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1. Introduction

An individual who bargains when he has private information often faces a
dilemma. On the one hand, he may want to counceal his information from the
people with whom he is bargaining. But on the other hand, his goals in
bargaining may depend on his information. For example, if the seller of a
used car knows that he has a low quality car {a "lemon"), then he wants to
conceal this fact from the buyer. But the seller's information may also make
him prefer not to offer any warranty on the car's performance, even if he has
to concede a lower price to do so. Should such a seller try to avoid giving
any warranty, as he bargains with the buyer over the terms of sale, or should
he offer a warranty, to conceal his“information? The seller's actual
preferences are in conflict with his need to be inscrutable. 1In this paper we
shall develop a general theory of how individuals may resolve such conflicts.

Even in games with complete information, there is still no general
definitive theory of bargaining between two individuals. We might expect the
players to agree on some outcome on their Pareto frontier, but which point is
agreed upon may depend on many factors. (See Roth [1979] for a survey of
mathematical theories of bargaining.) However, if we assume that one player
has all of the bargaining ability, then the solution to the bargaining problem
with complete information is obvious: the individual with all the bargaining
ability should insist on the best outcome possible for himself, subject to the
constraint that the other individual cannot be made worse off than if he
refused to cooperate.

Because the issues of bargaining with incomplete information are so
complicated, a good research strategy is to begin by just studying this case,
where one individual has all of the bargaining ability. Even in this case,

which is trivial with complete information, difficult issues arise when the



individual in control has private information. This paper will bhe devoted
entirely to the study of this case., However, the insights which we develop
here will also lay the foundations for later papers that will develop a
general theory of bargaining with incomplete information between individuals
who all have bargaining ability. (See Myerson [1982b] and [1982c].)

We shall refer to the individual with all of the bargaining ability as
the principal in the bargaining situation, and all other individuals are the

subordinates. This terminology is meant to suggest one kind of environment

(the hierarchical organization) in which individuals typically do interact
with asymmetric bargaining ability. Also, one salient feature of most
principal-agent models (see, for example Ross [1973], Mirrlees [1976], Harris
and Raviv [1979], and Holmstrom [1979]) is that the principal can implement
the coordination mechanism that is best for him, subject to the constraint
that the agent must be given at least the minimal incentives to act as the
principal desires. It is this feature of the principal's role which we are
generalizing in this paper. The idea of giving one individual the authority
to select an incentive-compatible mechanism in general Bayesian social choice
problems was suggested by Harris and Townsend [1981].

If an individual is the principal, in the sense of this paper, it does
not mean that he can force the subordinates to do anything he wants. The
subordinates may have control over private decisions which the principal
caannot dictate, or they may have private information which the principal
cannot observe, or they may simply have the option of leaving the principal's
organization if he does not offer them some minimal expected payoffs. If an
individual is the principal, it means that he has effective control over the
channels of communication between all individuals and that the subordinates

cannot make threats against him. That is, the principal knows that the



subordinates will do whatever he asks, provided that he makes it at least
minimally in their best interests to do so, so they cannot bargain against him
for a larger share of the social surplus. 1If the principal designs a game for
the subordinates to play, then he can be confident that they will use the
strategies which he suggests for them in this game, provided that these
strategies form a Nash equilibrium. Or, using his control over the channels
of communication, the principal can direct the subordinates to use some
correlated equilibrium, in the sense of Aumann {1974]. 1In general, when we
say that an individual is the principal, we mean that he can control the
subordinates only to the extent that he can manipulate their incentives, but
they accept such manipulation passively.

One source of informed-principal problems is in the theory of signalling
in markets with adverse selection. For example, Rothschild and Stiglitz
[1976] and Wilson [1977] have studied equilibria in insurance markets where
each customer has private information about his risk category, information
which may affect the expected profits of an insurance company that sells him a
policy. 1In a market equilibrium, Rothschild and Stiglitz and Wilson assume
that competition between insurance companies should always give them zero
expected profits. We may now ask, if there were just one customer bargaining
with one insurance company, as monopsonist and monopolist, would they
negotiate the same insurance policy as in a Rothschild-Stiglitz or a Wilson
market equilibrium? Since the insurance company makes zero expected profits
in the market model, clearly the bargaining model can simulate the market
model only if the customer has all the bargaining ability; that is, the
customer must be the principal bargainer. Examples are known in which the
principal's neutral mechanisms, as defined in this paper, do coincide with

Wilson's E2 equilibria (or anticipatory equilibria, in the sense of Riley




[1979]), when the customer is the principal. It is hoped that this
equivalence might be shown to hold for some class of signalling problems.
(This question has been investigated recently by Bhattacharya [1981].) Other
related models of markets in which informed individuals are given price-
setting power have been studied by Wilson [1980].

The basic structure of our model is developed in Section 2 of this
paper. In Section 3, the principal's mechanism—selection problem is
introduced. We argue that all types of the principal should be expected to
select the same mechanism, even though they have different preferences, so
that the selection itself does not reveal any information. In Section 4 we

argue that, if there exists a mechanism that is safe and undominated (as will

be defined), then it is essentially unique for this property, and all types of
the principal should implement it. We call such safe and undominated

mechanisms stroung solutions. Sections 5 and 6 introduce the concepts of

expectational equilibria and core mechanisms, to help delimit the set of

mechanisms that the principal could reasonably consider, in cases where no
strong solution exists.

In Section 7, we systematically approach the problem of developing a
theory to determine what an informed principal should do. We define the

principal's neutral optima as the set of mechanisms that cannot be blocked,

with any concept of blocking that satisfies four axioms. The main results of

this paper are the characterization of neutral optima, presented in Section 8,
and the geuneral proof of existence of neutral optima, from which the existence
of expectational equilibria and core mechanisms is also derived.

Most of the technical proofs are deferred to Section 9.



2, Bayesian Iacentive Problems and Incentive—Compatible Mechanisms

We consider a general Bayesian incentive problem with n individuals,

numbered i = 1,2,...,0. As in Myerson [1982a], we allow for both
informational (adverse selection) and strategic (moral hazard) constraints on
the ability of these individuals to coordinate themselves, so that our model
can subsume the most general class of problems.

For each individual i, we let Ty denote the set of possible types for
individual i. Each type ty in T; completely specifies some possible state of
i's preferences, abilities, and beliefs. That is, i's type is a random
variable which subsumes all of i's information that is not public knowledge.
(This terminology is based on the seminal paper of Harsanyi [1967-8].) We
shall assume that, from the first point in time when these n individuals can
actually make decisions or interact with each other, each individual already
knows his own type.

A mechanism is any rule determining the individuals' actions as a
function of their types. The set of feasible mechanisms is limited by two
factors. First, each individual must be given the incentive to report his
private information honestly. That is, we assume that the individuals' types
are unverifiable, so that each individual may conceal or lie about his type
unless he is given the correct incentives to tell the truth. Second, each
individual may control some private decisions that cannot be cooperatively
coordinated with the others. These private decisions may be unverifiable, like
the agent's level of effort in the conventional principal-agent problem; or these
private decisions may be intrinsically unalienable, like a worker's option to
refuse employment if compensation is below his reservation wage. In either case,
the result is that there are some decisions or actions which cannot be implemented

unless the individual respoasible is given the correct incentives to choose then.,



Thus, we must distinguish between actions that are publicly observable
and enforceable, and actions that must be privately controlled. We let Dy

denote the set of all possible enforceable or public actions, which can be

contractually specified. That is, any dj in DO represents a combination of
actions and decisions which the individuals can (in principle) commit
themselves to carry out, even if it may turn out ex post to be harmful to any
or all of the individuals. For each individual i, we let D; represent the set

of all possible private actions controlled by individual i. TFor example, D;

may be a set of unobservable effort levels for individual i, and DO may be a
set of capital-resource allocations for the n individuals.
We let
T = T1 X see X Tn

denote the set of all possible combinations of individuals' types,

with t = (tl,...,tn) denoting a typical types—vector or state in T. We let

T_; denote the set of possible combinations of types of the individuals other
than i, that is
T, =T X o0 % T, x T, X .ee X T .
~i 1
Similarly, we let
D=D0xDlx'-oan
denote the set of all possible combinations of public and private actions,
with d = (dO’dl""’dn) denoting a typical actions-vector or outcome in D.
For mathematical convenience, we shall assume that D and T are (nonenmpty)
finite sets.
Given any vector of types t and actions d, we let ui(d,t) denote the
payoff to individual i, measured in a vonNeumann—-Morgenstern utility scale,

when d is the outcome and t is the actual state of the game. We let

pi(t_i|ti) denote the conditional probability that individual i would assign




to the event that ¢t = (tl,...,fn) is the actual state of the game, given
that he kaows his actual type to be tj. (We use here the notation
t_i = (tl""’ti—l’ti+l""’tn)') As a regularity assumption, we will assume
that these conditional probabilities are all nonzero, so that
(2.1) pi(t_iyti) >0, W¥ie{l,...,n}, ¥teT.
That is, no individual is absolutely sure that any combination of the others'
types is impossible. (This assumption will be needed in definition (5.1) and
in the proof of Lemma 2.)

Thus, the general Bayesian incentive problem I' is characterized by these
structures
(2.2) T = (DO’DI""’Dn’Tl""’Tn’ul""’un’pl""’pn)'
Our next task is to describe the set of feasible mechanisms for coordinating
the public and private actions, as a function of the individuals' types.

Consider the following scenario. Each individual simultaneously and
confidentially reports his type to a trustworthy mediator (or a mechanical
information processor). The mediator then chooses an outcome
d = (do,dl,...,dn) in D, as a (possibly random) function of the vector of
types reported to him. Then the enforceable action dO is carried out, and
each individual is confidentially informed that d; is the private action
recommended for him.

Formally, a mechanism is any function u:D x T >+ R such that

(2.3) L ple|t) =1 and u(d|t) > 0, W¥deD, W¥teT.

ceD
Here u(dlt) is interpreted as the probability that d will be the outcome
chosen by the medialor in the above scenario, if t is the reported state of

individuals' types.



For any possible types ty and s; of individual i, any function

Gi:Di > Di’ and any mechanism p, we make the following definitions:

(2.4) -
0@l = ET Py(egle) I u@le) v @0,
-4 -i
and
*
(2.5) Ui(u,Gi,silti) =

- ET Pi(t_ilti)'dgn udle_;,8,) v ((d_,,8,(d,)),t).

(In this paper, whenever t, t.

i and t_; appear in the same formula, t

-i
denotes the vector of all components other than ty in the vector t =

(tl""’tn)' Also, (t—i’si) and (d 5,(di)) are respectively the vectors

-1’4

that differ from t and d in that S5 replaces ty and Gi(di) replaces di')
Thus, Ui(u|ti) is the conditionally expected utility for individual i, given
that his type is ty, if all individuals report their types honestly and carry
out their recommended private actions obediently, when the mediator uses
mechanism u. On the other hand, if individual i reports s; and plans to use
private action Gi(di) when d; 1s recommended, while all other individuals are
honest and obedient, then U:(u,éi,silti) is i's conditionally expected utility
from mechanism u, given that i's true type is ts. Notice that the mediator's
recommendation may convey information to i about the others' types, so that i
might rationally choose his private actions as some function Gi(-) of his

recommended action.

The mechanism p is incentive compatible (in the Bayesian sense of

D'Aspremont and Gerard-Varet [1979]) iff

*
| . .
(2.6) Ui(ulti) > U (8,8, ), vie{1l,...,n}, VeeT,, ¥s.eT,, ¥,:D.>D,.



Condition (2.6) aserts that honest and obedient participation in the mechanism
p must be a Bayesian Nash equilibrium for the n individuals, in the sense of
Harsanyi [1967-8]. 1In Myerson [1982a], it has been shown that there is no loss
of generality in considering only incentive—compatible coordination mechanisms,
in the following sense: for.any Bayesian equilibrium of any other coordination
game which the individuals might play, there exists an equivalent incentive-
compatible mechanism satisfying (2.6). This idea, called the revelation
principle, has been presented in related contexts by Gibbard [1973], Rosenthal
[1978], Dasgupta, Hammond, and Maskin [1979], Holmstrom [1977], Harris and
Townsend [1981], and Myerson [1979].

One special case of the above structures may be worth considering, as an
example. Suppose that each individual's set of private actions is simply
Di = {"accept", “reject"}, and that all utility payoffs will be zero if any
individual chooses his "reject™ option. Suppose also that there is an
enforceable action ("fire everyone”) that also makes all payoffs zero. Then
without loss of generality, we need only consider mechanisms in which no
individual is ever asked to "reject", since the "fire everyone” action may be

used instead. Then the incentive constraints (2.6) reduce to

(2.7) Ui(ulti) > ) y pi(t_ilti) u(d|t_i,si) ui(d,t), Vi, ¥t.eT , ¥s;eT,,
t ,eT . deD
~-i -i

and

(2.8) Ui(ulti) >0, Vi, ¥teT.

That is, no individual should have any inceative to lie or reject in the

mechanismn.
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3. The Inscrutable Principal

If an outsider with no private information (an academic economist,
perhaps) were given the authority to control all communication between the n
individuals and to determine the enforceable actions in Dy, then he could
implement any incentive—compatible mechanism satisfying constraints (2.3) and
(2.6). But if one of the n informed individuals can influence the selection
of the mechanism when he already knows his own type, then a fundamentally new
issue arises to constrain the choice of mechanism: if the selection of the
coordination mechanism depends in any way on one individual's type, then the
selection of the mechanism itself will convey information about his type to
the other individuals. Under these circumstances, for a mechanism to be
feasible, it must be incentive compatible after all other individuals have
inferred whatever information might be implicit in the establishment of the
mechanism itself,

In this paper we will assume that individual #1 can effectively control
all communications and can dictate how the action in DO is to be determined,
without any need to bargain or compromise with any of the other n-1
individuals. (The difference between DO and Dl is that the action in D1 is
subject to moral hazard, in the incentive constraints, but the action in Dy is
not.) That is, individual 1 has complete authority to select any mechanism
for coordinating the enforceable and private actions of the n individuals.
The mediator described in the preceding section is a mere tool of individual
1, implementing the coordination mechanism that he selects. In view of this
asymmetry of power, we shall henceforth refer to individual 1 as the principal

in the system; individuals 2,...,n will be referred to as the subordinates.

We assume that the principal already knows his type at the time when he

selects the mechanism, and that this is not a repeated situation. Thus, the
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best incentive—compatible mechanism for the principal maximizes his
conditionally expected utility Ul(u[tl) given his true type t» subject to the
constraints (2.3) and (2.6). But if the principal chooses p to maximize
Ul(ultl), then his choice will depend on the true type tl’ and so the
subordinate individuals may be able to infer something about the principal's
type from his choice of p. With this new information, the subordinates may
find new opportunities to gain by dishonesty or disobedience. So a mechanism
might not be incentive-compatible in practice, even though it satisfies (2.5),
if the fact that u is used allows the subordinates to learn about the
principal's type.

Let R be any nonempty subset of T;. We say that a mechanism u is

incentive compatible given R iff it is incentive compatible for the principal

(that is, u satisfies (2.6) for i=1) and

(3.1) N Y p, (t_. Jt,) u(dlt) u (4,t)
t ,eT ., deD
-i -i
tleR
> .gT | ng py (t_ e ) mddle_,s) u; ((d_;,8,(d,)), ©)
-1 =1
tleR

¥ie{2,...,n}, Vt.eT , ¥s.eT,, ¥_:D.>D..

(The summations in (3.1) indicate that t_,

i is to range over vectors such that

the first component t; 1is in R.) This condition (3.1) asserts that no
subordinate i should expect to gain by reporting s; and by disobeying his
instructions according to Gi’ when he knows that t; is his true type and that
the principal's type is in R. Thus, if the subordinates expected that the

principal would propose mechanism p if his type were in R, but otherwise would
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propose some other mechanism, then u could be successfully implemented only if
it were incentive compatible given R. (The two sides of (3.1) differ from
conditionally—-expected utilities because we have not divided by i's
probability of the event tleR; however, this factor can be ignored, since it
is the same on both sides, and is positive by (2.1).)

This concept of conditional incentive compatibility describes what the
principal could achieve if some information were revealed. However, as we try
to construct a theory to determine which mechanism the principal should
implement, there is no loss of generality in assuming that all types of the
principal should choose the same mechanism, so that his actual choice of
mechanism will convey no information. We may refer to this claim as the

principle of inscrutability. Its essential justification is that the

principal should never need to communicate any information to the subordinates
by his choice of mechanism, because he can always build such communication
into the process of the mechaanism itself (in that u(d|t) can depend on tl).

A more formal justification for this principle of inscrutability may be
given as follows. Suppose to the contrary, that there are some

} and sets of types {R

K ,--a,R

mechanisums {ul,...,u forming a partition of

1o R

Tl’ such that the types in Ry are expected to implement His for every k in
{1,...,x}. (For simplicity, we ignore randomized mechanism-selection plans
here, but our argument could be easily extended to cover this case as well.)
Since the subordinates would rationally infer that the principal's type is in
Ry when u, is proposed, each My must be incentive compatible given R . Since
the principal already knows his type, he would choose to implement these
mechanisms in this fashion only if they satisfy

(3.2) Ul(uk|tl) > Ul(ujltl), ¥j, ¥k, ¥teR,

and are incentive compatible for him separately. But now consider the
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*
mechanism p defined by
*
(3.3) p (d]e) =uk(d|t) if tpeR.
*
This mechanism p 1is completely equivalent to the system of
, giving the same

mechanisms {ul,...,u on the partition {Rl""’R

K} K}

distribution of outcomes in every state. That is, saying that "for each k, if
the principal's type is in R, then he will implement uk" is ewpirically
indistinguishable from saying that "the principal will implement u*, no matter
what his type is.™ It is straightforward to verify that u* is incentive

compatible, using (3.1) (with p=u, and R = R,) and (3.2) to prove that (2.6)

k
*
holds for p =yp .

The goal of this paper is to develop a theory to predict which mechanisms
a principal with private information might select. For inscrutability, any
mechanism that we predict must be reasonable for all of his types to select.
If the principal's different types would actually prefer different incentive-
compatible mechanisms, then the predicted mechanism must be some kind of
compromise between the different goals of the principal's possible types. The
main task of this paper is to develop formal notions of what such a

"reasonable compromise” should be.

4, Safe and Undominated Mechanisms

We say that a mechanism p is dominated by another mechanism v iff
Ul(ultl) < Ul(v|t1) for every t; in T;, with strict inequality for at least
one t; in Tl' We say that p is undominated iff p is incentive compatible and
p is not dominated by any other incentive-compatible mechanism. If
Ul(u|t1) < Ul(vltl) for every t; in T;, then n is strictly dominated by v.

Because the principal has effective control over the communication
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channels between himself and the subordinates, he should never be expected to
implement any strictly dominated mechanism. To see why, suppose to the
contrary that the principal is expected to implement some mechanism p that is
strictly dominated by another incentive—compatible mechanism v. Then the

principal could address the subordinates as follows:

"I am going to implement the mechanism v. Notice that all of my types
prefer v over p, which you might have thought we would implement. Thus,
you should not infer anything about my type from the fact that I have
chosen v rather than . With no new information about my type, you should
each find it optimal to participate honestly and obediently in this

incentive-compatible mechanism v."

When we assume that the principal can communicate effectively and has all of
the bargaining ability, we mean that the subordinates would understand such an
argument and accept it.

We say that a mechanism u is safe iff, for every type t; in Tl’ p is
incentive compatible given {tl}. That is, a safe mechanism is one which would
be incentive compatible if the subordinates knew the principal's type. No
matter what the subordinates might infer about the principal's type, he can
successfully implement a safe mechanism, because it is iuncentive compatible
given any subset of Ty.

Safe mechanisms may not necessarily exist for a Bayesian incentive
problem. Even if one does exist, it may be strictly dominated in the class of
incentive-compatible mechanisms. However, we now show that a mechanism that
is both safe and undominated, if it exists, should be

implemented by all types of the principal. This result defines a class of
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problems in which it is clear what the informed principal should do. We call

a safe and undominated mechanism a strong solution for the principal.

Theorem 1. Suppose that p is a strong solution. Let v be any other
mechanism, and let

s = {t €T1| Ul(vltl) > Ul(ultl)}.

1

If S# ( then v is not incentive compatible given S. Furthermore, if u 1is

~

any other safe and undominated mechanism, then

%
Proof Consider the mechanism p defined by

" v(d|t) if £ € S,
uo(dle) ='§'u(d|t) if t, g S.

If S+# @, then u is dominated by u*, which differs from u only in that the
types which prefer v switch to v, If v is incentive compatible given 5 then
u* is incentive compatible (since u is incentive compatible given Tl\.S); but
this contradicts the assumption that u is undominated.

To prove the last sentence of the theorem, let v = ;. Since ; is
incentive compatible given any set, {tll Ul(;|t1) > Ul(ultl)} = P.

Similarly, switching the roles of u and u, we get

{tll U le) > Ul(:l|t1)} = ¢. 0.E.D.

Theorem 1 shows us why the principal should implement a strong solutiomn
(if one exists), even though he might actually (given his true type) prefer
some other incentive-compatible mechanism. If’the subordinates were to

interpret his selection of any other mechanism v as evidence that his type
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must he in the set preferring v over the strong solution, then v would become
infeasible as soon as it was selected. Furthermore, Theorem 1 states that, if
a strong solution exists, it must be essentially unique.

Let us now consider Example 1, an incentive problem with one subordinate

(so n = 2). The principal has two equally-likely types T = {la, 1b}. The

1
subordinate has no private information, so |T2| = 1 and the variable ty can be
ignored. There are three enforceable actions in DO = {00, ol, 02} available
to the principal, but he has no private options (so |D1| = ] and the variable
dy can be ignored). The subordinate has two private actions 02 = {;, ;}. 1f

the subordinate chooses r ("reject") then both individuals will get payoffs
of zero. If the subordinate chooses a ("accept”) then the individuals'

utility payoffs (ul,uz) depend on dO and t; as in the following table:

B 4o g 4971 402
t,=la 0,0 9,-2 5,3
£,=1b 0,0 5,3 9,-2

TABLE 1.

In this example (by (2.7) and (2.8)), an incentive—compatible mechanism
must give nonnegative expected utility to the subordinate, and must not give
either type of the principal any incentive to report the other type. Among
such mechanisms, the expected utility for type la is maximized by the
mechanism Hys defined by

ul(cl,glla) = ul(cl,;llb) =1,
The expected utility for type 1b is maximized by the mechanism u,, defined by

uz(oz,alla) = uz(oz,allb) = 1.
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That is, type la prefers the mechanism My, in which both of the principal's
types implement o;; and type 1b prefers the mechanism u,, in which both types

implement 05. These mechanisms give expected utilities as follows:

Ul(ullla) 9, Ul(ulllb) 5, U,0,) =.5,

2) .5

Ul(uzlla) =5, Ul(uzllb) =9, Uz(u
Unfortunately for the principal, neither uy Dor W, is incentive
compatible unless both types are expected to implement it. If the principal
were expected to choose My only if his type is la, and to choose Mo only if
his type is 1b, then the subordinate's expected utility would be -2 in each
case and he would be better off rejecting. Although the subordinate 1is
willing to accept either 0, Or 0, ex ante, he would prefer to reject against
either action if he knew that it was the one that the principal preferred.
To guarantee that the subordinate would be willing to accept, no matter
what he might infer, the principal could offer to randomize between 04 and
0,. For example he could use Mg, defined by
u3(ol,5|t1) =u3(02,5|t1) = .5, ¥te{la,lb}.
This mechanism u, is safe, since the subordinate's expected utility would be

nonnegative (+.5) even if he learned the principal's type. However M3 is not

undominated. The unique safe and undominated mechanism is My defined by

w0 ,alla) = .6, u,00,,alla) = .4,

u4(01,a|1b) = .4, u4(02,a|1b) .6

That is, My is the mechanism in which the subordinate never rejects, and the

principal randomizes between o, and Tos giving at most 607 probability to the

1

action that he actually prefers. (The trustworthy mediator, described in

Section 2, could verify to the subordinate that the randomization was actually
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carried out within these .60 - .40 bounds.) The subordinate expects zero
utility fronm Uy with either type of the principal, and the principal's
expected—utility allocation is Ul(u4|1a) = 7.4 = Ul(u4|1b). Thus, although
Uy is not the best incentive—compatible mechanism for either type, it is the
principal's strong solution. Any mechanism v that offers higher expected
utility to either type of the principal would be rejected by the subordinate,
because he would expect negative utility from the mechanism after inferring

that the principal was of the type for which Ul(V|t1) > Ul(u4|t1).

5. Expectational Equilibria

In the preceding section, we argued that, if there exists a mechanism
that is both safe and uandominated, then this (essentially unique) mechanism
should be implemented by all types of the principal. To fully justify this
claim, and to begin to derive a theory of rational selection of a mechanism by
the principal for the general case in which a strong solution may not exist,
we must consider the principal's selection of a mechanism as part of a
noncooperative game,

In this noncooperative game, each individual first learns his own type;
then the principal selects and announces a coordination mechanism; then each
subordinate makes some inferences about the principal's type, based on this
announcement; and finally the coordination mechanism is implemented, with each
individual using some participation strategy that is rational for him given
his information. To rigorously analyze this game, we must first develop some
notation.

T
For any vector q in iR.l such that 0 < q(tl) <1 th, and q # 0, we let
n
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*
(5.1) P, (t_ It ,a) = p (e_ |t.) alt )/ Z py(s_gI1ts) als))),

¥ie{2,...,n}, ¥teT,

and
*
p(t_jlt,0) =p (e_ [t)), ¥eT.
To interpret this definition, suppose that, for each ti, q(tl) is the
likelihood (or conditional probability) of the principal selecting
* .
mechanism V when his type is t;. Then pi(t—ilti’q) is the posterior
probability that individual i would assign to state t if his own type were ts
and the principal selected mechanism v.

For any likelihood vector gq as above, the normalized-likelihood vector

Q corresponding to q is defined by

(5.2) alt,) (3 q(sl)) = q(t;), WreT .

171
sleT1

Notice that (5.2) implies that p:(t_ilti,q) = p:(t_i|ti,Q), for every i and
t, for any nonzero vector q. Thus, we need to know only the normalized-
likelihood vector Q associated with a mechanism v, to compute the individuals'’
posterior probabilities if v were selected by the principal.

Suppose now that mechanism v has zero likelihood of being selected by
each type'of the principal, so that q = 0. Then the posterior probabilities
if v actually were selected cannot be computed from (5.1), because the
denomimator of (5.1) is zero. (The regularity assumption (2.1) prevented this
difficulty in all other cases.) On the other hand, (5.2) is satisfied by any
normalized-likelihood vector Q when q = 9. Thus, following Kreps and Wilson
[1982], we may say that the individuals' posterior beliefs after the selection

of v are consistent iff there exists some normalized-likelihood vector Q,

satisfying
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(5.3) ) Q(s;) =1 and Q(t;)> 0, W¥rpeT

171
le:T1

such that, for every i and t, p:(t—ilti’Q) is the posterior probability that
individual i would assign to state t if his own type were t; and the principal
selected v. This vector Q may be interpreted as the normalized-likelihood
vector corresponding to some vector of nonzero but infinitesimal likelihoods
of the principal selecting v.

We do not need to assume that the principal must select a direct

revelation mechanism. A generalized mechanism is defined to be any function

v:D'xT'> K such that D' and T' are nonempty finite sets of the form

D' =Dy x DI X oo0x DI, T =Tix .00x T,
and

} v(elt) =1 and v(d|t) > 0, ¥%deD', ¥teT'.

ceD!
Here Ti is the set of possible reports that i may send, D{ is the set of
possible instructions that i may receive, and v(dlt) is the probability of
implementing dy and sending instructions d; to each i, if each i has reported
t; into the mechanism. The only change from (2.3) is that Di and Ti may
differ from D; and T;.

When the generalized mechanism v is implemented, each individual i will

determine his reports and private actions according to some participation

strategy, denoted by a pair (Yi,Ti) such that

. = 2 ! .
(5.4) . ET,Ti(Silti) 1 and Ti(rilti) 0, VrieTi, VtieTi,
i i

and
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(5.5) ) Yi(ci|di’si’ti) =1 and Yi(bild

’ti) 2 0’
c.eD.
1 1

S,
i’7i

1 ]

VbieDi, VdieDi, VsieTi, VtieTi.
Here Ti(si|ti) is the probability that i will report 55 if his type is t; and
Yi(ci|di,si,ti) is the probability that i will use his private action cy if t;
is his true type but he reported s; and then received instructions di’ in the
implementation of v.

We let Wi(V,Y,TIti,Q) denote the expected utility for individual i in the
mechanism v if his type is t;, his posterior distribution given the selection
of v is characterized by the normalized-likelihood vector Q, and Yy = (Yl,...,Yn)

and T = (Tl,...,Tn) characterize the participation strategies of the n

individuals. That is

(5.6) wi(\)’Y,Tlti,Q) =

H
~1

) ) ) P:(t_ilti,Q)T(Slt)V(d|S)Y(C|d,S,t) u, (c,t)
t_;eT_; seT' deD' ceD

where

and

We say that the participation strategies (y,T) are a Nash equilibrium for

v given Q iff every individual's participation strategy maximizes the expected

utility for each type, given the other individuals' strategies, so that
g

W ,Y,Tle,Q) > W0, 05, (LT e ,Q)
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for every i in {1,...,n}, every t, in T and every alternative participation

i,
strategy (T{, Yi) satisfying (5.4) and (5.5) for i.

We say that a mechanism u is an expectational equilibrium iff u is

incentive compatible and, for every generalized mechanism v, there exist Q, v,
and 1 satisfying (5.3)-(5.5) such that (y,t) is a Nash equilibrium for v given

Q and

(5.7) Ul(ultl) > Wl(v,Y,Tltl,Q), ¥t eT) .

In the terminology of Kreps and Wilson [1982], any expectational equilibrium

can be supported as a sequential equilibrium of the mechanism—-selection game.

When u is an expectational equilibrium then rational behavior of the
subordinates can force all types of the principal to implement u. If he were
to try to implement some other mechanism v then, with the posterior
expectations characterized by Q, the subordinates would find it rational to
use their equilibrium participation strategies (y,t). By (5.7), these
participation strategies in v would leave the principal no better off than in
U, no matter what his type may be. So all of the principal's types would
prefer to implement 1. But then any posterior probabilities characterized by
any normalized likelihood vector such as Q would be consistent with rational
Bayesian inference after the principal selected v, because the event of v
being selected has zero probability for every type in Ty

Theorem 1 did not completely justify our claim that, if u is a strong
solution, then all types of the principal should select it. Theorem 1 showed
that any alternative mechanism v could not be incentive compatible given the
information that the principal would prefer it, implemented honestly and
obediently, over u. One could still ask, however, whether the subordinates

would use some dishonest or disobedient strategies in p such that some types
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of the principal would be better off than in u. The following theorem shows
that the answer to this question is No, because for any alternative mechanism
there are consistent posterior beliefs and a Nash equilibrium of participation
strategies such that no type of the principal would be better off than in the

strong solution.

Theorem 2. Any strong solution is an expectational equilibrium.

We defer the proof of this theorem to Section 9.

The concept of expectational equilibrium can be applied to any Bayesian
incentive problem, even if there is no strong solution. We prove the
following general existence theorem in Section 9.

Theorem 3 For any Bayesian incentive problem as in (2.2), there exists

at least one expectational equilibrium.

6. Core Mechanisns

For Example 1 (discussed in Section 4), one can show that the strong
solution U, is the unique expectational equilibrium. Unfortunately,
expectational equilibria are not generally unique (even when a strong solution
exists), and for some Bayesian incentive problems the set of expectational
equilibria may be quite large. Thus, to get a more useful theory, we must
investigate other solution concepts for the informed principal's problem.

Let us consider now Example 2, which differs from Example 1 only in that

the utility functions (“1’u2) are as follows:
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5 499 dg=y dg=0 >
SR N
t,=la i 0,0 9,-2 5,-1
t;=1b f 0,0 5,3 9,1
|
TABLE 2

{The only changes are in the subordinate's payoffs from outcome 0n.) As
before, the subordinate (individual 2) believes ex ante that types la and 1b
are equally likely, and he has the option to reject the principal's mechanism,
in which case both individuals' payoffs are zero. Thus, a mechanism is
incentive compatible iff it gives nonnegative expected utility to the
subordinate, and gives neither type of the principal any incentive to lie.

In this example, every incentive-compatible mechanism is an expectational
equilibrium (including even the strictly dominated mechanisms). This is
because the subordinate would choose to reject against any mechanism if he
believed that the principal was type la. Thus, to show that any given
incentive-compatible mechanism p is an expectational equilibrium, let Q(la) =1
and Q(1lb) = 0 for any alternative mechanism v. Then both types of the
principal should rationally select p, because the subordinate believes that
only type la could make the "mistake” of choosing anything else, and so he
would reject anything else.

As before, let 8] be the mechanism in which both of the principal's types
do I and let Wy be the mechanism in which both types do T o Although each
of these mechanisms is an expectational equilibrium, there is good reason to
believe that the principal should actually implement Hoe After all, Uy is the
best incentive-compatible mechanism for type 1b. Thus, it would seem strange
for the subordinate to infer that the principal is type la when My is

announced, as was required to make u; an expectational equilibrium.
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The weakness of expectational equilibrium as é solution concept is that
it allows so much flexibility in the designation of the posterior beliefs
after an alternative mechanism is selected. 1If the principal is able to
communicate effectively with his subordinates, he may actually have some
control over the subordinates posterior beliefs, to the extent that he can
explain why he is choosing a particular mechanism. In Example 2, if the
subordinate were expecting both types of the principal to use His then the

principal could speak to the subordinate as follows:

"I am going to implement Ho. This mechanism is strictly better for 1b, but

worse for la, than the mechanisn Hy which you may have been expecting me to

implement. Thus you should take my selection of Uqy as evidence in favor of

my being type lb., But whether you infer that my type is 1b, or you remain

with your prior belief that my two types are equally likely (or even if you

make any infereace in between), this mechanism Ug gives you nonnegative

expected utility. Thus, you should not reject against “2'"

If the principal can communicate effectively, then the subordinate should
understand this speech and accept it., Furthermore, if it is common knowledge
that he would accept it, then the subordinate could not rationally expect type
1b to choose Hys SO he should reject against oo
The above argument can be extended to the general case. We say that p is

a core mechanism for the principal iff u is incentive compatible and there

does not exist any other mechanism v such that
+
feer l u,0le) >u @le)) *+ 0
and, for every set S that satisfies

{t eT

' -
Ty ety > @t escr

1’
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v would be incentive-compatible given S. That is, if u is not a core
mechanism, then there is some other mechanism v that some types would prefer,
such that v would be incentive compatible given the information revealed by
its selection, provided that (at least) all the types that prefer v over u are
expected to choose v. 1In Example 2, U, is the unique core mechanism. The

following existence theorem is proven in Section 9.

Theorem 4. For any Bayesian incentive problem, there exists at least one

core mechanism for the principal,

The term "core mechanism” suggests a connection with cooperative game
theory. Indeed, these core mechanisms can be characterized as the core of a
cooperative game, but one in which the players are different types of the
principal, rather than different individuals. 1In this cooperative game, the
set of feasible mechanisms for a coalition S is the set of mechanisms that
would be incentive compatible given any superset of S.

It is not surprising that the problem of mechanism design by informed
principal should have paralleis with cooperative game theory. The principal's
problem is to select a mechanism that will be perceived as a reasonable
compromise between the different goals of his different possible types, and
the problem of reasonable compromise between conflicting goals of different
individuals is the subject of cooperative game theory.

It also should not be surprising that the methods of noncooperative game
theory, as embodied in the concept of expectational equilibrium, are not
generally sufficient to determine the solution to the informed principal's
problem. Our notion of principal is meant to refer to someone who can

communicate effectively with his subordinates in some common language like
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English. We used this assumption of effective communication when we quoted
hypothetical speeches that a principal could make to justify his selection of
an undominated or core mechanism. However, noncooperative game theory is
meant to apply also to situations in which the individuals might not share any
common language. Thus, our assumption of effective communication has required

us to go beyond the scope of existing noncooperative game theory.

7. Blocked Allocations and Neutral Mechanisms

Thus far, we have developed a variety of solution concepts for the
principal's problem: wundominated mechanisms, strong solutions, expectational
equilibria, and core mechanisms. A strong solution is essentially unique when
it exists, but it may fail to exist. Mechanisms that satisfy the other three
solution concepts can be shown to always exist, but the set of such mechanisms
may be quite large. (There was a unique core mechanism in each of the two
examples above, but other examples can be constructed in which the entire
continuum of undominated mechanisms are core mechanisms.) We still want a
more powerful solution concept, to identify the principal's best inscrutable
mechanisms.

For inscrutability, the informed principal must select a mechanism that
would seem like a reasonable selection for all of his types to make. Some
mechanisms would clearly be unreasonable selections for some types, when these
types could do better by selecting some other mechanism (even though they may
reveal some information by doing so). That is, some mechanisms may be blocked
or eliminated for the principal because they give too low expected utility to
some types of the principal.

For any mechanism u, we let Ul(u) denote the expected utility allocation
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vector for the principal's types; that is

T1

U, ) = (W, Gle ), o R
1771

By the above argument, some mechanisms may be blocked for the principal
because some components of this allocation vector are too low. Thus, for any
Bayesian incentive problem I' (as in (2.2)), there should be some set B(T'), a
subset of ]RTl, such that B(I ) represents the set of blocked allocation
vectors. Our theoretical task is to determine what this set B(I') should be,
for every Bayesian incentive problem I'. Then we could say that an incentive-—
compatible mechanism p would be a reasonable selection for all types of the
principal, in the incentive problem I', only if the allocation Ul(u) is not in
the blocked set B(T).

Most of the solution concepts that we have discussed so far can be
characterized in terms of such sets of blocked allocations, with a different
B(I') for each solution concept. Let us now approach the problem of
constructing a new solution concept more systematically. We list four
properties that the sets of "blocked"” allocations should satisfy, and then
construct the largest B(I') sets that can satisfy these four axioms.

Our first axiom expresses the idea that an allocation vector is blocked

when some of its components are too low. Thus, any other vector that is

componentwise lower than a blocked allocation vector should also be blocked.

Axiom 1. (Domination) For any Bayesian incentive problem I' and any

T
vectors w and x in R 1’ if weB({) and x(tl) < w(tl) for every t; in T1

then xB().

If the blocking of an allocation w is supposed to occur because some



- 29 -

types could do strictly better by selecting some other mechanism, then these
strict inequalities would also hold for all allocation vectors that are

sufficiently close to w. Thus, B(I') should be an open set.

Axiom 2. (Openness) For any incentive problem I', B(') is an open subset

T
1
of TR .

Consider any two Bayesian incentive problems T and I where

—
|

- (DO,Dl,ooo,Dn, Tl,ooo,Tn, ul,...,un,pl,...,pn)

(DO’DI""’Dn’ Tl,...,Tn, Upseesst o, pl,...pn).

—
[

and

We say that I is an extension of I' iff:

=
I
=]
(=X
[l
=]

o
0

Pss Vie{l,...,n};

=1
W
o
W
=]
o

ui(d’t) = ui(d,t) whenever doeDO.

That 1is, I is an extension of I' iff T differs from T only in that some new
enforceable actions have been added to those in Dg. Every incentive-
compatible mechanism available to the principal in I' is also available in any
extension T. Thus, the set of blocked allocations in any extension of T
should be at least as large as in I', because there are more mechanisms

available with which the types in T; can block.

Axiom 3. (Extensions) 1If T is any extension of an incentive problem I',

then B(T') 2 B(T).
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We have argued (by Theorems 1 and 2) that, if there exists a mechanism
that is both safe and undominated, then this mechanism can be called a strong
solution and all types of the principal should select it or some other
mechanism that gives the same utility allocation. Thus, these strong

solutions must not be blocked.

Axiom 4., (Strong Solutions) If u is a safe and undominated mechanism for

the principal in an incentive problem I', then Ul(u) ¢ B(T).

We let H denote the set of all functions B(+) (mapping Bayesian incentive
n
problems into subsets of the principal'’s utility-allocation space) that

satisfy all four of these axioms, and we let
*
B (r) = U B()
BeH

for any incentive problem I'« That is, B*(F) is the union of all sets of
allocations that can be blocked in T, consistently with Axioms 1 through 4. 1t is
straightforward to check that B*(-) itself satisfies Axioms 1 through 4.

Given any Bayesian incentive problem I', we say that u is a neutral
optimum for the principal iff w is an incentive-compatible mechanism and
Ul(u) is not in B*(F). That is, a neutral optimum is an incentive-compatible
mechanism that cannot be blocked by any theory of "blocking™ that satisfies
our four axioms. Thus, the neutral optima form the smallest class of
mechanisms that we could hope to identify as solutions for the principal.

It is shown in Section 9 that expectational equilibria and core
mechanisms can both be characterized as sets of unblocked incentive-compatible
mechanisms, in terms of some blocking concepts that satisfy the four axioms.

By Axiom 4, strong solutions are never blocked. Thus, we get the following



theorem.

Theorem 5. Any safe and undominated mechanism is a neutral optimum. Any

neutral optimum is both an expectational equilibrium and a core mechanism.

In Section 9 we also prove our main existence theorem, from which

Theorems 3 and 4 will follow immediately.

Theorem 6. For any Bayesian incentive problem, there exists at least one

neutral optimum for the principal.

From these two theorems, we can determine the principal's neutral optima
in our two examples. 1In Example 1, W, was the unique expectational
equilibrium, so it must also be the unique neutral optimum. TIn Example 2, u,
was the unique core mechanism, although there were infinitely many

expectational equilibria; so Ho is the unique neutral optimum in Example 2.

8. Characterizing the Neutral Optima

Given any Bayesian incentive problem I' as in (2.2), we now show how to
characterize the set of neutral optima for the principal. First, some
notation should be developed.

We let 2 denote the set of vectors or functions on T into the real
numbers IRj; that is,

2 = R 1.

We let 92, denote the set of nonnegative-valued functions in £, and we let Q..

denote the set of strictly positive-valued functions in £2. That is,
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AeQ+ iff A(tl) > 0 for every t; in Ty and A€Q++ iff A(tl) > 0 for every
ty in Tl'
The set of incentive-compatible mechanisms is a convex polyhedron (since

D and T are finite). Thus, by the supporting hyperplane theorem, a mechanism

* *
p  is undominated if and only if there is some X in Q++ such that ¥ is an
optimal solution to the problem
(8.1) maximize X A(tl) Ul(u|t1), subject to (2.3) and (2.6).
I tleT1

We may refer to (8.1) as the primal problem for A. With finite D and T, it is

a linear programming problem.
To formulate its dual, let A; denote the set of all functions from Di
into Di' We define

n A,XT,XTi
(8.2) A={ae X R | ai(Gi,silti) > 0, ¥i, ¥ eb, ¥s.eT,, VtisTi}.

For any a in A, we will interpret ai(G”Silti) as a shadow price for the
L
*
. . S .
primal constraint Ui(u|ti) Ui(u,di,silti)

For any d in D, t in T, A in Q+, and a in A, we define

(8.3) L(d,t,A,a) = (A(tl) pl(t_lltl) u (d, )
n
' 121 s gT G.ZA_ai(Gi’Silti) py (e ley) u, (d,0)
1 1
n
- iZ= ) I oo 6.t 080 p (e Is.) v ((d_,8,(d,0),(t_;,8.0)).

1 s.eT. § .eA,
i i i i

When the incentive constraints (2.6) are multiplied by their shadow prices and
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added into the primal objective function, we get the Lagrangian function

(8.4) ) A(t)) Ul(ultl)
t.eT
171
T 1 g | e ) l£.))
+ a,(G,,s. t.) (U.(u t-)"U-(U)(S.)S- t-))
i=1 teT, seT, §ea, + 11 1 1 17111
171 i i i i

= 2 2 L({d,t X ,a) u(d|t).
teT deD
That is, L(d,t,A,a) has been defined as the linear coefficient of the term
pu(d|t) in the Lagrangian function. The Lagrangian is maximized by u (subject
to the remaining probability constraints (2.3)) iff all probability weight in
each pu(e |t) distribution is put on the outcomes d that maximize L(d,t,\,a).

Thus, the dual problem for A (the dual to (8.1)) may be written as

(8.5) minimize z max L(d,t,A,a).
aeA teT deD
When we vary A as a free parameter over Q++, the optimal solutions to
the primal (8.1) cover the entire set of undominated mechanisms for the
principal. Our problem is to characterize which of these mechanisms are
neutral optima for the principal.
One more bit of notation will be useful. For any a in A, we define

(8.6) ai(silti) = . EA ai(Gi,silti).

i1
That 1is, ai(si|ti) is the aggregated shadow price for the constraint that
type t; of individual i should not be tempted to claim to be type S

We can now state the necessary and sufficient conditions that

characterize the principal's neutral optima.
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Theorem 7. An incentive-compatible mechanism u is a neutral optimum for

k ke
the principal if and only if there exist sequences {Ak,a o }k=1 such that
(8.7) )\keQ_H_, akeA, wkeQ, Vk;
k k k k k
(8.8) (Ae)+ ) a (st D)o (€)= T a,(t, s dw (s,)
1 11771 1 1'71'71 1
s.€T s. €T
11 171
= z max L(d,t,kk,ak), theTl, ¥k ;
t T d&eD
-1 -1
. k
(8.9) lim sup w (t, )< U (|t ), ¥t eT..
- 1 1 1 1771

This theorem is proved in Section 9.
To interpret Theorem 7, one must understand equation (8.8). We say that

a veétor w in @ is warranted by A and a (and w(tl) is the warranted claim of

type tl) iff

(8.10) Aty + §V a (s, )t,) w(t,) - ¥ alt,]s,) w(s,)
1 < eT 171771 1 e 1'71 1
1571 *1°%1
= z max L{(d,t,A,a), ¥t eT. .
t €T deD Ll
-1 -1
Lenma 2 in Section 9 asserts that, if w is warranted by some A in Q and a

+

in A, then there exists an extension of I' in which a strong solution gives, to
each type t; of the principal, an expected utility equal to w(tl). Theorem 7
asserts that u is a neutral optimum if and only if there are such warranted

utility allocations for the principal in which no type's warranted claim
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exceeds what it gets from u by more than an arbitrarily small amount.
The following theorem lists some simpler necessary conditions for a

neutral optimum.

Theorem 8. If u is a neutral optimum then there exist X in &,

a in A, and w in 2, such that

(8.11) u is an optimal solution of the primal problem for A,
(8.12) o is an optimal solution of the dual problem for A,
(8.13) w is warranted by A and o,

. L < - = .
(8.14) w(t)) Ul(ultl) and )\l(tl)(w(tl) Ul(ultl)) 0, ¥t,eT,
(8.15) (Z,a) # (0,0).

The proof is deferred to Section 9.

Notice that the conditions of Theorem 8 form a well-determined system, in
the sense of having as many equations as variables. Condition (8.15) is a
nontriviality condition, requiring that at least one component of A or a must
be strictly positive. By (8.11)-(8.13), the primal problem (8.1) determines
u, the dual problem (8.5) determines a, and the warrant equations (8.10)
determine w. Finally, (8.14) gives us as many equations (w(tl) = Ul(u|t1) or
A(tl) = Q) as there are parameters X(tl) to be determined. This suggests a
conjecture that the set of neutral optima may be generically finite.

Examples are known in which there are several neutral optima for the
principal. By the axiomatic definition of neutral optima, no game—theoretic
concept of blocking that satisfies our four axioms can eliminate any of these
neutral optima. Extra—-game-theoretic considerations of history or tradition
may be decisive in determining the principal's selection of a mechanism when

there are wany neutral optima.
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Let us consider the special case mentioned in Section 2, in which the
general incentive constraints (2.6) can be replaced by simpler self-selection
constraints (2.7) and nonnegative-payoff constraints (2.8). In this case, the
Lagrangian coefficients can be written

n

Lede) = (e eyl wy@e) + Loy o)) pyeyle) vy (e

n
T .
+ 11 el p e le) v (d,e)

i=1 sieTi

- izl . ET ai(ti]si) pi(t—i|si) ui(d,(t_i,si)),
i i

where ai,O(ti) is the dual variable for the constraint Ui(ulti) > 0, and
ai(silti) is the shadow price of the constraint that type t; should not expect
to gain by reporting type s;. With this one modification, Theorems 7 and 8
can be adapted to this case.

For example, consider Example 2, in which we saw that My must be the

unique neutral optimum for the principal. To verify the conditions of

Theorem 7, let

k

a2,0 = 5/k.

Ak(la) = 1/k, Ak(lb) =1, a%(la|1b) = a?(lblla) =0,
Then for any k > 3, the warranted claims satisfying (8.8) are wk(la) = 0 and
wX(1b) = 9 + S/k, so

lim wk(la) =0<5=0 [1a),
2
koo

lim wk(lb)

9 =U, (u,|1b).
oroo 172
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9. Proofs

We prove the theorems in the following order: 2, 7, 8, 6, 5, 3 and 4.

Proof of Theorem 2. Let p be a safe and undominated mechanism in the

incentive problem I'm We must show that p is an expectational equilibrium.

Let Vv be any generalized mechanism, and consider a mechanism-selection
game in which the principal must select either m or v. Since p is incentive
compatible given any of the principal's types, we may assume that the
individuals will participate honestly and obediently in u if he selects it.
Let q(tl) denote the probability that the principal selects v if his type is
£y let Q be a normalized likelihood vector corresponding to q, satisfying
(5.2); and let (y,T) denote the participation strategies that the
individuals would use in v. 1In a sequential equilibrium of this mechanism-
selection game, we must have

fl if Wl(v,Y,T|tl,Q) > Ul(u|tl),

) =4

. . | v s N
\O 1f wl(\)’Y ,Tltl,Q) < U1\U|t1),

(9.1) q(t1
and (y,T) must be a Nash equilibrium of v given Q. Condition (5.2) uniquely
determines Q, unless q = 9, in which case any Q in the unit simplex will do.
By a straightforward argument using the Kakutani fixed point theorem, it can
be shown that such a sequential equilibrium (q,Q,y,T) does exist.
This equilibrium of the mechanism—selection game is equivalent to the

direct revelation mechanism n, defined by

n@@e) =ae ) I I tsle) viels) v(dle)) + (1-a(t))) u(dle).

s€T' ceD’

By (9.1), Ul(n,tl) = max {Ul(ultl), Wl(V,Y,Tltl,Q)}. Furthermore, n is
incentive compatible, because u is safe and the individuals are using

equilibrium participation strategies in v given their rational beliefs



...38_.

following its selection. But u is not dominated by any incentive—compatible
mechanism, so Ul(ultl) 2 WI(V,Y,T|t1,Q) for every ty. Thus (y,T,0) support

H as an expectational equilibrium over v. Q.E.D.

We now state and prove three lemmas.

Lemma l. Given any o in A, h in @, and A in Q,,, there is a unique

vector w in € such that

(9.2) (x(tl) + al(s1|t1)yn(t1) -y al(t1|sl) w(s)) = h(t,), ¥tpeT .

171
sleT1 slaT1

Furthermore, the solution w to these linear equations is increasing in the
vector h. (That is, if h'(tl) > h(tl) th, and w' solves (9.2) for h' instead
of h, then w'(tl) > w(tl) th.)

Proof: Suppose first that h(t;) > 0 ¥t;. Let S be the set of all t;

"such that w(tl) > 0. Then summing (9.2) over all t; not in S, we get

y (x(tl) + ) al(sl|t1))w(t1) - ) y o (e [s)) wls)) = y h(t, ).

tlds sles tlds sles tlds

The first term here must be strictly negative, unless S = Tj. (We use here
the fact that every A(tl) > 0, since A€Q+4,) Since the second term is
nonnegative and subtracted, we would have a strictly negative left side equal
to a nonnegative right side, unless S = T;. So if all h(tl) > 0 then all
w(tl) > 0.

Thus there can be no nonzero solutions to (9.2) if h = 0 (since w and —w

would both be solutions). So (9.2) is a system of |T1| independent linear
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equations in |T1| unknowns, and it must have a unique solution w. The fact
that w is componentwise increasing follows from the nonnegativity result of

the preceding paragraph, by linearity. Q.E.D.

Lemma 2. For a given incentive problem I', suppose that a utility
allocation w iIs warranted by some A in Q++ and o in A, Then there

*
exists T, an extension of ', and there exists u , a safe and undominated

— - %
nmechanism in T, such that Ul(u Itl) =<u(t1) for every t;.

Proof: By Lemma 1, there exists some y in ]RT such that
(e + 1 oo Giled)y) = ] e (e ls) ye_,s))
sleT1 sleT1

= max L(d,t,r,a), ¥te T,
deD

We now construct the extension I' by letting
- %
D, = DOlJ {co}, and

J’y(t)/pl(t_lltl) if i=1 and d = c;

- *
ui(d,t) 0 if i#1 and d0 = ¢
*
ui(d,t) if d0 # o

(This definition is the only place where we use the regularity assumption

* *
(2.1) in the theory of neutral optima.) Let ¢ be any outcome with < as its

* * *
enforceable component; and let ¥ be the mechanism such that u (c It) = 1 for

*
every t in T, Then u 1is safe, because the utility payoffs do not depend on
*

type-reports or private actions, as long as the enforceable action <y is

implemented.
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* -
Furthermore, y 1is undominated for the principal in T, because it is an
optimal solution to the (extended) primal problem for A. To show this,

observe that

- - %
2 max L(d,t,A,a) = 2 L{c ,t,),a)
te T - te T
deD

- *
(2 (e +1 ay(sylep) pyte_jle) ujte,e)
teT 5,

= Tyt ls) p (e ls ) a (e’ e s)))
teT

- — *
y At ) pl(t_1|t1) ul(c*,t) = A(t)) U |t1).
te T tET,

(Here L(+) is defined by the analogue of (8.3) for T instead of I'.) Thus,
*

U4  and o respectively are optimal solutions of the primal and dual problems
for A, in the context of the extended game F, because they are feasible for

their respective problems and give equal value to the objective functions.

- %
From the definition of ui(c ,t), it easily follows that

(x ) ) 0" ) 0,
(c) + a (s le) B0 e - a (e ls ) 0,07 ]s))
s, €T s,eT
1771 171
) max L(d,t,\,a), WegET).
t_leT_1 &D

- %
So Ul(u ltl) = m(tl) for every t;, because w is the unique allocation vector
satisfying the warrant equations (8.10).
%* -
Thus u is safe and undominated in T and gives the utility allocation w

to the principal. Q.E.D.
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Lemma 3. Suppose that w is warranted by some A in &, and a in A. Then

v .
w(tl) > L pl(t_lltl) min ul(d,t), ¥t.eT,.

1771
t_leT_1 de D

- % *
Proof. Let T, c., and 4 be as in the proof of Lemma 2. By Theorem 2,

0
%* -
u is an expectational equilibrium in I'. But if w violated the inequality in
%
Lemma 3 for some ty, then this t; could do better than u by selecting any
* *

mechanism that never used the new enforceable action Cgs SO U would not be an

expectational equilibrium. Q.E.D.

Proof of Theorem 7 (Characterization of neutral optima).

Given the incentive problem I', let CI(F) be the set of all w in € such that

there exist A in Q++ and a in A by which w is warranted. Let CZ(F) be the set

of all w in # such that there exists a sequence {wk}z=1 satisfying mksck for

each k and

(9.3) lim sup 0*(t,) < w(t,), ¥t eT,.
>0 1 1 1771

Let BZ(F) be the complement of CZ(F) in §; that is BZ(F) = Q\.CZ(F).

By the Strong Solutions and Extensions axiom, together with Lemma 2, no
allocation in CI(F) can be blocked in T'. Then by the Openness and Domination
axioms, no allocation in CZ(F) can be blocked in T, Thus, B(l')C BZ(F) for
any B(*) that satisfies the four axioms.

We now show that Bz(-), as a blocking correspondence, satisfies the four
axioms. Domination and Openness are straightforward to check (since CZ(F) is
closed and upward—-comprehensive).

To check the Extensions axiom, let T be any extension of I', Let w be any

—_ k —_
allocation in CZ(F), and let {m } be a sequence of allocations in CI(F)

«©
k=1
that satisfies (9.3). Let AK in f,, and a® in A be the parameters that
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A

warrant wk for F, and let wk be the allocation warranted by Xk and ak for T.

Then for every t,,

()\k(tl) +£ a‘;(sl|t1))wk(t1) - é a‘f(tllsl) wk(sl)
1 1

max f(d,t,l,a)
-1 deD

]
t >~

> )  max L(d,t,\,a)

t—l deD

k k “k “k
(A (e +ZS al(slltl))w (t)) —Zsal(tllsl) o (t)),
1 1

since L is the extension of L to the larger domain 5;2 D. Thus, by Lemma 1,
wk(tl) > ;k(tl) for every t;, and so {;k}1=1 is a sequence of allocations in
CI(F) that satisfies (9.3) for w. Thus weCz(F). So CZ(F)QQVCZ(f), and
BZ(I')__C_BZ(I—').

To check the Strong Solutions axiom, suppose that u is safe and
undominated in I'+ There exists some A in Q++ such that y is an optimal
solution of the primal problem for A, Let o be an optimal solution of the
dual problem for A, and let w be the principal'’s allocation warranted by A and
a. By Lemma 2, there is an extension of ' in which some safe and undominated
mechanism u* gives the principal the expected utility allocation w. But u
(extended by giving zero probability to the new outcomes in 5\\D) is still a
safe mechanism in the extension of T, So<n(t1) > Ul(u|t1) for all t;, because
Theorem 1 would require that p could not be incentive compatible given the
types in T, that prefer u strictly over u*, if any such types existed. This
implies that Ul(u)ECZ(F), S0 Ul(u)de(P).

Thus Bz(') is the maximal blocking correspondence that satisfies the four
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%
axioms, and so BZ(F) =B (I'), in the notation of Section 7. Thus u is a
neutral optimum for the principal in ' if and only if Ul(u)de(F), or
equivalently, if and only if Ul(u)ECZ(F). The conditions in Theorem 7

restate the definition of CZ(F). Q.E.D.

Proof of Theorem 8 (Necessary conditions for a neutral optimum).

Let {Ak,ak,wk}z=1

satisfy the conditions of Theorem 7 for the neutral optimum
H. Since the warrant equations (8.8) are linearly homogeneous
in kk and ak, we may assume without loss of generality that each

(Ak,ak) pair is in some closed and bounded set that excludes (9,9)
in Q+ x A, (For example, we could require that HAkH + Hakﬂ =1 w%k.)
Choosing a subsequence if necessary, we can also assume that
the {kk} and {ak} sequences are convergent to some (X,a) such that

,a) # (9,9). By Lemma 3 and (8.9), the {wk} sequence is also bounded, so
we can also assume that it is convergent to some limit w. By summing (8.8)
over all t;, wet get

) xk(tl) wk(tl) = 7 max L3, 505), k.

tleT1 teT deD

Then taking limits as k+*~ and applying (8.9), we get w(tl) < Ul(ultl) th, and

(9.4) ) A(t)) Ul(u|t1) > M) e(e)) = ) max L(d,t,\,a).

tleT1 tleT1 teT deD

But u is feasible in the primal for A, and o is feasible in the dual for A.
So by duality theory, n and o are optimal solutions of the primal and dual
problems for A, respectively, and the inequality (9.4) must be an equality,

(9.5) ) At w(t)) = N A(t)) Ul(ultl),

tleT1 tleT1
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Equation (9.5) implies the complementary slackness conditions in (8.14), since

each X(tl) > 0). The limit of (8.8) gives us (8.13). Q.E.D.

Proof of Theorem 6 (Existence of neutral optima). To prove the existence

of neutral optima, we begin with some definitions. TLet A be the unit simplex
inf2 = R °,

A = {xeﬂ+| ¥ A(t)) = 1}.

tlE:T1

For any k larger than ]T1|, let

A* = {XeAlA(tl) > 1/k, theTl}.

We let F denote the set of all incentive-compatible mechanisus for T.

There exists a compact convex set A* such that A*SEAA and, for each
A in A, A* contains at least one optimal solution of the dual problem for A.
To prove this fact, observe that F, the feasible set of the primal problem, is
compact and independent of A. So the simplex A can be covered by a finite
collection of sets (each set corresponding to the range of optimality of one
basic feasible solution in the primal) such that, within each set, an optimal
solution of the dual can be given as a linear function of A. Each of these
linear functions is bounded on A, so we can let A* be the convex hull of the
union of the ranges of these linear functions on A.

For any k greater than |T1|, we now define a correspondence

% %
Zk:FXA xAk = FxA XAk so that (u",a",k")ezk(u',a',k') iff

p" is an optimal solution of the primal for A';

a" is an optimal solution of the dual for A'; and
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A" = 1/k for each t such that

w'(t)) - U ) < max @'(s)) - U AUNLIDP

sleT1

where w' is the allocation warranted by A' and o'

That is, A" must put as much weight as possible on the types whose claims
warranted by A' and o' most exceed their actual allocation from u'.
By the Kakutani fixed point theorem, for each k there exists

some (uk,ak Xk) such that

(u k k Xk)ezk( k k k).

Since this sequence of fixed points is in a compact domain, we can choose a
*
convergent subsequence, converging to some (u,a,A) in FxA xA, We now show
that this u is a neutral optimum for the principal in the incentive problem T.
k

Let w~ be the principal's allocation that is warranted by Xk and ak.

By the warrant equations and duality theory (as in (9.5)),

I afepefep = 1 ke e,

tleT1 tleT1

For any ts if wk(tl) < Ul(uklt ) then Ak(tl) = 1/k. So for any ty,

1

if lim inf 0(t)) < U Gi]t)) then 1imA"(t)) =
k> k>

Now suppose that there were some s in T such that
. k
lim sup w &1)>U1mlsp lnnU(u|sp.
koo ko
Then we could find some such sy for which A(sl) > 0 also. But then
0 < 1lim sup Ak(s )(wk(s ) - U (uk|s ))
K> 1 1 1 1

= lim sup ) A (t )(U (u It ) —w (t )) 0,
k> tl¢sl
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which is impossible. $So no such s can exist, and so for every t

lim sup wk(tl) < Ul(ultl).
k>

20

k k k
Thus {X »O L0 }k=1

satisfy the conditions of Theorem 7 for u. Q.E.D.

Proof of Theorem 5. We must show that expectaticnal equilibria and core

mechanisms can both be characterized as the set of incentive-—compatible
mechanisms that give "unblocked” allocations, in terms of some blocking
concepts that satisfy the four axioms.

Given an incentive problem I', we define BC(F) so that msBC(F) iff there
exists some mechanism Vv and some nonempty set R such that R S;T&,
w(tl) < Ul(Vltl) for every t; in R, and v is incentive compatible given S,
for every S such that RC S T;. Thus u is a core mechanism if and only if
is incentive compatible and Ul(u)dBC(P). It is straightforward to check that
BC(-) satisfies the Domination and Openness axioms. The Extensions axiom
holds, because any mechanism that is incentive compatible given S in T is also
incentive compatible-given S in any extension of I'. By Theorem 1, strong
solutions are core mechanisms, so BC(-) satisfies the Strong Solutions
axiom. So BC(F)§; B*(F), and every neutral optimum is a core mechanism.

We define BE(P) so that wsBE(F) iff there exists some mechanism v such
that, for every (Y,t,Q) , if (y,7) is a Nash equilibrium of v given Q then
there exists some t; in T; such that m(tl) < Wl(v,Y,Tltl,Q). Thus, B is an
expectational equilibrium if and only if Ul(u)dBE(F). By Theorem 2,

BE(') satisfies the Strong Solutions axiom. The Extensions axiom holds
because if (y,T) is a Nash equilibrium for v given Q in I' then the same is
true in any extension of I' (since the extension differs from I' only by the

addition of new enforceable actions which v does not use). The Domination
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axiom is obvious for BE(-).
To prove that BE(F) is open, we show that the complement is closed.

kye .
Suppose that {w } is a sequence of allocations that are not in BE(F) and

k=1
that converge to some w. Given any v, for every k there exists some
normalized-likelihood vector Qk and some Nash equilibrium (Yk,Tk) for v given
Qk, such that wk(tl) > wl(v,Yk,Tkltl,Qk) for every t). Choosing a
subsequence if necessary, the (Yk,rk,Qk) converge to some (y,T,Q) such that
(y,t) is a Nash equilibrium for v given O and w(tl) > Wl(v,Y,TItl,Q) for
every t,. This construction is possible for every v, so deE(F).

E
Thus B (*) satisfies all four axioms, and any neutral optimum is an

expectational equilibrium. Q.E.D.

Proof of Theorems 3 and 4. By Theorem 6, a neutral optimum exists. By

Theorem 5, a neutral optimum is a core mechanism and an expectational
equilibrium. So there exists a core mechanism and an expectational

equilibrium,
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