreover, the maps A[- | G|, called “aggregators,” are
separable, in the sense that the value of A[V | G] on some event G in G does not
depend on the values that V takes outside G. This is true, even with non-separable
conditional preferences over state-contingent acts. Like conditional expectations,
aggregators have the property: G C M implies that A[V | G| = A[A[V | H] | G].
While there are various functional forms that aggregators can assume, another
main result of the paper provides additional conditions, under which aggregation is
additive (that is, A[V | G] = F[V | G] for some expectation operator E). Additive
aggregation reduces to state-dependent expected utility only under the additional

assumption of state-contingent acts and separable preferences.

Building on the basic ideas just outlined, the paper develops a theory that
includes an infinite number of acts and events. In addition to the many well known
reasons for considering the infinite case, the assumption of a finite number of events
umposes an arbitrary “rationality bound” on the decision maker, in a sense explained
in Section 5.2. Parts of the theory that are straightforward in the finite case, present
considerable complications in the infinite case. For example, the construction of
conditional preferences with respect to algebras relies on a measure-theoretic result
developed in Appendix I. The theorem of additive aggregation with an infinite
number of events uses the martingale convergence theorem. The result seems to be

new, even in the case of separable preferences.

The rest of the paper 1s organized in four sections and two appendices. Sec-
tion 2 defines coherent conditional preferences with respect to events and with

respect to o-algebras, and studies their interrelationship. Section 3 investigates the
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existence of conditional utility representations that are related through aggregator
maps. Section 4 discussed the case of additive aggregation, while Section 5 is on
applications. The appendices provide some auxiliary results and proofs. On a first
reading, the reader is encouraged to assume throughout that there is only a finite
number of events, and that the only null event is the empty set. (Null events are
needed only for the formulation of conditional preferences with respect to infinite

o-algebras.)

2. Conditional Preferences

In this section we define coherent conditional preferences with respect to o-algebras
and with respect to events. The main result is that the two notions are essentially
equivalent, in the sense that each uniquely determines the other under a natural
notion of consistency.

Throughout the paper, we take as primitive the quadruple (Q, F, N, X), with
the following definitions and interpretations. The set §2 is the state space, and its
elements are called states. The set F is a o-algebra? of subsets of Q, called events.
The decision maker is assumed to be aware of the events in some sub-o-algebra of
F. The set X consists of acts that are not assumed to have any special structure;
they are merely labels of possible courses of action. Finally, A" is a subset of F,
and consists of the null events. Null events represent “insignificant” scenarios, in
that they do not affect decisions. We assume that (a) any event that is a subset
of a null event is null, (b) the countable® disjoint union of null events is null,® and
(¢) © is not null. We use the term information class to describe a set of complete
o-algebras of events, where an algebra is complete if it contains all the null events.

The decision maker expresses conditional preferences over X, relative to the
perceived events. To describe these preferences, several preliminary definitions are

required. Let B(X) be the set of all binary relations” on X. A member of B(X) is

4 A o-algebra on Q is a set of subsets of {2 that contains the empty set and is
closed under complementation and countable disjoint unions.

5 In this paper, countable will always mean countable or finite.

® That is, if { F,, } is a sequence of null events with F; N F; = § for 7 # j, then
lU,, Fa is also null. A set of events NV satisfying (a) and (b) is known as a o-ideal.

" A binary relation R on X is a subset of X2. We write z Ry to denote (z,y) € R.
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a preference order if it is complete and transitive.® A state-contingent relation is a
function R : Q — B(X) such that, for all acts z and y, {z Ry }(={w:z R,y }) is
an event. We identify state-contingent relations that differ only on null events. A
state-contingent relation R is complete if, for any acts z and y, there exists a null
event N (depending on r and y) such that {z Ry} U{yRz} UN = . A state-
contingent relation R is transitive if, for any acts z, y, and z, there exists a null
event N (depending on r, y, and 2) such that {zr Ry} N{yRz} C {rRz}UN.
A state-contingent preference order = is a complete and transitive state-contingent
relation. (Notice that this is not the same as saying that >, 1s a preference order for
all w outside a null event.) The associated state-contingent strict preference order
=: Q — B(X), and state-contingent indifference relation ~:  — B(X), are defined
by (z =, y) © (not y =, z), and (z ~, y) & (z =, y and y >, z), respectively.
In order to simplify the exposition, we adopt the following conventions through-
out the paper. Suppose g represents any state-contingent statement of the form
r Ry, where z and y are acts or random variables, and R is any (state-contingent)
relation, including ordinary equalities and inequalities. The statement “q” should
always be interpreted as “¢q(w) for all w outside a null event.” We write { ¢} = {w:

q(w) }, while “q on F” means that the event F\{¢ } is null.

Given any o-algebra G C F, a state-contingent preference order > is G-
measurable if {z > y} € G for all acts z and y. A conditional preference with
respect to G could then be simply defined as a G-measurable state-contingent pref-
erence order. We wish to extend this definition, however, by requiring that con-
ditioning with respect to some information does not contradict conditioning with
respect to coarser information. This is the requirement of coherence, formalized in
the following definition. The notation G N F', where G is a g-algebra and F is an

event, denotes the set {GNF :G € G }.

DEFINITION 1 (ALGEBRA-CPF). An algebra-conditional preference family, or al-
gebra-CPF for short, is a set of the form {>~9:G € ®} such that

(a) ® is an information class.

8 Relation R is complete if for any z,y € X,z Ry or y Rz, and transitive if z Ry
and y Rz implies z R z.



(b) For every G in ®, =Y is a G-measurable state-contingent preference order.

(¢) (Coherence) For all G,’H in ®, z,y in X, and non-null F in HN G such that
HNFCGNF,

(z=9%yonF)= (z ="y onF)

(z =%y onF)= (z ="y on F).

Alternatively, given any event F, we can consider a preference order =% (in

B( X)) representing an agent’s conditional preference given F.
P g g p g

DEFINITION 2 (EVENT-CPF). An event-conditional preference family, or event-
CPF for short, is a set, £ = { =%: G € G }, of preference orders on X, such that

(a) G is a complete sub-o-algebra of F.

(b) (Coherence). For every countable collection of pairwise disjoint non-null events

G1,Ga,... in G whose union is G, and for all ¢, y in X,
(z =% y for all n) = (z =9 y)
(z =G gy for all n) = (z = y).

(c) (Irrelevancy of Null Events). For all non-null events F and G such that® FAG
is null, =¥ =>0G.

Throughout the paper, we identify event-CPFs that differ only on null events.

The following is a natural notion of consistency between an algebra-CPF and

an event-CPF,

DEFINITION 3 (CONSISTENT CPFSs). The algebra-CPF A = {=": H € &} and
the event-CPF £ = { =9 : G € G} are consistent if

(a) G € ®, and every element of ® is a sub-o-algebra of G.
(b) For all H € ® and H € H,
(I =My on H) = (T =¥y for all non-null F € HN H).

If A and &, as given in Definition 3, are consistent, it is not hard to show that the

strict preference version of (b) also holds: For all H € & and H € H,
(x =My on H) & (m -ty for all non-null F € HN H).

¥ We define FAG = (F\G) U (F\G), the symmetric difference of F and G.
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EXAMPLE 1 (ADDITIVE CPFs). Suppose P is a probability!® on F such that
N={F:PF)=0},and U:Q x X — IR is a state-contingent utility such that
U(-,z) is measurable and [, |U(z)|dP < oo, for every z. An event-CPF, £ = {=F:
F € F}, is then defined by letting z =% y if and only if fp U(z)dP > fF U(y)dP,
for every non-null event F. Given any information class ®, it is easy to check that

the only algebra-CPF, A = {>9: G € @}, consistent with & is defined by
{2y} ={E[U()|G] 2 E(U(y) 1G]}, G€Q,

where the conditional expectations are taken with respect to P. Conversely, A
uniquely determines &£, provided that ¢ contains all complete o-algebras generated

by single events. This completes the example.

Generalizing the above example, we now show that, subject to weak conditions,
there is a one-to-one correspondence between algebra and event-CPF's, defined by
consistency. As indicated in the Introduction, the case of a finite numiber of events
1s straightforward; consistency can be viewed as a way of defining an algebra-CPF
in terms of an event-CPF. With G being an infinite o-algebra, however, it is not
at all clear what value should be assigned to >=9. It is here that the notion of null

events becomes crucial.

THEOREM 1. Suppose that N = {F € F : P(F) = 0} for some probability P,
and that & = {EG: G € G} is an event-CPF. Given any information class ® of
sub-o-algebras of G, there exists a unique algebra-CPF of the form {=™": H € &}

that is consistent with &.

PROOF: The proof is based on a measure-theoretic result developed in Appendix I.
Let ® be as stated, and consider any H € &, and z,y € X. Call a set H € 'H
light if it is non-null and z > y, and dark if it is non-null and y =" 2. With
this definition, every set in H is exactly one of null, light, or dark. By coherence, a
countable disjoint union of light sets 1s light, and a countable disjoint union of dark
sets is dark. Also, any two non-null sets H; and H, in ‘H such that P(HAH,) =0
are either both light or both dark. A set H € H is defined to be white (respectively,

10 Throughout the paper, probability measures are assumed to be countably
additive.
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black) if every set F € H N H is light (respectively, dark). Theorem 8 (applied to
(Q,H, PM"), where P™ is the restriction of P to H) says that there exist unique
(up to null events) disjoint sets B and W in H such that BUW = Q, B is black
or empty, and W is white or empty. For each w € Q, let = y if and only if
w € B. It i1s now straightforward to confirm that this construction gives a unique
algebra-CPF {=7: H € @} that is consistent with £. M

To state a partial converse of Theorem 1, we define a o-algebra of events to
be countably generated if it is the smallest complete o-algebra that contains some

countable set of events.

THEOREM 2. Suppose that A = {>=Y9: G € ®} is an algebra-CPF, and for every
G € @, ® contains every countably generated sub-o-algebra of G. Then there exists

a unique event-CPF of the form { =% : G € G} consistent with A.

PROOF: Given any event H € G, let H = o({ H } UN) be the o-algebra generated
by H and the null events. Define, for every z,y € X, 2 > y if and only if > y
on H. It is then tedious but straightforward to confirm all the properties that show
that {=%: G € G} is an event-CPF consistent with .A. Uniqueness (up to null

events) is immediate, since the above construction is dictated by consistency. B

We will use the term conditional preference famaily, or CPF for short, to mean
either an algebra-conditional preference family, or an event-conditional preference

family. The precise meaning will always be clear from the context.

3. Conditional Utilities and Aggregators

Having introduced conditional preference families, we now discuss their utility rep-
resentation. We show that coherence of conditional preferences translates into an
aggregation property of ordinal conditional utilities.

We begin with a natural definition of the utility representation of a CPF. A
state-contingent utility is any function of the form U : 2 x X — IR such that U(:, )

is F-measurable for every z.

DEFINITION 4. A utility representation of a CPF, {>=Y: G € ®}, is a set, U =
{UY : G € ®}, of state-contingent utilities such that
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(a) Given any G € ®, UY(-,z) is G-measurable for every .
(b) For all G € ®, UY represents =9 in the sense that for all G € G and =,y € X,
(z =%y onG)& (U%z)>UY%y) on G).

Given standard results on the utility representation of preferences, it is not
surprising that only weak conditions guarantee that a CPF has a utility represen-
tation. What is interesting, however, is that almost equally weak conditions give

rise to utilities representations that satisfy
HCG implies UM(z)=A[U%=z)|H]forall z € X, (1)

for appropriate mappings A[- | G| that we call aggregators. Furthermore, aggrega-
tors have the properties listed in the following definition. We let MY represent the

set of all G-measurable random variables.

DEFINITION 5 (AGGREGATOR FAMILY). An aggregator family is a set, { A[- | G] :
G € @), of maps of the form A[- | G]: DY — DY N M9, where ® is an information
class, DY C M7* | and the following conditions are satisfied for all G, H € ® and
W,V € DY:
(a) (Separability) V =W on G € G implies A[V |G] = A[W |G] on G.
(b) (Projection Property) (i) V € DY N MY implies A|V | G] = V; (ii) HC G
implies DY C D™ and A[A[W |G| | H] = A[W | H].

(c) (Coherence) If H € H C G, then

(AW [G] 2 A[V | G] o H) = (A[W | H] > A[V | H] on H),

(AW |G)>A[V|GlonH)= (A[W|H]>A[V |H] on H).
A utility representation Y = {UY : G € &} of a CPF is said to admit aggregation
if (1) is satisfied for some aggregator family.

It is straightforward to show that if { A[- | G] : G € ®} is an aggregator
family and U is a state-contingent utility, then { A[U | G] : G € &} is the utility
representation of a CPF. We now show essentially the converse of this statement,
and we close the section with examples of aggregator families.

The following result generalizes a standard utility representation theorem (see,

for example, Fishburn (1970), Theorem 3.1), to obtain utility representations that
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admit aggregation. Given a CPF A = {>=9: G € &}, we say that the set Z C X
is A-dense if for any acts z, y, any G in ®, and any non-null G in G, z >9 y on
G implies that there exists a z in Z such that {z =Y 2 =9 y} has a non-null

intersection with G.

THEOREM 3. Every CPF, A, for which there exists a countable A-dense subset of

X has a utility representation that admits aggregation.

COROLLARY 1. If X is countable, then every CPF has a utility representation that

admits aggregation.

Theorem 3 can be further specialized if X is endowed with a topology and
preferences are continuous. Recall that a preference order > is continuous if all sets
of the form {x : z > y} and {y : = > y} are closed. A CPF {>9.G € &} is
continuous if, for every G, =Y is continuous for every w outside a null event. The

following generalizes a standard result of Debreu (1952).

COROLLARY 2. Suppose that X is a connected, separable topological space. Then

every continuous algebra-CPF has a utility representation that adinits aggregation.

A partial converse of Theorem 3 is

THEOREM 4. Suppose that the CPF A = {=9: G € @} has a utility represen-
tation, ® is countable,'! and under some probability measure the null events are

exactly the events of zero probability. Then there exists a countable A-dense subset

of X.
We close with examples of aggregator families. A constructive characterization
of the functional form of all aggregator families is an open problem.

EXAMPLE 2 (ADDITIVE AGGREGATION). An aggregator family is additive if there

exists an expectation operator E such that, for every G € ® and V € DY, E|V| <

11 Alternatively, a continuity-separability argument can be made. As discussed
in Section 5.3, ® can be regarded as a complete, separable metric space. The
assumption of countability can then be replaced with a proper notion of continuity
of the conditional preference »9 with respect to G. The details of this approach
(that uses the result proved here) are left to the interested reader.
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and A[V | G] = E[V | G]. The utility representation U, as given in Definition 4,
is additive if (1) holds for an additive aggregator family. The term “P-additive”
is used to signify the underlying probability. Clearly, every probability P defines
a P-additive aggregator for every ®, by simply taking D9 to be the space of all
P-integrable random variables. Additive aggregators in turn can be used to define
additive CPFs (see Example 1). An axiomatic development of additive aggregation

is presented in the following section.

EXAMPLE 3 (EXTREMAL AGGREGATION). Suppose that Q is finite, N = {§},
and ¢ is an information class. An aggregator family is then defined by letting, for

allG €@ DY =M" and A[V |G]=max{W e MY : W <V }.

EXAMPLE 4 (ORDINAL EQUIVALENCE). Let f: IR — IR be a strictly increasing
continuous function, and let { A[- | G| : G € ®} be an aggregator family. A
new aggregator family can be defined by letting A[W | G] = f~' (A[f(W) ]| G]),
for every G € ® and W such that f(W) € DY. Aggregator families related like
that are ordinally equivalent, in the sense that they correspond to different utility

representations of the same CPF.

EXAMPLE 5 (AGGREGATOR MIXING). Let {§;,Q,,...} be a countable partition
of 2, and denote by 7 the o-algebra it generates together with the null events. Let
® be an information class with the property that # € ® and, for every G € ,
either G C mor 7 C G. For every n € {1,2,...}, suppose { A,[- | G] : G € &}
1s an aggregator family. These aggregator families can be “mixed,” using a third

aggregator family { Ag[- | G] : G € ®}, by letting
AIVIGI=40| 3 AuVIgvrlia, 6], dee,
n=1

where G V 7 is the o-algebra generated by G U w. It is not hard to confirm that

{A[-|G] : G € ®} is an aggregator family.

4. Additive Aggregation

This section presents sufficient conditions for additive aggregation, as defined in

Examples 1 and 2. The result extends standard additive representation results for
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separable preferences. In the case of an infinite number of events, the theorem of

additive aggregation presented is new even under preference separability.

We formulate the results on additive aggregation in terms of an event-CPF & =
{>%: G € G}. The connection to additive algebra-CPFs and additive aggregators
is given in Examples 1 and 2. The desired representation is given in the following

definition.

DEFINITION 6. The pair (U, P), where U is a G-measurable state-contingent utility
and P is a probability on G, is an additive representation of the CPF {>%: G € G}
if [, |U(z)]dP < oo for every z, G € GNN & P(G) =0, and

xtcyﬁ/U(x)dPZ/U(y)dP, GeG\W, z,yeX.
& G

The representation (U, P) is unique if any other additive representation of the form
(U, P) satisfies U = aU + {3 for some « € (0,00) and some (P-integrable) random
variable 3. The representation (U, P) is continuous if [, U dP is continuous for

every event G in G.1?

Clearly, unique additive aggregation does not uniquely determine the underly-
ing probability measure. By the Radon-Nikodym theorem, if (U, P) is an additive
representation of £, so is (V, @), where @ is any measure equivalent to P, and
V(z) =U(x)(dP/dQ), x € X. Morcover, (V, Q) inherits uniqueness and continuity
from (U, P). In Skiadas (1994b) the setting is extended to give conditions under
which there is a unique probability measure consistent with additive aggregation,

and that measure has the interpretation of subjective probability.

That not every CPF has an additive representation follows from well known
counterexamples dating back to Scott and Suppes (1953), formulated in the context
of state-contingent acts over a finite number of states, and separable preferences.
(Examples are also discussed in Fishburn (1970), and Krantz et. al. (1971). A

counterexample to additivity in the setting of this paper that does not rely on

12 Equivalently, for every net { z- } in X converging to r € X, the net of random
variables {U(z,)} converges to U(z) weakly in L'(€2, F,P). (See, for example,
Dunford and Schwartz (1988) Chapter IV, Exercise 25.)
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preference separability can be found in Skiadas (1992).) We now develop sufficient
conditions for additivity, considering first the case of a finite G, followed by the case

of a countably generated G.

To motivate our assumptions, it is helpful to consider the basic idea of our
approach. Suppose that G is generated by a partition { Gy,...,G, } of Q. We wish
to provide sufficient conditions, under which we can consistently define a prefer-
ence order = on X" by letting (zq,...,2,) = (y1,...,yn) < z =% y, where
z ~9 z;and y ~ y; for all 7. Moreover, we will assume conditions under which
Debreu’s (1960) additive representation theorem, as generalized by Krantz, Luce,
Suppes, and Tversky (1971), can be applied on the preference order ». Among
these assumptions will be that X 1s some connected topological space, and that all

conditional preferences are continuous. Following Debreu, we call an event G € G

essential if it is non-null and z =€ y for some z,y € X.
y s Y

The following assumption is one way of guaranteeing that the preference order

> introduced above is well defined on X" and continuous.

ASSUMPTION 1. The following conditions hold:

(a) (Solvability) Given any pairwise disjoint essential events Gy,...,G, in G, and

any acts z1,...,,, there exists an act x such that r ~©i z; for all 7.

(b) X is Hausdorff and compact.'?

With separable preferences over state-contingent acts, solvability is automati-
cally satisfied, because one can construct = to yield the same consequences as z; on
G, for every ¢. In its general form, solvability can be thought of as the availability
of acts that exactly compensate for not following certain courses of action under
corresponding scenarios. Act z could, for example, be a state-contingent monetary
payoff that, on the occurence of event G;, would exactly compensate for not having
followed act z;, for every . Of course, such an act may be an artifact, not naturally

occuring in the initial formulation of the problem.

Compactness of X in Assumption 1 serves the purpose of showing continuity of

13 For the relevant background on topological notions, the reader is referred to

Kelley (1955) or Dugundji (1966).

16



>. Since this is not a valid assumption in many contexts, we consider the following

alternative condition.

ASSUMPTION 2. (Continuous Solvability ) Given any pairwise disjoint essential events
G,,...,G, in G, and any acts x,...,z,, there exists an act ¢ with the following
property: for every neighborhood N of z, there exist neighborhoods Ny,..., N, of
T1,...,Tn, respectively, such that ! € N; for all ¢ implies that there exists ' € N
G

such that ' ~% z!} for all 1.

Assumption 2 has the same interpretation as solvability, with the additional intu-
ition that sufficiently small perturbations of the acts x; correspond to small pertur-
bations of the “compensating” act z.

In case the solvability assumptions appear too strong, it is instructive to con-
sider some alternative formulations. The following assumption unplies solvability,

and can replace continuous solvability in the additive representation theorem.

ASSUMPTION 3. Given any pairwise disjoint essential events G, ...,G, in G, and
any x € X, theset A={z' € X : 2' ~% 2, i=1,...,n—1} is connected, and

for every y € X there exist Z,z € A such that Z >Cr y »=Cn 2.

Assumption 3 weakens the exact solvability requirement of Assumption 1, at the
cost of assuming that the sets A are connected. This idea can be taken even further.

It is shown in Lemma 6 (Appendix II) that Assumption 3 is implied by

ASSUMPTION 4. Let G,,...,G,, be any pairwise disjoint essential events in G, and
x any act. Every set of acts of the form {y : yR;z, i = 1,...,n}, with R; €
{=Ci, <G ~CiY for every i, is connected. Furthermore, if R; € { =% <%} for
all 1, then for every y € X there exists a z € X such that z R;xz for1=1,...,n—1,
and z R, y.

Any of the above assumptions, together with connectedness of X, continuity
of preferences, and a strict version of coherence, gives additive aggregation in the

case that G 1s finite and contains enough essential events.

THEOREM 5. Suppose that G is finite, and that the CPF £ = {=¢: G € G}

satisfies the following conditions:
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(a) G contains at least three essential events.

(b) X is a connected topological space, and = is a continuous preference order

on X for every non-null G in G.

(c) For every pair of non-null disjoint events F' and G in G, and any acts z and y,

t>F yand z > y implies z >V y.

(d) Any one of Assumptions 1, 2, 3, or 4 holds.

Then £ has a continuous and unique additive representation.

Remark 1. The proof in Appendix II shows that Theorem 5 remains valid if G 1s
not an algebra, provided that every element of G is a union of some of the events

Gi,...,G,, and that 2 € G.

We now provide a result that allows the extension of Theorem 5 to the case
in which G i1s countably generated. Countably generated o-algebras cover most
situations in practice. For example, the Borel sets of any separable space (such as
a Euclidean space) are countably generated, and it can be shown (see Billingsley
(1986), Exercise 20.1) that G is countably generated if and only if it is generated
by a random variable. The following result relies on the martingale convergence
theorem. An alternative approach can be based on the methods of Vind (1990). !4

Given a sequence of events { G,, }, the notation G,, T G means that m < n implies

Gm C G, and G =, G,.. The notation G,, | G means that (Q\G,,) T (Q\G).

THEOREM 6. Suppose that G is countably generated, and that the CPF £ = {»¢
: G € G} satisfies the following conditions, in addition to conditions (a) through

(d) of Theorem 5:

(e) For any sequence { G,, } of events in G, and any acts z and y such that x =% y

for all n, G,, T G or G, | G unplies that =G Y.

(f) There exist acts ¢ and T such that, for every non-null event G in G and any

act 2, T>=% 2 >%z andT > 2.

11 In the context of separable preferences, Vind (1990) takes a probability defining
the null events as given, and assumes a sense of continuity of preferences relative to
that probability. In Theorem 6 null events are taken as primitive, and a probability
is constructed so that all null events are the events of probability zero.
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(g) For any sequence of events { G,, } in G such that G,, | §, there exists a sequence
ofacts { zn, } from which a subsequence { z,,(x) } can be extracted that converges

G

to z, but at the same time T, ~~ ) T for every k.

Then £ has a continuous and unique additive representation.

Remark 2. The proof of the theorem shows that the theorem could be stated in a
more general form. Conditions (a) through (d) can be replaced by the weaker: Every
finite subalgebra H of G is contained in a o-algebra H' C G such that { =% : G € H'}
has a continuous and unique additive representation. Condition (g) need only be
assumed for events { G, } in some countable algebra generating G. Finally, instead
of coherence of &, one need only assume: z > y and z =% y implies z >V y, for
all disjoint non-null events F' and G. Under conditions (¢) and (e), this condition

implies coherence (Definition 2(b)). This completes the remark.

Of the new assumptions of Theorem 6, (e) has a clear meaning, and (f) is
technically motivated, serving to provide appropriate bounds to utilities when limits
are taken. Assumption (g) states that the worst act z is (topologically) close to
acts that, conditionally on sufficiently “small” events, are as desirable as the best
act Z. Section 5.1 provides an example with state-contingent acts and an explicit
norm topology, in which all of the assumptions of Theorem 6 are satisfied.

Finally, all of the above theory can be “localized.” That is, we can assume
that every act has a neighborhood on which £ has an additive representation. The
methodology of Chateauneuf and Wakker (1993) can then be applied to obtain a
“global” additive representation, provided that all indifference sets are connected.
The details of such an argument follow closely that of Chateauneuf and Wakker,

and are left to the interested reader.

5. Applications and Extensions

In the last three sections we have defined conditional preferences with respect to
events or o-algebras, we have discussed their utility representation and a general
form of aggregation, and finally provided additional conditions for additive aggre-

gation. This section discusses applications and extensions of this theory.

A class of applications involves state-contingent acts, just as in Savage (1954),
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but non-separable preferences. Section 5.1 presents such an example, through a
theory of disappointment aversion. Beyond non-separable preferences, the formal
setting of this paper allows us to talk about preferences over acts that do not have a
natural state-contingent structure. Section 5.2 presents such an example in the form
of the subjective value of information. The reason for the lack of an explicit state-
contingent structure of acts can be the fact that a decision maker has limited ability
to contemplate possible resolutions of uncertainty and their consequences. This
“bounded rationality” interpretation is further discussed in Section 5.3, and related
to Knight’s (1921) and Ellsberg’s (1961) concept of uncertainty (or ambiguity) in
Section 5.4.

Further extensions are presented in related papers. Applications to dynamic
choice are considered in (Skiadas 1994a), where the methodology of this paper is
used to axiomatize utilities with intertemporal dependencies. Subjective probabil-
ity under state-dependence and non-separable preferences, based on the theory of
additive aggregation, is considered in (Skiadas 1994b). Finally, Klibanoff and Ski-
adas (1994) develop a theory of the aggregation of conditional utilities using the

multiple-prior approach of Gilboa and Schmeidler (1989).

5.1. Non-separable Preferences and Disappointment Aversion

In this subsection we consider the case in which acts have a state-contingent struc-
ture, just as in Savage’s setting. We relax, however, the assumption of preference
separability, by allowing the possibility that conditional preferences over conse-
quences are affected by initial expectations, for example, because of disappointment

or relief,

Throughout the subsection, we take as given a measurable space (C,C), and
we assume that X consists of all measurable functions of the form =z : @ — C.
The interpretation of z(w) is that of an objective consequence of act z at state
w. We take as primitive an event-CPF, £ = {=F: F ¢ F}, that is consistent
with an algebra-CPF with utility representation Y = {UY9 : G € ®}. We assume
that @ includes F and the trivial o-algebra 7 (generated by the null events). For
simplicity, we write U = U% and « = U7. (The utility u represents =%.) We also

define I = {u(z) : z € X }. To avoid technicalities, we begin with the assumption
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that F is finite and A" = {@ }. This assumption is relaxed in Theorem 7 below.

Preference separability is the requirement that the ranking of two acts given
some event does not depend on the consequences of these acts outside the event.

Formally,
(z:yonF):>(z~Fy), z,y€e X, FeF. (2)

Given our assumption of a finite number of events, 1t is straightforward to show
that (2) is equivalent to the existence of a function f, whose domain is a subset of
Q0 x C, such that U(w,z) = f(w,z(w)) for all (w,z) €  x X. If U is additive, as
in Example 2 and Theorem 5, we then have the state-dependent expected utility

representation u(z) = E(f(z)).

A weaker condition than (2), allowing for non-separable choice, is
(z=yon Fandz ~Ty)= (z ~y), z,yeX, FecF (3)

The idea behind (3) is that conditional preferences may be affected by the ex-ante
ranking of acts (where there is no information available ex-ante). For example,
the actual realization of an act may lead to disappointment (elation), because the
ex-post ranking of an act is inferior (superior) relative to its ex-ante ranking. This

is formalized by
(t=yonFandy>%z)=> (z>=Fy), z,yeX, FeF. (4)

Condition (4) is a statement of (weak) disappointment aversion: if the ex-ante
assessment is that y is better than z, but z and y are identical on F', then given the
occurrence of F'| the agent is better off choosing z, rather than y, since the latter
leads to disappointment. A strict version of (4), modeling strict disappointinent

aversion, 1is
(r=yon Fandy =% z)=(z>"y), z,yeX, FeF (4")

Given our assumption of a finite number of events, it is easy to show that
condition (3) is equivalent to the existence of a function, f, whose domain is a

subset of  x C x I, such that U(w,z) = f(w,z(w),u(z)) for all (w,z) € 2 x X.
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Moreover, the function f can be chosen to be nonincreasing (respectively, strictly
decreasing) in its last argument if and only if (4) (respectively, (4')) is satisfied. If

U is additive, as in Theorem 5, we obtain
u() = Elf(r,u())], =€ X. (5)

Under assumption (4) (or (4')), equation (5) uniquely determines u, and therefore
the entire CPF through the equation U(z) = f(z,u(z)). To see that, suppose
that for a given = the equation v = E[f(z,v)] is satisfied for v = v; and v = vy,
where v; < vg. Then the monotonicity of f in its utility argument implies that
v1 = E{f(z,v1)] > E{f(x,v2)] = vq, a contradiction.

The class of utilities just introduced extends the class of utilities axiomatized
by Dekel (1986), who considered a von Neumann-Morgenstern setting of preferences
over distributions, weakening the independence axiom to the betweeness axiom of
Chew (1983). The interpretation of disappointment aversion was provided by Gul
(1991) in a narrower class of preferences than that considered by Dekel. (Gul’s
intention was to explain some of the observed violations of expected utility, by
providing a minimal extension of the von Neumann-Morgenstern framework that
captures the notion of disappointment aversion.) Disappointment was also modeled

in special settings by Bell (1985), and Loomes and Sugden (1986).

The remainder of this subsection presents a theory of disappointment aversion
under additive aggregation and an infinite number of events. The infinity of events
presents a number of technical difficulties that are overcome with a number of special

assumptions, including

AsSSUMPTION 5. The following conditions hold:

(a) There is a probability P such that (Q,F,P) is a non-atomic'® probability
space, and P(F) =04 F € N. The o-algebra F is countably generated.

(b) C =10,1]¢, for some positive integer d, and C consists of the usual Borel sets.

(c) A sequence {z, } in X converges to x if and only if {z, } converges to = in

15 For a discussion of non-atomic spaces see, for example, Dudley (1989), Sec-
tion 3.5.
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probability'® (under P).
(d) Let T(w) = (1,...,1) and z(w) = (0,...,0) for all w € Q. Then T =¥ z and
z>F 2 >F g for all non-null F € F andz € X.

(e) For any acts z, y, and any non-null event F, z > y on F and y = ¢ implies

z>=Fy.

We think of the elements of C' as consumption bundles. The choice of the
interval [0, 1] in Assumption 5(b) is arbitrary; C could be the product of any finite
number of compact intervals. Assumption 5(d) states that T and z represent the
absolute best and absolute worst, respectively. Consequently, the utility of (0,...,0)
on some event cannot be decreased because of disappointment, and analogously the
utility of (1,...,1) on some event cannot be enhanced because of relief. In other
words, disappointment or relief is allowed to modify the utility of non-extreme
consequences only. Assumption 5(e) is a stronger version of condition (3). On the
one hand, it expresses a weak form of disappointment aversion, in the sense that
preferences can be separable (condition (2)) or disappointment averse (condition
(4)). On the other hand, condition (e) expresses the idea that more consumption is
(weakly) preferred to less consumption, provided there is no disappointment.

The representation theorem that follows specializes Theorem 6. Notice that in
this context connectedness of X is implied by the fact that X is a convex set. The

separable-preference case is treated more generally by Grodal and Mertens (1968).

THEOREM 7. Suppose that, in addition to Assumption 5, conditions (a) through
(d) of Theorem 5, and condition (e) of Theorem 6 hold (with G = F). Then £
has a continuous and unique additive representation (U, P). Moreover, there exists
a function f : 2 x C x I — IR that is nondecreasing in its second argument and
nonincreasing in its third argument, such that U(z) = f(z,u(z)) and u(z) uniquely
solves (3) for every x € X. The function f is strictly decreasing in its last argument
if and only if (4') is satisfied, and it does not depend on its last argument if and

only if (2) holds.

The following is an example satisfying all the assumptions of Theorem 7.

16 X can be considered as a complete metric space under the Ky Fan metric (see,

for example, Dudley (1989), Section 9.2).
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EXAMPLE 6. Suppose C = [0,1], and the function f: Q x C x [0,1] — [0, 1] has
the following properties: (a) for every (w,v) € Q x [0,1], f(w,-,v) is continuous
and strictly increasing, with f(w,0,v) = 0 and f(w,1,v) = 1; and (b) for every
(w,c) € AxC, f(w,c,) is nonincreasing and continuous. Let X and (Q2,F, P) be as
in Assumption 5. We claim that a utility u is uniquely defined by (5). Uniqueness
is a consequence of (b), as argued earlier. To show existence, we observe that
E[f(z,v)] — v is a continuous function of v that is nonnegative for v = 0 and
nonpositive for v = 1, and therefore vanishes somewhere on [0, 1]. Given the function
u, implicitly defined by (5), we define £ by letting U(z) = f(z,u(z)). It is easy to

check then that all the assumptions of Theorem 7 hold.

5.2. Subjective Value of Information

In the last subsection we considered an application involving non-separable pref-
erences over state-contingent acts. This subsection 1s on the subjective value of
information, an application in which acts do not admit a natural state-contingent

representation in the sense of Savage at all.

One usually thinks of information as being valuable indirectly, because it
presents planning advantages that result to higher utility of, say, state-contingent
consumption. However, information is also “consumed” and valued directly. In-
formation can have entertainment value, but can also be a source of distress, even
when state-contingent consumption is not affected by that information. On the
other hand, even when an economic agent is in principle only interested in the in-
direct value of information, it is usually impractical to consider and evaluate all
possible optimal actions implied by that information. For example, it is unrealistic
to assume that the subscriber to a news report contemplates all optimal plans that
are contingent upon all possible resolutions of uncertainty provided by the report.
Instead, the subscriber places a direct subjective value on the report, conditionally
on some algebra representing the agent’s current perception of possible resolutions

of uncertainty.

Throughout this subsection, we assume that X is an information class. An
“act” 1s then a o-algebra, and represents information in the usual sense. While all

of this paper’s general results apply to this setting, we discuss in some detail the
pap g ply g,
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additive aggregation theory. For purposes of comparison, we begin with a simple

example of the indirect value of information.

EXAMPLE 7. Suppose C is a consumption space, for example, the non-negative
cone of a Euclidean space, and Z is a space of feasible consumption plans. Every
element of Z is of the form z : § — C (and 1s measurable relative to some o-algebra
of subsets of C). Given state-contingent utility u : @ x C — IR, we assume that,
for any o-algebra of events G, the indirect conditional utility of information is well
defined by UY%(z) = max{ E[u(z) | G] : 2z € Z is z-measurable } for any =z € X
such that z O G. For simplicity, we assume that the maximum is achieved and is
finite.!” It is easy to check then that H C G C z implies U (z) = E[U%=z) | H).
In particular, we can define V(z) = U*(z), ¢ € X, and extend the definition of the

conditional utility U9 to the whole of X, by letting
US(x) = B[V(x) | G], «€X. (6)

This completes the example.

In contrast to the above example, the theory of additive aggregation leads to
an additive utility representation { U9 : G € @} of the agent’s CPF over X. Defin-
ing the function V : @ x X — IR by V(z) = U*(x), we obtain representation (6)
once again, with the new iterpretation of V() as the subjective value of informa-
tion z. Of course, the additive representation result requires some topological and

solvability assumptions that we now consider in turn.

First, we need to endow X with a topology. A natural'® choice is the pointwise-

convergence topology introduced by Cotter (1986), under which X becomes a Polish

17 For example, this can be derived from standard continuity-compactness as-
sumptions. More generally, we could replace the maximum with a supremun, at
the cost of technical difficulties in showing the additivity statement of this Example.
These difficulties can be dealt with, however, using the techniques of Rockafellar
(1975).

18 Another alternative would be to use the topology of Boylan (1971), which is
analogous to the Hausdorff topology on spaces of sets, and has been shown by Allen
(1983) to possess many nice properties for the purposes of economic theory. Cotter’s
topology used here 1s weaker than Boylan’s topology, and has most of the properties
investigated by Allen.

o
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space.!® The topology is defined in terms of an underlying probability P, so that
anet {z,} in X converges to z € X if and only if, for every integrable random

20 Cotter showed

variable r, { E[r | z,]} converges to E[r | z] in probability.
that changing the underlying probability P to one defining the same null events
results in an equivalent topology. Therefore, P can be chosen arbitrarily as long as
P(F)=0<« F € N. For the rest of this subsection, we assume that X is endowed

with the Cotter topology.

Additive aggregation also requires that X be connected. The following is an

example in which this is true.

EXAMPLE 8. Suppose that { B, : ¢t € [0,1]} is d-dimensional Brownian motion
on (, F,P), and {F, : t € [0,1]} is the augmented filtration generated by B
(see, for example, Karatzas and Shreve (1988), Section 2.7). We assume that By
is constant, and therefore Fy is trivial (contains events of probability one or zero).
We also assume that F is generated by [Jo, Fi. We define X to be the set of
all complete sub-o-algebras of 7. We will show that X is connected under the
Cotter topology. It suffices to show that every z € X is path-connected to Fy
(see, for example, Dugundji (1966), paragraphs 5.2 and 5.3). Given any = € X,
let ¢ = z N F;. By the discussion of Section 2.7 of Karatzas and Shreve (1988),
we have that =, = ()5, %« and z, is generated by |J, <, r+. This fact, together
with Lévy’s theorem (Sge, for example, Billingsley (1986),—Theorems 35.5 and 35.7),
unplies that the mapping ¢ — z, 1s continuous. Since z¢y = Fp and z; = x, we have
shown that z is path-connected to Fy, and therefore the whole of X is connected.

This completes the example.

Another assumption that was employed to obtain additive aggregation is solv-
ability. As always, to justify such an assumption, one may wish to extend the
space of acts by considering the product space of the given act space and a space
of state-contingent acts with, say, monetary consequences. A special case in which

solvability comes for free, however, is when conditional preferences are separable.

19 That is, there exists a metric d on X such that (X, d) is a complete, separable
metric space.
20 Or, equivalently, in Ly, since the set { E[r | z.,] } is uniformly integrable.
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Separability in this context is defined by
(FE:rﬂyand:rﬂF:yﬂF)i(zNFy), z,y € X. (7)

For example, the (implied) CPF of Example 7 is easily seen to be separable. One
can easily show that (7) implies continuous solvability (Assumption 2).

A consequence of condition (7) under additive aggregation is that the value of
a partition can be computed as the sum of the value of its elements, in the following
sense. Given (7), we can consistently define v(G) = V(G), where G is the complete
o-algebra generated by G. Let X/ consist of all the complete o-algebras generated
by finite partitions of Q, and for every z € X/, let 7(z) be a finite partition of Q

that generates . Given (7), representation (6) then gives

V(z) IZ{U(F) - Fen(z)}, zeX’

Under continuous additive aggregation, this representation completely determines
the underlying event-CPF, because [ r V dP is continuous for every event F, and
Cotter has shown that X/ is dense in X. The above additive representation of V
on X/ was also discussed by Gilboa and Lehrer (1991). Their result is cardinal
in character, taking V as a primitive, and assuming an additivity-type condition
on V directly. Gilboa and Lehrer also noted that V is monotonically increasing
(z Dy = V(z) > V(y)) if and only if for any disjoint (non-null) events F and G,
v(FUG) <v(F)+ v(G). The indirect utility of information of Example 7 is easily
seen to be monotonically increasing.

In Skiadas (1994a) the above theory is extended to a dynamic setting, general-
1zing the treatment of preferences for the timing of resolution of Kreps and Porteus

(1978).

5.3. Bounded Rationality Interpretations

In this subsection we briefly consider some interpretations of a CPF that relate to
the limitations of a decision maker in perceiving possible resolutions of uncertainty
and associated consequences of acts. These limitatations have been an important
motivation in considering preferences over acts that do not necessarily have a state-

contingent structure.
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Given a CPF A = {>9: G € &}, we define a o-algebra of events B to be
a rationality bound of A if every conditional preference 9 in A is B-measurable.
The rationality limit, R, of A is the least rationality bound of A4, that is, the
intersection of all rationality bounds of A. The rationality limit R of an agent’s
CPF can be interpreted as the agent’s perception of the possible resolutions of
uncertainty. Assuming for simplicity that R € &, the conditional utility UR(z)
reflects the agent’s subjective perception of the consequences of z given each of
the events in R. In the case that acts are R-measurable state-contingent acts,
U® can be given more specific structure through the assumption of separability,
or some weaker version such as disappointment aversion. More realistically, acts
may have consequences that obtain in not well understood circumstances, or have
consequences of subjective and ambiguous nature. We are therefore interested in
the case that state-contingent acts are not R-measurable, or more generally in cases
in which acts do not have a state-contingent structure in terms of unambiguous
consequences. Providing UR with more structure in such cases is an important
research challenge. In the remainder of this subsection we briefly review a sample
of ideas in this direction, with the understanding that a lot more remains to be said.
The discussion of ambiguous consequences is continued in the following subsection

in the context of Knightian uncertainty.

A general approach to explaining a conditional utility relative to a rationality
limit is to assume that 1t represents an aggregated version of a conditional utility
relative to a finer perception of uncertainty. For example, one can think of UX as
being derived from a larger theory of rational behavior that incorporates learning.
The agent is really capable of formulating a conditional utility with respect to
an algebra finer than R, say U7, but has learned to implement the decision rule
corresponding to the utility UR = A[U7 | R]. The latter requires of the agent to be
aware of only R, thus saving on information processing and gathering costs, while
incurring learning or memorization costs. (Of course the question of the structure
of U7 remains.) In another interpretation, one can think of U™ on some event as
being derived from other agents or some social environment. For example, an agent
that does not understand the implications of act z on event G in R may seek the

advice of an expert. The expert, being aware of an algebra of events G such that
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GNG D RNG, can communicate to the agent the utility UR = A[V | R] for some
state-contingent utility V. Through the utility V', the expert not only summarizes
information, but necessarily passes on to the agent subjective value judgements.
Example 5 can be interpreted as the aggregation of the opinions of many experts,
with expert n providing the conditional utility V1g_ and corresponding aggregator
family. The result is a compound CPF with a finer rationality bound than the
agent’s.

From another perspective, the rationality limit of a CPF represents not an
agent’s true finest perception of possible events, but rather the limitation of the
CPF as a model. While the agent perceives events not in R, these are of a subjective
or ill defined nature, and hence not included in the primitives of the model. An
example in this direction can be based on the work of Kreps (1976, 1992) as follows.
Suppose that the elements of X represent opportunity sets. As Kreps (1992) points
out, 1t may be infeasible for an agent to pick an optimal consequence given an z in X
and state of the world, because of the possibility of unforseen contingencies, or more
generally bounded rationality as discussed above. This motivates the introduction
of direct preferences over X. The general results of this paper all apply to the case

in which X consists of subsets of some space.?!

Assuming for simiplicity that the
rationality limit R of an agent is generated by some finite partition { Ry,..., R, }
of Q, Krep’s theory of preferences for flexibility can be applied wholesale on each
of the primitive preferences >, This way the conditional utility U® on R; can
be represented as the value of the maximization of some state-dependent utility
over subjective “sub-states” of R;, that were not included as events in R because
their nature is unknown to the modeler. This is essentially an idea of Kreps (1992),

except that we have avoided having to postulate preferences over state-contingent

acts with X as a consequence space.

5.4. Knightian Uncertainty

The notion of uncertainty (or ambiguity, or vagueness) as distinct from risk, dates

back to Knight (1921), and has received considerable attention since Ellsberg’s

21 To endow X with a topology, the Hausdorff topology can be adopted following
Kreps (1976), or alternatively the approach of Berliant (1986) can be taken, who
also showed connectedness (required by the additive aggregation result).

29



(1961) well known experiments. For a survey of this literature, the reader can
consult Karni and Schmeidler (1990), and Camerer and Weber (1991). In this

subsection, we relate the setting of this paper to Knightian uncertainty.

We call a CPF {=Y9: G € &} full if ® contains every complete o-algebra of
events. The following Ellsberg-type example shows that a full CPF that satisfies
preference separability (condition (2), assuming state-contingent acts) is not con-

sistent with the notion of “ambiguity aversion.”

EXAMPLE 9. An experiment consists of tossing a perfectly fair coin, and at the
same time blindly pulling a ball from an urn containing red and green balls in com-
pletely unknown proportions. The natural state-space is = { hr, hg,tr,tg }, with
the obvious interpretation. Acts are assumed to be state-contingent monetary pay-
offs. An agent’s conditional preferences over these acts are represented by the CPF
{=F: FCQ}. Given any event F, we denote by (F) the act whose consequences
are a payoff of $100 at every state in F, and no payoff at every other state. We let
H = { hr,hg } be the event of heads, and analogously we define the events T', R, and
G. Because of symmetry, we naturally assume that (H) ~% (T) and (R) ~7 (G).
Let now z be the act ({ hr,tg}). Preference separability (condition (2)) and the
above symmetry indifferences imply that z ~® (H) and = ~% (T) ~¢ (H). Simi-
larly, z ~* (R) and = ~T (G) ~T (R). Coherence then gives z ~% (H) ~% (R),
precluding the possibility that (H) =% (R) on the grounds that (H) involves a less

“ambiguous” risk than (R) does. This completes the example.

This example suggests two approaches to ambiguity aversion. In the first one
separability is relaxed, and the ambiguity of an act is reflected in the values of
conditional preferences. In the second approach preferences are modeled through a
non-full CPF, and ambiguity is modeled in the form of aggregation, while preserving
separability. We now briefly consider the two approaches, and then discuss them
from the point of view of bounded rationality. It should also be pointed out that
there are theories of Knightian uncertainty (such as Bewley’s (1986)) that do not

conform to this categorization.

Approach 1. In this approach the ambiguity of an act is reflected in its conditional

utilities, while separability is not valid. In the context of Example 9, the agent
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reasons that on the event that R occurs (H) would have been a preferred act
than z, since the latter would have involved the bad feeling of having chosen an
ambiguous act. Thus the separability condition z ~® (H) is violated. Section 4.1
of Camerer and Weber (1992) surveys some specific existing attempts to model
ambiguity aversion by adjusting the utility of a consequence. We outline here a

general method for the case of state-contingent acts.

Suppose that an agent, endowed with no information, subjectively ranks acts
according to their “ambiguity.” We model that by a complete and transitive order
=, on X, where z >, y denotes the subjective assessment that x is more ambiguous
than y. The agent’s conditional preferences are modeled through the CPF { =%
F ¢ F}. Assuming that acts are state-contingent, the assumption of ambiguity

aversion can then be stated as

(z=yon Fandy>r,z)=>z>Fy, FeF\N, z,yeX.

Using arguments analogous to those of Section 5.1,%2

one obtains the representation
UF (w,z) = f(w, z(w),a(x)), where a : X — IR is an “ambiguity index” that ordi-
nally represents >=,, and f is non-increasing in its third argument. Under additive
aggregation, UY(z) = E[ f(z,a(z)) | G]. This is of course not a complete model of
ambiguity aversion, since nothing has been said about the structure of >,. It does

show, however, that aggregation in the sense of this paper is in principle compatible

with ambiguity aversion.

Approach 2. In this approach ambiguity aversion is reflected in the form of aggre-
gation, while allowing preference separability. To accomplish that, we start with
a non-full CPF of the form { =%, >7} with utility representation {u,U% }. Co-

herence in this context is equivalent to the existence of a monotone function A,

22 This is a general technique for introducing preference non-separabilities. For
example, disappointment aversion is obtained by setting »=,=>%. More gener-
ally, given complete and transitive orders ~;, : = 1,...,n, on X, the condition
(x = yon Fand y =; z forall i) = (z =¥ y) leads to the representation
UF(w,z) = f(w,z(w),a;(x),...,a(z)), where a; : X — IR ordinally represents
>;. For example, to model disappointment aversion and ambiguity aversion to-
gether, we let n = 2, =,=>q, and »,=>,, where >, is a subjective ranking of acts
with respect to ambiguity.
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mapping random variables to real numbers, such that u(z) = A[U%(z)]. The map-
ping A can be any of the aggregation rules that have been proposed in the literature
in order to capture ambiguity aversion. Examples include a Choquet integral, as
in Schmeidler (1989), or a minimum expected value relative to a set of priors, as
in Gilboa and Schmeidler (1989). Since ambiguity aversion 1s captured in the form
of the aggregator, rather than the utility, preference separability can be assumed,
implying that U7 (w,z) = f(w,z(w)) for some function f.?* Suppose now that we
wish to extend the CPF { =% =7 } to a full CPF, while preserving separability and
ambiguity aversion. Example 9 shows that there can be a sub-o algebra of F, G,
such that £ ~9 y does not imply =z ~% y, contradicting coherence. For such a G,
there does not exist an aggregator map 49 for which we can write u(z) = A9[UY%(z)]

for all z in X.

While it is not our purpose here to discuss the various advantages and disad-
vantages of the two approaches, we conclude with a comment from the point of
view of bounded rationality. We argue that the second approach is limited in its
ability to incorporate ambiguous consequences. The following example illustrates

the point.

EXAMPLE 10. Consider two different contracts, Cy and C,. An agent that enters
contract Cj is entitled to monetary payofls contingent on well defined resolutions of
uncertainty. The agent knows that there are perfect enforcement mechanisms that
guarantee that he will receive the appropriate payoff in every contingency. The
rules of the contracts, however, are very complicated and written in a language
that the agent does not comprehend. To make the case extreme, we assume that
the agent is completely unaware of the contracts’ contingencies. Having received
advice from trusted experts, however, the agent has formed a subjective assessment
of their value. He finds them to be of equal value. (We assume there 1s no market

on these contracts.)

Consider now the setting of Example 9, and let R be the algebra of all subsets

of @ = { hr hg,tr,tg }. If desired, R can be viewed as a coarse algebra of events in

23 Klibanoff and Skiadas (1994) show that separability is not a necessary ingredi-
ent of this construction. For example, in the presence of disappointment aversion,
we could have the representation U” (w, z) = f(w, z(w),u(x)), just as in Section 5.1.

32



a much larger state-space that includes all the contingencies relevant to contracts
C; and C,. Following Approach 2, the agent’s preferences are represented by the
CPF {>=%,>=®}, and separability is assumed. For example, the CPF could be
defined by utilities {u, U9 }, where U%(w,z) = f(w, z(w)) for some function f, and
u(z) = A[f(z)] for some aggregator A. For any event F, let (C;,Cj; F') denote the
act in which the agent enters contract C; on the event F' and contract C'; otherwise.
The act that involves entering contract C; for sure is denoted C;. Consider the
acts z = (C,,Cy; H) and y = (C;,Cy; R). We assume that C; ~® Cj, since the
contracts are viewed of equal value by the agent, and the coin and urn are known
to the agent not to be part of any of the contracts. By the separability assumption
then, z ~® y ~® Cy, and by coherence, z ~* y ~% C,. This completes the
example.

In contrast to the conclusion of the example, one would expect that an agent
averse to ambiguity may not be indifferent between z and C,, and z and y. Act
z may be viewed as “hedging” the uncertain (and unmodeled) nature of the two
contracts by mixing them through a well understood randomizing device. (Gilboa
and Schmeidler (1989) use this idea to define ambiguity aversion). On the other
hand, y may be viewed as more ambiguous than z, since it replaces the coin toss
with a more ambiguous randomization process. This problem can be avoided by
modeling uncertainty in more detail than that allowed by R. Such a solution would
contradict, however, the interpretation of R as a rationality limit in the sense of
the last subsection. Given a finer description of uncertainty one would still be able
to formulate an example analogous to Example 10, as long as the model does not
perfectly capture reality. Approach 1 is therefore limited in its ability to capture
ambiguity aversion in the presence of ambiguous consequences. On the other hand,
Approach 2 does not seem to suffer from this problem. In the context of Example 10,

the conclusion r ~® y ~® C| is not necessarily valid if separability is not assumed.

APPENDIX I:. On Black and White Sets

This appendix develops a measure theoretic result used in the proofs of Theorems 1,

4, and 7. The result is a generalization of the Hahn decomposition theorem.

Given is a probability space (2, F, P), where F is a o-algebra of subsets of
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2, and P is a countably additive probability on F. The elements of F are called
events. A subset of an event F that is also an event is a subevent of F'. An event
N is null if P(N) = 0. Events that are not null are designated either light or dark,
but not both. These are primitive notions and are required to satisfy the following

conditions:

(a) A countable disjoint union of light (respectively, dark) events is light (respec-

tively, dark).

(b) Two non-null sets whose symmetric difference is null are either both light or

both dark.

An event F is defined to be white (respectively, black) if it is non-null and every
non-null subevent of F is light (respectively, dark). We can now state the main

result.

THEOREM 8. Every non-null event F is black, or it 1s white, or it is the disjoint
umion of a white subevent of F' and a black subevent of F. This decomposition of

F' is unique up to null events.

EXAMPLE 11. Let g be a finite signed measure on (2, F). Let P be defined by
letting P(F') = |u|(F)/|pe|(), where |1¢| represents the absolute variation of u. Let
an event F' be dark (respectively, light) if P(F) > 0 and p(F) > 0 (respectively,
< 0). Then the above theorem reduces to the Hahn decomposition theorem for finite
signed measures. (See Halmos (1974), Theorem 29A, whose exposition inspired the

proof that follows.)

LEMMA 1. Every non-null event that is not black (respectively, not white) has a

white (respectively, black) subevent.

PROOF: Suppose F is a non-null event that is not black. Let L, be a light subevent
of F. If L, is white we are done. Otherwise, let n; be the smallest integer for which
there exists a dark subevent Dy C Ly, with P(Dy) > 1/n;. Then L, = Ly — Dy is
light, (since the disjoint union of two dark events is dark). Repeating the process, we
either arrive at a white event L,, for some integer n, or produce a disjoint sequence
{Dy :k=1,2,...} of dark events and a sequence {nj : k = 1,2,...} of integers.

In the latter case let D = |Jpo; D¢ which is also dark, being the countable disjoint
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union of dark events. We claim that L; — D is white. It cannot be a null event for
then L, would have to be dark. On the other hand, suppose it contained a dark
subevent G. Since P(Dy) — 0, ngx — oo, as k — oo, and therefore P(G) > 1/nk

for all large enough k. But this contradicts the choice of the integers ny. B

PrROOF OF THEOREM &: If the given event F' is white there is nothing to show.
If not, the Lemma shows that it has a black subevent. Let a = sup{ P(B): B €
FNF, and B is black }. Let By, B,,... be a sequence of black subevents of F such
that P(B,) — a as n — oo. Then B = (J;, B, is black, and P(B) = a. To see
the first claim, suppose B is not black, and therefore (by the Lemma) it contains
a white subevent W. But then, for at least one n, W N B,, is a non-null subevent
of W, and therefore also a light subevent of B,,, contradicting the fact that B, is
black. The second claim follows since « > P(B) > P(B,) — «. If F — B is null we
are done. If not, then it must be white. For if F — B contained a black subevent B’',
then P(BU B') > «, a contradiction. We have shown the first part of the theorem.

Uniqueness is immediate. H

Appendix II: Proofs

Proof of Theorem 3

Suppose that Z = { 21, 29,... } is an A-order dense subset of X. We fix any G € @,

and we define, for every (w,z) € 2 x X,

0, if z, >g z;
dg(wal‘) = 1, if x Ng Zns
2, ifzx >g Zn.

Let d9(z) denote the random variable d9

(-,z). In the case that Z has a last element
zN, we let d,gl(z) = 0 for n > N. A candidate conditional utility is now defined by

the formula

Notice that there is a one-to-one correspondence between values of U9(z) and se-
quences {d9(z) : n=1,2,...}. We will show that i = {UY : G € @} is a utility

representation of A that admits aggregation.
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We first show that ¢ is a utility representation of A. Clearly, U9%(z) is G-
measurable for each z € X. We now show that, for every G € G, ¢ =Y y on G if
and only if U%(z) > U%y) on G. For any G € G, suppose =z =9 y on G. Then
d9(z) > d9%(y) on G, for all n, and therefore U9(z) > U9%(y) on G. Conversely,
suppose that U%(z) > U9%y) on G € G, but y =Y z on some G' € GN G. Since
Z is A-dense, there exists integer m and some non-null G" € G N G', such that
y =9 zm =9 z on G", while of course y =9 z on G". Tt follows that d9 (y) > d9 (z)
on G", while d%(y) > d%(z) on G" for all n. Therefore, U9(y) > UY%(z) on G",
contradicting our original assumption. This completes the proof that I is a utility

representation of A.

It remains to show that &/ admits aggregation. For this purpose, we will use

the following result.

LEMMA 2. Suppose that z,y € X; GG H, I € ®; and [ € T CGNH. IfUz) =
UM(y) on I, then U¥(z) = UX(y) on I.

PROOF: We assume that 7 = G N 'H. The more general statement follows imme-
diately from this special case by coherence. Suppose U9(x) = U™(y) on I. Then
d9(z) = d™(y) on I, for every n. It follows that, for each n, there exist disjoint
(and possibly null) events in Z, I*, I}, and I} whose union is I, and such that
d9(z) = d™(y) =i on I, for i € {1,2,3}. We now claim that z ~% y on I. To
see that, suppose {z =T y} N T is non-null. Then, since Z is >Z-order dense, there
exists integer n and event F' € 7N I such that x > 2, =Ty on F, while of course
z =T y on F. But it is not hard to check, using coherence, that this leads to a
i€{0,1,2}. =

contradiction on each of the events F'N I},

To construct the aggregators, we let
DY ={UM"z): HD2G, He®; z,y€ X }.

We define the mappings A[- | G] : D¢ — DY N MY through (1) of Section 3.
That this is a consistent definition is an immediate consequence of Lemma 2, as is
the separability of the aggregators. The remaining properties in Definition 5 are

straightforward implications of (1) and coherence. This completes the proof of the

Theorem 3. H
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Proof of Corollary 1
The set X i1s A-order dense in itself. W

Proof of Corollary 2

Let Z = {z1,22,...} be a countable (topologically) dense subset of X. We claim
that Z is also A-order dense. To see that, let G € &, and suppose z >9 y on a non-
null event G € G. Let G,, = {z =9 20 >9%y }NG. By continuity of =9 there exists
a null event N, such that =9 is continuous for every w in G\N. Fix such an w, and
define the open sets X; = {z:2>% 2} and X3 = {z: 2 =9 y}. Since X = X;UX,
is connected, X; and X, have a non-empty open intersection. It follows that there
exists an act z in Z, such that =9 z =9 y. Therefore, G C (|J, G.») U N, and at

least one of the G, C G is non-null. This completes the proof of Corollary 2. =

Proof of Theorem 4

Since @ is assumed to be countable, it suffices to prove the special case in which
® is a singleton. The general case follows by taking the union of all the countable
order-dense subsets corresponding to each of the elements of ®. For the rest of the
proof, we assume that ® = { F }. For any G C F, the case of ® = {G } is identical
to the one given here, after restricting the available events and P to G. To simplify
notation, we drop all the superscripts F. Thus U 1s a F-measurable state-contingent
utility representing the state-contingent preference ==>7. The following is a gen-
eralization of the argument reported in Fishburn (1970), Theorem 3.1, using the

result of Appendix L.

Let K denote the set of bounded open intervals with rational endpoints.

LEMMA 3. For each I € K, there exists a sequence {z! 25 ...} of elements of X,

and a sequence { F{,Fl' ...} of events, with the following properties:
(a) The sets Fj, Fl,... form a partition of §1.
(b)U(ziyeIon Fl; k=1,2,...
(c) For every z € X, P ({U(z)e I} nF{) =0.

PROOF: We use the terminology of Appendix I, with a non-null event F' being light

if the statement of the lemma is true with F in place of Q and with F/ null. Noticing
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that every non-null subevent of a light event 1s light, it is easy to check that the
assumptions of Theorem 8 are satisfied, and 2 has a black and white decomposition.
Letting FJ be the black part of  the lemma follows. ®

Let Z; = {2} : T € K;k = 1,2,...}. We will require that Z contains Z,, but
this will not be enough. We now define what will be the remaining elements of
Z. Let D consist of all the triples (z,y; F), where (z,y) € X? and F is a non-null
event, such that z > y on F and, for all z € X, P({z > 2 > y} N F) = 0. The

following lemma extracts a countable subset of X? that will be used to complete

the definition of Z.

LEMMA 4. There exists a countable set C = {(zk,yx) : k = 1,2,...} C X? with
the property that, for each (z,y; F') € D, there exists a k such that P({zy ~ x >
y~yx}NF)>0.

PROOF: We assume D # @, for otherwise the result is trivial. Given (z,y) € X2,
we can apply Theorem 8 with a non-null event F' being dark if (z,y; F') € D, to
obtain the “black and white” decomposition: Q = B(z,y) U W(z,y). Consider
now the finite measure space (2 x R, F x B, p), where B is the Borel o-algebra
on IR, and p = P x [, where [ is any finite measure on /R equivalent to Lebesgue
measure (e.g. [(dr) = (1/2)exp(—|r|)dr). For each z,y € X we define the set
S(z,y) = {{w,r) : w € B(z,y),U(z,w) > r > Uly,w)} C Q x R. (It is not
hard to verify that S(z,y) € F x B.) By definition of the sets B(z,y), the sets
S(z,y) are disjoint up to p-null sets. It follows that only at most a countable
number of them can be of positive 1 measure, say S(zy,y1),S(z2,y2),... Finally,

let C = {(z1,y1),(z2,¥2),...} to complete the proof. N

Let?* Zy = {z:(z,z) € C for some z € X }, and define Z = Z, U Z,. Clearly,
Z 1s countable. We now show that Z is A-order dense. Suppose z > y on a non-null
event F. If (z,y; F) € D, then Lemma 4 gives a z € Zy, such that P({z ~ z »~
y} N F) >0, implying P({z >z >y} NF)>0. Otherwise, there is a z € X such
that P({U(z) > U(z) > U(y) }NF) > 0. It follows that there are rationals « and /3
such that P({U(z) > a > U(z) > > U(y) } N F) > 0. But then Lemma 3 shows

24 Alternatively, we could let Z, = {z: (x,2) € C for some z € X }.
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that there exists a k such that P({U(z) > a > U(z,(ca’ﬂ)) >p>U(y)}NF)>0.

(a,B)
k

Since z € Z, we have proved that Z is A-order dense. This completes the proof

of Theorem 4. M

Proof of Theorem 5

We first show two lemmas that relate Assumptions 1, 3, and 4.
LEMMA 5. Assumption 3 implies solvability (Assumption 1(a)).

PROOF: Suppose that Assumption 3 holds. We use induction on the number of
events Gy,...,G,. For n = 1, solvability holds trivially. Suppose now that, given
the disjoint essential events G,,...,G,, and acts x,,...,z,, there exists an x € X
such that z ~¢
define the sets A; = AN{z: z>=% z,}and Ay = AN{z: 2<% z,}. Both 4,
and A, are closed in A, and non-empty by assumption. Since A is connected, there

Gi g, foralli. =

iz;fort=1,...,n—1. Let A be the set of all such acts z, and

exists £ € A, N A, that necessarily satisties x ~
LEMMA 6. Assumption 4 implies Assunption 3.

PROOF: Suppose that Assumption 4 holds, and G,,...,G, and = are as in the
statement of either assummption. We form the following inductive hypothesis for
m < n.
(Hp): HR; € {=C <G} fori=m+1,...,n, then for every y € X, there exists
z€ X such that z ~% zfori=1,... m,and z Rz fori=m+1,...,n.
Notice that (Hg) is assumed, while (H,_1), together with the connectedness as-
sumption, gives Assumption 3. It remains to show that (H,,_1) = (H,,). Let 4,
(respectively, Ay) be the set of all z € X such that = ~% z for ¢ = 1,...,m — 1,
z =Gm ¢ (respectively, z <¢m z), and z R;z for t = m +1,...,n. If (H,,_,) holds,
then A; and A, are non-empty. Moreover, their union is connected, and each is

closed relative to their union. It follows that A; N A, is non-empty, which implies

(Hp). ®

We now proceed with the proof of the theorem. Since G is assumed finite,
there is a partition I = {Gy,...,G,, }, of Q, with each G; non-null, such that G
is generated by IT and the null events of G. For simplicity, we write =" instead of

>C¢ and analogously for strict preferences and indifferences.
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We define a relation > on X", by letting

(171,---,17rz)§(3/17---,3/::) o4 l‘tﬂ Y,

where z and y are any acts such that = ~* z; and y ~* y;, for all 7. Solvability and
coherence guarantee the soundness of the definition. Because of Lemmas 5 and 6,

solvability holds under any of Assumptions 1-4.

LEMMA 7. Under any one of Assumptions 1-4, > satisfies the assumptions of The-
orem 6.13 in Krantz, Luce, Suppes, and Tversky (1971).

PROOF: Under Assumptions 1 or 2, we will show that > is continuous in the product
topology of X", and therefore Theorem 6.14 in Krantz et. al. (1971) applies. The
proof of the latter shows that the assumptions of Theorem 6.13 are then satisfied.
Under Assumption 3, we will confirm the conditions of Theorem 6.13 directly. This
will also cover the case of Assumption 4, because of Lemma 6. We now consider

these three cases in turn.

CASE 1. Suppose that Assumption 1 holds, and that, for every 7, {z]} is a

net converging to z;, with (z7,...,zY) = (y;...,y,) for all 4. Then there exist

corresponding net {z?} and y € X, such that 27 ~* 2] and y ~

i

y; for all ¢,
and 27 =% y for all 4. Since X is assumed compact, there is a subnet {z7(®)}
v(a) }

that converges to some z € X. Since X is assumed Hausdorff, the subnet { z;

converges to z; for every :. By continuity of each of the preferences >*, we then

t z; for all 7. Continuity of > implies that = =% y. Therefore,

have that = ~
(x1,...y2,) = (y1-..,Yn). Since the same argument also applies with all orders
reversed, we have shown that > is continuous in the product topology of X™. It is
straightforward to check that the remaining of the assumptions of Theorem 6.14 in

Krantz et. al. (1971) apply.
CASE 2. Suppose that Assumption 2 holds, and that (zy,...,2,) > (¥1,---,Yn),

" z; and y ~' y; for all 7, and = > y. Then there exists a neighborhood

with ¢ ~
N of z such that ' € N implies 2’ >~ y. Assumption 2 allows the construction
of a neighborhood of (zy,...,z,) in X™ (with the product topology), all elements
of which are strictly preferred to (y1,...,y,). The same argument applies with all
orders reversed, showing that > is continuous in the product topology. The proof

1s then completed as in Case 1.
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CASE 3. Suppose that Assumption 3 holds. In this case, we verify directly each
of the assumptions of Theorem 6.13 of KKrantz et. al., following an argument that
parallels the proof of Theorem 6.14. The only non-obvious properties to be shown

are restricted solvability, and that every bounded standard sequence is finite.

We first show restricted solvability. Suppose that

(.T],...,.'En_],fn) t (yla--',yn) t ($1,$2,---a$n—1a£n)-

We are to show that there exists z, € X such that (z1,...,Zn) ~ (y1,...,YUn)-
Let A be the set of all £ € X such that z ~" z; for: = 1,...,n — 1. Also let A,
(resp. Aj) consist of all z in A such that z =% y (resp. z <% y), where y ~' y;
for all 2. Our assumptions imply that A is connected, and each of A; and A, are
non-empty and closed. Therefore, A; N A, is non-empty. It is easy to confirm that
any r,, € A; N A, has the desired property. Since the numbering of the components

is arbitrary, this shows restricted solvability.

Finally, we show that every strictly bounded standard sequence is finite. Let
{z* : k=1,2,...} be an infinite standard sequence on component j € {1,...,n}.
We are to show that there is no T € X such that 7 >7 z* for all k. For each k, we
define the open set B* = {z € X : 2% =7 z }. We have to show that B = | J;—, B*
has an empty complement. Since B is open and X is connected, it suffices to show
that Q\B is open. The proof is then completed exactly as the proof of Theorem 6.14

of Krantz et. al.

This completes the proof of Lemma 7. W

From Lemma 7 it follows that there exist functions u; : X — R,7€ {1,...,n},

such that for all z;,y; € X,

(@1, smn) = (Yeoyn) @ D wilE) 2 ) iy (8)

=1

Any other such functions, u; : X — IR, satisfy
; =au; + F;, 1€{l,...,n},

for some o > 0 and f3; € IR. Moreover, each u; is continuous.
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Given any probability P on G such that P(G) = 0 if and only if G is null, we
define a state-contingent utility U, by letting

U(r,w):;zg?), weG;, 1€{1,....,.n}, z€X,

and, say, U(z,w) = 0 for all w in the remaining null set. We show that (U, P) is
a continuous and unique additive representation of £. Consider any non-null event

GinG,andlet I = {i: G;\G € N'}. Given any z,y,z € X, by solvability, there

1

‘zand y' ~% y for all 1 € I, while z’ ~* z ~' g

exist acts ¢’ and y’ such that z' ~

for all 7 ¢ I. By coherence, and (8) it follows that

e=Fy & =y

& Eui(m) + Zu,(z) > Zui(y) + Z ui(z)

i€l ig! i€l igl

& /GU(;I:)sz/GU(x)dP.

Continuity and uniqueness, follow from the corresponding results about the u;’s

stated above. B

Proof of Theorem 6

Since G 1s countably generated, there exists an increasing sequence of finite al-
gebras {G, : n=1,2,...} such that G = (| J,, G,). We assume that G, contains at
least three essential events. By Theorem 5, &, = {tG: G € G, } has a continuous
and unique additive representation (U, P,), for every n. We also assume, without
loss in generality, that G € N = = ~% y for all z,y € X. (It is easy to check
that redefining &£ to satisfy this condition does not change the assumptions of the
theorem, and that the conclusion of the theorem does not depend on the definition
of £ at null events.)

Since U, is state-dependent, the measure P, can be chosen arbitrarily, as long
as P,(G) =0 & G € G, NN. We can then inductively define the sequence of
measures { P, } to be compatible, meaning that P, is the restriction of P,y to G,,.
Given these probabilities, the state-contingent utilities are uniquely determined by

the condition: Up(z) = 0 and [U,(T)dP, = 1. We adopt this condition, thus
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making the sequence { (U,, P, )} compatible, in the sense that { P, } is compatible,
and U, is the expectation of U,4, conditional on G,,, under measure P, ;. We let
u = [ U, dP, be the corresponding unconditional utility (representing =), The
function u is continuous, and does not depend on the choice of the index n used in

its definition. Also u(Z) =1 and u(z) = 0.

Since T =Y z for every non-null event G, U, (T) is strictly positive outside a
null event N, in G,. Let Z, be equal to U,(7) outside N,, and equal to 1 on N,.
We define a new additive representation (V,, @, ) of &,, by letting dQ,,/dP, = Z,
and V,, = U, /Z,. 1t is easy to check that {(V,,,Q,)} is also compatible. Moreover,
for every n, we have V,,(T) = 1 and V,(z) = 0, while u = fV,, dQ,,.

Let Q° be the unique finitely additive measure on the algebra G° = |, G, with
the property that, for every n, @, is the restriction of Q° to G,. Condition (g)
implies that Q? is also countably additive. Suppose { G, } is a sequence of events
in G° such that G, | §. To show countable additivity of Q?, it suffices to show
that Q°(G,) | 0. Clearly, it suffices to prove that for a subsequence of { G, }. To
simplify notation, we assume then that the necessary subsequence of condition (g)
has already been taken, and that there exists a sequence { iz, } of acts such that
zn — z, while z,, ~9» 7 for all k. Using the fact that V,,(Z) = 1 and V,,(z,) > 0,

we have
u(l‘n) = /Q ‘/n(l‘n)dQn S /( ‘/n(:rn)dQn = /( ‘/n(-f) dQn - Qn(Gn) = QO(Gn)-

Therefore, 0 < Q%G,) < u(zr,) — u(z) = 0, as n — oo, proving countable

additivity of Q°.

By Caratheodory’s extension theorem (see Halmos (1950), Theorem 13.A), Q°
extends to a unique probability @ on G. Compatibility of {(V,,, @) } implies that
{(Va(2),Gn) : n=1,2,...} is a bounded (taking values between zero and one) Q-
martingale, for every act . By the martingale convergence theorem (see Billingsley
(1986) or Dudley (1989)), for every act x, {V,(z)} converges almost surely to
a random variable V(z), valued in [0,1], and V,(z) = E?[V(z)|G,], where E?

denotes expectation under measure ).
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We claim that for all G € G,
rrCy e / V(z)dQ > / V(y)dQ, =,ye€ X. (9)
G G

This follows by a standard monotone class argument (see Halmos (1950), Theo-
rem 6B). By condition (e), the class M of all G € G for which (9) holds is a
monotone class and contains the algebra G°. By the monotone class theorem,

M = G, and (9) holds for all G € G. The probability ) represents the null

G y for all null G in

events in G, because by (9) and the assumption that =z ~
G,QG) =07~z GeNNG. We have therefore shown that (V,Q) is an

additive representation of £.

To show that (V, @) is a unique additive representation, suppose that (f/, Q) is
also an additive representation of £. Since (V,,,@,,) is a unique additive represen-
tation of £, for every n, there exists a positive constant «,, and a random variable
Bn such that E?[V | G| = an,EQ[V | Gu] + Bn. Using the equalities V(Z) = 1
and V(z) = 0, we obtain «,, = E®(V(T) —V(z)) and 8, = E9[V(z) | G.]. Letting
n — 0o, and using the martingale convergence theorem, we obtain that V = oV +4,
where a = a,, and 8 = V(z).

Next we show that (V, @) is continuous. Given any event G in G, let H C G be
any finite algebra containing G. Then, by Theorem 5 and this proof, the restriction
of £ on M has a continuous and unique additive representation (V¥ Q™), where
VR(z) = E9[V(z) | H] for all z € X, and Q¥ is the restriction of @ on H.
Therefore fG VdQ = fG VM dQ™ is continuous.

Finally, V and @ are uniquely determined by the requirement that (V,Q) is a
unique additive representation of £, and V(z) =1 = 1-V(z). To see that, suppose
that (U, P) also satisfies these conditions. Then (U(dP/dQ), Q) is also an additive
representation of &£, and therefore V = aU(dP/dQ) + 4, for & > 0 and random
variable 3. Evaluating at z and T, one easily obtains that V = U and (dP/dQ) = 1.
|

Proof of Theorem 7

Theorem 6 (with G = F) implies the existence of a continuous and unique

additive representation (V, Q) of £ such that V(7)) = 1 and V(z) = 0. (To show
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that condition (g) holds, let z, be equal to 7 on G,, and equal to z on GS.) An
additive representation (U, P) of £ is then obtained by letting U = (dQ/dP)V.
In fact, it is easy to check (using Theorem 30B in Halmos (1974)) that all the
assumptions and conclusions of the theorem remain valid if P is replaced by the
equivalent measure (). Without loss of generality, we therefore assume that U =V
and P = ). In particular, U(7) =1, U(z) =0, and I = [0,1].

Let X° consist of the acts that are of the form z = Y . | ¢, 1p,, where ¢, € C
for all n, and { F},F,,...} € F\N is a countable partition of . A standard
exercise shows that X? is dense in X. Qur plan is to first show the result on the
space XY, and then use continuity of (U, P) and Assumption 5(e) to extend it to

the whole of X. We begin with a preliminary lemma.

LEMMA 8. Given any z € X (respectively, X°) and v € (0,1), there exists a
countable partition of Q, { F"",F,;"",...}, and a sequence {z;",z;",...} C X

(respectively, X?), such that u(z??) = v and xZ? = z on F>? for every n.

PROOF: We adopt the terminology and result of Appendix I. Given the pair (z,v),
let a non-null event F be light if the statement of the lemuma 1s true with F in place
of 2, and dark otherwise. It is easy to check that countable disjoint unions of light
(respectively, dark) events are light (respectively, dark). Theorem 8 then gives a
“black and white” decomposition of . We will show that no event 1s black, and
therefore {2 is white, which proves the lemma.

Let F' be any non-null event. We will show that there exists act z € X (re-
spectively, in X?) such that u(z) = v and {z = 2} N F is non-null, implying that
F is not black. Since the probability space (£, F, P) is assumed to be non-atomiic,
we can construct a decreasing sequence { F;, } of non-null subevents of F with a
null intersection (see, for example, Exercise 2.17 of Billingsley (1986)). Given such
a sequence, define T, = z1p, + Flp: and g, = 21p, + zlp:. Since {7, } ({z,})
converges to T (z), and u is continuous with u(Z) = 1 (u(z) = 0), it follows that
for some n, u(T,) > v > u(z,). Fixing this n, and for every a € (0,1), let
r® = a7, + (1 —a)z,. Then u(x®) varies continuously with «, and achieves values
both above and below v. Therefore, for some «, x = z® has the required properties.

Notice that if z 1sin X% sois z® M
We define the function f : Q@ xC x I — IR as follows. First, we let f(w,¢,1) =1
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and f(w,c,0) = 0 for all (w,c) € 2 x C. For any given (c,v) € C x (0, 1), we choose

c,v

events Fo¥ and acts =37,

n = 1,2,..., as in Lemma 8, where we have abused
notation in denoting by ¢ the act identically equal to c. We then define f(w,c,v) =
U(w,z") for all w € F9Y. With f so defined, we claim that U(z) = f(z,u(z))
for all z € X°®. To show that, suppose that z € X®, 2 = ¢ € C on some non-null
event F', and u(z) = v. Then F = |J, F,, where F,, = F" N F and the FY are
the events used in the definition of f. For any given n, we have that z = z3? = ¢
on F,, while u(z) = u(z{?) = v. By Assumption 5(e) and the definition of f, it
follows that U(z) = U(z$%) = f(e,v) = f(z,u(z)) on F,. Since this holds for every

n, we have shown that U(z) = f(r,u(zr)) on F. Since z € X°, this argument need
only be applied on countably many such events F.

We have proved that z € X° implies U(z) = f(z,u(x)). From this fact and
Assumption 5(e), it follows that f is nondecreasing in its second (consumption)
argument, and nonincreasing in its third (utility) argument. It is also immediate
that f is strictly increasing in its utility argument if (4) holds, and not dependent
on the utility argument if (2) holds. Finally, we use a continuity argument to show
that U(z) = f(z,u(z)) for all z € X.

Let = be any element of X. We define the events Q; = {U(z) = f(x,u(z))},
Qy ={U(x) < f(z,u(z)) }, and Q3 = {U(z) > f(z,u(z))}. We are to show that
23 and €3 are null. Suppose that €2, is non-null. As in the proof of Lemma 8§,
the non-atomicity of (2, F, P) implies the existence a non-null event F C Q, such
that u(T1p + zlpe) < u(z). For such an event F, we will show that [.U(z)dP >
Jp f(z,u(z)) dP, a contradiction.

Since z is measurable and bounded, there exists a decreasing sequence { z,, }

in XY such that z,, | r almost surely as n — oo.

LEMMA 9. There exists a sequence {Z, } in X° converging to an act &, such

that, for all n, £, = z, on F and u(Z,) = u(z). Consequently, ¥ = z on F and

PROOF: For every « € [0, 1], we define 2® = aZ+ (1 —a)z and 2§ = z,1p + 2% 1 pe.
By Assumption 5(e), u is nondecreasing. Therefore, u(z}) > u(z), since 2}, > z, and

u(x?) <uw(Tlp+zlpe) < u(x), since 2 < T1p+zlpe and the last inequality holds

46



by the choice of F. Since u(z%) varies continuously in «, we conclude that the set
A, ={a: u(zd)=u(z)} is non-empty and closed, for every n. Let a, = max A,

and Z, = z%~. We now argue that the sequence { a, } is nondecreasing. Since

"

{z,} is decreasing, ryn, < &,, and therefore u(zzjl‘_l) < u(%,) = u(z). On the
other hand, u(z},,) > u(z), and therefore a,4, is to be found in the interval
[atn, 1]. This shows that { a,, } is nondecreasing and therefore has a limit &. Letting

F=2zlp+ 2% pe, the result follows. M

Lemma 9 and the monotonicity of f in consumption imply that
/f(a:,u(a:))dp < / f(zn,u(z))dP = / f(Zn,u(,))dP = / U(z,)dP.
F F F F

(The last equality holds because &, € X°.) Letting n — oo, we obtain

/Ff(.r,u(x))dpg/FU(.%)dP:/U(:c)dP,

where we have used the continuity of (U, P), and Assumption 5(e). This inequality
contradicts the fact that F' is a non-null subevent of €2,, and shows that £, must
be null. A symmetric argument shows that 3 is null, and the proof of Theorem 7

is complete. (The uniqueness part was argued in Section 5.1.) H
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