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ABSTRACT

It is a paradoxical feature of Diamond’'s (1971) search model that the market
equilibrium does not approach the Betrand outcome in the limit as the search
cost becomes arbitrarily small. We show that the Diamond equilibrium is not the
limit of the equilibrium with noisy search as the amount of noise goes to zero.
Specifically, we demonstrate that if the sequential search technology is
replaced by a noisy search technology, the market equilibrium converges to the
competitive one when the search cost goes to zero even for an arbitrarily small
amount of noise.
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Introduction

The Bertrandk model of price competition for a homogeneous product
predicts the ‘competitive’ outcome in which firms’' profits are zero.
This 1is subject to the caveat that consumers are perfectly informed
about each firms’ price. A well-known result due to Diamond (1971)
states that if consumers search sequentially and incur a positive cost,
however small, to receive a price quotation, the monopoly outcome
obtains no matter how large the number of firms is. It is a paradoxical
feature of this result that the market equilibrium does not approach the
Bertrand outcome in the 1limit as the search cost becomes arbitrarily
small.

In response to the preceding there has arisen a large literature
which demonstrates the existence of market equilibria characterized by
price disperesion on the supply side and costly search on the demand
side. While most models of this genre require heterogeneity of buyers,
sellers or both, Burdett and Judd (1983) (B-J) have demonstrated that
price dispersion persists even when all agents are identical if some
‘noise’ 1is introduced into the sequential search technology.!
Specifically, price dispersion 1is the only equilibrium if there is a
positive probability less than one that the payment of a search cost

elicits more than one price. For example, the search cost may represent

1B-J present two different search models, namely noisy search and
non-sequential search. The reference is to the former.



the buyer’s time and expense involved in driving to the shopping mall.
Once she has incurred this cost and arrived at the mall, however, the
buyer may observe the same item on display at different shops.
Alternatively, thg search cost may be the cost of buying a newspaper
which reports the érices of a random number of sellers. Moreover, B-J
show that the perfectly competitive outcome obtains if this probability
is one, i.e., the competitive outcome is sustainable even if buyers are
imperfectly informed as long as each observes at least two prices.

The primary purpose of this paper 1is to show that the Diamond
equilibrium is not the limit of the market equilibrium with noisy search
as the amount of noise goes to =zero. Specifically, we show that
whenever there is a positive probability, however small, that a randomly
selected price sample contains more than one price, the market
equilibrium is arbitrarily near the Bertrand outcome as search costs
become sufficiently small. We achieve this by providing a dynamic model
of noisy search which explicitly takes into account that search is time
consuming and firms may want to change prices during the course of
consumer search. In each period a consumer may pay for one price
sample, containing a random number of prices, and firms post new prices
which are binding for that period only. We analyze both a finite
horizon search problem, and the infinite horizon problem and show the
following: Let 1-q, 0 < q <1, be the probability that more than one
price 1is elicited upon payment of the search cost. Then in the case of

the finite horizon, as the number of periods becomes arbitrarily large,



there exists for every q, arbitrarily close to 1, a region of
sufficiently small search costs for which the average market price is
arbitrarily near the competitive (Bertrand) price. 1In the case of the
finite horizon, the equilibrium (non degenerate) price distribution is
not stationary over time, but converges to a unique stationary
distribution with the preceding property when the remaining number of
periods is wunboundedly large. The latter distribution represents a
stationary equilibrium for the infinite horizon search problem.

It is interesting to compare our analysis to a closely related
recent paper by Douglas Gale (1988). While in the present paper the
distinction between the Bertrand and Diamond models relates to buyers’
information costs, Gale interprets the distinction between the Diamond
and Bertrand models as one of timing. Bertrand competition 1is
characterized as a game of ex-ante pricing in which sellers move first
and buyers, who know all the prices before choosing a firm are at an
advantage. The Diamond model is interpreted as an ex-post pricing game;
buyers choose a firm before a price is quoted. Gale proceeds to define
a game in which sellers are wuncertain whether they are playing the
ex-ante or ex-post pricing game. Buyers know which game is being
played, have no search costs but are impatient to buy. In a dynamic

version of the model it 1is shown that when buyers are sufficiently

patient, the equilibrium price converges to the competitive one.



Statement of The Model and the Main Result

Time is discrete and indexed by t. We analyze both the finite
horizon model in which there 1is a terminal period T > 1 following
which no trade occurs and the infinite horizon model. There 1is a
continuum of sellérs. Sellers compete in prices and each is able to
supply an unlimited quantity of a homogenous good at constant marginal
cost, assumed without loss of generality to be zero.

In each period, a new cohort of buyers of measure g > 0 per firm

enters the market. FEach buyer has a demand for one unit for which she

* *
is willing to pay P > 0 at the most (i.e., p is the monopoly
price). Buyers know only the distribution of prices but not the prices
charged by particular sellers. In each period, a buyer can obtain a

single random price sample from the price distribution by incurring a
search cost ¢ > 0. Following B-J (1983) we assume that search is noisy
such that the number of prices contained in a sample is a discrete
random variable: With probability q, 0 < q < 1, a sample contains
exactly one price while with probability 1-q a sample contains two
prices. Buyers are assumed to minimize the expected cost of purchase,
including the sellers’ price and search costs. It is assumed that at

any date, buyers in the market correctly anticipate the future sequence

of price distributions. At any date, define a reservation price Xt
with the property: buy if and only if the lowest price observed at t
does not exceed it' If only prices exceeding it are observed at

t < T, the buyer remains in the market for an additional period.



In each period, sellers simultaneously post prices which are
binding only for that period. Since sellers are free to post new prices
at each period, any past prices a buyer may have observed are obsolete.
This implies that one can buy only from a seller whose price has been
sampled in that period.

Let yt > p  be the measure of buyers per firm in the market at the
beginning of period t who have not yet made a purchase. ut may
exceed p if there are buyers who have previously entered the market
but have not yet purchased a unit. We denote by Ft(~) the
distribution of prices at t, possibly degenerate. For simplicity,
discounting is ignored.

Let Ht(p) denote the expected profit of a firm whose price is »p
when the price distribution is Ft(p). Obviously, Ht(p) =0 if P >
it. For p < Xt, a sale is made with probability 1 if its customer has

observed only 1 price. If its customer observes 2 prices, a sale is

made with probability 1 - Ft(p). Thus :

(1) M(p) = pr (a4 + 2(1-q)(L - F (p)).

Let ﬁt and Et respectively denote the highest (sup) and lowest

-t
) . ) t [P t
(inf) price in the market at period t and let A = J p dF (p) be
t

the average price in the market at period t.



In equilibrium it is required that sellers choose prices to
maximize profits, given the pricing behavior of all other sellers and
the search behavior of consumers, and consumers search to minimize
purchase costs given the current price distribution and the sequence of
expected future pgice distributions. To close the model it is required
that in every period the individually optimal behavior of sellers

reproduces the price distribution in response to which it arose.

Formally:

Definition 1: A finite horizon noisy search equilibrium is defined as
the tuple of sequences:

t St t =t| T
{F (')1 X ’ I'L ’ H }t_l

such that:

(i) At every period t, given pt and it, a firm's profit is ﬁt
if its price is contained in the support of Ft(~) and does not
exceed ﬁt if its price lies outside this support.

(ii) At every period t, it represents the optimal search strategy of
consumers in the market, given the sequence of future price

+
distributions, Ft l(-),..., FT(-) 0



Definition 2: A finite horizon noisy search equilibrium is said to be
‘1 9

stationary if for each tl’ t2 <T, F () =F (). If this is not

the case, the equilibrium is said to be nonstationary. a

In the case of an infinite horizon, the definitions of equilibrium
and stationarity are analogous to definitions 1 and 2, applying to the
- .. t
infinite sequences F (), etc.

We now state our main result:

Theorem 1:
(a) Finite horizon noisy search:
. *
For any q, however close to 1, there exists ¢ (q) > 0 such that
* 3 . - 3 -
for c < c¢ (q), the wunique equilibrium average market price at any
period t < T 1is monotonically decreasing in:

(i) the magnitude of the search cost
and

(ii) the number of periods which remain until the terminal

period T.

In the limit as ¢ goes to zero and the remaining number of
periods goes to infinity, the average market price approaches the
competitive price.

(b) Infinite horizon noisy search:
Consider the finite horizon noisy search equilibrium discussed in
* - . -
(a) for some c < c (q). As the remaining number of periods goes to

infinity, the limit of the average price 1is the -equilibrium average



price of the stationary equilibrium for the infinite horizon model.
Thus as ¢ + 0 the competitive outcome is the 1limit of the average

price of the infinite horizon equilibrium. u]

The preceding theorem 1is proved by means of a number of claims

which are stated and proved in the following section.

Analysis and Discussion
Consider any period at which prices are non degenerately
distributed. Using standard arguments, (e.g. B-J), it is easy to
establish the following:

Claim 1: (i) At any period t such that Ft(-) is mnon degenerate,

t

F () is continuous (i.e. contains no mass points) with connected
.. . -t st - . t -
support. (ii) At any period t, p = X . That is, if F (:) is not
~t . t
degenerate, X is the supremum of F (-)'s support. ]

Claim 2: At any period t, Ft(-) is non degenerate.

Proof: Suppose not. Then each firm i charges X . A prospective buyer
who has observed no other price buys from firm i with probability 1. If
the buyer has observed the price of another seller (which by assumption
is also it), she chooses one of the two sellers at random. Thus firm

i's expected profit is



tst 1 tot
pElg+ 2(1-9)] - 5] = p X

By deviating to it - ¢, firm i makes a sale with probability 1.

Thus its expected profit is:

ut(it - €e)[q + 2(1-q)] = pt(it - €)(2-q) which exceeds ptit for

sufficiently small e, a

To summarize, <claims 1 and 2 establish that at any period prices
are continuously distributed and the highest price charged 1is the
reservation price, X",

In what follows we find it convenient to index periods by their
proximity to the terminal period T. Thus, T - 7 1is the 7th from

last period.

We first construct the equilibrium price distribution at T-r, 1 =

0o,1,...,T. By claim 2, ﬁT-T = iT—T. By the equal profit condition,
=T-71 . T-r . .
(X ) = II(p) for any p in the support of F (). Substituting

from (1), this yields:
~T- T-
(2) X ""q = plqg + 2(L-)(1 - F T (p)).
Substituting H(pT_T) = uT-TPT-T(q+2(1—q)) into (2) and simplifying

yields:



10

T-7 5T-

(3) p T = % Tq(q + 2(1-q)

Solving (2) for FT_T(p) yields:

1 if p > XT—T
sT-71
T-7 q(X -p) T-7 sT-71
4y F =41 - if <p=
(&) (p) (1 = Q) p p
0 otherwise
Let ET_T be the expected price paid by a consumer who buys at
T-7. With probability q only 1 price is observed, in which case the
. . . T-7 T-1 . fq .
expected price is simply A , the mean of F (p). With probability
(1-q), two prices are observed in which case the expected price is the
expected minimum of two prices. Noting that 1 - (1 - FT-T(p))Z. is

the probability that the minimum of the two randomly drawn prices does

not exceed p, we obtain:

)*{T-T )’ZT'T
BT wqf  paf e+ () [ pac-l - BT d).
pT-T pT'T

Integrating by parts:



11

sT-7 sT-7
T-7 sT-7 X T-7 X T-7 2
) BT =% -qa [ P+ Ao [ 1 - (-F ) dp)
pT-r pT-7
A buyer who has sampled at any period T-r will accept the
smallest price sampled only if this does not exceed ET-T-l; the latter

is the expected cost of buying in the following period, including the

extra search cost and the expected price. Therefore

(6) """ = min{p , E }, r=0,1,...,T.
Claim 3:
BT - % 0(q), AT = %8
where:
o(q) - -q° + 2901 4 q2 . q* + q y +
2(1-q) = 2-q 2050 T 0 0?41l
* iy e 2?i-q> ' 4???q>2 ' a(i?2>2 °
and
q ln(Z;s)
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Proof: See Appendix 1.

* *
Claim 4: Define ¢ =p (1 - ¢(q)).

* ~T- *
If ¢ >=c¢ , then XT T p, 7=0,1,...,T.

*
If ¢ < c , then

5T- * 2 -1
(7) X = (@’ + c[l + (@) + (@@ +.. + (pa)]
and
S GRRAEN-Cakit S Y N
~T % ~T-1 * *
Proof: X =p by assumption and X =min (p , ¢(q) p + ¢} by

claim 3. Thus

This proves that X =p if ¢ = c¢c . A recursive application of

this argument proves the first part of the claim.

<sT-7 =sT-7-1

If X > X , 7 =20,1,...,T, then from the preceding, (7)
obtains for T-1. (7) is then shown to obtain for any r by induction.
) <T- sT-7-1 *
Using (7), X7 - X 777" = (e@)"|p (1 - 0(q) - ¢

*
which 1is positive iff ¢ < ¢ . This completes the proof of the second

part of the claim. O
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A corollary of claim 4 is that the equilibrium is stationary iff ¢

~ *
> c*; in this case Xt = p, t = 1,2,...,T, and wusing (4) the
- t . . . . * =t
construction of F (:) 1is identical at each period. If ¢ <c¢ , X
it+1 and so Ft(-) e Ft+1(-). Using claim 3 and equation (7) yields:
T- * -1
(8) Al - ﬁ(q){«p(q))’p Fell+ @) + ...+ (p(@)] ]}.

Taking limits (note that the order in which the double 1limit is

taken is immaterial):

This completes the proof of part (a) of theorem 1.

The following claim applies to the infinite horizon model.

Claim 5: The price distribution:

1 if P > c[l-90(q)]
~ -1 ~
_ q(c(1-9(q)) - p) . i -1
(9 F=31- 2p(1-9) if p < p<c(l-9(p))
0 otherwise

where p =cll - ¢(q)] is a stationary infinite horizon

9
q + 2(1-q)

noisy search equilibrium.
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Proof: Observe that F(-) 1is of the type defined by (4) with P =
l-;(q) being the highest price in the support and p the lowest price

A

in the support. Thus F(-) is an equilibrium if p is the (constant)

reservation price of buyers. Define E as the expected price paid by a

buyer who draws a single random price sample from F(-) and pays the
lowest price observed, i.e., E 1is defined analogously to ET_T in
(5). It is clear that claim 5 is applicable to F to the effect that

A

E = ¢(q)1j¥%57. It follows that the buyers’ reservation price 1is

IT;?%Y; the expected purchasing cost associated with one more search is
E + ¢ = HACHS + ¢ = ——, Therefore F(: is a stationar

T-p(a) o (@) ) y
equilibrium. O

It is clear that claim 4 applies to F to the effect that A, the
mean of F, 1is ﬂ(q)-——g——. But the last expression is 1lim AT ,
1-9(q) T rorco

as seen by taking the limit in (8). This proves part (b) of Theorem 1.
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APPENDIX

Proof of Claim 3

1. Proof that ET-T = iT_T¢(q): (For convenience, superscripts and

limits of integrals are deleted in what follows when no ambiguity
results.)

Opening parenthesis in (5) gives

(A.1) E=X - QEQ)—(lePm-+(Lq)UEp— 4%@>+Iﬁ%{

Substituting Jdp =X - p and manipulating:

(A.2) E-P + (q-Z)Jde + (1-q)IF2dp.

Substituting from equation (5) and carrying out the integration gives:

where vy = EY%TES,
and
~ 2 —_ - 2
o [l st oo [ 2 f
P
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Calculating the second integral in the last expression:

I

S 2
72 yf ﬁz—LERl— dp = 72{22 J p_zdp - ZXZ J P_ldp + J dp}
P

X 52 =
— 72{-(i)2 p-l - 2XInp + p } = 12{—X + .S 2% 1n(§) +
P P
p P P
Thus:
2 - = X - 2 o %2 - X
JF dp =X - p - 27X 1n(5) - X +p)+y {— X + 5, - 2X ln(g) +

Substituting back into (A.2) and simplifying gives:

E=X+ (qg-2)(X - p - ¥ 1n <§) + 9% - yp) + (1-@)((1 + 27X -

2 2 X
- (v + 2y + Dp - 2(v + ) 1n(5)+7

2

lge] |><I

Substituting p = X 5%6 and simplifying gives:

5 2 2 2- 2
B = X|-vq + 52 (v - 27+ @r) + S22 01

2 2 2-
+ (g7 - 2v° + 2¢7)1n <—59) :

Pt

it
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Substituting gives ZXp(q) as defined in the claim.

vy = 9
2(1-9)
easily verified that ¢(q) <1 for 0 < q < 1.

II. Proof that AL 7 — iT_rﬂ(q).

A=X - JF dp which from the preceding nalysis gives,

simplification:

+7{>~< 1n (%) - >~<+p},

>
i
"

Substituting p = X EgE and vy gives:
A = XB(q)

It is easily verified that pB(q) <1 for 0 < q < 1.

It is

after



