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The purpose of this paper is to show how recent advances in nonlinear
dvnamics allow us to resolve several longstanding, classical issues from numerical
analvsis and from economics. The kind of problems 1 describe are the numerical
analvsis’ problem of finding zeros of polynomials and the economics’ problem of
finding the price equilibrium. Dynamically, both problems are essentially the same;
they both reduce to a search for an iterative method that converges to a zero of any
function from a.specified class. For instance, let P = {f} f is a polvnomial with at

leact one real root}. A classical approach to find a zero of f € P is Newton’s

method
1.1 Xper = Xp - £Ux ) )/f7(x ),
where X; € {-®, o), Standard results confirm that if the initial iterate 1s

"sufficiently close" to a zero to of f, then Newton’s process converges. But, what
if the i1nitial iterate isn’t sufficiently close. After all, the problem is to find
the zero; what if we don’t know where to start. Here, the results are not as
reassuring. The pioneer for these issues is Barna (1,2,3]. Among other results,
Barna showed that if a polvnomial has at least three real zeros, then there are
Cantor sets of i1nitial iterates where Eg. 1.1 does not converge. Indeed, Barna
constructed functions in P where an open set of initial iterates do not allow
convergence. Barna’s work depended on the properties of polynomials. By use of
nonlinear dyvnamics, it 1s shown in (Saari - Urenko [9]) that these conclusions depend
on the geometry of the graph of the function, so they extend to anyv continuous
function with at least three real zeros. Moreover, 1t turns out that the associated
dyvnamical behavior is very complicated -- it involves the currently fashionable topic

of chaos. ({See [9].)
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If Newton's method doesn’t work, then what does? C(Can we create a method, at
least for the functions in P, that almost alwayvs leads to convergence? To see how to

generalize Newton’s method, note that if M(u,v) = -u/v, then Newton’s method is

1.2 Xpyy = X, + MOf(x ), f’(xn)).
Are there choices of M that overcome the limitations of Newton’s method? Does there

exist an M so that for f € P, Eq. 1.2 cenverges for almost all initial iterates?

This central, "algorithm design"” problem is the numerical analysis gquestion that 1'l]
discuss here. My results are negative, but I'll indicate a direction where positive

conclusions mayv result.

In economics, a standard concern is efficiency. Namely, is there a market
decision mechanism to ensure that market demands are satisfied without incurring an
unused surplus of goods? A widely discussed approach is the price mechanism. The
textbook description starts with a price vector p =(p1,..,pc) where the jth
component, Dj specifies the price for the jth commodity, j=1,..,c. The next step is
to postulate that with these prices, consumers create a demand, Dj(p), and producers
are willing to supply a certain amount, Sj(p), of the jtb commodity, j=1,..,c. It is
reasonable to suspect that by allowing the prices to adjust with freedom, an
equilibrium price, p*, will be attained whereby efficiency is achieved. This means
that D(p*) = S(p*) where D(p) = (D](p),..,Dc(p)), and S(p) = (Sl(p),...,Sc(p)). The
standard argument supporting the movement toward efficiency 1s a simple one. At a
given price, consumers maximize theilr utility; if something is too expensive, they
buv a substitute. So, if a component of f{p) = D(p) - S(p} is positive, then it is
natural to charge more to meet the demand with the insufficient supply. This higher
price reduces demand and encourages an increase in supplyv. Conversely, if a
component of f(p) is negative, then the price will fall to get rid of excess stock.
With the cheaper good, demand increases and supply decreases. Conseguently, it
appears that convergence should be achieved through the governing, market pressure

dynamics of price adjustment given by

1.3 p =p + f(p ).
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To justifv the "supplv-demand” story, we need to analyvze the dvnamics of Eg.
1.3. 1In turn. this requires us to know the functional form of f. A surprising
example, developed by Scarf [11], proves that even in a simple pure exchange model
with only three commodities, this supply - demand story need not work. Scarf creates
a "text-book" economy where the consumers’ utilities satisfy the appropriate neo-
classical assumptions, but where the market pressures force the prices to stay a
certain distance awagyv from the price equilibrium. In fact, work starting with H.
Sonnenschein [12, 13) and continuing with R. Mantel [3] and with G. Debreu [4] proves
that even with standard, simplified assumptions concerning consumer preferences and
production, if ¢ =2 2, then f can be just about any desired function! (There are
houndary conditions reflecting that if a desired commodity is free (i.e., p; = 0)
then evervone vill want it.) From this body of research, it now i1s commonly accepted
that there are serious difficulties with convergence for the standard supplyv - demand
story if c23. Recently, it was shown (Saari [€6]) that similar problems occur for Eq.
1.3 whenever c¢2?; indeed, it was shown that the accepted market pressures, even for a
pure exchange model, can cause a chaotic price dynamic.

A possible rejoiner to this defect in the price adjustment storyv is that the
model is wrong., The story leading to Eq. 1.3 is very simple, so perhaps it doesn’t
accurately capture how the market pressures affect the prices. Mavbe the real market
pressures involve a more subtle interaction of added information. Mavbe an accurate,
sophisticated modelling of the dynamics -- one that takes predictions, etc. into
account -- does prove that market pressures can force the prices to converge. For
instance, mavbe the actual adjustment mechanism should include changes in the
ag¢recate excess demand, f, as determined by the derivative Df. Thus, the natural
issue 1s to determine whether there are alternative models that justify convergence.
Does there exist any kind of mechanism of the form

) n

1.4 P, = p +  M{fi{p_ ), Df(p })

that almoest alwavs leads to a price equilibria? This is the issue 1’11 address here
concerning economics. 1’11 provide both negative and positive assertions.

It 1s obvious from Egs. 1.2, 1.4 that both questions are essentially the
same. By restricting attention to the special setting of a ¢ = 2 commodity model,

the similarity becomes stronger. With this assumption and by using standard economic
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assumptions, what happens for one commodity uniquely determines what happens for the
other. Thus the problem is reduced to one on [0,1] where f is any smooth function
csuch that (0} > ¢, f(1) < O and p € [0,1). So, the main difference between the
problems is that the numerical analysis problem is on the real line, while the

natural setting for the economic problem is {0,1].

2. Main Results

Our concern is the existence of an M that does what we want i1t to do -- it
allows the dinezmice of Egq. 1.2 or 1.4 to converge to a zero of f for almost all
choices of an initial iterate. By “"almost all”, we mean that for a given M, the set
of initial iterates that fail tc lead to convergence does not contain an open set.

The choice of M’s are governed by the following assumptions. With the

rnussible exception of a finite union of smooth varieties or manifolds, V,
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is a continucus mapping that 1s piecewise smooth. The choice of V can vary with M,
and \ is introduced to allow for a wider choice of options. For instance, for
Newton’s method V = Rx{0] to correspond to the singularity when f’(x}) = 0. The
flexibility intreoduced both by V and by the "pilecewise smoothness’ assertion is meant
to allow for branching techniques, etc. For the price mechanism, the image is
slichtly more complicated because p+M(f(p},f'(p)} must remain in the unit interval.
This can be handled by imposing a truncation condition. (A natural one is if
pifipi, {7 (p})21, then assign the value 1, and if p+M({f(p),f’(p)) £ 0, then assign
the value 0.) For both topics -- economics and numerical analvsie -- the dynamics

must stop at a zero of f. This 1s the reason f{for the condition

D
8%

M(G,-) = 0.

The objective is to determine whether any choice of M will allow
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2.3 T M(f(xn), f’(xn))
to converge to a zero of f for almost all initial iterates. For a given M and f, let
E, ;= {initial iterate x, Eg. 2.3 does not converge to a zero of f}.

These minimal conditions on the admissible M's defines a wide class from
which to select a possible algorithm. Yet, even with this abundance of possible
choices, Theorem 1 asserts that none of them do what we want. There does not exist a
single method that achieves convergence of all polynomials in P for almost all
initial iterates. Indeed, the assertion is robust; it holds for open sets in P or
for open sets of economies. (The topology on P is anv natural topology determined by
the coefficients of the polynomials., The topology on the set of economies is the one

inherited by a functicn topology on the space of aggregate excess demand functions.)

Theorem 1. a. Let M that satisfies Eqs. 2.1 and 2.2 define a numerical algorithm
Fq. 2.3. There exists a non-empty, open set U C P so that if f € U, then EQJ;
contalns a non-empty, open set.

b. Let M that satisfies Egs. 2.1 and 2.2 define a price adjustment
procedure Eg. 1.4. There exists a non~empty, open set of neo-classical economies, U,

so that for the excess demand function f for an economv in U, F

o F contains a non-

empty, open set.

In other words, no malter what is the economic theory leading to a choice of
M, whet 1¢ the numerical technique defining a M, if the iterative process can be
modelled with Egs. 2.3, 1.4, then there are robust situations where the desired goal
i not achieved. For instance, even a economic theory of price adjustment that
includes epeculation, as determined by changes in the agdregate excess demand as
indicatea by ', need not lead to convergence.

Of ccurse, we could tolerate this negative conclusion and even a verv large
set Eﬂ ; if we know how to aveid it. One way would be if there is a point that never

1s in E, for any choice of f. This doesn’t happen.

Theorem 2. Let M satisfy Egs. 2.1 and 2.2. Let x be a point in the domain. (The
domain is (-o,®) for the numerical analysis problem, [0,1] for the economics

vroblem.) There exists an f in U so that x € E, ¢
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One reason convergence is not achieved is that an f alwavs can be found so
that the 1terative dynamics creates an attracting cycle. This suggests a possible
resolution. For instance, if we notice that Newton’s method is caught in a cycle,
then we would make the appropriate adjustments by changing some iterate, Can we
incorporate such insigcht into the design of a mechanism M?” To avoid a periodic
orbit, we would want M to¢ depend upon the past s+l iterates and, perhaps, their first

k derivatives. This requires

2.4, IS (Rk+l)5+1\\' -——> R

vhere UV iz a finite union of smooth varieties or manifolds. (The choice of V depends

upon the choice of M.} Again, we require

M{O,-,=y=,..,=) = 0.

~o
(@3]

The jterative method is

N TR [E X C TN IS A U FURUS LF SN NS PUUUIE S I IR Y SR

The definition of E, remains the same except that Eq. 2.6 is the dynamics.

f

Theorem 3. a. Let M that satisfies Eqs. 2.4 and 2.5 define a numerical algorithm

Fg. 2.6. There exists a non-empty, open set ' € P so that if f € U, then Ev f

contains a non-empty open set. Furthermore, for any point x, there Is an f € U so

that x € Eﬁ]f.

b. et M that satisfies Egs. 2.4 and 2.5 define a price adjustment
procedurs of the form Eg. 2.6. There exists a non-empty, open subset of neo-
classical economies, U, so that the aggregate excess demand function f for any

economy 1n U has an E, with an non-empty open set. Let p e [0,1]; there Is a f €

f

so that p € Ev,f'
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The implications for numerical analysis are obvious. If we want an algorithm
of the form Eq. 2.6 to converge for all f € P, then either we need a new approach
using different kinds of information, or we may need an infinite amount of
information. For economics, this means that any price adjustment theory based on the
aggregate excess demand functions -- such as using trends from the derivatives and
the last s iterates -- will not work for all economies. Examples alwavs can be
created to show that converdence does not occur. One reason convergence may not
occur is that no matter how large the value of s, a function f or an economyv can be
found so that the svstem defines an attractive, periodic orbit with period m where m
> ¢. So, no matter how many past i1terates we include, there can be an attractive
periodic orbit that just exceeds the limitations of M. To require all values of s
regquires an infinite amount of information.

Are there any positive conclusions? For economics, there are, but, at this
stage they must be viewed strictly as "existence of positive conclusions,” because a
practical statement is vet to be developed. A weaker assertion holds for numerical
analysis. The idea is this. Perhaps, the real source of non-convergence is the
tacit assumption that we should use only one choice of M. To explain the idea with
an analogy, consider the problem of representing a globe with "flat maps.” This is
impossible becsuse of the topological nature of the sphere; one map can’t cover the
¢jobe, two or more are required. For similar reasons, the topological barriers to
convergence of an algerithm of the form Eq. 2.3, 2.6, require more than one M,
Namely, we want a finite set {MJ} so that for any { € P, there is a MJ so that EJ

f
does net contain an open set. To be more specific, we sav that M covers £ 1'f'E,1

f
does not contain an open set. We cay that {MJ)} covers a function class F 1f ¥V { €
F, ﬂ{EMJ)f} does not contain an open set. The objective is to determine for a given
function space F what is the minimal kind of cover it admits. W¥ith such knowledge,
then if one algorithm doesn’t work, we know what other ones to tryv. It can be
derived (from Szari [7]) that P admits a ccountable cover. Consequently, a finite set
ot mothods can be found for any compact subset of P, What remains is to understand
whether there is a4 fiuite cover for all of P, and to characterize which methods apply
for which subesete of P, (For instance, Newton’s method applies {for the subset where
all zeros are real.)

In economics, we have more to work with because the agents can communicate

with each other. Using this fact, we (Saari - williams [10]) obtain a similar
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statement that, for a compact set of economies, a finite number of price mechanisms

will suffice. Moreover, the algorithm particularly simple and natural for the

theory; it is determined by multiplving f{p) with a diagonal matrix. Thus a story
that permits the convergence is a simple extension of the standard supply - demand
algerithm! Wwhat differs is that the matrix changes with the economy. (See Saari -

Williame {10] for more details and proofs.)
3. An Outline of the Proofs.

Details of the proofs and additional assertions are in two basic references.
The results about numerical analysis are in Saari [7]. The assertions about
economics are in Saari [{6]; some of the ideas in this last reference are extencions
of cencepts developed in Saari-Simon {8} for "continuous' price adjustment methods.
An argument why we need more than one choice of M, how this helps to solve the
problem facing price adjustment in economics, and how the new mechanisms can be found
in a "privacy preserving” manner is in Saari-¥illiams {10].

For the remainder of this concluding section, I will show why we should
expect the stated conclusions. 1’1]1 do this with a special case of Theorem 1. Let
Gf(x) = x + M(f{(x),f’(x)). This changes the iterative scheme to Xpy1 = Gf(xn). To
prove that converdence is not achieved, it suffices to show that there is an f and
two distinct points x, and x., such that i) Gf(xl) = X, Gf(xz) = X and that ii)

1 2 1°
y .
IGf {x

l)Gf’(,\:z)l < 1. This is because conditions i) ensures that there 1s a period
two cyvcle. The term inside the absolute value signs of condition ii) 1s the chain

or at x,. The fact that this

rule expansion of {Gf(Gf(X))}’ evaluated at either x; )

derivative is less than unity in magnitude forces the periodic orbit to be
attractive. Namelv, there is an open set of initial conditions containing X, so that
the subsequent orbit approaches the periodic orbit as the number of iterates
immcreases.,  Thus, for any of these initial iterates, convergence to a zero is denied.
There are some technical difficulties that need to be handled. First, if M =
0, then G{ is the identity map for all choices of f. Here, nothing happens, so the
conciusicn of the thecorem follows immediately. Secendly, if M > 0, then the iterates
are alwavs forced to the right. So, for any initial iterate to the right of the last

zero of f, the system cannot converge. Again, the theorem follows immediately., A

similar argument shows that it is impossible to have a successful algorithm for M <
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0. Thus, we assume that M does not have these properties.

The first task is to show that i) is satisfied. Here there are several
technical difficulties. To illustrate the ideas, I'll consider only a simple
setting, then 1’11 outline what needs to be done in the more general case. Suppose,
as true for Newton’s method M(u,v) = -u/v, that there are vi, j = 1,2, so that for an
interval 0< u < 2, sign (M(u,v3) = (-1)3. Using the fact that M(0,-) = 0 and
continuity, this forces the two surfaces in R3 given by z = -M(u,v!) and z = M(yv,v?¢)
to have a point cf intersection over (0,2]x(0,2]. (The coordinates in R3 are
{(u,v,z); the values of vJ3 are treated as parameters.) This intersection follows
immediately because the first surface is independent of v, the second is independent
of u, and both are positive. Thus, vou can see the conclusion by drawing a graph;
indeed, it follows that the intersection contains & continuum that contains
arbitrarily small values of M.

Let (u!,v?) be a pcint of intersection of these graphs. Let X, be any point
in the interier of the domain, let f(x,) = ul, f’(xl) = vl X, = X, ¢t M(ul,vl), f(x,)
= v¢, and f’(x,) = v2. Since the intersection points (u!) and v2 can be selected to
make the value of M sufficiently small, it is clear that if such an f exists, then
the points x; and x, can be in any designated interval. Moreover, since this is
impeses only point information on f, it is clear that such an f exists. From this

consiruetion, it is obvious that with thie f, x, and x, form a period two cycle.

) 2

The general setting is slightly more difficult; it may be that the varietv V
is complicated enought not to allow an interval bordering on u = o to satisfy the
conditions for M. But since there are regions where M is positive and where it 1is
negative, certain number of iterates of the negative values will have the same
magnitude as a certain number of iterates of the positive values. Thus, for such an
M, the period two orbit is replaced with a periodic orbit of some higcher order. The
details of such & construction are in [7].

Next, we need to show that condition 11) is satisfied. To do this, note that
Gy (x) = 1+ MU(F(x), £2 ()7 (x) + M, (f(x), £ (x))f"(x). The values of M, (the
partial derivative with respect to the jth variable), f(x), f’{x) are all specified
at x = N[, X,, by the above construction. However, at both points the value of f"{x)
is free to be chosen. Clearly there are choices for f"(xj) so that IGf’(xj)I < 1.
This completes the proof. (The minor technical details to handle the situation where

M, = 0 at such a point are easy to supply.)
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What we see from this proof that no matter how manv iterates we include, how
many derivatives we reguire, if both are a finite number, then, by the chain rule, we
have a parameter to vary. This parameter is the value of the "next" derivative of f.
By altering this value appropriately, the negative conclusions specified in Secticn 2

follow.
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