Discussion Paper No. 162 ON THE NUMBER OF SOLUTIONS TO THE LINEAR COMPLEMENTARITY PROBLEM

Ъу

Arie Tamir

July 1975 (Revised)

ABSTRACT

Given an n_x n matrix A and an n-dimensional vector q let N(A,q) be the cardinality of the set of solutions to the linear complementarity problem defined by A and q. It is shown that if A is nondegenerate then $N(A,q) + N(A,-q) \le 2^n$, which in turn implies $N(A,q) \le 2^n-1$ if A is also a Q-matrix.

It is then demonstrated that $\min_{q\neq 0} N(A,q) \leq 2^{n-1}-1$, which $q\neq 0$ concludes that the complementary cones cannot span R^n more than $2^{n-1}-1$ times around. For any n, an example of an n_x n nondegenerate Q-matrix spanning all R^n , but a subset of empty interior, $2^{\left[\frac{n}{3}\right]}$ times around is given.

Given a square real matrix A of order n and an n-dimensional vector q, the Linear Complementarity Problem, (LCP), denoted by (q,A), is to find n-dimensional vectors x and y satisfying

$$y = Ax + q, x \ge 0, y \ge 0$$
 $x'y = 0$ (1)

(See [3,5,6,7] for the bibliography and history of the LCP.)

Letting N(A,q) be the cardinality of the set of solutions to (q,A) we study the quantities $N^*(A) = \max_{q \in \mathbb{R}^n} N(A,q)$ and $N_*(A) = \min_{q \in \mathbb{R}^n} 0 \neq q \in \mathbb{R}^n$ N(A,q) and establish bounds on both. The latter quantity has the following geometrical interpretation. If we consider the 2^n complementary cones generated by the columns of [1,-A], (see [8]), then $N_*(A)$ is the number of times \mathbb{R}^n is spanned around by these cones.

This study shows that this (spanning) number is bounded above by $2^{n-1}-1$ if the matrix A is nondegenerate, i.e. all its principal minors are nonzero. For any n, an example of an n_x n nondegenerate matrix spanning all R^n , but a subset of empty interior, $2^{\left[\frac{n}{3}\right]}$ times around is given.

It is also demonstrated that the nondegeneracy of A implies $N(A,q) + N(A,-q) \le 2^n$ for all q. Thus, if A is a Q-matrix (i.e. $N(A,q) \ge 1$ for all q) then $N*(A) \le 2^n-1$.

This work was motivated by a conjecture due to Ingleton [4] and Censor [1]. Studying nondegenerate matrices Ingleton showed that if for some q^* (q^* , A) has a unique solution (x^* , y^*) and $x^* + y^*$ is strictly positive, then A is a Q-matrix. (Extensions of this result appear in [5,8,9,10]). Ingleton conjectured that under the above conditions the maximal number of solutions to (q,A) is 2^n -1, provided that $N(A, \overline{q}) > 1$ for some \overline{q} .

The conjecture was studied and partially resolved by Censor, [1], who also raised the following general question: Given an n_x n nondegenerate Q-matrix A and supposing that $N(A, \overline{q}) > 1$ for some \overline{q} , is the maximal number of solutions to (1) 2^n -1 for all q in R^n ?

The following result demonstrates that 2ⁿ-1 is indeed a valid bound. (We later show that the bound is not necessarily attained.)

<u>Lemma 1</u>: Let A be an n_x n matrix such that $N(A,q) \ge 1$ for all $q \le 0$. Then for any q $N(A,q) < \infty$ implies $N(A,q) \le 2^n-1$.

Proof:

For any $I \subseteq \{1,2,\ldots,n\}$ consider the (complementary) cone generated by the n columns $-A \cdot i$, $i \in I$ and $e_i \in \overline{I}$, where $A \cdot i$ is the i^{th} column of A and e_i is the i^{th} unit vector. Note that the correspondence between subsets of $\{1,2,\ldots,n\}$ and the complementary cones is not necessarily one to one.

It is obvious that if there are two different solutions to (2)

$$y = Ax + q, x \ge 0, y \ge 0, x'y = 0, x_i > 0 i \in I$$

and $x_i = 0 i \notin I$ (2)

for some $I \subseteq \{1,...,n\}$ then N(A,q) is not finite. (Consider convex combinations of these two solutions.)

Hence, if N(A,q) is finite each set I \subseteq {1,2,...,n} contributes at most one solution to (q,A) and N(A,q) \leq 2ⁿ. If q $\not\geq$ 0, then the cone defined by I = \emptyset does not contribute a solution and N(A,q) \leq 2ⁿ-1. Note that N(A,0) is finite only if N(A,0) = 1. Consider now a non-zero, nonnegative q. By the lemma's assumption (-q,A) has a solution.

Defining a cone to be nondegenerate if it has a nonempty interior, we observe that the union of all the degenerate complementary cones and the (proper) faces of the nondegenerate cones is closed and no where dense in \mathbb{R}^n . Thus there exists a sequence $\{q^k\}$, converging to -q where $\forall k \ q^k \leq 0$ and q^k belongs to a nondegenerate cone. Since there is a finite number of complementary cones we can assume without loss of generality (choose a subsequence if necessary) that $\forall k \ q^k$ belongs to the same nondegenerate cone. Hence -q is in that cone. It is then clear that q is not contained in this nondegenerate cone, since otherwise we would have that the n generators are linearly dependent - a contradiction to the nondegeneracy assumption. Hence $\mathbb{N}(A,q) \leq 2^n$ -1.

From Lemma 1 N*(A) $\leq 2^n$ -1 for any nondegenerate Q-matrix A. Censor, [1], provided an example of an n_x n nondegerate Q-matrix, (which we denote by A_n), such that N*(A_n)= 2^n -1. Murty, [8], illustrated that the matrix

$$M = \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$
 (3)

is a nondegenerate Q-matrix and N*(M) = 4. Combining the above two illustrations and using the direct sum operation we show that for each n 2^n-1 is not always a sharp bound.

Recalling that the direct sum of the square matrices A and B, A \oplus B, is given by

$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

we notice that

$$N(A \oplus B,q) = N(A,q^{1}) N(B,q^{2})$$
(4)

where (q^1,q^2) is the corresponding partition of q.

<u>Lemma 2</u>: Given nonnegative integers n, r, t, such that $3t+r \le n$ there exists an n_x n nondegenerate Q-matrix A such that $N*(A) = 4^t \max\{1,2^r-1\}$.

<u>Proof:</u> Define $A = \underbrace{M + ... + M}_{t} + A_{r} + I_{n-3t-r}$, where M is given by (3),

 A_r is the above mentioned matrix due to Censor [1] and I_{n-3t-r} is the identity of order n-3t-r.

Having established an upper bound on N(A,q), we next turn to the lower bound question and prove that if A is an n_x n nondegenerate Q-matrix then $\min_{q\neq 0} N(A,q) \leq 2^{n-1}-1$, provided $n \geq 2$.

Lemma 3: Let A be an n_x n matrix and $q \in R^n$. If $N(A,q) + N(A,-q) < \infty$, then $N(A,q) + N(A,-q) \le 2^n$.

Proof:

If q=0, then $N(A,0)<\infty$ implies N(A,0)=1. Thus consider $q\neq 0$. Let $I\subseteq\{1,2,\ldots,n\}$, then we show that the complementary cone corresponding to I does not contain both q and -q. This will prove the lemma. Observe first that if the cone corresponding to I is nondegenerate, i.e. has an interior, then $q\neq 0$ implies that the cone cannot contain both q and -q. Suppose that there exists a cone C containing q and -q. Let B be an n_x n matrix corresponding to

the n generators of C, then $Bx^1 = q$ and $Bx^2 = -q$ for some $x^1 \ge 0$ and $x^2 \ge 0$. Hence $\forall t \ge 0$ B[(1+t) $x^1 + tx^2$] = q and there exists a (complementary) ray of solutions - a contradiction to N(A,q) < ∞ .

Note that Lemma 3, which has been proved independently of Lemma 1, also implies that N(A,q) $\leq 2^n$ -1 for any nondegenerate n_χ n Q-matrix. Another consequence is that min N(A,q) $\leq 2^{n-1}$.

We now refine this bound to $2^{n-1}-1$, applying a result due to Murty [8].

Theorem 4: Let A be an n_x n nondegenerate matrix. Then $\min_{q\neq 0}$ N(A,q) $\leq 2^{n-1}$ -1 when $n\geq 2$.

Proof:

From Lemma 3 it follows that min $N(A,q) \le 2^{n-1}$. Suppose that for all $q \ne 0$ $N(A,q) = 2^{n-1}$. We then apply Theorem (7.2) of [8] to have N(A,q) = 1 for all q. Hence the proof is complete.

Theorem 4 concludes that the complementary cones cannot span the space \mathbb{R}^n more than $2^{n-1}-1$ times around. This bound is trivially attained for 2_x 2 Q-matrices.

Finally we show that for any $n \ge 3$ there exists an n_x n non-degenerate Q-matrix A such that the complementary cones defined by the columns of [I,-A] span R^n -R(A) $2^{\left[\frac{n}{3}\right]}$ times around, where R(A) is a subset of R^n with empty interior.

To define R(A) precisely, we recall that q in \mathbb{R}^n is said to be nondegenerate with respect to the n_χ n matrix A if for any (x,y)

solving $(q,A) \times + y$ is a strictly positive vector (i.e. q is neither contained in a complementary cone with no interior nor in a proper face of a nondegenerate cone). q is degenerate if it is not non-degenerate. R(A) is defined as the set of vectors in R^n that are degenerate with respect to A.

We need the following lemma for our discussion.

<u>Lemma 5</u>: Let A be an n_x n nondegenerate matrix and consider q in R^n which is not contained in any face of dimension less than n-1 of a complementary cone defined by the columns of [I,-A]. Then, $\forall \ \in \ >0$ there exist nondegenerate vectors P^1 and P^2 such that

$$||P^{1}-q|| < \epsilon$$
, $||P^{2}-q|| < \epsilon$ and $N(A,q) = \frac{1}{2}[N(A,P^{1}) + N(A,P^{2})]$.

Proof:

If q itself is nondegenerate choose $P^1 = P^2 = q$.

Suppose that q is contained in the intersection of k differnet (n-1) dimensional faces C_1, \ldots, C_k of complementary cones but not in any face of a lower dimension. Choose $\epsilon > 0$ such that $S(q, \epsilon) = \{x \mid ||x-q|| \leq \epsilon\}$ is contained in any complementary cone having q in its interior, and such that each complementary cone having one of C_1, \ldots, C_k as its (n-1) dimensional face contains the corresponding "half" ball chopped off by that face ϵ is well defined since each complementary cone is nondegenerate and q is not in any face of dimension less than n-1.

Let $u \in \mathbb{R}^n$, $||u|| < \epsilon$, such that q + u and q - u are nondegenerate vectors. We then have that $P^1 = q + u$ and $P^2 = q - u$ are on opposite sides of each C_i , $i=1,\ldots,k$. Also, P^1 and P^2 are contained in any complementary cone having q in its interior.

Consider the ith face C_i , and let t_i be the number of different complementary cones having C_i as their face. Using the assumption that q is not on a face of dimension less than n-1 we may suppose, without loss of generality, that \overline{t}_i cones, $0 \le \overline{t}_i \le t_i$ contain P^1 and $t_i - \overline{t}_i$ contain P^2 .

Let \overline{T}_i $(T_i - \overline{T}_i)$ be the cardinality of the set of solutions to (P^1,A) $((P^2,A))$ corresponding to the above $\overline{t}_i(t_i - \overline{t}_i)$ cones. (Note that we introduce T_i and \overline{T}_i since the correspondence of subsets of $\{1,2,\ldots,n\}$ to the different complementary cones is not injective.) Note that T_i is even by the nondegeneracy assumption. Thus the t_i cones contribute $\frac{T_i}{2}$ solutions to (q,A), \overline{T}_i solutions to (P^1,A) and $T_i - \overline{T}_i$ solutions to (P^2,A) . Noting that P^1 and P^2 are on opposite sides of each C_i , $i=1,\ldots,k$ and denoting by r the number of nondegenerate solutions to (q,A) we have

$$N(A,P^1) = r + \sum_{i=1}^{k} \overline{T}_i, N(A,P^2) = r + \sum_{i=1}^{k} (T_i - \overline{T}_i) \text{ and } N(A,q) = r + \sum_{i=1}^{k} \frac{T_i}{2}$$

Hence $N(A, \bar{q}) = \frac{1}{2}[N(A, P^1) + N(A, P^2)]$ and the proof is complete.

Dealing with the 3_x 3 matrix M defined in (3), Murty [8] claims that N(M,q) is positive and even for all nondegenerate q. Lemma 5 and a simple inspection of the six generators of [I,-M] show that N(M,q) \geq 2 for all q \neq 0. Clearly N(M,0) = 1.

Let M be given by (3) and define $M^{(j)} = \underbrace{M + \ldots + M}_{j}$. If q is in R^{3j} then we have $q = (q^1, q^2, \ldots, q^j)$, where $q^t, 1 \le t \le j$, is in R^3 . We then observe that for $q \in R^{3j}$ such that $q^t \ne 0$, $t=1,\ldots,j$ $N(M^{(j)},q) \ge 2^j$, and that $\{q \mid q^t = 0 \text{ for some } 1 \le t \le j\}$ is (strictly) contained in $R(M^{(j)})$, the set of degenerate vectors corresponding to $M^{(j)}$. Thus the following theorem is implied.

Theorem 6:

For any $n \ge 3$ there exists an n_x n nondegenerate Q-matrix A such that $N(A,q) \ge 2^{\left[\frac{n}{3}\right]}$ for any q in R^n -B, where B is a subset of R(A), the set of degenerate vectors corresponding to A.

Finally, while noting that for $j \geq 2$ $N(M^{(j)}, e_1) = 2$ where $e_1 = (1,0,\ldots,0)^1$ we conclude that Lemma 5 does not hold for all $q \neq 0$. In fact, the above illustrates that if q is contained in a face of dimension less than n-1, where n is the order of the matrix A, the existence of nondegenerate vectors P^1 and P^2 such that $N(A,P^1) \leq N(A,q) \leq N(A,P^2)$ is not guaranteed.

References

- [1] Y. Censor, "On the maximal number of solutions of a problem in linear inequalities," <u>Israel J. Math.</u> 9, (1971).
- [2] R. W. Cottle, "Solution rays for a class of complementarity problems," to appear in <u>Mathematical Programming Studies</u>.
- [3] R. W. Cottle and G. B. Dantzig, "Complementary pivot theory of mathematical programming," <u>Linear Algebra and its Appl.</u>, 1 (1968), 103-125.
- [4] A. W. Ingleton, "A problem in linear inequalities,"

 <u>Proc. London Math. Soc.</u>, Third Series, 16, (1966), 519-536.
- [5] S. Karamardian, "The Complementarity Problem," <u>Mathematical</u> <u>Programming</u>, 2 (1972), 107-129.
- [6] C. E. Lemke, "Bimatrix equilibrium and mathematical programming," <u>Management Science</u>, 11 (1965), 681-689.
- [7] , "Recent results on complementarity problems," in J. B. Rosen, O. L. Mangasarian and K. Ritter, eds., Nonlinear Programming, Academic Press, New York, 1970, pp.349-384.
- [8] K. G. Murty, "On the number of solutions to the complementarity problem and spanning properties of complementary cones,"

 <u>Linear Algebra and its Appl.</u>, 5, (1972), 65-108.
- [9] R. Saigal, "A characterization of the constant parity property of the number of solutions to the linear complementarity problem," <u>SIAM J. Appl. Math.</u> 23, (1972), 40-45.
- [10] A. Tamir, "On the complementarity problem of mathematical programming," Doctoral dissertation, Case Western Reserve University, 1973.