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Abstract

A quitting game is a sequential game where each player has two actions: to continue

or to quit. The game terminates once at least one player quits. The payoff depends on

the subset of players who quit at the termination stage, and is 0 if no one ever quits.

For every continuation payoff x we assign a one-shot game, where the payoff if

everyone continues is x. We study the dynamics of the correspondence that assigns to

every continuation payoff the set of equilibrium payoffs in the corresponding one-shot

game.

The study presented here has an implication on the approach one should take in

trying to prove, or disprove, the existence of an equilibrium payoff in n-player stochastic

games. It also shows that the minimal length of the period of a periodic δ-equilibrium

in 3-player quitting games needs not be uniformly bounded for δ > 0.
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1 Introduction

Whether or not any n-player undiscounted stochastic game admits a uniform equilibrium

payoff is still an open problem, even though a lot of progress was achieved in recent years.

Mertens and Neyman (1981) proved the existence of the value in zero-sum games. Existence

of an equilibrium payoff was proved by Vrieze and Thuijsman (1989) for two-player non

zero-sum absorbing games,1 by Vieille (2000) for two-player stochastic games, and by Solan

(1999) for three-player absorbing games.

In all of these existence proofs one approximates the game by a sequence of auxiliary

games that admit a stationary equilibrium. By studying the asymptotic behavior of a se-

quence of stationary equilibria in the auxiliary game, as the approximation becomes better,

one constructs an equilibrium payoff in the original undiscounted game.

Flesch et al (1997) studied an example of a three-player quitting game,2 that admits no

stationary ε-equilibrium, and the only equilibria in this game have a periodic flavor. As

it turns out, periodic equilibria are a very useful concept, that helped solving a couple of

classes of stochastic games. It was used in Solan’s (1999) study of three-player absorbing

games, and in Solan and Vieille’s (1998) study of quitting games.

Solan and Vieille (1998) studied an example of a four-player quitting game where the

approximation technique fails. Nevertheless, they have succeeded to prove that a class of

n-player quitting games admits an equilibrium payoff using the following technique. With

every vector x ∈ Rn associate the one-shot game G(x) with continuation payoff x; that

is, if everyone continues, the payoff is given by x. For every ε > 0 let Eε(x) be the set of

all ε-equilibrium payoffs in G(x), where the corresponding ε-equilibrium strategy profile is

terminating with probability at least ε; that is, the probability that everyone continues is

smaller than 1 − ε. Solan and Vieille proved that, given any periodic point of Eε, one can

construct an ε1/6-equilibrium in the original quitting game. They also found conditions on

1Absorbing games are stochastic games where all states but one are absorbing.
2Quitting games are absorbing games where each player has two possible actions, to continue or to quit,

and the game is absorbed with probability 1 once at least one player quits.
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the payoff function that ensure that such a periodic point exists.

Since the method of approximating games is seemingly not powerful enough to deal with

general n-player stochastic games, one needs to develop new techniques, and the approach

used in Solan and Vieille (1998) may serve as a starting point.

In the present note we restrict ourselves to quitting games, and we study the dynamics

of the correspondence E0; that is, the correspondence that assigns to every vector x ∈ Rn

the set of equilibrium payoffs in the one shot game with continuation payoff x.

If x is large enough (that is, xi is large for every i), then the profile “everyone continues”

is an equilibrium in G(x), and therefore x is a fixed point of E0. Nevertheless, the profile

“everyone continues” needs not be an equilibrium in the original quitting game.

A sequence x1, x2, . . . , xK = x1 of vectors in Rn is a period of E0 if xk ∈ E0(xk+1) for

every k = 1, 2, . . . , K (addition modulo K). It is a non trivial period if for at least one index

k, in the equilibrium strategy profile in G(xk+1) that yields payoff xk at least one player quits

with positive probability. It is easy to verify that every non trivial period of E0 corresponds

to an equilibrium in the quitting game. Thus, if one’s goal is equilibrium payoffs in the

original quitting game, one should look for non trivial periods of E0.

More generally, one should look for non trivial inverse iterates; that is, sequences (xk)k∈N

such that (i) xk ∈ E0(xk+1) for every k ∈ N, and (ii) if for every k ∈ N αk is an equilibrium

strategy profile in G(xk+1) that yields payoff xk, then the strategy profile (αk)k∈N in the

original quitting game is terminating with probability 1.

We show, by studying an example of a three-player quitting game, that the correspon-

dence E0 needs not have non-trivial inverse iterates, even when the game admits an equi-

librium payoff. In particular, it follows that three-player quitting games do not necessarily

admit 0-equilibria.

This result shows that a simpler technique than the one used in Solan and Vieille (1998),

namely, the search for a non trivial periodic point of E0, is bound to fail. Thus, the result

is useful both for those who try to prove that every stochastic game admits an equilibrium

payoff, as well as for those who look for a counter example. For the first group it says
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that looking for non-trivial periods of the correspondence E0 is probably not the right path,

whereas for the second group it says that even if E0 does not have a non trivial period, the

game may still admit a uniform equilibrium payoff.

Our result also complements that of Solan (1999, 2000). Solan (1999) proves that every

three-player absorbing game admits a δ-equilibrium where the equilibrium path is periodic,

and Solan (2000) proves that every absorbing team game3 admits a δ-equilibrium where the

equilibrium path is periodic, and the length of the period is 1 or 2. Our example shows that

in three-player absorbing games the length of the period cannot be uniformly bounded (even

if payoffs are bounded).

2 The Example

For every ε ≥ 0, let Gε be a three-player quitting game with the following payoff matrix:

Q

C

C Q C Q
C Q

1, 3, 0 ∗
0, 0, 0

1 + ε, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 + ε ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1 + ε, 0 ∗

Figure 1

An asterisked entry is absorbing with probability 1, and the non-asterisked entry is

absorbing with probability 0.

The game Gε is a perturbation of the game G0, which was studied by Flesch et al (1997).

A strategy for player i in Gε is a sequence (αi
k)k∈N, where αi

k is the probability that

player i quits at stage k, provided the game has not terminated before. A strategy profile is

a vector of strategies, one for each player.

For every continuation payoff y ∈ R3, let Gε(y) be the one-shot game derived from Gε

with a continuation payoff y; that is, a one-shot game where each player has two possible

3A team game is a game where the set of players is divided into two subsets, and the payoffs of players

in the same subset coincide.
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actions, to continue or to quit, the payoff if everyone continues is y, and all other payoffs are

as appears in Figure 1. Let Eε(y) be the set of all Nash equilibria of the game Gε(y).4

A mixed strategy for player i in Gε(y) is represented by a number αi ∈ [0, 1], which is

the probability that player i quits. A mixed strategy profile is a vector α = (αi)3
i=1 ∈ [0, 1]3.

A sequence (y(k), α(k))k∈N where for every k ∈ N, y(k) ∈ R3 and α(k) ∈ [0, 1]3 is

admissible in Gε if for every k ∈ N, α(k) is an equilibrium in the game Gε(y(k + 1)) that

yields payoff y(k). It is admissible for y in Gε if it is admissible in Gε and y = y(1). It is

completely absorbing if
∏

k∈N

∏3
i=1(1− αi(k)) = 0.

Let

Fε = {y ∈ R3 | There is an admissible sequence for y in Gε}.

In words, Fε is the set of all vectors in R3 that are the first element in some inverse iterate

of Eε. By definition, if (y(k), α(k))k∈N is an admissible sequence in Gε then y(k) ∈ Fε for

every k ∈ N. Note that there may be several admissible sequences in Gε for the same vector

y ∈ R3.

A vector y ∈ Fε is trivial (in Gε) if every corresponding admissible sequence is not

completely absorbing; that is, for every admissible sequence (y(k), α(k))k∈N for y in Gε,∏
k∈N

∏3
i=1(1− αi(k)) > 0.

One can verify that for every ε > 0, any vector y ∈ (1 + ε,∞)3 is trivial in Gε. Indeed,

such a y is in Eε(x) if and only if x = y, and the corresponding equilibrium is α = (0, 0, 0).

It is clear that every non-trivial vector y ∈ Fε corresponds to (at least one) equilibrium

in Gε; if (y(k), α(k))k∈N is a completely absorbing admissible sequence for y in Gε, then

the strategy profile (α(k))k∈N is an equilibrium in Gε, and y = y(1) is the corresponding

equilibrium payoff.

Recalling the notion of equilibrium payoff (see, e.g., Mertens, Sorin and Zamir (1994,

Section VII.4)), one can provide a stronger definition for trivial vectors: a vector y ∈ Fε is

trivial if there exists δ > 0 such that every admissible sequence (y(k), α(k))k∈N for y in Gε

4The correspondence Eε is the correspondence E0 that was mentioned in the introduction for the game

Gε.
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satisfies
∏

k∈N

∏3
i=1(1 − αi(k)) > δ. The results remain valid with this stronger definition.

However, since it is not clear whether an analogue of Lemma 3.2 below is still valid, the

proofs of the theorems is more involved.

Our first result is:

Theorem 2.1 For every ε > 0 sufficiently small, Fε contains only trivial vectors.

Recall that by Solan (1999), the game Gε admits a uniform equilibrium payoff. Thus, even

if the game admits an equilibrium payoff, Eε needs not have a non trivial inverse iterate.

In all the classes of non zero-sum stochastic games where the existence of an equilibrium

payoff was proven, one can find δ-equilibrium strategy profiles where the equilibrium path

is periodic. For absorbing team games one can even find δ-equilibria where the length of

the period is bounded by 2 (see Solan (2000)). It is therefore natural to ask whether the

minimal length of the period can be uniformly bounded in other classes of stochastic games

as well. As our second theorem claims, this is not the case in three-player quitting games.

For every ε > 0 and every δ > 0, let d(ε, δ) be the minimal period of a periodic δ-

equilibrium of Gε.

Theorem 2.2 For every ε > 0 sufficiently small, lim infδ→0 d(ε, δ) = +∞.

Since the proof of Theorem 2.2 is similar in spirit to that of Theorem 2.1, we only provide

a rough sketch for it.

3 Analysis

Flesch et al (1997) studied the game G0. The following Lemma summarizes several of their

results that are used below.

Lemma 3.1 Let (y(k), α(k))k∈N be an admissible sequence (not necessarily completely ab-

sorbing) in G0. Then

1. If αi(k) ∈ (0, 1) for each i = 1, 2, 3 then mini{yi(k + 1)} < mini{yi(k)}.
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2. There is k ∈ N such that either α1(k) = 0, or α2(k) = 0, or α3(k) = 0.

3. If αi(k) = 0 for some i = 1, 2, 3 then there exists j 6= i such that αj(k) = 0 as well.

Moreover,

4. For every δ > 0 sufficiently small, the game G0 does not admit any stationary δ-

equilibrium.

Lemma 3.2 If (y(k), α(k))k∈N is a completely absorbing admissible sequence in Gε, then for

every n ∈ N, the sequence (y(k), α(k))∞k=n is a completely absorbing admissible sequence for

y(k), provided ε is sufficiently small.

Proof: By definition, (y(k), α(k))∞k=n is an admissible sequence for y(k). Since (y(k), α(k))k∈N

is completely absorbing, it is sufficient to prove that αi(k) < 1 for every i = 1, 2, 3 and every

k ∈ N. Assume to the contrary that αi(k) = 1 for some i, k. Then α(k) is a 3ε-equilibrium

in Gε, hence a 4ε-equilibrium in G0, which contradicts Lemma 3.1(4) if ε is sufficiently small.

The following two lemmas are easy. The first is a simple matter of continuity, while the

second follows from the payoff matrix in Figure 1.

Lemma 3.3 Let (εn, xn, yn, αn)n∈N be a sequence such that (i) εn ∈ (0, 1), xn, yn ∈ R3, αn ∈

[0, 1]3 for every n ∈ N, (ii) the limits x = limn→∞ xn, y = limn→∞ yn and α = limn→∞ αn

exist, while limn→∞ εn = 0, and (iii) for every n ∈ N, αn is an equilibrium in Gεn(xn) that

yields payoff yn. Then α is an equilibrium in G0(x) that yields payoff y.

Lemma 3.4 Let x, y ∈ R3, ε ∈ [0, 1) and α be an equilibrium in Gε(x) that yields payoff y.

If αi > 0 for every i = 1, 2, 3 then yi < 1 + ε for every i = 1, 2, 3.

Lemma 3.5 If x < (1, 1, 1) then for every ε ∈ (0, 1/3) and every y ∈ Eε(x), y < (1, 1, 1).
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Proof: Assume to the contrary that the lemma is not true, and let x, y ∈ R3 and ε ∈ (0, 1/3)

satisfy (i) x < (1, 1, 1), (ii) y ∈ Eε(x), and (iii) y1 ≥ 1. Let α ∈ [0, 1]3 be an equilibrium in

Gε(x) that yields payoff y.

Since xi < 1 for every i = 1, 2, 3, it cannot be the case that at most two players quit with

positive probability under α. Indeed, if a single player i quits with positive probability, this

player expects to receive xi < 1 by continuing and 1 by quitting. If two players quit with

positive probability, say players i and i + 1 mod 3, then player i expects to receive at least

1 by quitting, and less than 1 by continuing.

Thus, αi ∈ (0, 1) for every i. Since y1 ≥ 1 and α1 ∈ (0, 1), we get

x1(1− α2)(1− α3) + 3(1− α2)α3 + α2α3 = (1− α3) + εα2(1− α3) ≥ 1.

Since x1 < 1 and ε > 0 the left hand-side equality implies that 1−α2 +2α3−α2α3 > 1−α3,

while the right hand-side inequality implies that εα2(1 − α3) ≥ α3. These two inequalities

imply that 3α3/(1 + α3) > α2 ≥ α3/ε(1 − α3), and therefore 1/3 > ε > ε(1 − α3) >

(1 + α3)/3 > 1/3, a contradiction.

Note that if y ∈ Fε is not trivial, then y is in the convex hull of the payoffs in the entries

of the matrix in the game Gε. In particular,5

3∑
i=1

yi ≤ 4 and 0 ≤ yi ≤ 3 ∀i. (1)

Let F be the limit set of all non trivial vectors in Fε. That is,

F = {y ∈ R3 | y = lim
n→∞

yn, yn ∈ Fεn is non trivial, εn → 0}.

To prove Theorem 2.1, it is sufficient to prove that F = ∅. Note that by (1), for every

y ∈ F ,
∑3

i=1 yi ≤ 4, and 0 ≤ yi ≤ 3 for each i = 1, 2, 3.

Define ∆ =
{
y ∈ R3 | ∑3

i=1 yi = 4
}
. Our next goal is to prove:

5Actually, for every ε ≥ 0, the stationary strategy αi = 1/2 guarantees player i an expected payoff 1/2.

It follows that the max-min value of each player is at least 1/2. In particular yi ≥ 1/2 for every player i and

every non-trivial vector.
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Lemma 3.6 F ⊆ ∆.

Proof: Assume to the contrary that there is y ∈ F such that
∑3

i=1 yi < 4 − 4ρ, for some

ρ > 0.

Let yn → y be a sequence such that yn ∈ Fεn is non trivial and εn → 0. For every n ∈ N,

let (yn(k), αn(k))k∈N be a completely absorbing admissible sequence for yn in Gεn . By taking

a subsequence, assume w.l.o.g. that
∑3

i=1 yi
n < 4− 4ρ for every n ∈ N.

We first claim that if y is chosen appropriately, we can assume w.l.o.g. that α1
n(1), α2

n(1) ≥

ρ/4 for every n ∈ N.

To prove this claim, we will find (i) y′ ∈ F \ ∆ such that d(y′, ∆) ≥ ρ2/16 (y′ may be

different from y), (ii) some sequence (y′n)n∈N such that y′n ∈ Fεn and y′n → y′, and (iii) for

every n ∈ N a completely absorbing admissible sequence (y′n(k), α′n(k))k∈N for y′n in Gεn ,

such that α′1n (1), α′2n (1) ≥ ρ/4.

For every n ∈ N let πn be the probability that under (αn(k))k∈N, in the stage of absorp-

tion at least two players play Q.

If for every k ∈ N, αi
n(k) ≥ ρ/4 for at most one player i, then πn < 4 × ρ/4 = ρ. In

particular, it follows that
∑3

i=1 yi
n > 4− 4ρ — a contradiction.

Therefore, for every n ∈ N there is kn ∈ N such that αi
n(kn) ≥ ρ/4 for at least two

players.

Define for every n ∈ N an admissible sequence (y′n(k), α′n(k))k∈N by y′n(k) = yn(kn+k−1)

and α′n(k) = αn(kn + k − 1). Since (yn(k), αn(k)) is completely absorbing, and by Lemma

3.2, (y′n(k), α′n(k)) is completely absorbing as well.

By taking a subsequence, we can assume w.l.o.g. that y′ = limn→∞ y′n(1) = limn→∞ yn(kn)

exists. Since α′in(1) ≥ ρ/4 for at least two players, and since
∑3

i=1 y′in(2) ≤ 4, it follows that∑3
i=1 y′in(1) ≤ 4− (ρ/4)2, and therefore d(y′, ∆) ≥ ρ2/16.

The claim now follows since the number of players is finite, and the games Gε are sym-

metric.
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By taking a subsequence, we can assume w.l.o.g. that for every k ∈ N, y(k) = limn→∞ yn(k)

and α(k) = limn→∞ αn(k) exist. By Lemma 3.3, y(k) ∈ E0(y(k + 1)), and α(k) is the corre-

sponding equilibrium.

Since α1
n(1), α2

n(1) ≥ ρ/4 for every n ∈ N, α1(1), α2(1) ≥ ρ/4 as well. It follows from

Lemma 3.1(3) that α3(1) > 0. By Lemma 3.4, y(1) < (1, 1, 1).

Let k > 1 be the first stage such that αi(k) = 0 for at least one player i. By Lemma

3.1(2), such a finite k exists. By Lemma 3.1(3), αi(k) = 0 for at least two players, say 2 and

3. Moreover, by Lemma 3.1(1), yi(k) < 1 for some i.

In particular, it follows that α1(k) 6= 0 (otherwise, α(k) is not an equilibrium in G0(y(k+

1)): player i can profit by quitting). The payoff matrix in Figure 1 implies that y1(k) = 1

and 1 < y3(k). Since there is i such that yi(k) < 1, it follows that y2(k) < 1.

Since α(k) is an equilibrium in G0(y(k + 1)) in which only player 1 quits with positive

probability, it follows that

y2(k) = (1− α1(k))y2(k + 1) + 3α1(k), and

y3(k) = (1− α1(k))y3(k + 1).

In particular, 1 > y2(k) > y2(k + 1), 1 < y3(k) < y3(k + 1), and y1(k) = 1 = y1(k + 1). It

follows that at stage k + 1, player 1 is the unique player who quits with positive probability.

Indeed, one can verify that if any other subset of players quit with positive probability, y(k)

cannot be an equilibrium payoff.

Similarly, in any stage l > k, α2(l) = α3(l) = 0 and α1(l) > 0.

For every l ≥ k, α(l) is an equilibrium in G0(y(l + 1)) that yields expected payoff y(l).

It follows that y2(l) ≥ 1− α1(l). In particular, for every l ≥ k we have α1(l) ≥ 1− y2(l) ≥

1−y2(k) > 0, hence (y(k), α(k))k∈N is completely absorbing. It follows that y3(k) = 0, hence

player 3 can quit at stage k and profit, contradicting the fact that α(k) is an equilibrium in

G0(y(k + 1)).

Proof of Theorem 2.1: Assume to the contrary that the theorem does not hold. Then

there exists a sequence εn → 0 and a sequence (yn)n∈N such that yn ∈ Fεn . For every n ∈ N
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let (yn(k), αn(k)) be a completely absorbing admissible sequence for yn in Gεn . By Lemma

3.6, we can assume w.l.o.g. that d(yn, ∆) < ρ for every n ∈ N, where ρ ∈ (0, 1) is arbitrary.

Lemmas 3.3 and 3.6 imply that it cannot be the case that for every n ∈ N there is kn ∈ N

such that αi
n(kn) > 0 for all i. Indeed, otherwise, any accumulation point y of the sequence

yn(kn), as n goes to infinity, is in F . By Lemma 3.3
∑3

i=1 yi ≤ 3, which contradicts Lemma

3.6.

Fix n sufficiently large such that εn ∈ (0, (1− ρ)/3).

We will now show that there is a stage k such that αi
n(k) > 0 for exactly two players. As

discussed above, if n is sufficiently large then for every k ∈ N there is at least one player i

such that αi
n(k) = 0.

So assume that for every k ∈ N, for at most one player i we have αi
n(k) > 0. Since yn

is not trivial, there is a stage k such that at that stage one player, say player 1, quits with

positive probability. If player 1 is the only player who ever quits with positive probability

under αn, then, since yn is not trivial, y3
n(1) = 0, hence player 3 could have gained by quitting

at stage 1. Hence there is a first stage l such that α2
n(l) + α3

n(l) > 0. Since player 1 is the

only player who quits with positive probability until stage l, y1
n(l) = 1 and y3

n(l) > 1, which

implies by the payoff matrix in Figure 1 that α3
n(l) = 0, hence α2

n(l) > 0. However, in this

case player 1 can profit by quitting with probability 1 at stage l, and receiving more than 1.

By Lemma 3.2 we can assume w.l.o.g. that α1
n(1), α2

n(1) > 0, while α3
n(1) = 0. Indeed,

since yn(1) ∈ Fεn , yn(k) ∈ Fεn as well.

Let m be the minimal integer for which either α1
n(m) = 0, or α2

n(m) = 0, or both. Let

us first argue that such a m exists. Otherwise, for every m ∈ N, α1
n(m), α2

n(m) > 0, hence

α3
n(m) = 0. By the payoff matrix in Figure 1, the overall probability that under (αn(m))m∈N

player 1 will ever quit is at most 1/3 (otherwise, player 2 can profit by never quitting). In

particular, for some m, the overall probability that under αn player 1 will ever quit after

stage m is at most εn, while the overall probability that player 2 will ever quit after that

stage is 1 (since the sequence is completely absorbing). In particular, player 1 is better of
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by quitting at stage m + 1 with probability 1.

Thus, for every l such that 1 ≤ l < m, we have α1
n(l), α2

n(l) > 0, while α3
n(l) = 0.

Let p = 1 − ∏m−1
l=1 (1 − α2

n(l)) be the overall probability that player 2 quits during the

first m − 1 stages, provided player 1 does not quit. Since y1
n(1) > 1, y1

n(m) < 1 + εn,

and y1
n(1) = (1 − p)y1

n(m), it follows that p < εn/(1 + εn) < εn. Since d(yn(1), ∆) < ρ,

y1
n(1) < 1 + εn and y2

n(1) < 1, it follows that y3
n(1) > 2− ρ− εn. Since p < εn, and whenever

player 1 quits player 3 receives at most 1, it follows that y3
n(m) > 2− ρ− 2εn.

So we have asserted that y1
n(m) > 1, y2

n(m) < 1, and y3
n(m) > 2− ρ− 2εn. Let S = {i ∈

{1, 2, 3} | αi
n(m) > 0}. We will prove that S = ∅.

As already discussed, S 6= {1, 2, 3}. Since yi
n(m) 6= 1 for every i = 1, 2, 3, it cannot be

that |S| = 1. By the choice of m, S 6= {1, 2}. Since y2
n(m) < 1, S 6= {2, 3}. Since y1

n(m) > 1,

S 6= {1, 3}.

Thus, S = ∅, and therefore yn(m) = yn(m + 1). Since y2(m) < 1 player 2 can quit at

stage m and profit, contradicting the fact that αn(m) is an equilibrium in Gεn(yn(m + 1)).

Sketch of the Proof of Theorem 2.2: Assume to the contrary that for some fixed

ε > 0 sufficiently small, lim infδ→0 d(ε, δ) < +∞. Then there is K ∈ N and a sequence

δn → 0 such that for every n ∈ N there is a periodic δn-equilibrium in Gε with period K.

Let (αn(1), . . . , αn(K)) be the period of the δn-equilibrium, and let (yn(1), . . . , yn(K)) be the

corresponding sequence of payoffs. In particular, αn(k) is an ε-equilibrium in the one-shot

game Gε(yn(k + 1)) (addition modulo K), that yields expected payoff yn(k).

By taking a subsequence, we can assume w.l.o.g. that the limits α(k) = limn→∞ αn(k)

and y(k) = limn→∞ yn(k) exist for every k = 1, . . . , K. By an analogue of Lemma 3.3,

(y(k), α(k))k∈N is an admissible sequence in G0, where for k > K, y(k) = y(k mod K) and

α(k) = α(k mod K).

As in the proof of Lemma 3.6 one can show that y(k) ∈ ∆ for every k ∈ N. A similar

analysis to that done in the proof of Theorem 2.1 leads to a contradiction.
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