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ABSTRACT

Given an n, n matrix A and an n-dimensional vector q let
N(A,q) be the cardinality of the set of solutions to the linear
complementarity‘problem defined by A and q. It is shown that if
A is nondegenerate then N(A,q) + N(A,-q) < 2n, which in turn
implies N(A,q) < 2%-1 if A is also a Q-matrix.

It is then demonstrated that min N(A,q) < 2n-1_1’ which
concludes that the complementary cgigs cannot span R™ more than
2n-1_1 times around. For any n, an example of an nx n nondegenerate

3]

Q-matrix spanning all Rp, but a subset of empty interior, 2[3 times

around is given.



Given a square real matrix A of order n and an n-dimensional
vector q, the Linear Complementarity Problem, (LCP),denoted by

(q,A), is to find n-dimensional vectors x and y safisfying
y=4ax+4q,x20,y20 x’y =0 (1)

(See [3,5,6,7] for the bibliography and history of the LCP.)

Letting N(A,q) be the cardinality of the set of solutions to
(q,A) we study the quantities N*(A) = max N(A,q) and N (A) = min

qk" - 0 0FqR"

N(A,q) and establish bounds on both.The latter quantity has the fol-
lowing geometrical interpretation. If we consider the 20 comp lemen-
tary cones generated by the columns of [I,-A], (see [8]), then N¢(A)
is the number of times R" is spanned around by these cones.

This study shows that this (spanning) number is bounded above

n-l_l‘

by 2 if the matrix A is nondegeneréte, i.e. all its principal

minors are nonzero. For any n, an example of an n,n nondegenerate
matrix spanning all Rn, but a subset of empty interior, 2[%] times
around is given.

It is also demonstrated that the nondegeneracy of A implies
N(A,q) + N(A,-q) < 2" for all q. Thus, if A is a Q-matrix (1 e.
N(A,q) > 1 for all q) then N¥(A) < 2%-1.

This work was motivated by a conjecture due to Ingleton [4] and
Censor [1]. Studying nondegenerate matrices Ingleton showed that
if for some q* (q¥*j;A) has a unique solution (x*,y*) and x* + y*
is strictly pésitive; then A is a Q-matrix. "(Extéﬁsions of this
result appear in [5,8,9,10]). Ingleton conjeétured that under the

above conditions the maximal number of solutions to (q,A) is 2%-1,

provided that N(A,q) > 1 for some q.



The conjecture was studied and partially resolved by Censor, [1],
who also raised the following general question: Given an n,n nondegen-
erate Q-matrix A and supposing that N(A,q) > 1 for some q, is the
maximal number of solutions to (1) 2%-1 for all q in rR™?

The following result demonstrates that 2™-1 is indeed a valid

bound. (We later show that the bound is not necessarily attained.)

Lemma 1: Let A be an nyn matrix such that N(A,q) > 1 for all q < O.

Then for any q N(A,q) < = implies .N(A,q) < 2.1,

Proof:
For any I < {1,2,...,n} consider the (complementary) cone gener-

ated by the n columns -A-i, i€l and e; iéf; where A-1 is“the ith

column of A and e; is the ith unit vector. Note that the correspon-

dence between subsets of {1,2,...,n} and the complementary cones

is not necessarily one to one.

It is obvious that if there are two different solutions to (2)

y=Ax+q,x >0, y >0, xy =0, x; > 0 iel
and x; =0 14T (2)
for some I < {1,...,n} then N(A,q) is not finite. (Consider convex

combinations of these two solﬁtiohs.)

Hence, if N(A,q) is finite each set I c¢{1,2,...,n} contributes
at most one solution to (q,A) and N(A,q) S 2", 1f q # 0, then the
cone defined by I = @ does not contribute a solution and N(A,q) < 2.1,
Note that N(A,0) is finite only if N(A,0) = 1. Consider now a non-

zero, nonnegative q. By the lemma's assumption (-q,A) has a solution.



Defining a cone to be nondegenerate if it has a nonempty in-
terior, we observe that the union of all the degenerate comple-
mentary cones and the (proper) faces of the nondegenerate cones is
closed and no where dense in R®. Thus there exists a sequence {qk},
converging to -q where vk qk < 0 and qk belongs to a nondegenerate
cone. Since there is a finite number of complementary cones we can
assume without loss of generality (choose a subsequence if neces-
sary) that vk qk belongs to the same nondegenerate cone. Hence -q
is in that cone. It is then clear that q is not contained in this
nondegenerate cone, since otherwise we would have that the n
generators are linearly dependent ~ a contradiction to the nondegen-
eracy assumption. Hence N(A,q) < 211,

From Lemma 1 N*(A) < 2%-1 for any nondegenerate Q-matrix A.
Censor, [1], provided an example of an nyn nondegerate Q-matrix,
(which we denote by An)’ such that N*(An)= 2.1, Murty, (87,

illustrated that the matrix

B B
-1 2 2
M= 2 -1 2
2 2 -1 (3)

is a nondegenerate Q-matrix and N*(M) = 4. Combining the above two
illustrations and using the direct sum operation we show that for
each n 2"-1 is not always a sharp bound.

Recalling that the direct sum of the square matrices A and 3B,
A B, is given by '

| A 0

APB =

-0 B



we notice that
_ 1 2
N(A@®B,q) = N(A,q") N(B,q") (4)
1 2, . . I
where (q ,q ) is the corresponding partition of q.

Lemma 2: Given nonnegative integers n, r, t, such that 3t+r <n

there exists an n,n nondegenerate Q-matrix A such that N¥*(A) =

4% max{1,2%-13%.

Proof: Define A = &U;l;j£23955> A I,-3t-p> Where M is given by (3),
v o

Ar is the above mentioned matrix due to Censor [1] and In-3t-r is

the identity of order n-3t-r.

Having established an upper bound on N(A,q), we next turn to the
lower bound question and prove that if A is an ﬁxn nondegenerate
Q-matrix then min N(A,q) < 2n-1-1, provided n > 2.

q#0
Lemma 3: Let A be an nyn matrix and q ¢ R®, If N(A,q) + N(A,-q) < e,
then N(A,q) + N(A,-q) < 20, | ’ '

Proof:

If q = 0, then N(A,0) < « implies N(A,0) = 1. Thus consider
q# 0. Let I c {1,2,;..,ﬁ}, then we show that the complementary cone
corresponding to I does not contain both q and -q. This will prove
the lemma. Observe first that if the cone corresponding to I is
nondegenerate, i.e. has an interior, then q # 0 implies that the
cone cannot contain both q and -q. Suppose that there exists a

cone C containing qand -q. Let B be an n,n matrix corresponding to
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the n generators of C, then Bx1 = q and sz = ~-q for some xl >0

1

and x2 > 0. Hence vt > 0 B[ (l+t)x™ + tx2]‘= q and there exists a

(complementary) ray of solutions - a contradiction to N(A,q) < .

Note that Lemma 3, which has been proved independently of

Lemma 1, also implies that N(A,q) < 2.1 for any nondegenerate
n,n Q-matrix. Another consequence is that min N(A,q) < 2n-1.
q70

We now refine this bound to 2n-1-1, applying a result due to

Murty [8].

Theorem 4: Let A be an n,n nondegenerate matrix.

Then min N(4,q) < 2% 1.1 when n Z 2.
q#0

Proof:

n-1

From Lemma 3 it follows that min N(A,q) < 2 Suppose that

n-1 q70

for all q # 0 N(A,q) = 2 We fhen'apply Theorem (7.2) of

[8] to have N(A,q) = 1 for all q. Hence the proof is complete;

Theorem 4 concludes that the complementary cones cannot span

D-1_7 times around. This bound is trivially

the space R™ more than 2
attained for 2x2 Q-matrices.

Finally we show that for any n > 3 there exists an n;,n non-
degenerate Q-matrix A such that the complementary cones defined by
(3]

the columns of [I,~A] span RT-R(A) 2 3

times around, where R(A) is
a subset of R'with empty interior.
To define R(A) precisely, we recall that q in R" is said to

be nondegenerate with respect to the n,n matrix A if for any (x,y)
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solving (q,A) x + y is a strictly positive vector (i.e. q is neither
contained in a complementary cone with no interiorvnor in a proper
face of a nondegenerate cone). ¢ is degenerate if it is not non-
degenerate. R(A) is defined as the set of vectors in R that are
degenerate with respect to A.

We need the following lemma for our discussion.

Lemma 5: Let A be an n,n nondegenerate matrix and consider q in
R™ which is not contained in any face of dimension less than n-1
of a complementary cone defined by the columns of [I,-A]. Then,

¥ € > 0 there exist nondegenerate vectors P1 and P2 such that

I et-qll <€, |IP*-q|| < € and N(A,q) = IN(a,P1) + N(a,P?) 1.

Eroof:

If q itself is nondegenerate choose pl = P2 = q.

Suppose that q is contained in the intersection of k differnet
(n-1) dimensional faces Ci""’Ck of complementary cones but not
in any face of a lower dimension. Choose € > 0 such that S(q,€) =
{x] || x~q|| < €} is contained in any complementary cone having q
in its interior, and such that each complementary cone having one of
Cl""’Ck as it; (n-1) dimensional face contains the corresponding
"half" ball chopped off by that face, € is well defined since each
complementary cone is nondegenerate and q is not in any face of

dimension less than n-1.



Let uR", ffull < €, such that q + u and q - u are nondegenerate

L q + u and P2 = q - u are on opposite

vectors. We then have that P
sides of each Ci’ i=1l,...,k. Also, P1 and P2 are contained in any
complementary cone having q in its interior.

Consider the ith face Ci; and let ts be the number of different
complementary cones having Ci as their face. Using the assumption
that q is noton a face of dimension less than n - 1 we may suppose,
without loss of generality, that ?i cones, 0 < Fi < t; contain pl
and t; - ?i contain PZ.

Let Ti (Ti-Ti) be the cardinality of the set of solutions to
(Pl,A) ((P2,A)) corresponding to the ébove ?i(ti-fi) cones. (Note
that we introduce Ti and Ti since the correspondence of subsets of
{1,2,...,n} to the different complementary cones is not injective.)
Note that Ti is even by the nondegeneracy assumption. Thus the

T.
t; cones contribute 7% solutions to (q,A4), Ti solutions to (Pl,A)

1

and T, - Ti solutions to (P2,A). Noting that P™ and P% are on oppo-

site sides of each Ci’ i=1l,...,k and denoting by r the number of

nondegenerate solutions to (q,A) we have

T,
e

2

N
-
N

N(A,Pl) =r +

Ti’ N(A,Pz) =r +
i )

= (Ti-'l_‘i) and N(A,q) = r +

i 1

1 1 i

Hence N(4,q) = %[N(A,Pl) + N(A,Pz)] and the proof is complete.

Dealing with the 3,3 matrix M defined in (3), Murty [8]
claims that N(M,q) is positive and even for all ﬁondegenerate q.
Lemma 5 and a_simble inspection of the six generators of [I,-M]

show that N(M,q) > 2 for all q # 0. Clearly N(M,0) = 1.



s
Let M be given by (3) and define M(J) =M@ . .M, 1If q is

k|
in R3J then we have q = (ql,qz,...,q ), where q , 1 <t <j, is in

R3. We then observe that for qeR3J

such that q # 0, t=1,...,]
NM3),q) > 27, and that {q]q" = 0 for some 1 <t <} is (strictly)
contained in R(M(J)), the set of degenerate vectors corresbonding to

M(j). Thus the following theorem is implied:.

Theorem 6:
For any n > 3 there exists an n,n nondegenerate Q-matrix A

such that N(A,q)EZ[%j for any q in Rn—B,_where B is a subset of R(A),
the set of degenerate vectors corresponding to A. 7
Finally, while noting that for j > 2 N(M(j),el) = 2 where
e, = (1,0,...,0)1 we conclude that Lemma 5 does not hold for all q # O.
In fact, the above illustrates that if q is contained in a face of
dimension less than n-1, where n is the order of the matrix A, the

existence of nondegenerate vectors P1 and P2 such that N(A,Pl) <

N(A,q) < N(A,Pz) is not guaranteed.
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