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1. Introduction

A number of goods are characterised by the fact that the utility a consumer derives from
buying them increases with the number of consumers who are also buying them. Such goods
are commonly referred to as "networks"” to which consumers decide whether or not to get
linked. If they get linked to one, they benefit from the so-called "network externality”, which is

the utility induced by the other consumers.

Network externalities can be generated in various ways. For example, buying a certain
type of micro-computer is more attractive if the model is widely spread. Indeed, the decision to
purchase a computer not only depends on its intrinsic characteristics, but also on the possibility
to exchange software or informations with other users, or even because spare material is made
more readily available. The decision to buy a camera can also be affected by the fact that it is
easier to get lenses fitting the most common models. Clearly, this type of externality is more
important the larger the market of the firm selling the good (or the network).

Similarly, consumers using a credit card or a telephone system will benefit from
network externalities: a credit card tends to be more widely accepted as the number of owners
increases; getting linked to a telephone system is certainly more attractive the more persons one
can get in touch with. Another example is provided by the new French telecommunication

network Minitel, which allows users to exchange informations, sell goods, etc.

When firms propose compatible networks, the presence of one consumer is equally
valued by other consumers of the same good or of any compatible good. As a consequence, the
externality associated with one network includes the effect of all the users of the other networks
compatible with it. For example, the fact that Taiwanese clones are widely spread benefits the
users of IBM PC's and vice-versa. Compatibility is certainly a key aspect in the study of
network externalities. Indeed, each firm can have access to a larger externality and can make its
product more attractive by increasing its compatibility with products sold by other firms.
However, this also affects the degree of competition between firms because their products
clearly become closer substitutes. The two extreme cases which are usually considered are full
compatibility and total incompatibility, although in various situations of practical interest, goods
are only partially compatible. For example, Digital is selling computers which can be linked to
peripherals (printers, disc-drives, etc.) built by other companies, with the restriction that the



most sophisticated features can only be used with Digital. More generally, intra-brand

externality is usually larger than inter-brand externality.

The pricing problem of firms producing goods subject to network externalities has
received increasing attention in recent vears. Katz and Shapiro (19835) study various equilibrium
situations with and without compatibility and consider the private and social incentive to build
an adapter (a good which makes two networks compatible). In particular, they consider the
benefit for an industry to adopt a standard. If a standard is adopted, all the goods produced in
the industry are compatible with each other.For example, the compact disc industry has adopted
the Philips - Sony standard. However, the adoption is not necessarily automatic and did not
happen in the case of video discs.

The issue of standardisation has also been considered from the innovation process point
of view (see David, 1985, Farrell and Saloner, 1985, 1986b, Katz and Shapiro, 1986a, 1986b
and Dosi et al., 1988). If a network is already implemented, the scope for innovation is limited
unless the new product is simultaneously better and fully compatible with existing material.
This is so because consumers who are linked to the old network are reluctant to switch to a new
one (even if it is better) which is not yet used by anybody. An alternative way of looking at this
problem is in terms of learning or in terms of "increasing return to technology adoption".
Suppose several incompatible standards are made available to consumers and suppose too that
those standards are perfectly equivalent in terms of quality, so that consumers are indifferent
between them as long as no externality is generated. In such a situation, it cannot be predicted
which one will turn out to be adopted by consumers. The reason is that the first consumer has
to buy one good of a specific standard (without any specific reason or because he thinks that it
will be the standard adopted by all his fellow consumers for example). He is immediately
followed by all other consumers who consider the externality already generated in that network
and decide to buy it too. The trouble is that if the first consumer had chosen another network (or
standard), that network would have been chosen by all other consumers as well, which is what
is meant by the concept of "increasing return to technology adoption". In some sense,
consumers as a whole lock into a particular standard. In a nice paper, David (1985) explains in
a similar way why the QWERTY keyboard is still used when much better alternatives are
available.

Clearly, the previous argument shows that any standard could have been adopted, so

that any standardisation process can only be path dependant (i.e. depend on previous events in
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the sequence of adoption). Note that we have considered the case of networks which, as long as
no externality is generated, are perceived as equivalent by consumers. Would they have been
differentiated in some way, several standards could have survived because some consumers
would have been ready to prefer one to the other, even with different levels of externality. Note
also that we did not allow firms to have any kind of strategy. For example, a firm facing a
shrinking demand, could try to regain consumers by lowering prices so as to compensate for a
small externality. Another profitable strategy could be for one firm to stick to its own standard
and even initially make losses so as to capture the whole market later and force all other firms to
accept the same standard. It could even adopt an early-mover strategy which would make it the
leader of the market with a low quality good. Later entrants, even with a better substitute,
would not be in a position to attract any consumer because they would already all be locked in
the first network. One could also imagine that consumers anticipate such situations and are able

to make the right choice in terms of standard and time of adoption.

All previous comments suggest that a dynamic model would be most helpful in tackling
the problem of network externalities. However, it would clearly be a difficult task and authors
have preferred to explore simpler static models with their limitations.

The most common static model of competition in the presence of externalities relies on a
Cournot framework (see Katz and Shapiro, 1985 and Bental and Spiegel, 1988). Each firm
decides on the quantities to sell, taking as given the quantities sold by other firms. A Nash
equilibrium is reached when no firm has an incentive to deviate from its strategy. It is also
usually assumed that the goods are basically perfect substitutes leaving aside the network
externality aspect: all consumers are indifferent between the goods if they are available at the
same price. However, this does not imply that goods are still perfect substitutes at equilibrium
since externality (and prices) may be different.

The difficulty with the Cournot framework is that one needs to assume that, at
equilibrium, all consumers' expectations are fulfilled. This means that consumers correctly
anticipate the size of each network and make their purchase decision according to that belief.
Such an assumption is necessary since, as mentionned by Katz and Shapiro (1985) and as we
mentionned before, there may be other equilibria. One problem is that the symmetric fullfilled
expectations equilibrium assumed by Katz and Shapiro (1985) is not stable. Suppose the
system is at the (candidate) symmetric equilibrium; suppose too that some consumers (who only

observe prices even when firms play in quantities) deviate and do not make the "right" choice,
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shifting (say) from firm 1 to firm 2. By doing so, they increase the network externality of firm
2 and induce all consumers to do the same through a bandwagon effect. Such an equilibrium
can only be sustained if firms comply with their original commitment on quantities sold. If they
do not, there may be several demand equilibria. For example, if consumers expect that they will
all buy good 2 (say), each of them will indeed buy good 2 (because it is the best choice for
everybody , considering the expected externality) and all expectations will also be fulfilled.
Intuitively, this shows that, in the presence of externalities, the simple observation of the price
vector by consumers cannot does not give enough information to fully determine a unique
demand system (the demand associated with each good). Consumers need some extra
information on the size of the networks. Note that this also implies that a pure price game
cannot be played. Actually, assuming a "fulfilled expectations” equilibrium corresponds to one

way of selecting one equilibrium out of all available.

As long as goods are perfect substitutes, demand associated with each of them cannot be
fully determined through the vector of prices. However, we show that when goods are no more
perfect substitutes but are horizontally differentiated!, demand functions will exist, even
in a static framework. Again, assuming that goods are differentiated is reasonnable as we study
the problem of partial compatibility. Note that we do not consider horizontal differentiation as
decision variables for the firms, an assumption usually made in spatial competition (see .
Hotelling, 1929, and d' Aspremont et al., 1979). We rather consider that firms produce goods
which are inherently different; a similar approach was used in location theory by de Palma et al.
(1985) who show that when differentiation is large, firms agglomerate in the center of the
market and nevertheless make positive profits. The fact that goods may only be partially
compatible is all the more likely to happen when consumers are different in their tastes because
it induces firms to provide differentiated (thus possibly not fully compatible) products.

The paper is organized as follows. In section 2, we reconsider Bertrand competition in
the presence of network externalities. We give a simple argument to show why demand is not
defined and we also show how externalities can play the role of a barrier to entry even when the
potential entrant offers a product of better quality. In section 3, we propose a general model of
duopolistic competition with horizontally differentiated products. We show that externalities

1 Two goods are said to be horizontally differentiated if the criteria of differentiation is a purely subjective
question of taste and not an objective measure of quality (see Phlips, 1983, and Gabszewicz and Thisse,
1986). For example, Apple and IBM sell horizontally differentiated computers. Indeed, would they be available
at the same price (and for a given level of network externality), some consumers would prefer Apple and some
IBM.



may entail non existence of a Bertrand equilibrium when the degree of differentiation is low.
We derive a condition for the existence of a Nash equilibrium and compute it explicitly under a
specific formulation. In section 4, we solve the general n > 2 firms case. Conclusions are
presented in section 5.

2. Bertrand competition and network externalities

We assume that there are two firms, denoted by 1 and 2, selling an homogeneous good
at prices pj and pa respectively. Each firm chooses its price to maximize its profit taking the
price charged by the other firm as given.

Throughout the paper, we assume that demand is perfectly inelastic: every consumer
buys one and only one unit of the good. We also assume that firms can produce the good at
constant marginal cost, set equal to zero for reasons of convenience. In the absence of
externalities, product homogeneity implies that each consumer buys from the cheapest firm. We
normalize the size of the market to one. If the price charged by firm 2 is constant, quantity Q
sold by firm 1 is given by

Q=1 if p1 <p2,
Q1 =5 if p; =p2,
Q=0 if p1 > p2.

Obviously, Q2 =1 - Q.

The situation can be represented as in figure 1. The implication is that each firm has an
incentive to undercut the price charged by its competitor so that, eventually, prices are driven to
zero (or to the constant marginal cost). Naturally, this argument, and its implication, hold for
homogeneous products only. As soon as products are horizontally differentiated, it is possible
to prove, under fairly general assumptions, that a unique symmetric Nash equilibrium with
strictly positive profits for both firms will exist (see Anderson and de Palma, 1988).
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We now examine how the externality affects Bertrand's argument. We assume that the
utility associated with each good strictly increases with its externality. This implies that, though
goods are intrinsically perfect substitutes, they may no longer be so if quantities sold by each
firm are different.

Without any loss of generality, we assume that the externality associated with good (or
network) 1 is linear and given by

Ei= R.Qi+Rg.(1-Qy,i=1,2. (1)

It is important to notice that Ry (the intra-brand externality) and Rg (the extra-brand
externality) are not firm dependant, so that the externality associated with each network only
depends on the relative quantities sold. In that sense, it is a symmetric property.

We shall also assume that Ry > Rg > 0. This implies that the externality effect induced
by a consumer is of a higher utility to the consumers of the same network than to those of the
other one. In this paper, we restrict our analysis to the case of positive externalities (negative
externalities would entail R < 0 and Rg = 0. They are studied in chapters 3 and 4). Networks
are partially compatible if R; > Rg > 0, and the following are limit cases:



Rg =0 and Ry >0 : complete incompatibility,
Rp=Rg > 0: full compatibility,
R;=Rg = 0: no network externality effect.

We now see how standard Bertrand competition is affected by the presence of
externalities. Let us first consider the case with no externalities. Suppose we have py < p2 and
Q1 =1, see point a in figure 1). We see that firm 2 cannot sell its good, but if it undercuts py by
a small amount, it can regain the whole market. We now consider the same situation in the
presence of externalities. We assume that firm 1 sells Q1 = 1; thus the externalities associated

with each good are given by

E;1 =R[1 + Rg.0 =Ry,
and
E>» =R1.0 + Rg.1 = RE.

In such a situation, it would not be sufficient for firm 2 to undercut p; by a small
amount to regain all consumers. Indeed, the externality has induced an increased utility for
consumers linked to network 1. As a consequence of the definitions of E{ and Ej, firm 1 has
now an advantage which depends on the difference in externalities Ry - Rg. Undercutting will

prove usefull only if it can compensate for the externality.

Conversely, p2 being fixed, it would be possible for firm 1 to increase its price beyond
p2 without loosing any consumer. Indeed, the price of good 1 can be increased as long as the

price differential does not totally compensate Ry - Rg.

We represent the situation in figure 2; we see that quantities sold are no more functions
of the prices, but only correspondances : to the price vector (p1, p2) may correspond several
quantities (Q1, Q7). Thus, the concept of demand function disappears.



Indeed, suppose that the market is characterised by prices (p;°, p2°) and quantities
(Q1°, Q2°) = (0, 1), which corresponds to point b in figure 2. Suppose now that firm 1
decreases its price to regain the whole market. It could do so by charging p; = p1. Suppose also
that, afterwards, it decides to move back to p1°. In that case, the new situation would be
characterised by firm 1 selling Q; = 1 and firm 2 selling Q; = 0. The new quantities are now
given by (Q1, Q2) = (1, 0), although the price vector is unchanged (point ¢ in figure 2).

The fact that quantities are not uniquely determined by prices can be interpreted in terms
of a phenomenon of hysteresis : i.. a situation where changing one parameter and coming back
to its original value leads to different levels of demand. In this case, decreasing a price and
going back to the original situation, may lead to quantities which are different from those
observed in the original situation.

Thus, firms have an incentive to decrease prices and come back to the original situation.
If they have the possibility of doing so, it is clear that a static Nash equilibrium with firms
competing in prices is no longer relevant. However, note that it can exist if the firm, after
changing its price, is not allowed to come back to the original situation. In that case many
configurations may be Nash equilibria (see Friedman, 1986) and the game would be
characterised by a discontinuity in the payoff functions. Such situations have been considered
by Dasgupta and Maskin (1986) where it is shown that equilibria may exist, but again, if firms
are allowed to come back to the original situation and make more profit, the key problem is not
the discontinuity of payoffs, but rather undefined demands. However, it seems difficult to limit



ourself to such cases for two reasons; first, because a model where firms are allowed to come
back to the original situation is clearly more realistic; and second because, as we show in the
next section, it is possible to obtain well defined demands when products are differentiated,
which leads to a well defined static game. Thus, product differentiation in the presence of
network externalities does not only make the model more realistic, it is also essential for the

study of price competition in a realistic static model.

The second important consequence is that network externalities can also play the role of
barriers to entry. Suppose firm 1 is supplying the whole market and faces the threat of a
potential competitor (firm 2). Since firms are producing at zero marginal cost, entry is deterred
as long as, even by setting a price pp equal to zero, firm 2 is not able to get any consumer. This
1s happening when p; is low enough (but still positive) so as not to compensate for the
difference in the externalities. In that case, no consumer is willing to buy product 2 because
there would be more to lose in term of externality than to gain in terms of prices. Naturally, the
larger the externality differential Ry - Rg, the higher the barrier. As a consequence, a monopolist
would gain from preventing compatibility with potential competitors (so as to decrease Rg) and
from increasing the "intra-brand" externality Ry.

Note that although consumers have no individual incentive to shift from firm 1 to firm 2,
there always exists a coalition of consumers which could gain from doing so. The size of that
coalition clearly depends on Rj - Rg. Through a bandwagon effect, all the consumers who were
still buying good 2 will follow and buy good 1. This suggests that, in the absence of any
switching cost and learning, consumers would all switch to good 2 if it is cheaper.

The previous argument that a monopolist would gain from preventing compatibility with
a potential entrant does not necessarily hold when the products are vertically differentiated. Let
us consider a firm which offers a product of high quality and is facing a competitive fringe
selling a similar good but of a much lower quality. In such a case, the "strong" firm may find it
profitable to encourage compatibility because it would gain more from increased externality than
it would lose from increased competition (such cases have been studied by Esser and Leruth,
1989).

Conversly, it may also be the case that the barrier to entry is high enough to deter entry
even from competitors who would be able to supply a good of better quality. This would

typically be a situation where consumers are sticking to the "wrong" good because none of them
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is ready to make the move (as in David, 1985). In that sense, high externality effects can also
reduce the speed of R&D (see also Farrell and Saloner, 1985).

3. Duopoly and horizontal differentiation
3.1. A general formulation

There are two firms (1 and 2) selling horizontally differentiated goods which are subject
to network externalities. Using the same notation as in section 2, the externalities Ej and Ex

associated with good 1 and good 2 are given by (1).

We assume that the demand function can be written

p1-p2 Ei-Ep
=D
Q1 [ T m 1,

(2)

with Q1 []e C2,Qi e [0,1]and Qo =1- Q).
As a first step, we impose two conditions on the demand function D [.] :

Al: demand is strictly decreasing in the first argument (downward sloping demand) and is
strictly increasing in the second argument (positive network externality effect).
P1-P2

A2: D[.] » Oas T — +oo

The parameter |1 2 0 is designed to capture heterogeneity of tastes among consumers.
For high values of y, price difference becomes relatively less important in the decision process.
The limit case U — +oo corresponds to independant demands: each firm can behave as a
monopolist. In the absence of externalities, the other limit case (i = 0) would correspond to
Bertrand competition.

We compute the externalities according to equation (1) and, using the fact that
Q1 + Q2 =1, we obtain



E;-Ex=(R[-Rp).2Q1 - 1.

Thus, demand equation (2) can be written as

p1-p2 (Rp-RE).(2Q) - 1)]

Qr=D[—F—:; " , (3)

and we see that the externality effect introduces demand itself as an argument in the demand
equation. However, note that the situation is basically very different from what is happening
with fulfilled expectations. Here, if equation (3) can be solved for a unique Q, expectations
will always and automatically be fulfilled. In other words, if Qq is unique, it can be seen as the
(unique) outcome of a stationnary process where consumers join the networks one after the

other. In the long run, no other demand equilibrium can be achieved.

We make a further assumption on D; we assume that:

A3: for any level of prices, D is convex (respectively concave) with respect to Qj as long as
D <0.5 (respectively D 2 0.5).

In other words, we assume that D is logistic in the number of consumers Q;: when p1 >
p2 (resp. p] < p3), D[] increases slower (resp. faster) in the externality. Such a function is
represented in figure 3. Intuitively, this assumption implies that if one good is more expensive

than the other, an increased externality affects less the demand for that good than it does for the
cheaper one.
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The question is now to find conditions under which (3) has only one solution Q1*, with

pl-pz_RI-RE]
TR T

Q*=G[ (4)

Mathematically, we are looking for conditions under which (3) has only one fixed point

]

which can then be written as in (4).

We first derive these conditions in the case p1 = p».

Lemma I: Demand equation (3) can be inverted when p; = p» if and only if D satisfies the

following condition:
P —— =
Dol.] < 3R -RE) at Q1 =0.5, &)

where D[] is the first derivative of D with respect to its second argument.
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Proof: The slope of D[.] with respect to Q1 is given by {w. D2[.]/2(Rr- Rg)}. AtQ =0.5,
this slope is maximum by A3. If it is smaller or equal to 1 at that point, condition (3) is satisfied

and the function D[.] will intersect the main diagonal 00" at (0.5, 0.5) only (see figure 3). When
condition (5) is not satisfied, the function D has three fixed point, Q1~ < 0.5, Q1° = 0.5 and
Q11> 0.5; this is a direct consequence of Al and A3.

We now consider the case p # p2 and prove
Lemma?2 :  Demand equation (3) can be inverted when p1 # py if condition (5) is satisfied.

Preof. Let us first consider the case p1 > p2. Let q] be defined by :

Di{(p1 - p2) /s (Rr- RE).(2q1 - 1) / p] = 0.5. We know that q1> 0.5 (assumption Al). For
any value of Q1 <qq, D[.] is convex, its slope is less than 1 (condition 5) and therefore, it will
Intersect the main diagonal 00" once only. For values Q 2 q1, D[] is strictly below the
diagonal as it is already for py = p2. (see figure 4)

b A
! P =P,
0.5 bveeeeceeeimeeee —
' - . — . . cl
0 Q 05=Q} ¢ 1
Figure 4

As a consequence of lemmas 1 and 2 and of the implicit function theorem, we state



Proposition 1 : Given assumptions A1-A3, demand equation (3) can be inverted if and only if
condition (5) is satisfied. Moreover, the solution Q*[.] is C2 in prices and can

be written as

p1-pP2 Ri-Rg
T T I

Q*[.] = Q*

Condition (5) shows that the degree of heterogeneity (measured by u) has to be
sufficiently large compared to the externality effect in order to obtain demand functions which
are properly defined. If Rj = RE, there is full compatibility and demand is well defined.
However, if firms can generate a lot of intra-brand externality which does not benefit to the
consumers of the other good, the probability that almost all consumers will patronize one firm

increases. It is only when the goods are sufficiently differentiated that such an effect disappears.

Intuitively, proposition 1 can be explained as follows. When condition (5) is not
satistied, we know that for p; = pp, D[.] has three intersections with the main diagonal and

thus three fixed points (see figure 4). We also know that for very large values of pj, there can
only be one such intersection (by A2). Thus, the "demand” D[.] associated to py for p» fixed
(and when condition (5) is violated in p1 = pp) displays hysteresis as shown in figure 5. The
limit case for W = 0 is also presented in the same figure. As W gets larger, hysteresis decreases
and vanishes when | is large enough to satisfy condition (5) in p| = p>. Note that the presence
of hysteresis implies that when condition (5) is violated, only a dynamic model can tackle the
externality effects unless, as done in Katz and Shapiro (1985), one imposes restrictions on the
equilibrium configuration. In particular, the concept of fulfilled expectations they use, is
actually equivalent to consider, out of the three possible configurations presented in figure 4 and
in figure 5, the one in the middle (e). It is only when condition (5) is not violated that their
concept leads to the configuration we consider.

14
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We now turn to show that a Nash equilibrium exists.
General conditions ensuring existence of a Nash equilibrium for a duopoly selling

horizontally differentiated products have been examined by Anderson and de Palma (1988)
along the lines suggested by Perloff and Salop (1985). We list those conditions below:

Cl. Qi=Glpj-pjulij=1,2,i#jGlle C%

oQ;

C2. *351- < O;

c3. 29 > (<) 0 as pj > (<) pi;
dp;2 ! J

/ - 92Q; Qi\2
Ch Qg -2 ?pri) <0;

C5.  lim Qj for L — +eo equals 0.5 for p; and pj finite

c6. 25 (9o0asp -
. TH>(<) asp1>(<)pJ.

Some of these conditions are obviously satisfied by the demand function (4). They are

direct consequences of the assumptions imposed on (3). C1 is verified because of property 1.



C2 is verified because if D[.] is decreasing with respect to the price (the first argument), so will
Qj*. G5 is satisfied because as p gets large, the first argument of D[] tends to zero and D[.] has

the same behavior as if pj = pp. We have seen that in that case, the only inersection with the

diagonal is in 0.5. The same argument can be used to check that C6 is satisfied.

However, C3 and C4 cannot be derived from the assumptions imposed on D[.]. C3 and

C4 are imposed in order to insure the concavity of the demand functions and are thus expressed
in terms of the behavior of the derivatives. Though we know that if D[.] is C2, Qj is also C2,

the behavior of the derivatives is not necessarily the same. One way to cope with this problem
would be to impose a set of conditions on D[.] and its derivatives so that Q* verifies C3 and

C4. This is however not very natural. Indeed, either (3) cannot be solved, demand is not
defined and any condition would be irrelevant; or it can be solved and it is Q;* which matters.

Thus, we impose

Ad: Qi* satisfies conditions C3 and C4.

We can now prove:

Proposition 2 : If D[.] verifies A1-A3 and (5), and if Qi* satisfies A4, there exists a unique

symmetric Nash equilibrium in prices given by:

Qi
Pl"'gﬁi—*
op;

Proof. The proof of this proposition is a direct consequence of the results derived in Anderson
and de Palma (1988).

Note that if condition (5) is violated, no Nash equilibrium will exist. Indeed, let us
consider a pair of prices (p1, p2) as a candidate equilibrium, with pP1< p2. The demand

functions may be defined if pq is much smaller than p, but will not be any more if one firm

decides to charge the same price as its competitor. As a consequence, that pair of asymmetric
prices cannot be a Nash equilibrium. For the same reason, there cannot be any symmetric price

equilibrium if (5) is violated. Under the conditions stated in property 2, (2) can be inverted (see
property 1) and Q;* satisfies conditions C1- C6.
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Note however that Anderson and de Palma (1988) have proved existence and
uniqueness of a Nash equilibrium in a situation without externalities. Here, using (2), we have
extended this result and introduced additional conditions (A1-A3) to specify the way
externalities can be incorporated in the demand function to guarantee existence and uniqueness

of a (static) Nash equilibrium in prices.

We now provide an example of a demand function satisfying C1-C6. A natural
candidate is the CES, which is widely used for analysing issues in product differentiation (see
Spence, 1976 or Dixit and Stiglitz, 1977). However, there is no obvious way of integrating
externalities in that model. Therefore, we use a Logit formulation. The theoretical foundations

of this model as a model of product differentiation are discussed in Anderson et al. (1989).

3.2. An example: the logit formulation

We now present a specific demand function which can be constructed as follows. We
assume that the utility Uj derived by a consumer who buys good i is equal to

Uj=-pi +R1.Q; +RE.(1 - Q) + e, i=1,2,

where € is a random variable of zero mean and unit variance, designed to capture the

heterogeneity in consumers' tastes. The other parameters have the same interpretation as before.
Note that when g — 0, we obtain the model studied in section 2.

Assuming that the consumers are utility maximisers and that the £ are identically,

independently Gumbel distributed, the resulting demand is given by (see Manski and
McFadden, 1981)

_ 1
Q= P1-p2  (RI-Rp) (1 200 ©®)
1 +c[ L + n ]

and Q2 = 1 - Q. This expression has the same functionnal form as the Logit formula although,

of course, the corresponding demand G[.] is not of the Logit type. It is a matter of simple
algebra to check that (6) satisfies A1-A3. Condition (5) can, in this case, be written as

17
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R1-Rg
RiRg 0

n o>
Under condition (7), (6) can be solved for Qq and it is easy to verify that conditions C3 and C4

are also satisfied. Using proposition 2, we know that there exists a unique symmetric Nash
equilibrium in prices; it is given by

P1 =p2=21- (R1- RE). (8)

At equilibrium, the profits of each firm are

R1-RE
Tp=m)=p-——s— .

Prices are always positive (from (7) and (8)). When Ry = RE =0, the equilibrium prices
are equal to 2|, a result derived by de Palma and Anderson (1988). It is easy to check the
following properties

P1. Equilibrium prices and profits increase with 1, the degree of heterogeneity.

P2. Equilibrium prices and profits decrease with Ry and increase with RE.

Given that R; 2 RE_the global effect of incompatibility ( measured here by Ry - RE)

tends to decrease prices and profits. However, the specific effects of the intra-brand and extra-
brand externalities are different.

When Ry increases, firms have an incentive to attract as many consumers as possible to
make them benefit from a larger externality. Indeed, a higher externality can be interpreted as a
better quality and thus, the marginal benefit to decrease the price increases since the consumer
who joins a network induces other consumers to do the same because of the increased
externality. The mechanism is similar to what would be a snow ball effect in a dynamic
framework or as is sometimes used an "increasing return to adoption”. As a result, competition

1s more intense and prices (and profits) are driven down.



The opposite is true when R is increasing. In that case, if a consumer is attracted from
firm 1 (say) to firm 2, the gain in externality for firm 2 is lower. The reason is that any extra
consumer also induces some externality in the other network and this slows down the incentive

for firm 2 to cut down its price. By doing so, the firm would attract less consumers because the
snow ball effect is weakened. As a result, increasing the value of R reduces competition. Of

course, as expected, the exernality plays no role when Rp = Rg.

Our results suggest that, though firms have an incentive to differentiate their products
(or increase ), they will try to increase the compatibility between them. Indeed, firms certainly
try to be perceived differently by consumers. This is the case for Apple and IBM, one
specializing in user friendly computers and the other in more scientifically oriented material. But
both firms try to increase their compatibility so that they both gain in externality: it is now

possible to read on a McIntosh a text written for an IBM Pc.

4. An Oligopoly Model.

The general formulation presented in (2) cannot straightforwardly be extended to the
case of N (> 2) firms. We need to use a specific model and, as in the previous section, we
choose the logit specification.

We assume that there are N goods. The model is still symmetric: the intra brand

externality Ry is equal across firms and the inter brand externality RE is the same between any
pair of firms. Let Qj be the number of consumers patronizing firmi and pj be the price of good

i,i=1, ..., N. The utility derived by a consumer purchasing good i is
Ui=-pi +RL.Qj + RE.Zj Qj+ue i=1,..,N

Assuming, as before, that the random variables € are identically, independently Gumbel

distributed, we obtain the following demand model

1 .
%= pi-p  Ri-Rp.Q-qp '~ h-N &)
L+ Zjeiel T * W ]
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We restrict our analysis to the symmetric solution and see under which condition it is a
Nash equilibrium. It is thus not necessary to solve the whole system (9), which would be a
formidable task. We just have to ensure the existence of a well defined demand function for one

firm (for example firm 1), when all other firms set a price p*. In this case, (9) can be written as

1
p1-p* (Rr-Rg).(l-N.Qyp)
+(N-Del 7+ (N- 1)

Q=

(10)

We now look at the conditions under which (10) can be solved in Q1. We use (10) to
compute the value of the derivative of Q1 with respect to pj. This leads to

dQy (1- (Rr- RE).N Ql-(l-Ql)}__ Qr.(1-Qp (an
dpy - (N-1) = H - H ‘

As the RHS of equation (11) is negative, demand will be defined if and only if the coefficient of
dQ1/dp] is positive. We see that if that condition is satisfied for Q1 = 0.5, it will always be

true. Thus, the necessary and sufficient condition is given by

(Rr- RE).N
> m (12)

Note that for Q1 = 0 or 1, (11) simply states that dQy/dp; is equal to zero. As expected, for
N =2, this condition is equivalent to (7). However, one should keep in mind that in the general
case, condition (12) is far more limited. Indeed, it only ensures the existence of a properly
defined demand function once all the remaining firm have set the same price. It does not hold
for any set of prices. Moreover, we could prove that a unique Nash equilibrium exists in the
case N = 2 by using proposition 2; but there exists no such result in the general case. As a
consequence, now that the demand function is well defined, we have to prove that the
symmetric price structure is indeed a Nash equilibrium. This can be done by checking that the

profit of firm 1 is quasi-concave in pj (see Friedmann, 1986). In the appendix, we prove that

(12) does not guarantee quasi-concavity. Indeed, we show that it is guaranteed for

2.N-1)

u > (R - Rp). Nz
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We also show in the appendix that for 2 < N < 6, (12') is a stronger condition than (12) and is

thus the one to be satisfied.

Under condition (12) and (12') the resulting prices and profits characterising the Nash

equilibrium are given by

u.N  R[-Rg

PPEN-T N-T - (13)
o M R1- Rg ,/
TEN-TON(N- (14)

The conclusions in terms of the parameters |, Ry and RE are obviously the same as in

the case N = 2. We shall thus focus here on the properties of equilibrium prices as N varies. As

1s easily seen from (13), we have

P3. Equilibrium prices increase with N if i <R[ - RE and decrease with N if jt > R - RE.

The reason for which prices can increase with N for low values of  is the following.
As the number of firms increases, competition tends to drive prices down. But, on the other
hand, the fact that each firm only enjoys a small market tends to decrease the effect of the
externality, thus also its negative effect on the prices. It is only when the degree of
differentiation (i) is low that the global effect tends to increase prices. As [ gets larger, the
externality plays a less important role in the competitive process and we get the usual result. In
figure 6, we represent the regions (in terms of | and N) where prices increase and decrease.



prices and profits decrease

prices increase, prefits decrease

(profits increase)
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Figure 6

Note that figure 6 has to be understood in terms of discrete values of N. On the same
figure, it can also be noticed that there is a small region where profits increase with the
number of firms. This happens because prices increase more than quantities decrease. This
result depends on the linear form of the utility function . As N gets large, the effect slows
downs and then goes the other way. Thus, as firms enter the market, profits may raise first but
then tend to decrease again until the expected profit is equal to the cost of entry. We have the
following property

P4. If the cost of entry is K, the equilibrium number of firms N* is

+ K)2 - 4K.(R; - R
N =integer [+ K + N ) 5K (Ri E) ].

The proof of this proposition is a direct consequence of (14). In order to ensure that the above
expressionb is well defined, we assume that profits are positive for N = 2, which is equivalent
(¢}
Ri-R
w> K + _[7—E

“

Note that the presence of externalities tends to decrease the number of firms on the

market. The reason is that the presence of externalities induces a phenomenon of agglomeration:

M



consumers tend to favour large networks. As a consequence, it is more difficult for an entrant to
attract consumers; prices go down and, for a given cost of entry, so does the number of firms.
When R - RE is equal to zero, the number of firms is maximum and equal to N = 1+ WK, a

result obtained by Anderson and de Palma (1987).

5. Conclusions

We have studied the problem of partial compatibility in the presence of network
externalities using a model of price competition. As a first step, we consider the homogeneous
goods case. We have shown that the externalities induce a phenomenon of hysteresis which

prevents the existence of a static Nash equilibrium.

As a second step, we propose a general duopoly model with differentiated networks
characterised by a partial compatibility with each other. We derive a necessary and sufficient
condition for a static Nash equilibrium to exist (product heterogeneity is large enough compared
to the degree of incompatibility). We provide an example based on the Logit formula and show
that the presence of externality tends to decrease the level of the prices. We also show that firms
benefit from an increased compatibility.

Finally, we extend this last specific model to the case of an oligopoly. We show that at
the equilibrium, the prices may increase as the number of firms increases. However, at

equilibrium, the number of firms tends to be lower in the presence of externalities.

We conjecture that the same approach could be used in a Cournot game (it would then of
course be necessary to introduce an outside good in the model). We think that, even if
consumers do not have expectations about the size of the networks, it would lead to a stable
symmetric equilibrium.

We have purposedly restricted our analysis to symmetric equilibria. There are two
reasons for this. First, we do not think that there are any other equilibria in the case of an
horizontally differentiated oligopoly. Secondly, we think that asymmetric networks would be
best studied in a vertical differentiation framework (such examples can be found in Esser and

Leruth, 1989). Indeed, if networks are not symmetric, it implies that the larger ones induce a

~J
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better utility (prices not being taken into account) than the smaller ones. Such a configuration is
more likely to emerge when some consumers are ready to spend more in order to get linked to a

large network while some others think the other way because they care more for the price.

We have analysed the case of positive network externalities. The results we have derived
remain valid in the case of negative network externalities (congestion). In such a case, RE 1s

equal to zero and Ry is negative. Among others, it is worthwile mentionning that demand is
always well defined and that a static Nash equilibrium always exists. Moreover, it is easy to see
that prices increase as the impact of the externality (also called congestion in this case and

represented by Ry < 0) gets larger.

Appendix

We now derive the condition under which no firm has an incentive to deviate from the

symmetric equilibrium, i.e. there exists no p; (say) such that
TCI (pl’ p*’ sory p*) Z nl (p*1 p*a sesy p*)7
where p* is given by (13).

Using (10), we have

1 p1-p* (Ri-Rg).(1-N.Qy)
Q1= 00 Qp=(N- 1)-6Xp[ m HL(N-1) (A.1)

(A.1.) can be rewritten as

_ o O U.N Ry - Rg N
pr=plog(g= I+ -1+ N1 (1307 -2

. 98
= e——
Setting A R[-Rp"’ we have

R;-R Q N 1 N
7‘1=1+Q$“{A'“°g(N-11)+N- T T B 82
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Since m; is continuous and differentiable, p; = p* is a symmetric solution if there is no
Q; # N - 1 solution of dn; / dQ; = 0 and leading to w1 (Q1) > 11 (N - 1). Indeed, Q1 varies
continuously between 0 (for pj = - =) and + o (for p; = + o). Note that we can indifferently

consider 1 as a function of pj or Q1 because p* is fixed for all other firms.

From (A.2), we see that dny / dQ has the same sign as F (Q1) - G (Qy), with

1 N
A NC-D T

F Q)= -2),

_ 1 N Q
GQp=-1- o N7 tles ()

It can be seen that the first order condition is satisfied at Qi = N - 1 (the symmetric
configuration) and that 7t is decreasing for Q) — + o and for Q; — 0. We now consider (the

following analysis is based on figure A1) the first derivatives of F (Q}) and G (Qy).

(N-1)

Figure Al



We have

dF Q) 2N
dQp 7 ANN-D.(1+Q)2°

d G Q) Q1 +1

d - Q2

Note that if in Q1 = N - 1, one has

dF(Qyp _ 2 dG(Qp) _ N .
d0; TANKN-D T Tdo T N-0T (A.3)

F and G intersect at least one more time for Q) > N - 1 and thus 7] must have other extrema.
The reason is that F (1) has an horizontal asymptote for Q] — + oo, while G (Q) does not.

As a consequence, any other extrema may correspond to a maximum preventing Q; =N - 1 to

be a Nash equilibrium. In any case, it is enough to check when (A.3) is not satisfied, i.e.

2(N-1)

2.(N-1
A > N2 —_—

or 1> (Rr-Rg). N2

(A.4)

Note that for N = 2, (A.4) is equivalent to (7), so that we can also limit the analysis to N > 3.

We show that if A satisfies (A.4), F (Q}) and G (Q;) do not intersect. It is enough to
prove that

d F (Qy) <dG(Q1) -

i0; 10, , for any Q1,
or
N-1 (Q1)2
A. N T+ (A.5)
Using (A.4), (A.5) is verified if
- 2 2
(N -1 S (Q1) (A.6)

(N\)? (1+Qp)3°



As the R.H.S. of (A.6) is maximum for Q1 =2, (A.6) is verified for N > 3 and for N = 3, the
derivatives of F (€21) and G () are identical.

Now note that (A.4) is not necessarily satisfied when (12) is. Indeed, it can easily be

checked that (A.4) is a stronger condition on u than (12) if and only if

8.(N - 1)2> N3,

which is happening for 2 < N < 6.
Q.E.D.
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