
Foundations of Dominant Strategy Mechanisms∗

Kim-Sau Chung Jeffrey C. Ely†

Department of Economics Department of Economics
Northwestern University Boston University

sau@nwu.edu ely@bu.edu

March 6, 2004

Abstract

Wilson (1987) criticizes the existing literature of game theory as relying too much on
common-knowledge assumptions. In reaction to Wilson’s critique, the recent literature
of mechanism design has started employing simpler mechanisms such as dominant
strategy mechanisms. However, there has been little theory behind this approach. In
particular, it has not been made clear why, when a mechanism designer is not willing
to make strong common-knowledge assumptions, she would respond by using simpler
mechanisms instead of even more complicated ones. This paper tries to fill the void and
investigates some foundations for using simpler mechanisms such as dominant strategy
mechanisms.
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1 Introduction

In the recent literature of mechanism design, there is a research agenda which is motivated
by the so-calledWilson Doctrine. Roughly speaking, the Wilson Doctrine refers to the vision,
articulated in Wilson (1987), that a good theory of mechanism design should not rely too
heavily on assumptions of common knowledge:

“Game theory has a great advantage in explicitly analyzing the consequences of
trading rules that presumably are really common knowledge; it is deficient to the
extent it assumes other features to be common knowledge, such as one agent’s
probability assessment about another’s preferences or information. [...] I foresee
the progress of game theory as depending on successive reduction in the base
of common knowledge required to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge assumptions will the theory
approximate reality.”

Although there is no clear prescription from Wilson (1987) on how exactly to reduce the
dependence on common knowledge assumptions, the methodology on which the literature
has converged is to impose strong solution concepts which minimize the impact of any such
assumption. For example, when Dasgupta and Maskin (2000) and Perry and Reny (2002)
design efficient auctions in interdependent-value settings, they insist that their designs are
ex post incentive compatible. Similarly, when Segal (2003) designs optimal auctions in
private-value settings, he also insists that his designs are dominant strategy incentive com-
patible. Both ex post incentive compatibility and dominant strategy incentive compatibility
are stronger solution concepts compared with Bayesian incentive compatibility, which in
turn is the solution concept used in the traditional literature on mechanism design. Of
course, requiring a stronger standard of incentive compatibility limits, in general, what can
be achieved.

In this paper, we investigate the foundations of this methodology. We focus on private-
value auctions, and ask whether or not there can be a rational basis for restricting attention
to dominant strategy mechanisms.

A priori, it is not apparent at all why, when a mechanism designer is not willing to make
strong common knowledge assumptions, she would respond by using simpler mechanisms
such as dominant strategy mechanisms, as opposed to mechanisms that are even more com-
plicated. In principle, a mechanism designer can ask her agents anything that she does not
know, and she should do so if the answers are potentially useful. For example, if she is
not sure whether a certain common knowledge assumption is true, she can (and probably
should) add to her original mechanism an additional question concerning the validity of this
common knowledge assumption. The fewer assumptions the mechanism designer is willing
to make, the more questions she should ask, and hence the more complicated her mecha-
nism should be. Pushing this logic to its extreme, if we were ever to achieve Wilson’s ideal
of “successive reduction” in the dependence of common knowledge assumptions, we would
envision mechanisms that are so complicated that they ask agents to report everything. At
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the limit, mechanisms would become so complicated that they ask agents to report their
whole infinite hierarchies of beliefs and higher-order beliefs, or in other words to report their
universal types. It seems that the suggestion of using simpler mechanisms such as dominant
strategy mechanisms is squarely at odds with this established intuition in the literature of
mechanism design.

In this paper, we shall provide a rationale for using dominant strategy mechanisms which
confronts this intuition head-on. Our theory is based on the following often-repeated informal
motivation.1 Imagine the mechanism designer as an auctioneer. She may have confidence
in her estimate of the distribution ν of the bidders’ valuations, perhaps based on data from
similar auctions in the past. But she does not have reliable information about the bidders’
beliefs (including their beliefs about one another’s valuations, their beliefs about these beliefs,
etc.), as these are arguably never observed. She can choose any selling mechanism. On
the one hand, she could select a simple mechanism, asking the bidders to report only their
valuations and ensuring that it is a dominant strategy to do so. Alternatively, she can choose
to use some Bayesian incentive compatible mechanism that allows her to ask the bidders
anything about their beliefs that might be relevant. It is well known that a dominant
strategy mechanism secures a fixed expected revenue, independent of the bidders’ actual
beliefs. On the other hand, a Bayesian incentive compatible mechanism that performs well
under certain common knowledge assumptions may perform badly if those assumptions turn
out to be false. If the auctioneer is not sufficiently confident in any such assumption to
stake the performance of the mechanism on it, she may optimally choose to use dominant
strategies.

We call this story the maxmin foundation of dominant strategy mechanisms, because the
auctioneer chooses among mechanisms according to their worst-case performance. Formally,
the theorem we are seeking is illustrated in Figure 1. In Figure 1, we (heuristically) plot
the performance of arbitrary Bayesian incentive compatible mechanisms against different
assumptions about bidders’ beliefs. The graph of any dominant strategy mechanism—and
in particular the graph of the best one among all dominant strategy mechanisms—will be a
horizontal line. To establish the maxmin foundation, we would need to show that the graph
of any (potentially very complicated) Bayesian incentive compatible mechanism must dip
below the graph of the best dominant strategy mechanism at some point.

Figure 1, although we believe captures the imagination of many advocates of dominant
strategy mechanisms, turns out to be very difficult to prove in general. With no restriction
on the environment, the set of all potentially useful mechanisms is quite rich, and it would be
contrary to the spirit of our investigation to impose exogenous restrictions on the complexity
of the mechanism.

Instead, in this paper, we introduce a sufficient condition on the distribution of bidders’
valuations (recall that the auctioneer has confidence in the distribution of bidders’ valuations
although not in the distribution of bidders’ beliefs). The condition generalizes to the case
of an arbitrary (possibly correlated) ν what Myerson (1981) calls the “regular case” in his
classical paper on optimal auctions with independent types. It is a familiar condition in the

1See, for example, Segal (2003) sec.VI, who conjectures a result similar to ours.
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different assumptions about bidders’ beliefs

a (potentially very complicated) mechanism

another (potentially very complicated) mechanism

the best dominant strategy mechanism

Figure 1: the graph of any mechanism dips below the graph of the best dominant strategy
mechanism at some point.

literature of mechanism design and comfortably assumed in many applications.

In fact, under our condition, we are able to prove a stronger result (see Figure 2): there
will be a particular distribution of bidders’ beliefs, at which point the graph of every (po-
tentially very complicated) Bayesian incentive compatible mechanism must dip below the
graph of the best dominant strategy mechanism.

Clearly Figure 2 implies the maxmin foundation we seek. In addition, Figure 2 is signif-
icant in its own right. To expand on this, let us think about the auctioneer in a different,
perhaps more standard, context.

Imagine the auctioneer as a Bayesian decision maker. When she needs to choose a
mechanism under uncertainty about the bidders’ beliefs, she forms a subjective belief about
bidders’ beliefs, and compares different mechanisms by calculating the expected performance
with respect to that subjective belief. When we as outside observers observe that this
auctioneer chooses a mechanism in dominant strategies, we can ask whether or not such a
choice is consistent with Bayesian rationality; i.e., whether or not such a choice is optimal
with respect to some subjective beliefs. If so, we say that there is a Bayesian foundation
for dominant strategies. Our result (Figure 2) implies that, in the regular case, dominant
strategy auctions have a Bayesian foundation.

If there exists a subjective belief for the auctioneer against which the optimal mechanism
is in dominant strategies, we shall say that the belief rationalizes dominant strategies. Note
that the existence of a rationalizing belief (Figure 2) is a stronger requirement than the
maxmin foundation (Figure 1). We mentioned previously that we do not know whether the
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mechanism performs worse than the

another (potentially very complicated) mechanism

a (potentially very complicated) mechanism

the best dominant strategy mechanism

an assumption about (or distribution of)
bidders’ beliefs at which every other

best dominant strategy mechanism

Figure 2: there is a particular point at which the graph of every mechanism dips below the
graph of the best dominant strategy mechanism.

maxmin foundation is valid in general (beyond the regular case). However, we do show by
example below that beyond the regular case, a Bayesian foundation need not exist. As a
negative result about the rationality of imposing dominant strategies, we view this as partic-
ularly strong: for some distributions of valuations, no Bayesian expected-revenue maximizing
auctioneer would optimally employ a dominant strategy mechanism, regardless of her beliefs.

Section 2 of this paper presents the model and formalizes the problem. Section 3 then uses
a two-bidder two-valuation example to illustrate our proof of Figure 2. In any two-bidder
two-valuation example, the regular case holds as long as there is no unambiguous strong
bidder; i.e., bidder 1’s low valuation is lower than bidder 2’s high valuation, and vice versa.
Our main result will be presented and proved in Section 4. Section 5 presents an example to
show that a Bayesian foundation for dominant strategies is in general impossible. In Section
6, we shall make some remarks on the common prior assumption. Section 7 then concludes
the paper with an observation about the English auction.

1.1 Related Literature

This paper is not the first to offer a foundation for dominant strategy mechanisms. Berge-
mann and Morris (2003) offers an alternative foundation for ex post incentive compatible
mechanisms, which in private-value settings are equivalent to dominant strategy mecha-
nisms. The main difference between Bergemann and Morris (2003) and the present paper
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concerns the type of mechanism design problem considered. Bergemann and Morris (2003)
focus exclusively on mechanisms in which the outcome can depend only on payoff-relevant
data. These mechanisms are naturally suited to study efficient design. On the other hand,
we are interested here in revenue maximization for a seller. The optimal mechanism for such
a designer will almost always depend not just on the valuations, but also payoff-irrelevant
data such as beliefs and higher-order beliefs.2 This is why the results of Bergemann and
Morris (2003) do not apply in our setting.

Neeman (2003) is similar in spirit in that he performs a worst-case assessment of the
English auction (a dominant-strategy mechanism). He compares the revenue generated by
the English auction to the benchmark of full-surplus extraction. The ratio of these two values
he calls “effectiveness” and he shows that the effectiveness of the English auction can be fairly
high, and in fact close to 1 for a wide variety of distributions of valuations. The benchmark
of full-surplus extraction was used despite the fact that this benchmark may not be feasible
even for the optimally chosen mechanism,3 mainly because determining the optimal auction
for an environment as general as he considers is a daunting task. One contribution of the
present paper is to show how to derive the optimal auction in the worst-case assumption
about bidder’s beliefs. We are thus able to compare dominant strategy mechanisms with the
optimal auction benchmark and show that the optimal dominant strategy auction performs
at least as well in the worst-case. We discuss another connection with Neeman (2003) in
footnote 11 after we introduce the regular case.

2 Preliminaries

2.1 Notation

If {Xi}
N
i=1 is a collection of sets, then X denotes the Cartesian product ×iXi, or the set

of “profiles” of elements of {Xi}. We write X−i = ×j 6=iXj and if x ∈ X, then xi refers to the
ith co-ordinate, and we use x−i to denote the element of X−i obtained by removing xi. If Y
is a measurable set, then ∆Y is the set of all probability measures on Y . If Y is a metric
space, then we treat it as a measurable space with its Borel σ-algebra.

2.2 Types

A single unit of an indivisible object is up for sale. There are N risk-neutral bidders with
privately known valuations competing for the object. Each bidder has M possible valuations
and for notational simplicity, we suppose that the set Vi of possible valuations is the same
for each bidder i and that Vi = {v

1, v2, . . . , vM} where vm−vm−1 = ∆ for each m.4 A bidder

2For instance, see the auctions depicted below in Figures 8, 9, 10, 11, 12, and 13.
3In fact, Neeman (2004) showed this.
4These notational conventions simplify the statements of results and notation, but are entirely innocuous.

Assumptions of asymmetry in the bidders’ valuation sets, or differing gaps between valuations would not
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i with valuation vi receives expected utility pivi − ti if pi is the probability with which he
will be awarded the object and if his expected monetary payment is ti. A typical element of
V is v, and a typical element of V−i is v−i.

To characterize the (equilibrium) behavior of the bidders who compete in some given
auction mechanism, it is not enough to specify the bidders’ possible valuations or even the
probability distribution from which they are drawn. In addition, we must also specify their
beliefs about the valuations of their opponents (called the first-order beliefs), their beliefs
about one another’s’ first-order beliefs (second-order beliefs), etc.

The standard approach to modeling the bidders’ information is to use a type space. For
each bidder i, there is a (measurable) set of types Ωi. A typical element of Ωi is a pair
ωi = (vi, ρi), where vi ∈ Vi refers to the valuation of type ωi, and ρi is an element of ∆Ω−i,
i.e. a belief about the types of the other bidders.

A type space is a parsimonious way to describe the beliefs and higher-order beliefs of the
bidders. Observe that we can compute the first-order beliefs of a given type (vi, ρi) from the
marginal of ρi on V−i. Once we have done this for each type of each bidder, we can then
use bidders −i’s first-order beliefs to compute bidder i’s second-order belief, and this can be
repeated to compute all higher-order beliefs.

One simple kind of type space is the naive type space5, which we shall denote by Ων ,
generated from some distribution ν over the set of payoff-relevant types V . In the naive type
space, each bidder believes that bidders’ valuations are drawn from the distribution ν, and
this is common-knowledge. In the formal notation of type spaces introduced above, this is
modeled as follows. For each vi ∈ Vi, there is a unique type ωvi = (vi, ρ

vi). The belief ρvi

is defined in two steps: first the conditional probability ν(·|vi) over valuations of the other
bidders is derived from ν, then this is transformed in the natural way into a belief over the
other bidders’ types: ρvi(ωv−i) = ν(v−i|vi).

The naive type space is used almost without exception in auction theory and mechanism
design. The cost of this parsimonious model is that it implicitly embeds some strong as-
sumptions about bidders’ beliefs, and these assumptions are not innocuous.6 These issues
have been raised in Neeman (2004), Bergemann and Morris (2003), and Heifetz and Neeman
(2004). The spirit of the Wilson doctrine is to avoid making such assumptions.

The now-widely adopted response to this is to diminish the impact of these assumptions
by imposing stronger solution concepts which are not sensitive to the specifics of bidders’
beliefs.7 Our interest in this paper is to provide a foundation for this approach and so we will

affect any of our results.
5This terminology originated in Bergemann and Morris (2003).
6For example, if the bidders’ valuations are independent under ν, then in the naive type space, the bidders’

beliefs are commonly known. On the other hand, for a generic ν, it is common-knowledge that there is a
one-to-one correspondence between valuations and beliefs. Which of these cases holds makes a big difference
for the structure and welfare properties of the optimal auction. See Myerson (1981) for the independent case
and Crémer and McLean (1985) for the other case.

7For examples of this methodology, see Dasgupta and Maskin (2000), Lopomo (2000), Perry and Reny
(2002), and Segal (2003), among others.
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discuss it further below, but let us first consider the alternative approach. Rather than fixing
the type space and strengthening the solution concept, we might instead enlarge the type
space to include more and more possible beliefs. Larger and larger type spaces correspond
to weaker and weaker assumptions about the bidders’ beliefs.

Indeed, we can remove these assumptions altogether by considering the universal type
space in which for every valuation and every conceivable (coherent) hierarchy of higher-order
beliefs there is a representative type. Specifically, we construct the universal belief space from
the basic payoff-relevant data as follows (the construction is standard, see Mertens and Zamir
(1985) for the details and Brandenburger and Dekel (1993) for an alternative derivation).

The set of possible first-order beliefs for bidder i is

T
1
i := ∆V−i,

and the set of all possible kth-order beliefs is

T
k
i := ∆(V−i × T

k−1
−i ).

Because the set ∆X is a compact metric space whenever X is, by induction each Tk
i is a

compact metric space. The projections φk
i : Tk

i → T
k−1
i , defined inductively by φ2i (τ

2
i )(v−i) =

τ 2i ({v−i} × T1−i), and for each measurable subset {v−i} ×B ⊂ V−i × T
k−2
−i ,

φki (τ
k
i )({v−i} ×B) = τ ki ({v−i} ×

[

φk−1−i

]−1
(B)),

demonstrate that each kth-order belief for bidder i implicitly defines beliefs at lower orders
as well.

A universal belief type for bidder i is a sequence (or hierarchy) τi = (τ 1i , τ
2
i , . . .) satisfying

τ ki ∈ Tk
i and the coherency condition that φk

i (τ
k
i ) = τ k−1i . The universal belief space for bidder

i is then the set T∗i ⊂
∞
∏

k=1

Tk
i of all such coherent hierarchies. This product space endowed

with the product topology is compact. Since the set of coherent hierarchies is closed, the
universal belief space is compact. By Mertens and Zamir (1985) and Brandenburger and
Dekel (1993), there is a homeomorphism between T∗i and ∆(V−i × T∗−i), so we may treat
them interchangeably. Let gi : T∗i → ∆(V−i × T∗−i) be such a mapping.

A type is a pair ωi = (vi, τi). Let fi(ωi) = vi be the projection from bidder i’s type to
bidder i’s valuation. A type space is a set Ω =

∏N

i=1Ωi, where Ωi ⊂ Vi × T∗i . In this paper,
we will mainly deal with two varieties of type spaces. The naive type space has already been
introduced. The universal type space Ω∗ is the type space where each Ω∗i = Vi × T∗i . Let
T∗ =

∏N

i=1 T∗i . For any v ∈ V , we shall write Ω∗(v) for the open subset {v} × T∗ ⊂ Ω∗.

Once the information of the bidders’ has been specified through the choice of type space,
the seller’s problem is to design a selling procedure in order to maximize revenue. We turn
to this in the next subsection.
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2.3 Mechanisms

An auction mechanism consists of a set Mi of messages for each bidder i, an allocation
rule p : M → [0, 1]N , and a payment function t : M → RN . Each bidder will select a
message from his set Mi, and based on the resulting profile of messages m, the object is
awarded according to p(m) and payments are exacted according to t(m). Player i receives
the object with probability pi(m) and pays ti(m) to the seller.

We consider environments in which the seller cannot compel the bidders to participate in
the auction, so we require that each Mi includes the non-participation message ∅i. Selecting
∅i is equivalent to “opting-out” of the auction and so we assume that for any profile m in
which mi = ∅i, the allocation and payments rules satisfy pi(m) = 0 and ti(m) = 0. A direct
revelation mechanism for a given type space Ω is one in which Mi = Ωi ∪ {∅i}.

The auction mechanism defines a game-form, which together with the type space con-
stitutes a game of incomplete information. The auction design problem is to fix a solution
concept and search for the auction mechanism that delivers the maximum revenue for the
seller in some outcome consistent with the solution concept. The now-widely adopted ap-
proach to implement the Wilson-doctrine and minimize the role of assumptions built into
the naive type space is to adopt a strong solution concept which does not rely on these
assumptions. In our private-value setting the often-used solution concept for this purpose is
dominant-strategy equilibrium.

By the revelation principle, the set of dominant-strategy equilibrium outcomes of auction
mechanisms on the naive type space is equal to the set of truth-telling outcomes of dominant-
strategy incentive compatible (dsIC) direct-revelation mechanisms.

Definition 1 A direct-revelation mechanism Γ is dominant strategy incentive compatible
with respect to the naive type space Ων (or simply dsIC) if for each bidder i and type profile
ω ∈ Ων,

pi(ω)vi − ti(ω) ≥ 0, and

pi(ω)vi − ti(ω) ≥ pi(ω̂i, ω−i)vi − ti(ω̂i, ω−i),

for any alternative type ω̂i ∈ Ων
i .

Since |Ων
i | = |Vi|, and since the incentive compatibility constraints for dsIC depend only

on valuations, an auction mechanism is dsIC with respect to a naive type space Ων if and
only if it is dsIC with respect to any other naive type space Ων′ . So we can always discuss
whether an auction mechanism is dsIC with respect to the naive type space without referring
to the specific distribution ν from which the naive type space is generated.

To provide a foundation for the indirect approach based on strong solution concepts, we
shall compare it to the direct route of completely eliminating assumptions about beliefs. We
maintain the solution concept of Bayesian equilibrium but now we enlarge the type space all
the way to the universal type space. The revelation principle implies that the set of resulting
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outcomes is equal to those that arise from truth-telling in Bayesian incentive compatible
(BIC) direct-revelation mechanisms.

Definition 2 A direct-revelation mechanism Γ is Bayesian incentive compatible with respect
to the universal type space Ω∗ (or simply BIC) if for each bidder i and type ωi ∈ Ω∗i ,

∫

Ω∗−i

[pi(ω)vi − ti(ω)]gi(τi)(dω−i) ≥ 0, and

∫

Ω∗−i

[pi(ω)vi − ti(ω)] gi(τi)(dω−i) ≥

∫

Ω∗−i

[pi(ω̂i, ω−i)vi − ti(ω̂i, ω−i)] gi(τi)(dω−i),

for any alternative type ω̂i ∈ Ω∗i .

Note that any auction mechanism Γ that is dominant strategy incentive compatible with
respect to the naive type space (i.e., dsIC) can be extended naturally into an auction mech-
anism that is Bayesian incentive compatible with respect to the universal type space (i.e.,
BIC) in a straightforward manner. We shall abuse notation and use Γ to denote this natural
extension as well.

For either formulation of the problem, the revelation principle implies that there is no loss
of generality in restricting attention to direct-revelation mechanisms, provided they satisfy
the corresponding constraints. We shall do so in the remainder of the paper.

2.4 The Auctioneer as a Maxmin Decision Maker

When we start with the universal type space, we remove any implicit assumptions about
the bidders’ beliefs. We can now explicitly model any such assumption as a probability
distribution over the bidders’ universal types. Specifically, let µ be a distribution over Ω∗.
For any BIC auction Γ, the performance of Γ under assumption µ, or the µ-expected revenue,
is defined as Rµ(Γ) =

∫

Ω∗
t̄ µ(dω).

We take as given some full-support distribution ν over Ων . This represents the auction-
eer’s estimate of the bidders’ valuations. An assumption that is consistent with this estimate
is a distribution µ on the universal type space Ω∗ whose marginal on V is ν. Let M(ν) denote
the compact subset of such assumptions. Observe that there is a unique element ν∗ in this
subset that concentrates on the naive type space Ων generated by ν. This represents the
(common knowledge) assumption in the traditional literature that Wilson (1987) refers to.
Unlike the standard formulation of the optimal auction design problem, we do not assume
that the auctioneer has confidence in this particular assumption ν∗. Rather the auctioneer
considers other assumptions within the set M(ν) as possible as well.

A cautious auctioneer who chooses an auction that maximizes the worst-case performance
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is hence solving the maxmin8

sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ). (1)

Note that if an auction Γ is dominant strategy incentive compatible with respect to the
naive type space (i.e., dsIC), then for any assumption µ ∈ M(ν), the µ-expected revenue of
Γ—or, more precisely, Γ’s natural extension into the universal type space—depends only on
the distribution ν. Hence we can write Rµ(Γ) as Rν(Γ) without confusion.

Given any distribution ν over V , the optimal dsIC revenue is defined as

ΠD(ν) := sup
Γ is dsIC

Rν(Γ).

The maxmin foundation of dominant strategy mechanisms refers to the following equa-
tion:

ΠD(ν) = sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ), (2)

for every distribution ν over valuations.

In this paper, instead of proving that equation (2) holds for every ν, we shall prove that
it hold for every ν satisfying a sufficient condition called regularity (to be defined in Section
4). Specifically, we shall prove that, whenever ν is regular, there will exist an assumption
µ∗ ∈ M(ν), under which we will have

ΠD(ν) = sup
Γ is BIC

Rµ∗(Γ), (3)

which implies

ΠD(ν) = sup
Γ is BIC

Rµ∗(Γ) ≥ inf
µ∈M(ν)

sup
Γ is BIC

Rµ(Γ)

≥ sup
Γ is BIC

inf
µ∈M(ν)

Rµ(Γ)

≥ sup
Γ is dsIC

inf
µ∈M(ν)

Rµ(Γ) ≥ sup
Γ is dsIC

Rν(Γ) =: ΠD(ν),

or simply
ΠD(ν) = sup

Γ is BIC
inf

µ∈M(ν)
Rµ(Γ),

which delivers the maxmin foundation as promised.

8Another way to think about this formulation of the problem is to view the auctioneer as uncertainty
averse. The beliefs of the bidders are ambiguous to the auctioneer and this ambiguity is modeled by supposing
that the auctioneer holds all possible priors µ.
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3 An Illustrative Example

In this section, we shall use a simple example to illustrate our main result as well as the
strategy of proof.

Consider an auction example with two bidders, and each bidders have two possible valu-
ations. Bidders’ valuations are correlated according to the distribution ν depicted in Figure
3.

v1 = 4 v1 = 9
v2 = 11 3/10 1/10
v2 = 5 3/10 3/10

Figure 3: The distribution ν of bidders’ valuations.

The optimal dsIC auction is depicted in Figure 4. In Figure 4, “α = i” is the shorthand
for “allocating the object to bidder i” (i.e., pi = 1 and p−i = 0), and “α = 0” means no sale.

v1 = 4 v1 = 9
v2 = 11 α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11
v2 = 5 α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0

Figure 4: The optimal dsIC auction Γ.

In any two-bidder two-valuation example, the regular case holds as long as there is
no unambiguous strong bidder; i.e., bidder 1’s low valuation is lower than bidder 2’s high
valuation, and vice versa. Hence, according to Theorem 1 (to be proved in the next section),
there exists an assumption µ∗ consistent with the distribution ν such that equation (3) holds.

We construct one such assumption µ∗ below, but shall keep our exposition informal. Let
ai (bi) denote the first-order belief of a high-valuation (low-valuation) type of bidder i that
bidder −i has high valuation.

Consider an assumption µ∗ which has a 4-point support: for every bidder i, every possible
valuation is associated with only one possible belief type. The marginal distribution of µ∗

over bidders’ valuations and first-order beliefs is as depicted in Figure 5.

The bidders’ higher-order beliefs are derived from Figure 5 by induction. For example,
for a low-valuation type of bidder 1, his second-order belief assigns probability 2/5 (3/5)
to bidder 2 having high (low) valuation and holding first-order belief a2 = 1/4 (b2 = 2/5),
and a high-valuation (low-valuation) type of bidder 2 has a third-order belief that assigns
probability 3/4 (3/5) to bidder 1 having low valuation and having such a second-order belief,
and so on.
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b1 = 2/5 a1 = 1/4
a2 = 1/4 3/10 1/10
b2 = 2/5 3/10 3/10

Figure 5: The auctioneer’s belief µ.

It is obvious that this assumption µ∗ is consistent with the distribution ν.

Under this assumption µ∗, there are at least two possible ways to improve upon the
optimal dominant strategy auction Γ in Figure 4. First, according to µ∗, conditional on
bidder 1 having low valuation, the conditional probability that bidder 2 has high valuation
is 1/2. This is different from the first-order belief of the low-valuation type of bidder 2,
which is b1 = 2/5. So one possible way to improve upon Γ is to bet against the low-valuation
type of bidder 1 on bidder 2’s types. Second, since high- and low-valuation types of bidder
1 hold different beliefs, another possible way to improve upon Γ is to separate these two
types by introducing Crémer-McLean-kind of lotteries and relaxing incentive compatibility
constraints. We shall see that neither of these can improve upon Γ.

First, consider introducing any bet (x, y) on bidder 2’s type, where x and y are the
amount bidder 1 pays the auctioneer in the events bidder 2 has low and high valuations
respectively. If the bet is acceptable to both the auctioneer and the low-valuation type of
bidder 1, we must have

(1/2)x+ (1/2)y ≥ 0, and

(3/5)(−x) + (2/5)(−y) ≥ 0,

with at least one inequality strict unless x = y = 0. But then the high-valuation type of
bidder 1 would find the bet acceptable as well, as

(3/4)(−x) + (1/4)(−y) = (5/2)[(3/5)(−x) + (2/5)(−y)] + (3/2)[(1/2)x+ (1/2)y],

which is strictly bigger then the zero rent for the high-valuation type of bidder 1 under the
auction Γ. With both high- and low-valuation types of bidder 1 accepting such a bet, such
a bet turns sour for the auctioneer, as

(3/5)(−x) + (2/5)(−y) ≤ 0,

and this explains why introducing the first kind of bets does not help.

Second, consider introducing any Crémer-McLean-kind of lottery to separate the high-
and low-valuation types of bidder 1. In a dominant-strategy mechanism, when the object is
sold to the low-value type, the seller must leave “information rent” to the high-value type.
By offering a bet (x, y) about the type of bidder 2, the seller can try to relax the downward
incentive-compatibility constraint and sell to the low-valuation type of bidder 1 without
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leaving extra rent for the high-valuation type. If such a bet is successful then we must have

(3/5)(4− x) + (2/5)(−y) ≥ 0, and

(3/4)(9− x) + (1/4)(−y) ≤ 0,

where the first inequality follows from the individual rationality constraint of the low-
valuation of bidder 1, and the second from the incentive compatibility constraint of the
high-valuation type. However, these together imply that any bet like this not profitable for
the auctioneer, as

(1/2)x+ (1/2)y = (2/3)[(3/4)(−x) + (1/4)(−y)]− (5/3)[(3/5)(−x) + (2/5)(−y)] ≤ −1,

and this explains why introducing the second kind of bets does not help either.

In principle, there may still be other possible ways to improve upon the optimal dsIC
auction Γ. But actually there are no more (this requires a proof, which will be the content
of Theorem 1). Hence, under the assumption µ∗ equation (3) holds, which in turn implies
that there exists a maxmin foundation for dsIC in this example.

4 The Main Result

In this section, we shall first review the optimal dsIC auction design problem. We use a
version of a standard argument to show that the dominant strategy incentive compatibility
constraints can be replaced by a monotonicity constraint on the allocation rule. We then
formally define the regularity condition, which in effect says the monotonicity constraint is
not binding in the optimal dsIC auction design problem. Finally, we show that the maxmin
foundation is valid in the regular case.

4.1 Review of Optimal dsIC Auctions

We can formulate the optimal dsIC auction design problem as follows:

max
p(·),t(·)

∑

vi∈V

ν(v)
N
∑

i=1

ti(v) (4)

subject to: ∀ i = 1, . . . , N , ∀ m, l = 1, . . . ,M , ∀ v−i ∈ V−i,

pi(v
m, v−i)v

m − ti(v
m, v−i) ≥ 0, 〈DIRm

i 〉

pi(v
m, v−i)v

m − ti(v
m, v−i) ≥ pi(v

l, v−i)v
m − ti(v

l, v−i). 〈DICm→l
i 〉

By some standard manipulations, we shall eliminate some constraints and rewrite the
problem in a form that will facilitate comparison with the optimal BIC auction. The following
result is standard.
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Lemma 1 Say that an allocation rule p is dsIC if there exists a transfer rule t such that the
auction mechanism (p, t) satisfies the constraints in (4). A necessary and sufficient condition
for p to be dsIC is the following monotonicity condition:

pi(v
m, v−i) ≥ pi(v

m−1, v−i), ∀ m = 2, . . . ,M, ∀ v−i ∈ V−i. 〈Mi〉

It follows again from standard arguments that in an optimal dsIC auction, the constraints
〈DIR1i 〉 and 〈DIC

m→m−1
i 〉 are binding and (given that p is monotonic) all other constraints

can be ignored. Combining the resulting two equalities, we see that when the other bidders
report valuation profile v−i, bidder i’s net utility (“rent”) will be

Ui(v
1, v−i) = 0

for type v1 and

Ui(v
m, v−i) = pi(v

m−1, v−i)(v
m − vm−1) + Ui(v

m−1, v−i) = ∆
m−1
∑

m′=1

pi(v
m′

, v−i)

for type vm, m > 1. By definition, the total transfer received by the auctioneer is the total
surplus generated by any sale of the object less the rent received by the bidders. Thus, an
equivalent formulation of the problem is to choose a dsIC (i.e., monotonic) allocation rule
to maximize the expected value of this difference:

max
p(·)

N
∑

i=1

M
∑

m=1

∑

v−i∈V−i

ν(vm, v−i)

[

pi(v
m, v−i)v

m −∆
m−1
∑

m′=1

pi(v
m′

, v−i)

]

(5)

subject to 〈Mi〉, i = 1, . . . , N.

In accordance with Lemma 1, the monotonicity constraint appears as an equivalent ex-
pression for dsIC. This constraint may or may not bind at the solution. Below we will provide
sufficient conditions on the distribution ν under which it will not bind. It turns out that
these conditions also imply that dsIC can be rationalized.

For the moment, ignore the monotonicity constraint in (5), and consider the solution
to the corresponding unconstrained problem. Fix a valuation profile v and differentiate the
maximand with respect to pi(v) to obtain the dsIC-analogue of bidder i’s “virtual valuation”:
vi − ∆

∑

v̂i>vi
ν(v̂i, v−i)/ν(v). It will be optimal at valuation profile v to award the object

for sure to the bidder with the greatest non-negative virtual valuation, with the object
going unsold if all virtual valuations are negative. Equivalently, if we use Fi(vi, v−i) =
∑

v̂i≤vi
ν(v̂i, v−i) to denote the cumulative distribution function of i’s valuation at profile

v−i, bidder i should receive the object if

γi(v) := vi −∆
1− Fi(v)

ν(v)
> max{0,max

j 6=i
γj(v)}
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and in the event that two or more bidders tie for the greatest non-negative virtual valuation,
the tie can be broken arbitrarily.9

If the resulting allocation rule satisfies 〈Mi〉, then the solution to the unconstrained
problem also solves the constrained problem.10 This is guaranteed to be the case if the
virtual valuations satisfy the following version of the single-crossing condition.

Single-Crossing Condition Let γ0(·) ≡ 0 denote the auctioneer’s value for the object.
The virtual valuations satisfy the single-crossing condition if for each v, i ∈ {1, . . . , N}, and
j ∈ {0, . . . , N}, j 6= i,

γi(v) ≥ γj(v) =⇒ γi(v̂i, v−i) > γj(v̂i, v−i)

for every v̂i > vi.

Under the single-crossing condition, if bidder i is to receive the object at profile v, then
for any higher true valuation v̂i > vi, bidder i will continue to have the greatest virtual
valuation and therefore receive the object. This ensures that the monotonicity constraint is
satisfied.

When the induced virtual valuations satisfy the single-crossing condition, we say that ν
is regular. Note that this condition generalizes the regularity condition in Myerson (1981)
to the case of non-independent ν. This explains our choice of terminology.

The single-crossing condition is an assumption about the distribution ν. Our main result
is that this assumption implies that dsIC is rationalizable. Unfortunately, because the as-
sumption is stated in terms of virtual valuations, it is hard to give an intuitive interpretation.
We will therefore also provide sufficient conditions on ν which are more familiar and easy to
interpret.

The monotone hazard rate condition is satisfied if for each i and v−i, the hazard rate:
hi(v̂i|v−i) =

ν(v̂i,v−i)
1−Fi(v̂i,v−i)

is an increasing function of v̂i. The valuations are affiliated if for each

pair of profiles v, v′, ν(v ∨ v′) · ν(v ∧ v′) ≥ ν(v) · ν(v′), where v ∨ v′ is the component-wise
maximum and v ∧ v′ the component-wise minimum of the two valuation vectors.11

We prove the following Proposition in Appendix C.

Proposition 1 1. If the virtual valuations satisfy the single-crossing condition then any
solution to the unconstrained problem (5) also satisfies the constraints 〈Mi〉.

2. If ν satisfies both the monotone hazard rate condition and affiliation, then the virtual

9For related derivations, see Lopomo (2000) and Segal (2003).
10If not, then a version of the Myerson “ironing” procedure would have to be used.
11 Affiliation is a strong form of positive correlation. In the worst-case analysis of Neeman (2003), the

distribution of valuations itself was a free variable. He showed that the worst-case distribution of valuations
involves negative correlation. It is thus not surprising that we use a condition such as affiliation. Furthermore,
our counterexample in Section 5 also involves negative correlation. While the performance measure used in
Neeman (2003) is not the same as ours, the similarity between this aspect of the two results suggests some
deeper connection.
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valuations satisfy the single-crossing condition.

4.2 The Possibility of Maxmin Foundation

Theorem 1 If ν is regular, then dsIC has a maxmin foundation.

Proof: The structure of the proof is as follows. We begin by supposing that ν is given such
that the virtual valuations satisfy the single-crossing condition and an additional condition,
called non-singularity. We show that a maxmin foundation exists for dsIC in this case. Next
we show that we can find a sequence of such distributions to approach any ν satisfying the
hypotheses of the theorem. We then apply a limiting argument to show that a maxmin
foundation for dsIC exists for ν.

Given ν, write νmi for the marginal probability of valuation vi = vm, and write Gi(m) =
∑M

m′=m νm
′

i for the associated de-cumulative distribution function. Let σm
i = ν(·|vm) be the

conditional distribution over the valuations of bidders j 6= i conditional on bidder i having
valuation vm. Say that ν is non-singular if the collection of vectors {σm

i }
M
m=1 is linearly

independent.

Suppose ν is non-singular and the virtual valuations satisfy the single-crossing condition.
We construct an assumption µ∗ which concentrates on M possible types for each bidder.
Let Ω = ×iΩi be the support of µ∗, with Ωi = {ω

m
i }

M
m=1 = {(v

m, τmi )}Mm=1 representing the
set of possible types of bidder i under assumption µ∗. The beliefs τmi of these types will
be specified next. For each ωj ∈ Ωj, let fj(ωj) be the valuation of ωj. Note that fj is a
bijection for all j. For any belief τ over V−i, define a corresponding belief πi(τ) over Ω−i in
the straightforward way: πi(τ)(ω−i) = τ((fj(ωj))j 6=i). In what follows, we shall occasionally
use the notation τ interchangeably for πi(τ), and the context will prevent any confusion.

We construct the bidders’ beliefs as follows:

∀i,∀m, τmi =
1

Gi(m)

M
∑

m′=m

νm
′

i σm′

i .

Thus, conditional on having valuation vm, bidder i’s belief over opponents’ valuations (and
hence types) is a conditional expectation with respect to ν; in particular, it is the average of
the auctioneer’s beliefs conditional on i having valuation at least vm.12 Note that the collec-
tion {τmi }

M
m=1 is linearly independent by the non-singularity of ν. The following equivalent

recursive definition of τmi is useful:

τMi = σM
i ,

τmi =
1

Gi(m)

(

νmi σ
m
i +Gi(m+ 1)τm+1i

)

, ∀m < M. (6)

12Thus, each bidder type has beliefs which are a distortion of those that would be derived from ν, except
for the highest valuation type, where there is “no distortion at the top.”
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Finally, we specify the assumption µ∗ about types: µ∗ = π(ν); i.e., µ∗(ω) = ν(fi(ωi)
N
i=1).

Obviously µ∗ ∈ M(ν). Under this assumption µ∗, the optimal BIC auction design problem
is as follows:

max
p(·),t(·)

N
∑

i=1

∑

ω∈Ω

µ∗(ω)ti(ω) (7)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M , ∀ l = 1, . . . ,M,

τmi · (p
m
i v

m − tmi ) ≥ 0, 〈IRm
i 〉

τmi · (p
m
i v

m − tmi ) ≥ τmi ·
(

pliv
m − tli

)

. 〈ICm→l
i 〉

We have used the shorthand notation pmi and tmi to refer to the vectors pi(ω
m
i , ·) and

ti(ω
m
i , ·) respectively in RMN−1

, and the inner product notation such as τmi · p
m
i for the ex-

pectations of these vectors with respect to the belief τmi . Note that the IR and IC constraints
for all types outside of the support of µ∗ have been omitted. This is valid because (i) any
BIC mechanism on the universal type space must satisfy the listed constraints, and (ii) any
mechanism which satisfies the listed constraints can be extended to a revenue-equivalent
mechanism that is BIC over the universal type space. Simply require every type to either
opt-out or announce a type within the support of µ∗.

Say that an allocation rule p is BIC if there exists a transfer rule t such that the auction
mechanism (p, t) satisfies the constraints in (7). Because the beliefs of the types of each
bidder are linearly independent, every allocation rule is BIC. Indeed, by exploiting the dif-
ferences in beliefs, the incentive compatibility and individual rationality constraints can be
satisfied by building into the transfer rule lotteries which have positive expected value to the
intended type and arbitrarily large negative expected values to the other types. This kind
of construction is due to Crémer and McLean (1985), and we shall omit the details.

While the above argument shows that any allocation rule is implementable by some
appropriate choice of transfer rule, we can further sharpen the conclusion and argue that
certain constraints in (7) can be manipulated or even ignored without cost to the auctioneer.
To begin with, each “upward” incentive constraint (i.e., 〈ICm→l

i 〉 for m < l) can be ignored.
Indeed, because bidder i’s beliefs are linearly independent, there exists a lottery λ ∈ RMN−1

such that τmi · λ = 0 for all m ≥ l and τmi · λ < 0 for all m < l. Since by (6) σl
i is a linear

combination of τ li and τ l+1i , we also have σl
i · λ = 0. By adding (some sufficiently large scale

of) λ to tli, each 〈IC
m→l
i 〉 for m < l can be relaxed. No other constraints are affected and

the resulting change in the auctioneer’s revenue is σl
i · λ = 0.

We next show that for any auction mechanism (p, t) that satisfies the remaining con-
straints, there exists an auction mechanism (p′, t′) which satisfies the constraints 〈IRm

i 〉, for
m = 1, . . . ,M , and 〈ICm→m−1

i 〉, for m = 2, . . . ,M , with equality, and achieves at least as
high an µ∗-expected revenue as (p, t) does.

To prove this, fix any auction mechanism (p, t) that satisfies the remaining constraints.
Suppose 〈ICm→m−1

i 〉 holds with strict inequality. Let τ denote the matrix whose M rows
are the vectors {τmi }

M
m=1, and let (τ−m, σm−1

i ) be the matrix obtained by replacing the mth
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row of τ with the vector σm−1
i . Note that the matrix (τ−m, σm−1

i ) has rank M . We can thus
solve the following equation for λ:

(τ−m, σm−1
i ) · λ = xm,

where xm denotes the mth elementary basis vector in RM . Note that because τm−1i · λ =
0 < σm−1

i · λ, and because τm−1i is a convex combination of σm−1
i and τmi according to (6),

we have τmi · λ < 0.

We will add the vector ελ to tm−1i for some scalar ε > 0. Because τm
′

i · λ = 0 for
m′ 6= m, no constraints for types ωm′

i are affected. As for type ωm
i , the constraint 〈IRm

i 〉
is unaffected. The only incentive constraint of type ωm

i that is affected is 〈ICm→m−1
i 〉, and

this constraint was slack by assumption. Let Sm
i > 0 be the slack in 〈ICm→m−1

i 〉, and choose
ε = −Sm

i /(τ
m
i · λ) > 0. Then, with the resulting transfer rule, 〈ICm→m−1

i 〉 holds with
equality. Finally, because εσm−1

i · λ > 0, the auctioneer profits from this modification.

We next show that each 〈IRm
i 〉 can be treated as an equality without loss of generality.

Define Sm
i = τmi · (p

m
i v

m − tmi ) ≥ 0 to be the slack in 〈IRm
i 〉. Construct a lottery λ that

satisfies
τmi · λ = Sm

i , m = 1, . . . ,M.

By the full-rank arguments such a lottery λ can be found. We will add λ to each tmi . No
constraint of the form 〈ICm→l

i 〉 will be affected, but now each constraint of the form 〈IRm
i 〉

holds with equality. Finally, we check that the auctioneer profits from this modification.
Indeed, the auctioneer nets

M
∑

m=1

νmi (σm
i · λ) =

M−1
∑

m=1

(

Gi(m)τmi −Gi(m+ 1)τm+1i

)

· λ+ νMi τMi · λ

= Gi(1)τ
1
i · λ

= Gi(1)S
1
i

≥ 0.

The proof for the non-singular case is now concluded as follows. Based on the preceding
arguments, we consider the modified program in which the constraints 〈IRm

i 〉 and 〈IC
m→m−1
i 〉

are satisfied with equality. We will use these constraints to substitute out for the transfers in
the objective function and reduce the problem to an unconstrained optimization with the only
choice variable being the allocation rule (recall that any allocation rule is BIC). The resulting
objective function will be identical to the objective function (4) for the dsIC problem. Thus
the only difference between the two problems is the absence of any monotonicity constraint
in the BIC case. It then follows that (i) the modified problem and hence the original problem
(7) will have a solution, and (ii) this solution will be the same as the solution to the dsIC
problem by Proposition 1 part 1.
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We rewrite the objective function in (7) as below, and impose the constraints as equalities:

max
p(·),t(·)

N
∑

i=1

M
∑

m=1

νmi σ
m
i · t

m
i (8)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M,

τmi · (p
m
i v

m − tmi ) = 0, 〈IR
m

i 〉

τmi · (p
m
i v

m − tmi ) = τmi ·
(

pm−1i vm − tm−1i

)

. 〈IC
m→m−1

i 〉

We have substituted in the objective function using the definition µ∗(ω) = ν(f(ω)) =
νi(fi(ωi))ν(f−i(ω−i)|fi(ωi)) = νmi σ

m
i for the appropriate m.

By definition, σM
i = τMi , so 〈IR

M

i 〉 becomes σM
i · tMi = vMσM

i · pMi . Now, for arbitrary
m < M ,

σm
i · t

m
i =

1

νmi

[

Gi(m)τmi −Gi(m+ 1)τm+1i

]

· tmi

=
1

νmi

{

Gi(m)vmτmi · p
m
i −Gi(m+ 1)

[

τm+1i · (pmi − pm+1i )vm+1 + τm+1i · tm+1i

]}

=
1

νmi

[

Gi(m)vmτmi · p
m
i −Gi(m+ 1)vm+1τm+1i · pmi

]

.

In the first line we used the recursive definition in (6), in the second line we used 〈IR
m

i 〉 and

〈IC
m+1→m

i 〉, and in the third line we used 〈IR
m+1

i 〉.

Substituting the constraints into the objective function, it becomes:

N
∑

i=1

{

vMνMi σM
i · p

M
i +

M−1
∑

m=1

[

vmGi(m)τmi · p
m
i − vm+1Gi(m+ 1)τm+1i · pmi

]

}

=
N
∑

i=1

{

vMνMi σM
i · p

M
i +

M−1
∑

m=1

[

vm
(

νmi σ
m
i +Gi(m+ 1)τm+1i

)

· pmi − vm+1Gi(m+ 1)τm+1i · pmi
]

}

=
N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −

M
∑

m=2

(vm − vm−1)Gi(m)τmi · p
m−1
i

]

.
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Applying the definition of τmi , the objective function becomes:

N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −

M
∑

m=2

∆

(

M
∑

m′=m

νm
′

i σm′

i

)

· pm−1i

]

=
N
∑

i=1

[

M
∑

m=1

vmνmi σ
m
i · p

m
i −∆

M
∑

m=2

m
∑

m′=2

νmi σ
m
i · p

m′−1
i

]

=
N
∑

i=1

M
∑

m=1

νmi σ
m
i ·

[

vmpmi −∆
m
∑

m′=2

pm
′−1

i

]

=
N
∑

i=1

M
∑

m=1

∑

v−i∈V−i

νi(v
m, v−i) ·

[

vmpi(v
m, v−i)−∆

m−1
∑

m′=1

pi(v
m′

, v−i)

]

.

This is identical to the objective function in (5). This establishes equation (3), and
hence also equation (2), for any non-singular ν under which the virtual valuations satisfy
single-crossing.

Now consider an arbitrary regular ν, not necessarily non-singular. There exists a sequence
νn converging to ν such that each νn is non-singular. Moreover, for νn close enough to ν, the
strict inequalities in the definition of single-crossing will be preserved, and hence the virtual
valuations derived from νn will also satisfy single crossing once n is large enough. For each
such νn, construct the type space Ωn exactly as in the first half of the proof. Let τmi (n)
denote the belief of type ωm

i of bidder i in the type space Ωn
i . Passing to a subsequence if

necessary, take τmi (n) → τmi for each i and m. Let Ω be the limit type space with beliefs
τmi , and let µ∗ = π(ν). Write µn = π(νn).

Note that for each of these type spaces (Ωn or Ω) there is a one-to-one correspondence
between types and valuations for each bidder i. Therefore, for any auction mechanism
(p, t) defined over any of these type spaces, we can also think of it as mappings from V to
probabilities and transfers. The following notations are hence defined regardless of which of
these type spaces the auction mechanism (p, t) is defined over:

En′ t̄ :=
∑

v∈V

t̄(v)νn
′

(v),

Et̄ :=
∑

v∈V

t̄(v)ν(v).

For any one of these type spaces, say that an auction mechanism (p, t) is BIC for that
type space if it satisfies the corresponding constraints in (7). Consider any (p, t) that is BIC
for type space Ω.

Obviously Ent̄ → Et̄. We will show that there exists a sequence of auction mechanisms
(p, t(n)) such that each (p, t(n)) is BIC with respect to type space Ωn, and such that Ent̄(n)−
Ent̄→ 0.
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For each i, m, and n, let

Sm
i (n) = max{0, τmi (n) · (tmi − pmi · v

m)}

be the amount by which the 〈IRm
i 〉 constraint is violated by the auction mechanism (p, t)

for type ωm
i (n). Because (p, t) is BIC with respect to Ω, Sm

i (n)→ 0 for each i and m.

However, (p, t) may not be BIC with respect to Ωn. To convert it into an auction
mechanism that is, we first add the constant −Sm

i (n) to tmi to restore all 〈IRm
i 〉 constraints.

The cost of this to the auctioneer is the µn-expected value of Sm
i (n) which is converging to

zero. Let t̃(n) be the transfer rule that results from this first step of modification.

Next, for each i, m, l, and n, let

Lm→l
i (n) = max{0, τ li (n) · (p

l
iv

m − t̃li(n))− τmi (n) · (pmi v
m − t̃mi (n))}

be the amount by which 〈ICm→l
i 〉 is violated by the auction mechanism (p, t̃(n)). Note that

Lm→m
i (n) = 0. Again, because (p, t) is BIC with respect to Ω, and because t̃(n) → t, we

have Lm→l
i (n)→ 0 for each i, m, and l. For each n, we construct λl

i(n) to solve the system

τmi (n) · λli(n) = Lm→l
i (n), ∀ i,m, l.

We will add λli(n) to t̃
l
i(n) to restore each 〈ICm→l

i 〉 constraint without affecting the 〈IRm
i 〉

constraints. The resulting auction mechanism (p, t(n)) is now BIC with respect to Ωn. Since
τmi (n) · λli(n) → 0 for each m and l, so by (6) we have σm

i (n) · λmi (n) → 0 for each m, and
thus,

En[t̄(n)− t̄]→ 0 (9)

as promised.

Finally, recall that ΠD(ν) denotes the optimal dsIC ν-expected revenue. Because the
constrained set in the optimal dsIC auction design problem (5) is compact, the maximum
theorem implies

ΠD(νn)→ ΠD(ν). (10)

We have already shown that ΠD(νn) ≥ Ent̄(n) because each νn is non-singular. This together
with (9) and (10) delivers

E(t̄) = lim
n
Ent̄ ≤ ΠD(ν).

Since (p, t) was an arbitrary auction mechanism that is BIC with respect to Ω, this
establishes equation (3), and hence also equation (2), for any regular ν.
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5 The Bayesian Foundation for Dominant Strategy Mech-

anisms

In this section, we shall investigate another possible foundation of dominant strategy
mechanisms, namely the Bayesian foundation. The Bayesian foundation can be loosely
explained with the following story. Imagine the auctioneer as a Bayesian decision maker.
When she needs to choose a mechanism under uncertainty of bidders’ beliefs, she forms a
subjective belief about bidders’ beliefs, and compares different mechanisms by calculating the
expected performance with respect to that subjective belief. When we as outside observers
observe that this auctioneer chooses a particular mechanism, we can ask whether or not such
a choice is consistent with Bayesian rationality; i.e., whether or not such a choice is optimal
with respect to some subjective belief. If the answer is yes, then we say that such a choice
is rationalizable. We can say that dominant strategy mechanisms are rationalizable if they
are optimal with respect to some subjective beliefs. Given the predominant role of Bayesian
rationality in the literature of mechanism design, it seems even more natural to pursue the
Bayesian foundation.

To investigate the possibility of the Bayesian foundation, we only need minimal changes
in our setting. Recall that we have already been modeling assumptions about bidders’ beliefs
as distributions over their types. So all we need to do now is to reinterpret an assumption
as a subjective belief of the auctioneer. Similarly, if the auctioneer’s estimate of the bidders’
valuations is described by ν, then her subjective belief about bidders’ beliefs must be a
distribution µ over bidders’ types that is consistent with ν.

It follows from the proof of Theorem 1 that there exists a Bayesian foundation for dom-
inant strategy auctions when the distribution of valuations is regular. However, we show
by example below that beyond the regular case, a Bayesian foundation need not exist. As
a negative result about the rationality of imposing dominant strategies, we view this as
particularly strong: for some distributions of valuations, no Bayesian expected-revenue max-
imizing auctioneer would optimally employ a dominant strategy mechanism, regardless of
her beliefs.

In this example, there are two bidders and each has two possible valuations. The distri-
bution of valuations ν is represented in Figure 6.13

The optimal dsIC auction is depicted in Figure 7, where we follow the convention in
Section 3 and use “α = i” as the shorthand for “allocating the object to bidder i.”.

It is helpful to pay attention to a few noteworthy aspects of this environment and the
optimal dsIC auction. Notice that the valuation of bidder 1 is always higher than that
of bidder 2. Nevertheless, the auctioneer chooses to sell to bidder 2 when bidder 1 has
low valuation. This is optimal because conditional on bidder 2 having low valuation, the
probability that bidder 1 has high valuation is greater than 1/2. This means that it is

13The distribution ν in this example does not have full-support. This simplifies the exposition of the
example, but the conclusion would be the same if the event {v1 = 10, v2 = 4} had positive (but small)
probability.
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v1 = 5 v1 = 10
v2 = 4 1/6 0
v2 = 2 1/3 1/2

Figure 6: The distribution ν.

v1 = 5 v1 = 10
v2 = 4 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
v2 = 2 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 7: The optimal dsIC auction Γ.

optimal to exclude the low valuation type of bidder 1 to relax the incentive constraint and
sell to the high valuation type at his reservation price. Given this, the auctioneer may as well
sell to bidder 2 when bidder 1 has a low valuation. If monotonicity were not a constraint,
the auctioneer would choose to sell to bidder 1 when bidder 2 had high valuation. Thus, the
monotonicity constraint binds here, and in order to satisfy it, the object is sold to bidder 2
in this case.

Proposition 2 The optimal dsIC auction Γ depicted in Figure 7 cannot be rationalized by
any subjective belief µ of the auctioneer that is consistent with the distribution ν depicted in
Figure 6.

In the remainder of this section we will present the proof of Proposition 2. In Appendix
C we prove the following stronger result.

Proposition 3 For the distribution ν depicted in Figure 6, the optimal BIC revenue is uni-
formly bounded away from the optimal dsIC revenue regardless of the auctioneer’s subjective
belief; i.e.,

inf
µ∈M(ν)

sup
Γ is BIC

Rµ(Γ) > V D(ν).

To prove Proposition 2, fix any subjective belief µ ∈ M(ν) that rationalizes the optimal
dsIC auction Γ, we shall prove that there exists an BIC auction that generates higher µ-
expected revenue than Γ does. This would contradict the assumption that µ rationalizes Γ
and complete the proof.

The proof proceeds by a sequence of lemmas. In each we derive conditions that must be
satisfied by a rationalizing subjective belief µ. Finally we show that no subjective belief µ
can satisfy them all.
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For the purpose of this proof, it suffices to work only with bidder 2’s first-order beliefs
in order to arrive at a contradiction. So, for notational convenience, we shall summarize
bidder 2’s belief type τ2 by a single number: his first-order belief that bidder 1 has high
valuation. Specifically, for any type ω2 = (v2, τ2) of bidder 2, if v2 = 4, we shall use a to
denote g2(τ2)(v1 = 10); and if v2 = 2, we shall use b to denote g2(τ2)(v1 = 10). For any
(measurable) subset A ⊂ [0, 1], we shall use “a ∈ A” to denote the event {ω2 = (v2, τ2) :
v2 = 4, f2(τ2)(v1 = 10) ∈ A}; similarly for the notation “b ∈ B ⊂ [0, 1].”

The first lemma says that, conditional on any µ-non-null subset of low-valuation types
of bidder 2, the µ-conditional-probability that bidder 1 having high valuation cannot be too
low, otherwise the auctioneer can improve upon Γ by selling to some low-valuation types of
bidder 1.14

Lemma 2 For any x ∈ (0, 1] such that µ(b = x) = 0, if µ(b < x) > 0, then µ(v1 = 10|b <
x) ≥ 3/8.

Proof: Suppose there exists x ∈ (0, 1] such that µ(b < x) = µ(b ≤ x) > 0, and yet
µ(v1 = 10|b < x) < 3/8. Consider the modified auction Γ(x) as depicted in Figure 8.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = 0 α = 1, t1 = 5, t2 = 0

Figure 8: The modified auction Γ(x).

To see that Γ(x) continues to be BIC, note that (i) truth-telling continues to be a domi-
nant strategy of bidder 1, (ii) low-valuation types of bidder 2 always have zero rent regardless
of what they announce, and (iii) high-valuation types of bidder 2 would not announce the
(newly added) message “b < x” as that gives them zero rent.

The only difference between Γ(x) and Γ is in the (µ-non-null) event of b < x, in which
case Γ(x) generates µ-expected revenue of 5µ(v1 = 5|b < x) + 5µ(v1 = 10|b < x) = 5,
whereas Γ only generates µ-expected revenue of 2µ(v1 = 5|b < x) + 10µ(v1 = 10|b < x) <
2(5/8) + 10(3/8) = 5, contradicting the assumption that µ rationalizes Γ.

The second lemma says that for any low-valuation type of bidder 2 that the auctioneer
subjectively perceives as possible, his first-order belief b also cannot be too low, otherwise
his belief would be too different from the auctioneer’s belief, so much so that the auctioneer
can improve upon Γ by betting against him.

14In Lemma 2 (and similarly in Lemmas 3-5), the seemingly redundant requirement of µ(b = x) = 0 is a
null-boundary property used only in the proof of Proposition 3.
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Lemma 3 µ(b < 3/13) = 0.

Proof: Suppose not. Then pick x < 3/13 such that µ(b < x) > 0 and µ(b = x) = 0,15 and
consider the modified auction Γ′(x) as depicted in Figure 9.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 0, t1 = 0, t2 = −2 α = 1, t1 = 10, t2 = 2(1− x)/x

Figure 9: The modified auction Γ′(x).

To see that Γ′(x) continues to be BIC, note that (i) truth-telling continues to be a
dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict incentive
to announce the (newly added) message “b < x” if and only if the resulting rent of 2(1 −
b) − [2(1 − x)/x]b = 2(1 − b/x) is positive, or equivalently if and only if b < x, and (iii)
high-valuation types of bidder 2 would not announce the (newly added) message “b < x” as
that gives them rent of 2(1− a)− [2(1− x)/x]a = 2(1− a/x), which is lower than the rent
of 2(1− a) if they tell the truth.

The only difference between Γ′(x) and Γ is in the (µ-non-null) event of b < x, in which
case Γ′(x) collects from bidder 2 an µ-expected amount of

(−2)µ(v1 = 5|b < x) + [2(1− x)/x]µ(v1 = 10|b < x)

≥ (−2)(5/8) + [2(1− x)/x](3/8)

= 3/(4x)− 2

> [3/4(3/13)]− 2

= 5/4

(where the first inequality follows from Lemma 2), whereas Γ only collects from bidders 2
an µ-expected amount of 2µ(v1 = 5|b < x) ≤ 2(5/8) = 5/4, contradicting the assumption
that µ rationalizes Γ.

The third lemma says that the first-order belief a of high-valuation types of bidder 2
cannot be too low. Otherwise beliefs held by high- and low-valuation types of bidder 2
would be too different, and this would enable the auctioneer to improve upon Γ by introduc-
ing Crémer-McLean-kind of bets to separate these types and relax incentive compatibility
constraints.

Lemma 4 µ(a < 1/11) = 0.

15It is always possible to pick such an x, as any distribution over [0, 1] can have at most countably many
mass points.
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Proof: If not then let y < 1/11 such that µ(a = y) = 0 and µ(a < y) > 0. Notice
that y < 1/11 implies y < 3y/(2y + 1) < 3/13, and hence we can also choose x between
3y/(2y + 1) and 3/13 such that µ(b = x) = 0. Consider the modified auction Γ(x, y) as
depicted in Figure 10.

v1 = 5 v1 = 10
a < y α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
a ≥ y α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 10: The modified auction Γ(x, y).

To see that Γ(x, y) continues to be BIC, note that (i) truth-telling continues to be a
dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict incentive
to announce the (newly added) message “b < x” if and only if the resulting rent of [2x(1−
y)/(x − y)](1 − b) − [2(1 − x)(1 − y)/(x − y)]b = 2(1 − y)(x − b)/(x − y) is positive, or
equivalently if and only if b < x, and (iii) high-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “a < y” if and only if the resulting rent
of [2x(1− y)/(x− y)](1− a)− [2(1− x)(1− y)/(x− y)]a = 2(1− y)(x− a)/(x− y) is strictly
higher than the truth-telling rent of 2(1− a), or equivalently if and only if a < y.

Since the event of b < x is a µ-null event by Lemma 3, the only real difference between
Γ(x, y) and Γ is in the (µ-non-null) event of a < y, in which case Γ(x, y) generates µ-expected
revenue of

5− 2x(1− y)/(x− y)

= 5− 2(x− y + y)(1− y)/(x− y)

= 5− 2(1− y)− 2y(1− y)/(x− y)

> 5− 2(1− y)− 2y(1− y)(2y + 1)/[3y − y(2y + 1)]

= 5− 2(1− y)− 2y(1− y)(2y + 1)/[2y(1− y)]

= 2,

whereas Γ only generates µ-expected revenue of 2, contradicting the assumption that µ
rationalizes Γ.

Finally, the fourth lemma says that the first-order belief a of high-valuation types of
bidder 2 cannot be too high. Otherwise the beliefs of such types would be too different from
the auctioneer’s subjective belief, and this would enable the auctioneer to profit by offering
an incentive compatible and individually rational bet. Obviously lemmas 4 and 5 deliver the
contradiction and thus prove Proposition 2.
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Lemma 5 µ(a < 1/11) > 0.

Proof: Suppose µ(a < 1/11) = 0. Consider the modified auction Γ′ as depicted in Figure
11.

v1 = 5 v1 = 10
a ≥ 1/12 α = 2, t1 = 0, t2 = 123/61 α = 2, t1 = 0, t2 = 233/61
a < 1/12 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 11: The modified auction Γ′.

To see that Γ′ continues to be BIC, note that (i) truth-telling continues to be a dominant
strategy of bidder 1, (ii) low-valuation types of bidder 2 would not announce the (newly
added) message “a ≥ 1/12” as that gives them strictly negative rent regardless of what
bidder 1 announces, and (iii) high-valuation types of bidder 2 would have weak incentive
to announce the (newly added) message “a ≥ 1/12” if and only if the resulting rent of
(4− 123/61)(1− a) + (4− 233/61)a is weakly higher than their original rent of 2(1− a), or
equivalently if and only if a ≥ 1/12.

Since the event a < 1/12 < 1/11 is a µ-null event by assumption, the only real difference
between Γ′ and Γ is in the (µ-non-null) event of a ≥ 1/12, in which case Γ′ generates µ-
expected revenue of 123/61 > 2, whereas Γ only generates µ-expected revenue of 2. This
proves that µ does not rationalize Γ.

6 Remarks on the Common Prior Assumption

The validity, in the regular case, of the maxmin and Bayesian foundations for dominant
strategies was shown by construction of a particular assumption about bidder’s beliefs. It is
noteworthy that the assumption constructed in the proof of Theorem 1 is inconsistent with
the widely-adopted common prior assumption (CPA).

Loosely speaking, the CPA says that there is a common probability measure (the common
prior) from which each bidder derives his belief by computing the conditional probability of
opponents’ types conditional on his own “signal” or “information.” In our current setting,
where any assumption about bidders’ types is already modeled as a probability distribution
over bidders’ types, we can relate any assumption µ to the CPA as follows. For any subset
A ∈ Ω∗i , we shall write µ(A) as a short hand for µ(A×Ω∗−i). In other words, we abuse notation
and use the same notation for a probability measure as well as its marginal distributions.
Recall that gi : T∗i → ∆(V−i × T∗−i) is the homeomorphism between bidder i’s belief types
and distributions over his opponents’ types.
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Definition 3 We say that an assumption µ is an CPA-assumption if for any measurable
subsets A ⊂ Ω∗i and B ⊂ Ω∗−i,

∫

A

gi(τi)(B)µ(dωi) = µ(A×B).

It is apparent that the particular assumption µ∗ we used in the proof of Theorem 1 is
not an CPA-assumption. Can we replace µ∗ with some CPA-assumption µ in the proof?
The answer is: sometimes, but not always. For some distribution ν over bidders’ valuations,
especially those that are close to being independent, it is indeed possible to use an CPA-
assumption in the proof of Theorem 1.16 But it is also not difficult to find an example of ν
such that no such CPA-assumption can be constructed. We will give one such an example
in the Appendix.

Do these observations cut back the appeal of Theorem 1? We believe the answer is: not
at all, for two reasons. First, whether the CPA is an appropriate assumption to make is itself
a subject of debate. Gul (1998) has explained why the CPA lacks appropriate motivations,
and Morris (1995) has also explained why many defenses of the CPA are flawed, and why
many interesting economic problems are better modeled without the CPA.

Second, recent studies on the CPA has uncovered the close relation between the CPA
and common knowledge assumptions (see, for example, Lipman (2003)). In any study of the
Wilson Doctrine, such as this paper, it seem inconsistent to pursue “successive reduction”
in the dependence on common knowledge assumptions on one hand, but continue to insist
on the CPA on the other.

7 Conclusion

We have identified a sufficient condition, a direct generalization of the regular case in
Myerson (1981), under which the use of simple, dominant strategy auction mechanisms
can be rationalized, either by appeal to maxmin or Bayesian optimality criteria. Let us
conclude by pointing out one additional implication of this result. Suppose that in addition
to the regularity assumption, the distribution of valuations ν is symmetric. This would be
a natural assumption for a seller who does not know the identities or characteristics of the
bidders. In this case, the English auction with a suitably chosen reserve price is an optimal
dominant strategy auction.17 We have thus shown that in symmetric, regular environments,
the widespread use of the English auction as a selling mechanism can be justified as an
optimal response to uncertainty about the bidders’ beliefs.

16The details of such a construction are available from the authors upon request.
17This was shown for a slightly different environment by Lopomo (2000).
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Appendix A: An Example for Section 6

In Section 6, we claim that there exists a distribution ν that satisfies Condition M such
that there is no CPA-assumption µ for which equation 3 holds. We shall provide an example
of such a distribution here.

As the proof below would make it clear, this example of ν is a robust to perturbations.

Consider the same example as in Section 3, where there are two bidders, and each bidder
has two possible valuations. The joint distribution of valuations is as depicted in Figure 3,
and the corresponding optimal dsIC auction is as depicted in Figure 4.

Suppose there exists an CPA-assumption µ ∈ M(ν) for which equation (3) holds. We
shall prove that there exists an BIC auction that generates higher µ-expected revenue than
Γ does. This would contradict the supposition that equation (3) holds.

It suffices to work only with bidder 2’s first-order beliefs in order to complete this proof.
So, following the convention in Section 3, we shall continue to use a (b) to denote the
first-order belief of a high-valuation (low-valuation) type of bidder 2 that bidder 1 has high
valuation. Let b = sup{x ∈ [0, 1] : µ(b < x) = 0}.

First, observe that b ≥ 4/9. Suppose, on the contrary, b < 4/9. Then pick any number
z between b and 4/9, and consider the modified auction Γ(z) as depicted in Figure 12.

v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11

b ≥ z α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0
b < z α = 1, t1 = 4, t2 = 0 α = 1, t1 = 4, t2 = 0

Figure 12: The modified auction Γ(z).

It is obvious that Γ(z) continues to be BIC. The only difference between Γ(z) and Γ is
in the (µ-non-null) event of b < z, in which case Γ(z) generates µ-expected revenue of 4,
whereas Γ only generates µ-expected revenue of 9µ(v1 = 9|b < z) < 9z < 9(4/9) = 4, where
the first inequality comes from the fact that µ is an CPA-assumption. Since this would have
contradicted the supposition that equation (3) holds, we must have b ≥ 4/9.

Then, consider the modified auction Γ′′ as depicted in Figure 13.

To see that Γ′′ continues to be BIC, it suffices to observe that, for low-valuation types
of bidder 2 with b ≥ 4/9, truth-telling gives them a non-negative rent of (5 − 11)(1 − b) +
(15/2)b ≥ (−6)(5/9) + (15/2)(4/9) = 0.

Since b < 4/9 is a µ-null event, Γ′′ generates µ-expected revenue of 9(4/10)+ 11(6/10)−
(15/2)(4/10) = 72/10, whereas Γ only generates µ-expected revenue of 9(3/10)+11(4/10) =
71/10. This proves that equation (3) does not hold, a contradiction.
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v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b ≥ 4/9 α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b < 4/9 α = 0, t1 = 0, t2 = 0 α = 0, t1 = 0, t2 = 0

Figure 13: The modified auction Γ′′.

Appendix B: Proof of Proposition 1

Proof of Proposition 1 For part 1, suppose that the virtual valuations satisfy the single-
crossing condition, and let p be an allocation rule that solves the unconstrained maximization
of (5). Then pi(v) > 0 only if γi(v) ≥ maxj γj(v), and pi(v) = 1 if γi(v) > maxj 6=i γj(v). Fix
v such that pi(v) > 0, (so that γi(v) ≥ maxj γj(v)) and consider an increase in the valuation
of bidder i to v̂i > vi. By the single-crossing condition, γi(v) > maxj 6=i γj(v) and hence
pi(v) = 1. This shows that 〈Mi〉 is satisfied.

For part 2, suppose that both affiliation and the monotone hazard rate condition are
satisfied and let v be a valuation profile at which γi(v) ≥ γj(v). Consider an increase in
the valuation of bidder i to v̂i > vi. Write v̂ = (v̂i, v−i). It is well-known that affiliation
implies that this “increases” the conditional distribution of other bidders’ valuations in the
sense of the monotone likelihood ratio ordering. That is, for any pair of valuations v ′j > vj,
ν(v′j ,v̂−j)

ν(v̂)
≥

ν(v′j ,v−j)

ν(v)
.

The new virtual valuation for any bidder k is

γk(v̂i, v−i) = v̂k −∆
1− Fk(v̂)

ν(v̂)

By the monotone hazard rate condition γi(v̂) > γi(v). By affiliation, for each bidder j 6= i,

1− Fj(v̂)

ν(v̂)
=
∑

v′j>vj

ν(v′j, v̂−j)

ν(v̂)

≥
∑

v′j>vj

ν(v′j, v−j)

ν(v)

=
1− Fj(v)

ν(v)

and this implies γj(v̂) ≤ γj(v). And for the seller (j = 0), the latter inequality holds by
definition.

Combining these results we have γi(v̂) > γj(v̂). Since j was arbitrary, this proves that
the single crossing condition holds.
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Appendix C: Proof of Proposition 3

Lemma 6 Suppose K is a compact topological space and that F is a family of real-valued
functions on K such that, for each x ∈ K, there is some fx ∈ F which is continuous at x
and satisfies fx(x) > 0. Then we have infx∈K supf∈F f(z) > 0.

Proof: For each x ∈ K, there exists an open neighborhood Ux such that, for each y ∈ Ux,
we have fx(y) > fx(x)/2. The collection {Ux : x ∈ K} forms an open covering of the
compact space K, and hence there exists a finite sub-covering. Let {Ux1

, . . . , Uxn
} be a finite

sub-covering and let ε = min{fx1
(x1), . . . , fxk

(xn)} > 0. For each x ∈ K, we have x ∈ Uxl

for some l = 1, . . . , n so that supf∈F f(x) ≥ fxl
(x) > fxl

(xl)/2 ≥ ε/2 > 0.

Lemma 7 Suppose O1, . . . ,On are disjoint open subsets of Ω
∗ such that µ(∪Ol) = 1, and

t : Ω∗ → R is a bounded real function that is constant on each Ol. Then the mapping

µ′ →

∫

Ω∗
t µ′(dω)

is continuous at the point µ.

Proof: Fix any ε > 0. Let t̄ > 0 be an upper bound for |t|. The function µ′ → µ′(Oi) is
lower semi-continuous (see Aliprantis and Border (1999)), hence we can set

δ =
ε

t̄n2

and find a neighborhood U of µ such that, for all µ′ ∈ U , µ′(Ol) > µ(Ol)− δ for l = 1, . . . , n.
Since µ(∪Ol) = 1, it follows that µ′(Ol) < µ(Ol)+ (n− 1)δ and µ′(Ω∗ \∪Ol) < µ(Ω∗ \∪Ol)+
nδ = nδ.

We can write
∫

Ω∗
t dµ′ =

n
∑

l=1

µ′(Ol)t(Ol) +

∫

Ω∗\∪Ol

t(ω) dµ′,

so that

n
∑

l=1

µ′(Ol)t(Ol)− µ(Ω∗ \ ∪Ol)t̄ ≤

∫

Ω∗
t µ′(dω) ≤

n
∑

l=1

µ′(Ol)t(Ol) + µ′(Ω∗ \ ∪Ol)t̄

=⇒
n
∑

l=1

[µ(Ol)− δ]t(Ol)− nδt̄ <

∫

Ω∗
t µ′(dω) <

n
∑

l=1

[µ(Ol) + (n− 1)δ]t(Ol) + nδt̄

=⇒ −δ
n
∑

l=1

t(Ol)− nδt̄ <

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω) < (n− 1)δ

n
∑

l=1

t(Ol) + nδt̄

=⇒ −2nδt̄ <

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω) < n2δt̄.
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This proves that
∣

∣

∫

Ω∗
t µ′(dω)−

∫

Ω∗
t µ(dω)

∣

∣ < max {2nδt̄, n2δt̄} = ε.

Proof of Proposition 3 Notice that, for each of the mechanisms used in the proof of
Proposition 2, the total transfer (t1+t2)(ω) satisfies the conditions of Lemma 7. For example,
consider the mechanism Γ(x) in Lemma 2. For any (v1, v2), the set of universal type profiles
in which the valuation pair is (v1, v2) is open in the product topology with µ-null boundary.
Moreover, since µ(b = x) = 0, the event b < x is also open in the product topology with
µ-null boundary. Therefore, we can take O1, . . . ,O6 to be the interiors of the sets represented
by the cells of the table in Figure 8. These open sets are disjoint, have µ-null boundaries,
and have total µ-measure equal to 1 as required.

Thus, for any auctioneer’s belief µ that is consistent with the distribution ν, there exists
an BIC auction Γ(µ) such that RµΓ(µ)−V

D(ν) > 0, and the mapping µ′ → Rµ′Γ(µ)−V
D(ν)

is continuous at the point µ′ = µ. We can hence apply Lemma 6, taking K = M(ν) and
F = {R(·)Γ− V D(ν) : Γ is BIC}.
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