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Evier since K. Arrow [17 proved it is impossible to construct a voting
svatem that zatizfies certain desired properties, a major foous in social choics

has been to use an axiomatic formulation to determine what assumptions are, or ars

not mutually compatible. (See, for example, Sen [227.) In this paper, I

introduce a differant approach to analyze the important class of positicnal voting
methods, such as the commonly used plurality vote. The idea is to characterize

the election cutcomas. Namely, for any mumber of candidates and for any
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2an arise aover all possible subsets of candidates.  With this calalog, the
oroperties of these voting systems can be determined in a simple, pragmatic

- iust check the listings to ses what can and cannot cccur.  Ths

conclimions are very disturbing - paradoxas are more plentiful and much mors
complicated than one might have anticipated. Only Borda’s Method avoids many of
ths potential flaws. Applications of this dicticnary of voting outcomss are
indicated, in part, by describing all possible plurality election outcomes. by

obtaining new results about agendas and ranoff elections, and hy describing

=

certain strategic situations. Morecover, bacause I am characterizing all possible
election outoomas, it follows that all of the elsction paradoxes in the literature
describad in terms of crdinal rankings of positiconal =lections must be special
cases of thiz catalog.  This iz trus, and, by wsing the listings, I show how any
such paradex can be extended and gensralized in several different ways. Othsr.
quite spactacular paradoxes —an be created: indeed, with the dictionary, the kinds
of paradoxes that now can be designed are limitad only by one’s imagination.
Probably the most widely used voting method iz a plurality elsction, it
how should we interpret the =lection ranking? To zee that there is a problem.
consider the hypothetical situation whers fiftesn pecple salact a common Luncheon

haveraze.  3ix of them have the ranking watsr (wa) over wine (wii over besr (2

(1.2, warwizbel, 5 have the r= ng erwiswa, and 4 have the ranking wisberwa,

The plurality ranking iz warberwl with the tally 6:5:4.  Nevertheless, these same
paople prefer the bottom ranked alternative, wine, bith to the fop ranked water
hy 9:6) and to the second rankad besr (bhy 10:5)! Bven beer is praferred to water
(bhy 9:6).  Thus win=s, the mpeijority or Condorest winnsr, (in any palrwise
compariscon, it is selected by a majority of the voters) is ottom rankesd in ths

=laection while water, the anfi-majority altsrnative, is top ranksd. By using the

ity vota comparisons, 1t is arsuable that the "trus ranking”

91}
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wirberwa - the exact reverszl of the election rarking.,  So. which is the corrs
In a rincff election, beer would win the rnmoff between water znd beer.
Is water, wine, or beer the preferred heverage?

FPlurality elections are not the only procedures plaoued by paradoxes; they
occur with all positional voting methods. These are the election procedures that
are equivalent to using a voting vector W= (w;,..,w,). WiZWiiys W oWy, in the
following way. After each voter ranks the n alternstives, the bhallots are
tabalated by assiegning W points to a voter's jth ranked alternative, =1,

The sgroup s ranking is determined by assisning hisgher rankings to alternatives

with larser tallies. hus, a plurality =lection is identified with the voting
vactor (1.0,...,0), while ths Bwda dhunt, BO. is defined by (n-1.n-2,...1.0). Faor

convenience, rﬂrptmwimewﬂgME,wf are rational numbers. Clearly, this
does not impose any practical restrictions.

Jt is natural to wonder whether other choices of voting vectors meake a
difference. Are some vectors better than others? Can a beverasge paradox ocoar 1if
one uses (5,2.0) instezd of (1,0,0)7 Is there a choice of W that aveids the

radox, or meybe some other paradox? What are all possible paradoxes

g
( i
('l
@
It
P
i
[
o
ay

surveys for what currently is in ths literature are Niemi and Riker (137
and Moulin [117.) What about those more complicated election procedures that use
=lection rankings as component pasrts?  For instance., the winner of a ranoff
election, an agenda, cor a toornament 1s determined by the voters’ positional
rarkings of several subsets of the candidstes; what can happen here? With our
dictionary of election results, w2 can answer all guestions of this kind. To

¢

indicate how more complex election methods can be analyzed, in Section 2 sone new
results shout agendas and rimoff elsctions are given., Puarthermore, Sazri and Van
Newenhizen [20] used the techniques derived for this current paper to discover
certain new properties of approval voting, cumalative voting., the effects of
trunctsted ballots, and other maltiple systems. (Also see the exchange of
opinions by Brams, Fishburn, and Merrill [3] and by Saari and Van Newenhizen
[217.)

A more subtle reason for ztudying paradoxes is that positional voting

arves as a simple, but important prototype for many kinds of systems. Thus

i)

should somsthing unexpected occur with positional voting, then it probably occurs,

for related reasons, elsewhers.  To 1llustrate, positional voting along with
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rrobebility, statistics, economic indices, ete., are speci

i
procedures.  So, are voting paradoxes related to certain difficultiss in these

aress?  Pozitionzl voting is a simple “economic
introduced by L. Hurwicz {871 (also see [(39.141) where the object is to encode and
transmit relevarnt information about sach agent’'s preferences. In voting, the
encoding is given by marking the mallot. Can voting paradoxes suggest hidden
flaws in other kinds of messase systems?  (The answer to these questions is yves. )
Because positional voting is a simple, important prototype, 1t serves as a test
case for concepts being developed in decision analysis. the social sciences, and

T

2lsewhere. By understanding what "goes right'” and what "goes wrong' with voting,

insight can be g2ained about mors complex methods as well as other soclal choice
models.  The approach developed here extends, in part, to these other systems.

The central theme of this papsr is to determine what can go wrong with
positicnal voting and to explain why. To understand what paradoxes can occur and
to aveid the standard approach of finding them in a piecemeal fashion, I
characterize all possible election outcomes over all possible subsets of

candidates for all possible positional voting methods and all possible profiles of
voters. The reader will recognize the similarity of this goal with the
scrnenschein program (237 where he, Mantsl [ 107, Debrea {47, and others

s system of price dynamics) all possible aggregate

1

aconomies based on neaclassical utility functions. A catalog, or dictionary for

characterized (for the messa

m

numbers of commdities for all simple trading

pmt

excess demand functions for

4]
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voting outcomss, could be used in much the same way as the Somnenschein-Mantel-
Debren classification; both serve as a starting point to determine what else can

and carmot occur.  In this menner., a dictionary zerves as the foundation to

analyre voting procedures. By using the dicticnary, it is easy to create new
paradoxes — Jjust check the listing to find what unexpected rankings occour over

different subset of candidates with the same sincere votsrs. We can compare and
+

combine paradoxes into classes - paradoxses that depend on similar dictionary

listines probably are related. We can understand strategic voting - just compare
the elaction rankines for nearby profiles of voters. (After a manipulating voter

marks the hallot, the actual =lection is determined by a profile that differs from
the sinceres one.) All of this is illustrated here.

-

For reasons explained in a companion peper [15], it is not practical to
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what can go wrong', i given hers. The second,

i
evalopad to determine whethsr a psrticulsr slsction reankine is admitted. The
t
enphasizing "what can go right”, 1s part of a nmore taechnical, group theorstic
developrment that is started in [15].  Also, two different kinds of dictionaries
are described. Hach =entry in the one presented here, the abrideed dicticonsry,
ifies how tThe election results for the same, sincere votes varies over all

1

One reason I call these catalogs "dicticnaries” is to invoke the imsse of
a referance tool.! This imege underscores that my principal zoal is to
charactaerize what can happen, rather than to advocate one system cver ancother.
(However, the BC does have properties significantly more favorabls than any other
system.  In [15], the propsrties of the Borda Dicticnary are given. ) For
instance, if ths goal were to promote a system, I should describs how to break tie
votes. For a dictionary, this is inappropriate because a tie vote is a possible
outcomz, 50 1t must be included. Indeed, as shown in Section 5, listings with tie
rankingz play a major role in the analysis of strategic behavior and related

voting lssuss.

2. THE ABRIDGED DICTIONARY AND APPLICATIONS

T malee the notion of a dictionary more pracise, note that n>2
alternatives {a;....a,t de ndifferent subsets of a
is empty and n of them have only one alternative. This

with =snough (at least 21 alternatives to be ranked with a
subsets in some manner, and label them as {5;....35, _(h+1)1 For convenience,
assume that the first n(n-1) /2 suhsets are the pairs of alternstives and the last
subset, S0 41y, 15 ths set of all n alternatives. Next, for each

=1,.., Zn—(n+tl), choose a voting vector, Wj, ta tally an election for the subset

1. Ancther reason for this terminology comes from the fact that the ideas for
these results are derived from concepts in "chaotic dynamical systems”. Therefore,
I adopted some of the notation from "svmbolic dynamies”.  An expository descripticn

of thiz connection is given in Saari [19].
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of the 23-4 = 4 sulsets of two or more candidates The aystem vector WB =
(1.0;1,0:1.0;2,1.0) signifies that t first three sets of candidates are tallied

with a maiocrity vote - the voting vector is (1.0) - while an election for 5, is
tallied with the BC vector (2,1.03.
To describe our results, we need a space of "all possible election

outcomes”.  Toward this =nd, let R, be ths listing of 21l possiblz rankings of the

‘% ] alternativas that are generataed by complete, transitive, symmetric (to admit

tie votes) binary relationships on 3;. For instance, 5; = {a;.a;}., s0 Ry =

= 3, then R, has 13 rankings - 6 of them are

{ay>ay, a173,, azra;b. If |5,
without any ties, while each of the other 7 have at least one tie. Let Un, the
universal set, be the cartesian product Ryx. . xRen_ ,,,,. An element of Un i5 a
listing of Zn-{nt+l) rankings: there is one for each subset of candidates. The jth
ranking, or symbol, of this listing is a rarnking for Sj.

Example 2. The sequence {a,%2,, 35,%3,, 23%a;., 3,723,733 15 an element of
[13. Kach svmbol is the ranking for the appropriate subset of alternatives.

A profile is a listing of =ach voter’'s linear ranking of the n candidates.
Let 0 e the space of all possible profiles of the n alternatives: we ilmpose o

strictions on the (finite) number of voters. Once 2 profile, p, from Pn is

given, then, 1n the obwiocus marmer. W is used to waniguely determine the election

&

rankings for each of the Zn-(n+1) subsets of candidates. This listing of 2n-(n+1)
rankings 1is callad a word, and a word is an <lement of U There is zn importsnt
difference betwesn a word and an =lenent of U an el=ment of Un might be an
arbitrary listing of rankings that has nothing to do with elections, but a word
genarated hy W is a list of election rankings that 1s attalined with a profile of
vorers. For instance, in the beverage sxample, the election results
fwiswa. wirbe., bedwa, warbedwll 1s a word in U2 genersted by the =

s
(1,0:;1,0:1,0;1,0,0) hecause these rankings are attained with the specified

2.1 f(- . W): Fn ————— > Un
be the mapping that determines the word for a given profile.



Dictionary for paradoxes Pzage 6

Definition. Let n>2 altermatives and the system vector, Wn, b= given. [Let 2.2
DWn) = {f(p,Wn): p in Prn}. The sulbset DWnr) of Un is called the (abridged)
dictionary generated by Wn,

Each word in a dictionary is a listing »f the election results cover the

2n-(ntl) subsets that results from the sams profile of voters. By considering all

possible profiles, a dicticnary becomes our catalog of all possible words; i.e.
all possible election rankings. There are certain words we want in all
dictionaries because they offer no surprizes - the election outcoms over each

subzet remains consistent with the ranking of all n candidates.

Definition. A word is binarily consistent iff the ranking for each subset of

candidates is generated by the same complete, transitive, binary relationship.

Example 3. For the set in Example 1, {a;=a,. 3,>3,, a;>a,, a;=a,>a3t is

binarily consistent while {a;ra, . 8,335, 3,73,, 833,735 1s not,

Proposition 1. Let n>3 and let Wn be given. If w is a binarily consistent word,
then w is in D(Wn),

A corollary of this proposition is that all of the remaining words In a
Aictionary Introduce inconsistsncy In the slsction rasulis over the subsets of
candidates. Thess extra words create the unexpected rankings, or paradoxes.
Thus, we might hope that DWn) iz a small subset of h clustered around the
binarily consistent words. Our first theorem, which completely quenches this
hope, gives the generic characterization for the dicticnaries. For this

tatement., recall that the syvstem vector, Wi, is a vector in an Euclidean space.

3
Alzo recall that an alosehraic st iz a lowsr dimensional subset determined by the

bt

in
I

zeros of a finite number of polynomials.

Theorem 1. let n>3. There is an algebraic set an such that if W is not in an,
then

2.3 D(Wn) = Un,

In particular, if all of the voting vector components of Wn are plurality vectors,



IHotionary for paradoxes Poge 7

then Eq. 2.3 is satisfied.

S0, for almest all chodees of W, anvthing can happen.  This means that

imagire actually can ocour for almost all

the wildest paradex one could

choices and combinaticns of voting vectors. Spectacular paradoxes now are =acy o

CYesTaE,

wte with the namber of candidates — if &

of alternatives, its plurality rankings ave generated by a.> Jaln it a

aY; nuntey of candidates, its (1,1,0,..,0) rankings (vote for your
two top ranked candidates) 1s generated Ly the reverssd relationship a,ra, iff
£

=ults in the

Theoram 1 includes and significantly extends many r

literatur=. For instance, a widely cuotad example dus to P Fizshburn [5] is whers

Ul

tha group’s plurality raniging is a;>a,>aya, . but if 3, is removed, then the same

eroup’s pharality ranking now 13 a3 5,2y, Saari [16]1 zhowed that all results of

this kind could be exbtended in many different ways - there could be any numbsyr of
candidates, one could use any cholce of voting vectors, W, and W _ ;. ths number of

candidstes that are remcved is arbitrary and could involve all s=ts obtained

in anv desired mnner,

w choosing appropri

urr s example can e e

un elactions is the Condorost winner, but the winner of the
1

v candidate while the winner of the second

iz the antimajori

ol

iz the antimajority candidats becanse it anly beats a, in ths

1
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pairwise matchss.

My earlier rasult [18] provides more freaedom in the selection of the

symbols over more subsets of alternatives.  3ti1l1l, in [1687, the subsets must b=
obtainad from other sets hv dropping candidates.  Thus, for any n, only for n-1

svmbols are used.  (As we will see starting with Example 5, this limits the
applicability of my =2arlisr results. ) Theorem 1 asserts that much more is
wzsibhie; vou can select anv rankings for the remaining 2n-Zn subsets of
candidates, and there is a profile that satisfies all of the conditions.

By using Theorem 1 in the fashion as just describad, the election ranking
varadoxes describad in th2 Introduction and many of the examples found in the
survaeys [ 11,137 can be simnificantly extended in many different ways., they can
invelve far more subsets of candidates, with arbitrary selection of rankings. and

the conclusion holds for almost any choilce of voting vectors. Corollary 1.1 is an

extrems case.

Corollary 1.1. For sach of the 2n-(ntl) subsets, use a random number generator to
determine the ranking. For almost any choice of voting vectors for the subsets of
candidates, there is a profile of voters so that, for the same voters, their
election outcome for each of the sulsets coincides with the randomly generated

result.

As restated by Corollary 1.1, the conclusion of Theorem 1 is most

Aistirbinz! Tt is commonly assumad that elections extract some kind of agsragatad

'l

consensus concerning the ranking of the candidate It is difficult to acrcept
action method accomplishes this Zoal 1f the outecomss can depend so

1
zensitively upon which subsat of candidatss just happen to be presented. Theorem

1 asserts that 473 nagative 7 e holds Ffor almnst all spstam voting veotors,

Indead Theorem 1 and Corollary 1,1 have much the same flavor as the Sonnenachein-

Mantel-Debren result asze ng that almost any vector field on the price zimplex
can be an aggregate sxcess demand functicn.,  Namely, for the ageresation
proceduras of price dvnhamics and of voting, anything can happen. (Felatad

arguments explain both results. )
In the next example, the new resultz about runoff s=lections and agendas

are meant o suggest how Theorem 1 can be usaed to analyze more oomplicatsd
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slection procedures and other issues raised in the Introduction.

Example 5. 1. On=e form of a runoff =lection starts by first ranking the

criginal n candidates with a positional eleaction.  The k, top ranked candidates
ars agdgvanc2d to the next stage to e reranked with another positional election.

If ky»2, it may b2 necessary to have still ancther runoff elsction with the k, top

3

rariked candidates. Indeed. if n is sufficiently large, one couild imagine
process involving several =limination stages as cheracterized by the positive
integers k= (k.. k), Byvk, ), K
Why use other procedures?  Why not Just sccelerate the process by letting
k=2, won't the outcoms be the same? The (known) answer is no, not necessarily.
1

Indeed, with Thecorem 1, it now is esasy to extend th= known results by showing that

for almost all choices of W, there are profiles of voters where different choices

of the ssquence k lead to complstely different elaction results.,  In fact, it now
i3 easy to prove thsre cas of runefl procedurss 50 that
whan the 788 procedurs Jg=1,...n-&

T will illustrate the asszertion for n=4: the same procf holds for all
valuss of n.  For n=4, there are only two runodffs: (3.2) and (2. First, choose a
word with the symbols a2 v33%3,, a;33°3,, &y>3;, and a;>a;. With these
=lection rankings, the first (3,2) rnoff is among {a;.a,.34}. and a; wins the

sacond runoff between a. and o (n the other hand, a. is the wimer of ths (2)

o

runcff betwes complaetes the proct becase, according to Thecoram

ol
W

1
1, there are prcofiles that define this word. (To prove this assertion, we ne=d to
s2lact rankinegs for subsets of candidates that are not admitted bv (197,09
The sam= approach works for all values of n and for almost all voting
vanctors.  The idea is simple: different slimination procsdures cause different

subsets of candidates to be reranked. But, if there is 30 much as a one candidate

difference betwean subsets, their rankings can e chosen in any desired manner:
there need not be any consistency among them. By choosing the rankings in an

appropriate manner, we can prove that radically differant outeomss exist.  Theorem

1 asserts that, for almost all choices of W, a profile exists to support the

2. The runcoff example did not use all of the svmbols in a word.  These
extra syvmbols introduce added flexibility to find even more swrprising

conclusions. For instance, for all pairs of alternatives {a;,z;}. choocse tha
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ranking 2485 Thizs illustrates a new feature., Fop four candidates, there sxists
a profile of votsrs so that 1) with the (3.2) runoff, a; is electad, ii) with ths
(2) rnwnoff. a, is alsctad, but 1ii) the first candidate to bz aeliminated by either
procedure, a,, is the Condorcet winner. The same kind of statement holds for all
values of n. Indeed, ths larzer the valus of n, the more subsets of candidates
there are. Recause we do no longer need to find profiles to prove that certain
election rankings can ooour - Theorem 1 establishes their existence - the larger
the value of n, the easier it is to creatively design new examples, conclusions.
and paradoxes. This is the sxact opposite of the current situation based on
finding profiles. Creating a profile with the desired = tion rankings can be a
diffizult task, Conseguently, it is not surprising that many of the examples in

literature are restricted to n=3,4, and use only plurality voting. Theorem ]
removes all of these restrictions.

3. &n agenda is a listing of the candidates. say [aj.3;....a A
majority election is held hetween the first two listed candidates, znd the winner
is advanced to he compared with the third listed candidate. This iterative
rrocedurs 1z contimied, snd the final candidate 15 the winnsr. Can the cholos of
an agenda affect who is s=lected as the winnsr? Yes, and this known result
becomes obvious with Theorem 1. The winner at each stage determines the pair of

candidates to be matehed st the next stage. So, by choosing the rankings of the
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pairs appropriztely, we can rig situations wi
choice of an sgenda. This happens with the cycle a;>a;, az>a, ... .2

1
Hers, a, wins with the agenda {a; +1,aﬂ+2...,aj]. {(Wh=n & subscript j+k exceads n,

3
replace it with (jtk)-

Cyelic results of this kind are well known, but to cresate the sxample,
only n of the 2n—-(n+1) symbols are specified. Accarding to Theorem 1, the
remaining symbols can be specified in any dezired manmmer. For instance, ons
cholce asserts there is a profile manifesting this coyelic asenda property even
though it is arguable that a; zhould win because for all subsets of three or more
rcandidates the plurality ranking is obtained from 3;,>a,>.. »a,, and because a; wins
a majority vote in all pairwise comparisons excsphb when a, is compared with a, (50

t i3 a Condorost winnerd.

A different choice of the symbols demonstrates conflict among the agenda

i)

results, runoff electicns, ete.  After all, the agenda example uses only n of th
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-1) /2 symiols for the pairs, so the rankings of the remaining pairs could be
selected to detsrmine different winners of various runoff procedures, sto.
Namely, for n»d, there is a piofile of voters, n agendas. and n-2 runoff election
procedirres so that when the jth acenda is used., the outcome is A4z Jg=1,....n
and when the kth runoff proceduwre is used. the outcome is &y, k=1,..,n-2. This
example can be enhanced by adding "almost Condorcet winners” to exhibit certain
features, =te.  Actually, by using Theorem 1, the kinds of examples that can be

created are limited only by one’s imsgination.

3. ANY GOOD HNEWS?

Theorem 1 proves that a lot can go wrong with positional =lecticns., but it
also hints there may be good news. It suggests there might be a lowsr dimensional
subzset of Wt s where the outcomss don’t depend so sensitively upon which subset of
candidates just happen to be presented. It suggests there are choices of system
vaectors, Wl where D(WR) is a proper subset of Un, But, because ob is an algebraioc
set, it also means that the componsnt voting vectors of a favorable W 's must he

car=fully coordinated to avoid the negative aspects of Eg. 2.3. Theorem 2

characterizes on for n=3.4. (An extension o larg=sr values of n reguires a
different technical development. )} First, some preliminaries.

Definition. A voting vector W, = (w;,..,w,) is a Borda Vector iff WiWia is the
same nonzero constant for j=1,..,n-1. Let Br dencte the system vector where Borda
vectors are used to tally all subsets of three or more alternatives.

It is easy to see that zn election tallied with a Borda Vector and with

o

the BC always have the same ranking. This manifests the fact that an election
tallied with W and with W = aW + b(l...,1) always agr if a>0. These
modifications affect the tally, but not the relative rankings of the candidztes.

Theorem 2. 1.[17] For n=3, D(W) is a proper subset of B iff WB is a Borda

Vector.
2. For n=4, if D(W) is a proper subset of 4, then either at least one of

the voting vector components of Wt is a Borda Vector, or the last wector component
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W,y = (w;,%,,%3.%,) satisfies the algebraic condition

3.1 WI_BWZ +3W3"’W4:(‘-

In cther words, ondy the BC, or some extension of it (Eq. 3.1) can provide
anyv relief from thase paradoxes. For n=3. this result is ziven in Saari [17] with

somz partial results in Fishburn (67

—3

he statement for n=4 is new, and a

[
b

stronger conclusion is in (156 f Ba. 3.1 applies. then the rankings of ths

0]
D
port

of all four candidates is related to the rankines of the cther sets. but the

rankings of these othsr sets need not have any coordination.

Corallary 2.1, let 4 candidates be given, and let the four sets of three
candidates be tallied with non Borda methods. For any choice of rankings of the
four sets of three candidates and for any choice of rankings for the 6 pairs of
candidates, there is a rrofile for which all of these rankings are the election

outcom=s.

To illustrate Corollary 2.

—t
1y

g=neralize the notion of an asenda o have

the first three listed candidates ranked in an =lsction, and the top two ranksd

candidates advanced to be compared in zecond slection with the last listed

candidate. If non Porda methods are uzsed, the same ovelin affect that ocours with
the wsual azendas is obtained. Conseguently, because there four posszible agendas

of thizs kind (determinaed by who iz the last lizted candidate), there is a vrofile
of voters so that when the jth generalizsed agenda is used. 25 wins. We hzve not
specified any of the rarkings for the pairs. so they can b= chosen to show that,
say, &y, i3 a Condorest winmer, or, say, that the pairs have a cycle and that the

3, almst 13 a Condeorecaet winner, =to.  In othey words., only if the BD is
d R

rank the elections need there be consistency among the election rankings of the
sets.

As 1t will be olear from the procof of Theorems 2 and 3, for all values of
n, paradcxss are avolided iff some voting vector 1s =ither a Borda Veotor, or
closely related to it. If W is in an - 50 its dictionary avoids some paradoxes -
then the voting vector componsnts of W must be closely related to BT, 1f they are

not Borda Vectors, then some veting vector component must satisfy an alssbraic
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special, singular case,  Morsover, it i1z easy Lo
2 Borda vector as a component voting vector, then the dictionsry avolds certain
paradox=s. (The proof of this statement is an elementaryv extension of the proct

of Theorem 2.) In fact, the next statenent denonstrates an aven strongsr, favored

Theorem 3. Let n>3, ard let the system vector Wo have at least one non Borda
vector for a subset of at least three cardidates. Then,
3.2 D(Bn) C. D(Wn).
=
Thecorem 7 means that Borda’'s method admits fewsr paradoxes, or words, than
any other choice of system vectors. (The exact dictionary., D(Br), is
characterized in [15].) Ea. 3.2 has many important implications. It mesns that

anyv fault or paradox admitted by Borda s method also must be admitted by all other

st place; e.g.

*Bg . 2;233, A5>2;r3x} 15 in D(B). Conzeguently, from Theorem 3, this same word
mist be in all other dicticnaries, DW ), Thus, any criticism of Bouda s method
advancsd by m=ans of 2lection rankings also s2rves a3 a orificism for all mossibie

Comvey

vioting ve all other Wn's admit words (i.e. ., paradoxes) that are
not. permitted by Borda’s method Namelyv, all other svstem vectors introducs
additicnal indeterminacies - thiz means that the resulting electicon outcomes can
e far more sensitive to which subgroup of candidates just happen to be presented

These new electoral difficulties introduced by the other system vectors are not

admitted by Borda’s Method, Thase statements serve as strong arsuments for using

Borda’s method over any other choice.

4. WHAT EISE CAN HAPPEN?

Theoram 1 is not the ultimate description of positional voting paradoczes.
To show this, we offer two thecrems, both in two parts. to indicate what else can
happ=n; a more complete descoription is planned for elsewhere.  (The proof of
Theorem 4 motivates the proofs of Theorems 1-3.) While these thsorems are based

on ths ideas developad for Theorem 1, they are of inderendent interest hecause
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they show how the sams voLaers

=lection rankings for the same set of candidates

can change along with the voting vector.

ot

Theorem 4. 1. [16] Let n>3 and let W;,.. ,W,_ ; be voting vectors that, along with
(1,..,1), span R0. Choose n—1 rankings of the n candidates. There exists a
profile of voters so that the election outcoms is the jth selected ranking when Wj
is used to tally the ballots, j=1,..,n-1.

This weans that if thes voting vectors are linearly independent, there rieed
not be any relationship whatsoever among the resulting election ranking for the
samz voters. This already can bs sesn with the hbevarage example where the Borda
ranking 1s wirbs>wa - the exact reversal of the plurality ranking. Theorem 4
means, for example, that there is a profile of voters so that their plurality

outcoms 1s a) >a, >a

3 3, . their (1,1,0,0) outcome is ag>a;>ay>a;, while their
(1.1.1,0) outcome is a,>a; 23, »3,. Not much consistency here.

Extending Theor=m 4 over all 2n-(n+l) subsets would create a 'super
version” of Theorems 1 and 3. This would allow us to compare not only how on=
profile effects the rankings of each subset of candidates, but also how this same
rrofile can affect the rankings over sach subset as the choice of the voting
vactor variss.  However, we would like to analyze a wider rangs of situations. To

celse is useful, consider the Coombs runcoff swstem [11] where, first,

+

suggest wha

-

the candidates are ranked with a positional =lsction method. Thsen, some
candidates are droppad, and the remaining candidates are reranked with another
masitional voting election. The Coombs system differs from ths runoffs dizcussed
in Section Z in that the droppsd candidate is the one with the largest numbsr o

his equivalent?) This iz the candidate with the largest

last place vwotes. (Is t
(0,..,0,1) tally. The second part of Theorem 4 specifiss soms of the

possibilities bescause voting vectors can be replaced with any vector, including
(0,...0,1). Theorem 4.2 shows that the same voters’™ election rankings can vary in
an arbitraryv fashion not only over different subsets of candidates, but also over

any ons of the subsets as the choice of ths voting vector varies.

Theorem 4. 2. let n>2. Consider the n-1 sets Sj = {al,..,aj+1}. For each
i=1,...,n-1, choose j vectors in Ritl that, along with (1,..,1), form a linearly
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et for each 1 = 1,.. .01, choose 1 rankings of the alternatives in

Sy There exists a profile of voters so that when the jth set is tallied with the

jrdd=pendent

1

kih vector chosen for S]-, the outcome is the kth selacted ranking for S]- s

i=1,...n-1; k-1,...3.

Example 6.
{0,0,0,1) and the

(1.0 2nd =2, >3,. 1-3;n-:-r<_*1j_ng o

Ior By 18 the reverse of what one might expect. On the other hand, the ranking
ohtainaed by voting for your bottom ranksd alternative, (0,0,0,1), resumss this

thaorem can be usad to show how the Coonbs, the (3.2, and the

LN ifferent cutecomes.  Just choose the murality ranking to he

-

B, ra;¥8,, and the majority ranking of a,ra;.

i
- Lo o Llm =Ty b S ey
Hy o2q 28g 03y W1 DU ali %

3732 E
(2,2) runoff is a,, whils the winner of the (2) runcff is

either 2, or z;. How. choose the (.0,0,1) rankin
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sdvrmreesd Ty Fiim e srden b g
advanced by the Coomlxs systen?

e

i -
heoram 4,7 1

o - T VI H U etV rr mamm Vorm
= not sufficient to complataly analyvse

more complicated proceduras, because it doss not admit all subsets of candidates.

For instance, in Exammle 6.1, 1if the first stagse of the election is ranked with

tha B2, then S, is the set of candidates that is to v reranked. However, if =

)

=1, angd thi

Coombs method 1s used. then {3, .28, .3,1

not admittsd by Theorem 4.2, Theorem b i3 a step toward a more gensral result.

Theorem 5. 1. Let n>3, and let F be the family of subsets of candidates that
consists of all n(n-1),/2 pairs of candidates and the set of all n candidates.
Choose n—2 vectors in Rn that, along with (1,..,1) form a linearly independent
set. Furthermore, suppose the span of the n-2 vectors and (1,1,..,1) do not
include a Borda Vector. Choose a ranking for each of the pajrs and choose n-2
rankings for the set of n alternatives. There is a profile of voters so that for

each pair of alternmatives, their majority ranking is the selected one. When their
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ballots for the set of n candidates is tallied with the jth vector, the outcome is
the jtbh selected ranking.

Again, if we avoid the Borda Vectors, anything can happen. An implication
of this statement is that rmmoff elections can have problems even with the same
set of candidates and the same vrofile of voters if different methods to tabulate
the hallots are considered.

Example 7. Let n>4. Consider the (2) rinoff system and the voting
vactors Vj = (1.1,..0,0,....0), 1=1,...n-2, where j specifies the number of 17s.
There exists a profile of voters so that when Vj i3z used to tally the ballots of
the n candidates, a; i3 the winner of the runcff slection, j=1.,...n-2, and 5, i3
the Condorcet winner.

To prove this statement, just choose n-2 rankings for the set of n

candidates where the jth ranking starts as a *agr.. j=1,.. . n-2. (Fill in the

n-1
rest of the rarking in sny desired manner.) The j'b ranking will be the =slsction
outcore for V,, 3o, for each 1, the runoff is batween a,_; and a;. Choose the
rankings By rAn for each j, so that a; wins the jth runoff. For the pairs

(an,aj), choose the rankings a,>a, By Theorem 5.1, a profile exists that

i
satizfies all of these ocutcomes, and this completes the procf.

The statement of the theorem prohibits a Borda Vector from even being in
the span of the other vectors, If it iz, then it follows from the froof that many
paradoxas no longsr are possible.  Again, this indicates the power of the BEC.

Thecrem 3 asserts that Borda s Method has fewer paradoxes and words than
any other choice of a system vector., and that anyv word in the Borda Dictionary
must be in all other dictionaries. It does not follow from Theorem 3 that on=
profile can give the same word for all dicticnaries. The last part of Thecrem 5
corrects this. It has much the same effect as Theorem 3 by underscoring the

eszential, positive role of Forda’s Method.

Theorem 5.2. Let n>3. Select a word from D(Br). There exists a profile of voters
so that for each subset of candidates, the group’s election ranking for this set
is the selected Borda ranking. This is true independent of which voting vector is
used to tally the woters’ ™ ballots.
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This result generalizes and extends a nice example of Fishbarn's [7].

-y -

Fishbirn created a profile for n=3 to prove that there exist situations where the

Cendoreet winner never is elected by any positional voting method. Theorsm 5.2

extends this kindg of statemsnt in all possible ways., 1t asserts that for any n.

ature of Borda’s method that can b
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lmfdmﬁtw%rﬁﬁ@ﬂsorcaﬁﬂhvﬁ~ This feature defines a word in the Borda

dictionsry,

D{Bn) is

than the

czrmot possibly hold.

oy .-
then the

Example 8. There =xists a profile so that no matter what positional

>3,

=2lection method is used. the outcome is (Aayra, . 285534, 3,335, 3,38, °34 ).

(AN

5. THE GEOMETRY OF THE SPACE OF PROFILES

=Tors turning to the procfs, it 1s asppropriate 1o question whether these
new results are rolist, or whether they depend upon specially constructed exanclss
that disappezy with even the slightest perturbation of the profiles. They are

robuast.  This answer, hased on the following representation of th

T
rofiles, P, uses the fact there are n! different rankinss: i.e., thers are n!

tripling the number of voters with each ranking. Thi
the rarnkings do rot depend on the nunbers of voters,

number of vaters of 2ach type. 50, a profils can be characterized bv specifving
what Iraction of all vwoters

p 2an b2 identified with a

unity. Namely, p can be view
the positive orthant of bnt,

Ther= is a slight taechniecal difficulty. A profile defines a vector in
3int) with rational components, and vice versa.  Fart of the strength of my

approach iz to uzse all of the strocture of Sin!): I embed the dizcrete problem of
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voting inton the continuous one of analyzing mappings with domain Si(n!y. To do
this, extend, in the nstural menner, the definition of £(p,Wr) to all p in Si(n!),
aven those with irrational components. The only resexvation is that the image of
f can be treated as an election ranking for a finite number of voters iff p has

an infinite
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rational componerits. Such mrofiles are dense in |
number of them in any open set.

This representation of voting as a mapping with domain S5i(n!) has many
advantages, and most are based on the properties of open setas.  For instance, if a

paradox iz suprorted by an open set in Si(n'), then it mast occur with an infinit

!

number of different profiles (not just replications of the original one). Also,
such a word is robust in the sense that a profils can be perturbed and the sams
word results; so such a paradox, or word, cannot b2 dizmiszsed as being an anomaly.
Ancther implication is hased on the fact that the standard probability measures
aszign positive valuss to open sets. Thus, if certain probability measures are
introduced on the distribution of profiles., an open set corresponds to a positive
probahility that the paradox ocours. wcause a common denominator of p iz the
total number of voters and because the structure of an open set determines which
P53 are admitted, by knowing the structurs of the cpen set, programming technigues
2an be used to determine the minimum number of voters reouired before a particular
paradox can ozeur. In much the same way, the =xistence of the open sets can be
i1zad to answer "limit" gquestions about how likely it i1s for a paradox to occur as
the number of votsrs increase., ete.  Thus, we need to understand the structure of

the sets in Si(n!) that support each word.

Theorem 6. let n>3 and let Wn be given. Iet w be a word from D(Wn) and let S ; be
the symbol for the subset of camdidates 5;. If s5; admits no ties. then the set of
wrofiles supporting S is an open set of 5i(n!). The boundaries of this open set
correspond to tie votes, and they are hyperplanes in Si(n!) determined by Wj, it
S; contains a tie ranking among alternatives, then the set of profiles supporting
S is in a lower dimensional hyperplane in Si(n!). The set of profiles supporting
the word w is the intersection of the sets supporting each of the symbols. So, if
none of the symbols of w involve a tie, the supporting set of profiles is a
nonempty open set in Si(n!). The profile consisting of an egual number of voters

of each type is a boundary point of each region supporting each word.
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Thus all paradoxes based on election rankings without tles are supported
by open sets, so they are robust.,  The paradoxes involving tie votes are not

robust; a slieht change in the profils can alter the outcome. (n the surface,

.\ Pas

Theorem 6 app2ars to b2 a technical theorem concerned with the robustness of
certain words. In fact, when used with the earlier theorems, Theorem 6 is a "gold
mine” for explaining, extending, and describing seversl other results of cwrrent

interest. For instance, manipulation and strategic behavior is a topic currently
of great concern. But note, 1f a voter succsssfully manipulates the outcome of an

on one side of the

., and the manipulatsd profile is on the other.
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hyperplans given by a ti
Consequently, the structure of these "tie vote” hyperplanes provide valuable
information aboul how susceptible a systen is to being menipulated by individuals
or small groups.  Suth an analysis is in Sazri (18], A similar topic would he the

sensitivity of a syvstem - swall chiangss in how The voters mark the ballots
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the outcome. Using the techniques of [18]. it is easy to detsrmine which systems
;1tive than others.

Results of a different but related flavor concern those fascinating
statements asserting that, by voting, a voter hurfts his or her interests, =o by
abstaining the voter is better off. The first result of this tvpe that I am aware
of concerns a mnoeff elsction with a plurality vote, and it was found by Brams and
Fishburn {2]. With Theorems 6 and 1, it is easy to extend and characterize all
asible methods that have this bshavior., To ses how this is done, we cffer hers
a partial result that is =asy to prove. Toward this end, call a social choics
mathod that szelects a single candidate Jdisjoint if 1) the outcoms is based on the
system vectar, W, positional voting rankings of the subsets of candidates, 1ii)
the ranking of =ome one subset of candidates determines or affects which one of

several subset of candidates will b= the final set to be ranked - indeed, just the

b

reversal of the relative rankings of some two adjacently ranked candidates can
change the choice of the final set, and iii) the final outeoms is based on the
ranking of the final subset of candidates, and iv) the method is not constant, at
least two different outcomes are voszible for each choice of 2 final set. As an
example, all runoff procedures, whether of the Coombs typs or the more standard

kind defined by the integers k are disjoint methods. This is bacause by switching
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the relative ranking of soms twoe alt=arnatives we can change which candidates are
advanced to the next stage, and the winner depends on which candidate is top
ranked at the last step. An agenda and most elimination procedures are other

dis joint methods.

Corollary 6.1. Iet n>3, let Wo be a system vector that is not in an, and suppose
a disjoint social choice method is given. There exists a profile of voters and
two voters of the same type where, by voting, the two voters end up with a
personally less favorable outcome than if they had abstained.

The proof iz similar to those in Section Z.  First., I ocutline the ideas

with a standard (2) ruwff =lection for n=3, and then I dezscribye the steps needed

for the more general result. Choose two

5, The rarking oFf a third
the final subsets is uzed.  Now

suppose the two voters have the ranking a,>ag>a;. By voting, the two voters could

change an outcome from s, -3 23, . where the outcome of the runcff would have been

their second ranked ag . To a,%33>a3,, where the outecoms is their last rarked 2,

To see that such profiles exist. consider the words with the symbols a>a, . 2533,
and a;ra,=ag. he first two symbols are supported by open sets in Si(n!). and the
third by a hyperplane passing through the intersection of these open sets.  Now,

positional voting is menotonic, so it is a simple exercise using the fact that

vectors with rational components are dense to show there is a profile p close

encugh to the hypsrplane but on the 2,>a33>a, side 50 that by adding two voters of
the specified type, the new profile is on the other side. Because the othsr two
symbols are supported by opsn sets, this can be done without changing these
rankings. This completes the procf. (If a method zpecifies how to break a tie,

then only one voter of a zpecified type is nec owever, without more

i

conditions, we need two or more voters to ensure that the original and the new
profile are on different sides of the hyperplane. )

The general proof is mach the

i1

T;

ame. We just nead three altesrnatives, a, .
a, . and 2 whera 3, and 3, 2re poasible outizopes bazad on the rankings of two
final sets. Which final set ocours depends on whether a, can be advanced ons

~ion in the ranking of a third, swing set. These conditions all occur by the

=

3
U]
+
o



definition of a disjeoint method. Start with the rankine of the third set having
a, tied in the swing positicn. OGonstruct the ranking for the two voters to have
a, as top ranked, the outcomz of the set they dom ¢ get by voting and advancing
the ranking of a, as sescond ranked, and the outcome of the set they do gat lw
advancing a, in third place. The rest of the analysis is the same.

In this proof, there are many other symbols that have not been specified,
50 they can be assigned in any desired manner to prove other conclusion For
instance, for ocertain disjoint systems, it is possible to show that, in addition
to what already has bsen proved, the Condorcet winner need not get elected, that
the outcome of a runcff election differs from thess conclusions, ste.  (This

generalizes a result of Moulin [12].) As an illustraticn, we can combine several

m

of the features already described.

Corollary 6.2. Iet n>4 and suppose the plurality vote is used to rank all subsets
of candidates. There are i) n-2 runoff procedures, ii) n agendas, iii) a profile
of voters and iv) two other voters with the same ranking that has a, top ranked,
and a; bottom ranked, so that a) when the original voters use the jth runoff
procedure, a; is the winmer, j=1,...p-2, and b) wben the kth agenda is used, a;
wins, k=1,..,n. If the two additional voters vote, then outcome of all elections
remain the same except for the two procedures where a, won. In both of these

procedures, the new winner now is ay.

Other kinds of paradoxes, such as explaining why tws subcommittess can

independently reach the same conlusicon, but when joined as a full committees, they

select a different alternative can bs based on other geomstric structures of

1159

Theorem 6. Details will be siven elsewhare.
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6. PROOFS

The proofs of all of the theorems are based on representing the tally of

an election as a mapping from the space 21 (n!), described in Section 5, to a

Y

0

artesian product of simplices. To describe the image space., start with the the
set of all n ecandidates. 3,0 (,,y.  In B2, identify the k'h component, x,, with
the kth alternative, a,. For x = @P.”&J.]Etlﬂ@ﬂ”@bﬁs@kadﬁmbia
‘stronger preference for a,.  With this identification, the hyperplane x=x
divides kn into threes regions; the two topologically open regions are identified
with the strict ordinal rankings (e.g..{x x,/xj} correspond to ak>aj), and thes
hyperplane is identified with indifference betwsen the two candidates. By varying

k and j over all palrs of indices, the resulting n(n-1) /2 hyperplanes divide Rn

into cones thst are 1in a one to one relstionship with the ordinal rankings of the
candidates. Call each of cse regions a ranking region, Call a cone with a
ronempty interior an opsn ranking region; it 1e identified with strict rarkines
among the altsrnatives. 7ing region is in a hyperplans, 1t corresponds to
a ranking with indifference zmong sone of the candidasies, For instsncs,
Ix in B :xy=x,5%3 02, =% b corresponds to the ranking a,=a;>a;>az=a

In what follows, let A dencte the ranking a;>a,>..>»a, and let W be the

voting vector for the set of all n alternatives. Because of the moriotonicity
assumptions on the components of a voting vector, W is in the closure of the
ranking region identified with A, (If at lezst two of the components of W agree,
then W is on the boundzry: ctherwise W is in the interior.) In fact. W is tle
tally of a ballot with the ranking A. When used as a tally, denots the vector as
W,. Any other strict ranking of candidates 1s a permutation of A; lat the generic

representation of such a permutation be w(A). The tally for a ballot marked w(A)

n

is given by a permutation of W, denoted as Wi xy.  Let ngp,, denote the fraction

f all voters that have the ranking w(A). The tally of an election is given by
6.1 Z iy py W oa)y
where the summation index, m(A), ranges over all n! permutations of A, The sum i3
in a ranking region, and the ranking associlated with this region is the electicn
outcome.

The
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profile p iz a vector in 3i(n!)y, =20 the election outoore is in the convex hill of

4

the vectors {WK(A}}. Irn turn, this hull is in the affine plane passing throush
these points and <(1,...1) where ¢ is the sum of the components of W. Ths
analvsis is much sasier when this plane is a linear subspace of Rn.,  This
stivates the first of the two assumptions I impose on the voting vectors.
Because the election outecome for W alwavs agrees with the outcome for W = aW +
B(l,..,1), these two assumptions only fix the values of a and b. The first one

fixes the value of b.
VECTOR NORMALIZATION: The sum of the components of a voting vector eguals zero.

‘or a plurality election is (1,0,..,0), a

2]

Example 9. The voting vactor

vector normalized form is (n-1.-1,...-1). A vector normalized form of the BT,

m-1,n-2...,1.0) iz n-1.n-3....n+t1-2i,..,1-n). So, if n=3, ths vector normalized
form of a Borda vector is (2.0,-2) while it is (3.1,-1,-3} for n=z4.

The vector ncrmalization forees the vectors Wi,y to be orthogonal to

»-

(1....,10), so the vote tally, Ea. 6.1, is in the linear subspace of BEn with the
normal vector (1,...1). Let En denote this (n-1) dimensicnal space; it is the
pacs of interest.

How, oomsider all Zn-(nt+l) subsets of candidates. Corresponding to =ach

set 3., there is a division of an Euclidean space of dimension !Si[into ranking
regions. For convenienos, assure that the 5. coordinates of this space have the

same subscript as the alternatives, and that they are listed in increasing order.

f::]
N

or instances, if S, ={a;.,a;,a;}. the the corrsswonding twmo dimensional linear
subspace for the three candidates, H3, has the coordinates x;. »,, and x;.

Let E(n) be the cartesian product of the 2n-(nt+l1) lirnear subspaces Ek. A
ranking region in E(n) is obtained for the product of the ranking regions of the
componsnt spacas.  For instance, {X=X,. 3p3Xq, X38¥g, X57X,*¥y} 15 a ranking
region in KE(4) that corresponds to the element (a =a,. 35%a,, 3;<aq, 3,°a;,%a3+ in
. It is easy to see that there is a one to one correspondence between the
ranking regions of E{n) and the entries in Un.

In the obvious manner, the ranking A defines a ranking for each of the

subsets of candidates. Let Wr be the system vector. By the clwice of the

n

coordinate axis for each of the component svacass of E(n). W is in the rarking



components of Wn give the tally for each of the sulsets of candidates for a voter
with the ranking A, When treated as a tally of a ballot, Wo iz denoted az Wy,
Anyv other ranking of A is a permatation of A, w(A), and its tally is given bv the
appropriate permitation of the voting vector components of Wno  This permutation
is denoted by Woo .y For a profile p = {ng . the tally of all subsets of

nandidates is given by

6.2 G-, W) 3i(n!) -—-> E(n),
where
6.3 Gip. W) = 2 ngay W4,

i\l

znd the summation index, w(d), varies over all n! permatations of A, The sum 1s
in a ranking region. and this ranking region defines the word in Un. This
summation has the same interpretation as for Eq. 6.1; it defines a point in the
convex hull of the n! vectors {Whn(A)}.

The key ohservation used to characterize the dictionariss is that a word w
iz in the dicticnary D(Wn) iff the product regicon associated with w intersects the
convex hull of the vectors (W, . 1. Thus the problem of characterizing a
dictionary i3 equivalent to characterizing how this convex hull intersects the
ranking regions in E(n). But, this convex hull is in the linear space. V(W) ,

spanned by the vectors {Wh .y}, Our proofs a based on the following conclusion.

Proposition 2. A word w is in D(Wn) iff the product ranking region associated
with w has a nonempty intersection with V(Wn).

Proof. First, nocte that if p= (1/n!....1/m'), then Gip,W) = 0: the elescticn
ranking for each suabzet is a complete tia. Next, note that the rank of G{(-,W1)
equals dim(V(Wh)). This is because V(Wn) = span({WnK(A)}ﬁ, while the colum
vectors of DG are {WDH(A)}). This, the rank(DG) = dim(V(Wn),

It now follows that G maps an opsn neighborhood of p to an open
n=ighborhood, U, of the origin, 0, of E(n). But, 0 iz a boundary point for =ach
rroduct ranking region in E(n). This forces U to meet =2ach of the ranking regions
in V(W) . Namsly, for a ranking region in V(W) , there is a point p° in Si(al)
that is mapped to this particular ranking region. This nearly complates the proof

tecause it means that if V(W) meets a ranking region of Efn), then G(p W) is in



region. All that nsads to be proved is that p’ can be found
that has rational componsnts. This simele argument is given in the first part of
1

the vroofs in [17]7.  This completes the proof of the Proposition 2.
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Proof of Theorsn is A simpls exercise wsing the inverse image of

,\
G2

If a syubol does not invelve any tie, 1t 1s in an open ranking region, and the
inverse image of =zn open set is open.  Secondly. the structure of these sets with

the hyperplanes follows immediately from the linssr form of G.

According to the proposition, to prove Theorem 1 we want to show that
ViWn) = E(n) for most system vectors My pronfs are based on the algebraic,

permutation group structure involved in changing a rarking from A to w(4d). To

illustrate the basic idea, T will start with the proof of Theorem 4.1. Here, the
oroup structure 1s simpler because 1t involves the permatations of onlv one set of

candidates
Procf of Theorem 4.1, Thiz thecrem involves only the set of all n
candidatas. The interesting feature is that with the n-1 different tallving

processes, the set of outcomes is replicated n-1 times. Therefore the electicn

where {W.:, 3=1... .n

of the thecrem and where, if p = {n,,

P Inli i — T - 7 b
P9 G W Wy S ey My oWy !

From the assumpticns on the voting vectors, for =ach j, B =
Span{wjjn(A>}. To prove the theorem., we nead to prove that {Enin-1 asyess with

7\7* = C_'\‘f\arl(wln(A) PR ,Wn_l‘,,[(;i\) )
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Let B Atx\ En-—>Fn b2 the permutation mapping thy

and the kth components of x, and let P, (X) = (F7 (%), P i (%,-1)) be a
mzpping from {Enin-1 bhack to itself where X = (x,,...%,.;}). Let Gp b tha zroup
of permutations generatad by the nin-1)/2 permutation mappings {P.,.}, and define

L{Gp} = {V:V is a linear subspace of (En)n-1 that is invariant under Gy}. Thus,

if V is in L(Gp), and if P is a permutaticn mapping from G,, then P(V)=V. Buch a
mapping, P, just permates the components of the vectors, therefors VX is in L(Gp).

To prove the theorem, I will characterize the elements of L(G
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Our characterization of L(Gp) depands on the eigenvalues and sigenspaces

of P,.. The sigenvalues are -1 with multiplicity n-1, and 1 with mulitiplicity

(n-1)(n-1). It is easy to se=s that the -1 sigsnspecse of (7, k) is spanned by the
(e;-e,,0,...0), ....(0,...0,e,~e ) where e; is the unit vector in Rn with unity in

the ith component and zero in all others. That this is the basis follows because
only the e, and e, components are interchanged with the permutation; all others
ramain the same. Also, a2lementary arcuments prove that the -1 and the +1
ejgenspaces are orthozonal to =ach other.

Ciaim 1. Let V b= in L(Gp). and let V . b= the projecticn of V into the
-1 eigenspace of (j.k). Then, ij is a linear aubapa ce of V.

Procf of the claim. V., is a linear subspace, but it is not clear it must
be a linear subspace of V. To prove this, let v be in V and let v; b= the
projection of v. It suffices to show that vy is in V.  But, by the orthoscnality
of the two =igenspaces., v = vi;+v, where v, is in the +1 eigenspace. According to
the invariznce assumption, P.p(v) = P, (v;+v;) = -vytv; 35 in V. Thus,

5.6 v - Py
is in V. This completes the proof.

The next assertion proves that all of the V., s are related.

Claim 2. Let V bz in L{(G,). Then, Py (P (Vi) = Via.

Proof. P'gyle-e) = e;-e;, 50 Py maps the -1 =igenspace of (j.k) onto
1

the -1 sigenspace of (i,5). Thus, P;, (V.).) is a linear subspace of the -
slgenzpace of (j.s) with the same vector dimension az V.. Because V is in L(Gp)

the two sets agres.

Claim 5.. Let V b2 in L(G

{Vvlk} :d'lrl 'il’U(V)—(M—J)

Froof. En = S'Qn{el—ek}, k=2,...n, and this extends, in the natural
manner, to define a basis for {Enin-1. 5o, assume dim{V,,i= j. According to
Claim 2, dim(V,,) = 3, k=1,...n, and V contains the span of these subspaces.

Thus, dim(V)> (n-133. But, if dim(V)>(n-1)i, there is a vector v in V that cannot
be expressed as the linear combinaticn of the vectors from the spaces V.,
k=2,...,n. According to our choice of a basis for {Enin-1. this means thers is 2 k
such that the projecticon of v into the -1 eigenspace for (1.k) is not in V.,
This contradicts Claim 1 and the definition of V.., and proves Claim 3.

To complete the proof of Theorem 4.1, it suffices to show that dim(V¥,,1 =



n
D

(n-1) because, from Claim 3, dim(V¥) = (n-1)3im{V¥,,) = (m-1)2 = dim({Enin-1%,

Assume that dim(Vx;,) = j and that a basis for V¥, is {¢;}t. i=1,
Ising a standard row reduction argunent of the type used to convert a matrix into
a dimgonal form, we czn assume that the basis {c;} is replaced with the eguivalent

basis {dlZ;} where

-
5

-3

d.lz1 = (all(el—%‘)‘aln_l(el—ez))

i

hy
1

by

re at, = 1 if ik, i=1....3; aip, = 0 for & and k differant from i and not

3

W
l,_.l

of the remaining al, terms can equal zero because this would forece VK to be

n

ero for these component spaces.  (In turn, this forces the contradiction W.=0.)

According to Claim 2,

W)

hasis for V*lj iz given hw RBa. 8.7 where the index

A}

is replaced with j: the ai, terms are the samz.  This means that the vector
(W..., W _ ;) can be expressed as a linear combination of the {dik;}. But if
=dim(V¥)<n-1, 1t follows that there are J equations, W, = -Zas W, , where the
summation is over k=j+1,...n-1, and s=1...,]. This means that the set of vectors

{W.} is linearly depsndent. This contradiction provaes ths theorem.

The proct the Thecrem 4.1 is based upon the permatation group structurs
satisfied by the linear space defined by the vote tally. You can view this in the
following manner.  If there is a permutation in the voters™ preferences., then the
new vote tally must also be in V. The change in the voters ™ preferences just
permitad the entries of ths voting vectors. Indeed, the only property about a
voting vector that was used is that with appropriate choices of P'jk. any an(A)
can be mapped to some other W,.. .. Thus, the conclusion holds should voting
vectors be replaced with any other vector. The proofs of all of our theorems are
proved in muach the same fashion; we characterize what happsns as the permatation
groups act on the domain, or preferences of the votsrs. he pronf of Theorem 4.2
demonstrates there is a difference in the amnalysis when we have more than one
subset of candidates; this difference iz basic for all of social choice mapvings.

Proot of Theorem 4.2, To demonstrate the hasic ideas, I will first prove
the theorem where only cne voting veotor is selected for esach set.  So, et W; 1 be
the voting vector for ths set 5;={a;... 2,1}, and let W = (W, .. W) be the
system vector for this family of ssts.  For sach set Sj. thers is an associated

dirmensional subspace, KEi, of the j+1 candidates. We need to show fThat the



0

subapace spammaed by the syatem tally vectors. {&k]m(A)}' is the total space
is in only on= set. 5,_,. Thus., if a, and an adjacentl;
rarked alternative are interchaneed, then the new, permated rarking only changes
the ranking for the set 5,.,: the ranking for all other szets are invariant. Now,
iz not a maltivls of (1,..,1), sa there is z value of 5 where the differencs

~twesn the sth and the (s+1)th components of W, 1is nonzerc.  Assums that s is the

it
i

smallsst value for which this is true, and let wkx, bz this nonzero differsnce.
(For instance, if W=(1,0,...0), then s5=1 =nd w,=1 while if W=(1,1.1.1/2,1/3,0).
then 5=3 and wk, =1/2.) HNext, chooses a ranking. w(A), where a, ard a, are

raspectively, the sth and the (3+1)th yanked candidates. When Pjn

it interchanges these two alternatives. This permutation orestes a new ranking

oniy for the set 5,0 thers are no changes et
ey et ] Vo~ = k. f { - -~ ‘ 3 ey
Consequently. Po (W oay) — We ay = wh (000 0 ep-ey)  Becanse wh, is nonzer

and because this relaticnship holds for =1l choices of i=1... .n~1. the space
sparm2d by {(0....0.e,-e.; )} i3 In the space spannad by (W 1. HNamely, 6.3

Oxle,  xE0 15 in spaniWe 54yt

Hext, a,_; 35 oniy in the sets 5, ., and 5,_,. et wx, , be the first
nonzero difference between wsights of W,_; and assume this is between the sth and

the (s+1)th componsnts.  For =sach . chocse a ranking where A is sth ranked and

S3n-1 15 (s+hith ranked. When P, ,_, 1s applied to this ranking, the only changes

S £ 3 = S Further = . ( ) -

are in the rankings for 5, , and 5, ;. Purthermere, Py o (W 40 - Wo oia,
(0,00, (e, ;-e; .0, (e, -e;) where ¥, 15 some scalar. By use of Hg. 6.8, it
followus that the vector (0,...0.e,.y-e,.00. for each j=1...,n-2. is in the
q-an{k&)n(A)}. Thus, Ox. . ,x0xEn-1x0 is in spen{hkrﬂ(A)}. Combining this with Ea.
5 it follows thst Ox..xEn-1xBEn is in this spen. Oontinuing in this ss

6.9. 1t follows that Ox. . B is in this span.  Continuing in this same
fashion, with the obvicus induction areument. 1t follows that E2x..zEn is in this

span.  This completes the vrocf in the special case.

)

This proof did not asme any provertiss of vobting vectors: it only used that

Y
the vactors ware not maltiples of (1,...1). Therefore, voting vectors can be

the

replaced with any other vector that is not a maltiples of (1....1).

lgehraic group propertiss of the subsets z2nd the permutation operators separatsd
the vector spaces for the different sets of altsrnatives. With only mincor

modifications. the same argument holds for sets of vectors for sach zet of
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candidates. Then, ths arguments from the proof of Thecorem 4.1 apply to finish the

In the proct of the rest of the thecrenms, the permutations always effect

more than one subset of candidates, so this complicates the proofs. Technically,
we are using aspects of the orbit of ths iferated sreath product of permitation

groups to prove the theorem. (It turns ocut that related arsuments can be used to
prove and extend Arrow’s theorem. ) To help with tle bookkeeping, we introduce the

following definitions.

Definition. Let n alternatives be given. Both the subset of alternmatives S; and
its corresponding linear subspace Ed’ are called (j,..,k) component subspaces iff

54 contains the alternatives {aJ,..,ak}.

The next definition corresponds to choosing a valus of "a" in ths choirs

— P B N Sy
A VOTINg vednor.

Nefinition. A scalar mormalization of a system vector Wn is a choice of 2n-(nt+1)
positive scalars, Ci» used to define the equivalent. systam vector

(ciWy. .., W, ... ). The standar scalar normalization for Br is where the the Borda
vector for k alternatives is given by (k-1,k-3,.. ,k+1-21,..,1-k) and the vectors

for two alternatives are (1,-1).
Firazt we prove the Tollowing.
Proposition 3. Dim(V(Bn)) = n(n-1) /2.

Proof. Consider

. Yio = By = P By )

where m(A) ranges through all rankings where a, is the ith ranked candidate and 5,

v

is the (i+1)th ranked candidate. i = 1...,n-1. This vector difference is O in anyv

i+
component space B that is not a (3.K) component space, and, in ths (i.k)
scomponent spaces, 1t is 2(ej—ek). Theyefors, Y, iz well dafined.

There are only nin-1),/2 distinct vecotors in the s=t {ij}- What we show

is that V(Br) = span{{Y; tt, 2nd that the vsctors {Y,;,} are linearly indepandent.
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To prove the first part, we show that B, 4, can be expressed as a linear
combination of the vectors {ij}. But, any w{(A) can be expressed as the
composition of transpositions. 5o, it suffices to show that if Bray has such an
expression, then so does B, where C is a ranking obtained by a transposition of
some two alternatives adjacent in the ranking mw(A), and that Br has such an
expression. The first statement follows from Eq. 6.9 where the choice of j and k
are determined by the transposition.

It remains to show that
6.10 Br = T Yy, 1< j<k&n.

Consider a subset of candidates, S5,, where |5.| = s<n. Let a; be in 5,. Then,
for precisely s-1 choices of k that differ from j, Y;, has a nonzero vector
component in the space corresponding to the set S,. The coefficient for e; is +1
iff j<k, and it is -1 iff k«j. Therefore, in the vector sum Eq. 6.10, the vector
component corresponding to the set 5, is (s-1,s-3,..,s+1-21i,..,1-5). This sum iz
the normalized Borda Vector, and it completes the proof of Eg. 6. 10.

To complete the proof of the proposition, we must show that {Yak} i3 a set
of n(n-1)/2 linearly indepedent vectors. Note that each is nonzero in only one of
the first n(n-1) /2 vector components - in the component for the pair {aj,ak}.
Here, the component is 2(ej—ek). From this, it is immediate that the vectors are
linearly independent. This completes the proof of the proposition.

Proof of Theorem 3. Let the system vector Wn be given. If each of the
voting vector components distinguish between the top and the second ranked
alternative, then let the scalar normalization be defined so that the difference
between these two weights is 2. Then, for each choice of j<k, let w(A) be the
ranking where a; is the top ranked alternative and a, is the second ranked
alternative. Thus, the vector
6.11 Wooay - PikWray) = Yk
so V(Br) is a subspace of V(Wn).

Next, consider the situation when some of the voting vector components in
W do not distinguish between the two top ranked candidates; e.g., one vector
component may be (1,1,-1,-1). A voting vector distinguishes between some two
rankings of alternatives, so fix j and k, and consider all possible rankings n(A)
where a; is the ith ranked alternative while a, is the (i+l)th ranked alternative,

i=1,..,n-1. For each such ranking,



~

6.12 Pop(Wipay) - W

T(a)

J

has a non—negative maltiple of e;-e, in each (j.kK) component space and 0 in all
othars. In each (i, k) component space, there are choices of w(A) where the
maltiple i3 positive. Therefore, if all of the vectors obtained from Ea. 6. 12 are
added, the sum has ( for any non-(j.kK) compnent space, and a positive multiple of
e;—¢, for all (j.Kk) compcnent spaces. This multiple depends only on the choice of
the voting vector for each (j,.k) component space, not on the cholce of the
particular i and k. (This is because the scalar for a particular (j,.k) component

space depends only on how often two alternatives can bs ranked in the ith and

(i+1)th position as w{A) varies over all sp= ed rankings - 1t is independent of
the particular choice of the alternatives. ) Thus the scalar components ars

independent of i, k and i; they depend only on the choice of the voting vector for

the set of candidates. Choose the scalar normalization for Wn so that, after

normalizead, all of the scalars in the sum soual the sealzr obtained for the hinasry
7a;.a.t. This m=ans that the sum is a multiple of ¥Y,,. This is true for all
values of (J.k). 2o it now follows that V(Bn) is a linear subspace of V(W)

Finally, we mast show that if Wh = Br, then V(Bn) is a proper subspace of

ViWn),  This involves a more careful applicsticn of the last argument. Because
the choice of i and k determines only which subset of candidates are being
considered, we can stert with the indices 1 and 2. Asgain. consider the vector
differences

5.13 Winiay — Fig (Wipigy)

where only m(A) varies. To simplify the notaticn, let wX._ denote the difference

betwesn the sth and ths (s+1)th weights in the voting vector W.. When w(A) = A,
the vector difference in Eq. 5.13 has wt,,(e;-e;) in each (1.2) component space
5., and 0 in all others. Next., consider all choices of w(A) where a; is the
second ranksd alternative and 3, is the third ranked alternative. The only
alternatives that concern us are those ranked above a;. So, consider the n-2
rankings obtained in the following crder: The (j-2)th ranking has a; top ranked,
the ranking of the alternatives below a; is given in some arbitrary fashion.
Here, the vector difference Eq. 6.13 has a scalar maltiple wk., for the (1,Z,j)
component, spaces, the maltiple wk,; for the rast of the (1.2) component spaces,
and (} for all other spaces. This vector is independent of what alternative is

ranked in the kth position, k3.



Continue this construction for 1=3,...n-1. Namely, a; is the ith ranked
alternstive, 2. is the (I+D1)ith ranked alternative, and we consider ths {(n-2)-(i-

D /(i-1)! choices of n(h) obtained by choosing all possible sets of (i-1)

alternatives ranked above a; and a,. The precise rankings do not matter. it only

is important to know which alternatives are ranked above a;. For each such

we)

ranking, the scalars in the vector difference Eq. 6.13., wk.. in each (1.2)

P

comporent space 5. depends on how many of the selected (i-1) alternatives are also

q

in this set. The szet of all vectors obtained in this manner span a linear

subspace of VW), (This subspace plays a role similar to the -1 eigenspace for
(1,2)" in th= praoof of Theorem 4. 1. It was shown that z linear combination of

these vectors eguals Y. If any of thase vectors differs from a scalar multiple
of ¥;,. then this subspace iz at lesast of dimension 2 and the conclusion that
ViBr) is a proper subspace of V(W) would follow., 50, suppose each such vector is

a multiple of Y;,: it would be, by comparing the coefficient for the binary

{a A

")

1o @21, & Yo, Thus, when w(A) = A, wk,; = 2 for each 5, that is a (1.2)

component spacs.  Continuing, because =ach w¥,. loccurs in at least one of th

vector differences, it fellows that the difference hetween any two successive

- e E s
weighte mist e 2 for =ach of the vot ]

ng vectors., This ovnicuely determines all of

i
the voting vector components - they all are Borda Vectors., The analysis does not

depend on the chwice of the indices 1,2: it holds for all i<k
It is a simple exercise to s that if V(Br) is a proper linesr subspacs
£ .
s b

of V(Wy), then D(B1) is a proper subset of DIWRY, Indeed, ons can show that if
the difference in dimension is 4. then 3d|[NE%)|< !D(Wn)]. This complztes the
vroct of Theorem 3.

Froof of Thecrem 1. The proof uses the construction for the proof of
Theorem 3, and it iz similar to the proof of Theorem 4. What must e shown is
that, with the exception of a algsbraic set of system vectors, V(W) = Ein).  Zut,
V(W) is spannad by {W 41, and the ccefficients of thase vectors are determinad
by the weights of the voting vectors. The "open” situation is that for most
choices of these coefficients, V(WR) will have a fixed., maximal dimension. All we
need show is that this maximal dimension is dim(E(n)). This is done by showing
that for at least cne W, dim(VW) = dim(E(n)), so the sets agrees. Becondly, it
iz a simple fact from linear alsebra that when the coefficisnts for the voting

vectors are treated as variables, then V(W) will have a dimension lower than ths



maximal dimension only if the varizbles are in a varticular lower dimsnsionsl

algebraic set. Namely., the spanning vectors {WQH(A3} have additional dependencies
given by the vanishing of certain determinents: thess detearminent conditions

-

Supposs V(W) is s proper subspacs of E{n).  This means it has a normal
vector, N, in E{n). By using the bazis for E(n), it follows that thers is a
choice of (j.k) and some component space of E(n) s0 that N is nonzerc in a e;-e,
direction. Without loss of generality, assume that (j.k) = (1,2). This means

that V(W) does not contain the subspace of E(n) generated by the product of (e -

e ) from each (1.2) component subspace of E(n). The proof of the thecram is
bazsed on showing that there is a W where V(W) contains the full subspace

erated by the product of the (e;-e,) subspace. This contradicts the existencs

un

of N and it proves the theorern

The choice of the system vector, Wi, is where all of the voting vector

components are plurality vecters, so wt, >0 for =2ach (1.2) component space 5., and
*rj:O fer jr1. To show independence, the rankings describad in the proof of
Thecrem 3 are used, but I will start with the last rankines and word forward. 3o,
if a; and a, are bottom ranked altsrmatives (i=n-1), thsn only in the s=t {a,.a,}
nan they be the two top ranked alternatives. For this w(d), the vector difference
Eq. 5.13 has 0 in all component spaces except the one corresponding to this

inary, whers the antry is e;-e,.

Hext. consider izn-2 where a. is The bottom randked alternative. Only in
the sets {al.az} and {a,.35.2a;t are 2; and a; top ranked. For this m(d). ths
vactor difference Eq. 6. 13 has nonzerc entri=s only in these two component spaces.
The first vector obtained from i=n-1 is used to eliminate ths {3, ,a,} component cof
this vector. Thus. V(Wr) contzins bhoth the vector with the only nonzero vector
e;~e, in the {a,.a;} component space and the vector with the only nonzero
componant e,-e; in the {a,.3,.a,} component space.  The obvious induction argument
proves that, for each (1,2) component space of E(n), En) has a vector where its
only nonzero term is e;-e, in this component space. This completes the procf of

the theorem.

Q
rh

Proof of Theorem 2. Let n=3. Ths procf is much the same as the procf
Theoram 1 except that I now show that the conclusion holds far all non Borda

vectaor Again, without less of generality, we can concentrate on the (1.2
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component spaces These are 5, = {a;.a
differen

vector differences are lin

and 34={2,,23,,a
ces from Eq. 6.13 involve the coefficients (2., )

early independent iff the

Page 3

4

Y

The vaector

and

,_‘ ) W*4 ) The

vectors defined by the

cozfficients are linezrly independent. But, these coefficizsnt vectors are
dependent iff why, = wky, = o iff the differsnces betwesn the weights of W, are

2
C

the same fixed constant c iff W, = By. Thizs complates the proof for n=3.

Let n=4. There are four (1,Z) compocnent spaces. 3, = {a;,a,f, 5=
Ta1.85.851, Sg = {ay.a5,841 and By, = {a,.8,,33.3,}+. The vector differences from
Eg. 6.13 define the coefficient vectors

(2, why 0 whg L Wy )
(2, Wy g0 Wy 0 Wy )
(2, why 1, whg 5, why,

(2. w7 5. Whg 2. W*11‘3)

from the rankings A, az‘a;>a,>a,, 343,73, 73,

If the matrix defined bv these four vectors is nonsingular,

arvgunent for n=3 appliss

and 3, >a; rag >a,.

then the

An equivalent matrix in triangular form is

/ 2 why Wrg g LA TR

0wy oWty 0 whiy oWy

{ U g Whe pmWe 1 Wi TR

\‘} 0 0 W1y g Wy 1m0 pmwEyy )]

If any of the component vectors for W are
entry in the ~ond to fourth rows of this

follows,  If ncne of the component vectors

condition for the dictionzry not to he all

Borda Vectors.,
matrix are

are Borda Veotors,

then the corresponding

zero, and the conclusion

of U8 ds wiyg qowifyy -2 Wk ooy )

)

= 0. When expressed in terms of the weights defining W, . thi=s is the condition in
Theorem 2.
Procf of Theorem 5.1. The matrix associated with Ea. 6.13 when Py, is
applied to the n-Z rankings with a; ith ranked and a, (i+1)th ranked is
7 ¥ 4 K
2wk Wy oo 1
2 W wio 2 Whao2 2
Vo
\ 2 w*l .n-1 ‘J*Z n-1 W*n-z .n-1



The assumption on the voiting vectors is that they,
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iz of the form (1,1....1.0....0); it az=sign=s onse point to a votsr s

k top didateas i=
o2 system vector corrasponding to any assisnment of voting vectors of this ki
to the =subsets of candidats {Henece, for n=3. there are only two svatem

vectors: (1,0:1,0:1,0:1,0,00 and (1.0;1,0;1,0:1.1.0). For n=4. there are 24 (3}
svstem vactors.  For n alternatives, there
Znin-1){n-23 /2! (3n(n-1)n-2) (n-3) /4" ) CLin—-1)
G(-.Wa, ... .Wy o)) be the mapping that re
s3ystem vectors. By usins the aroument showing that

it follows that the spacs spann=d by { (W,

2,
;
5
=
)
]
aQ
l~l
n
o
A
)
D
U
[)
<
i
=

by the span( (Y. ik s

Ty choice of k(n) systam voting vectors

zny system vector 1s in their convex hull. his means that any outcoms of this
system veator, Wi, is in the convex hull of the outcomes for the basis system
vectors. Becmuse all of the basis system vectors have the same outcoms, and

because (by Theorsm 8) the regions supportiing a word are convex, the outcome for

This completes the proof.
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Ever since K. Arrow [1] proved it is impossible to construct a voting
svstem that satisfies certain desired properties, a major focus in social choics
has been to use an axiomatic formulation to determine what assumptions ars, or are
not mutually compatible. (See, for example, Sen [22].) In this paper. I
introduce a different apprcach to analyze the important class of positional voting
methods, such as the commonly used plurality vote. The idea is to characterize
the election outcomes. Namely, for any number of candidates and for any
positional voting procedure, I characterize all possible ways election rankinss
cAan arise ovér all possible subsets of candidates. With this calaleog. the
proparties of these voting systems can be determined in a simple, pracmatic
fashion - just check the listings to zee what can and canncot cocur. The
~enclhimions are very disturbing - paradoxes are more plentiful and much more
complicated than one might have anticipated. Only Borda’s Method avoids many of
the potential flaws. Applications of this dicticnary of voting cutcomes ars
indicated, in part, by describing all possible plurality election outcomes, bv
obtaining new results abtout agendas and rnuneff elections, and by describing
certain strategic situations. Moreover, because [ am characterizing all pissib
~iection outcomes, 1t follows that all of the election paradoxes in the literatinys
described in terms of ordinal rankings of positional elections must b =p=cizd
cases of this catalog. This is true, and, by 1sing the listings, I show how =ny
such paradex can be extended and generalized in several different ways. iher.
qQuite Sjecfacular paradoxes can be arsatad: indesed. with the dicticonary, the kinds
of paradoxes that now can be deszigned are limited nly bw one’s imegination,

Frotably the most widely used voting method is

ural ity alection, bt

)
T3
:,_.l

how should we interpret the =lection ranking? To sea that there iz 3 orablen.

=2t A oommen untheon

conslder the hypothetical situation where fifteen pecole seo
haverage.,  Six of them have the ranking water (wa)
(1.2, warwizbe), b have the ranking b=rwirwa, and
The plurality ranking is warbeswl with the tally 6:5:4
recple prefer the bottom ranked alt=rnative, wine,

(hv 9:6) and to the second ranked besr (bhy 10:5)!

(by G:h). Thus wine, the majority ov Condoroet winner, (in any mirwvise
comparizson, 1t is selectad by a maiority of the voters) iz bottom ranksd in the
alaction while water, the anti-majority aiftsrnative, is top ranksd. Fv nsing thea

miority vots compariscons, it iz arguable that the "trus ranidng” is
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probability, statistics, economic indices, eto., are special cases of ageregation
procedures. So, are voting paradoxes related to certain difficulties in these
areas? Positional voting is a simple "economic message system’ of the tyre
introduced by L. Hurwicz (8] (also see [3,141) where the object is to encode and
transmit relevant information about each agent’'s preferences. In voting, the

es suggest hidden

>,

encoding is given by marking the ballot. Can voting parado
flaws in other kinds of message systems? (The answer to these questions is yes.)
Because positional voting is a simple, important prototype, it serves as a tast

case for concepts being developed in decision analysis. the social sciences. and

elsewhere. By understanding what “goes right' and what "goes wrong' with voting,
insight can be gained about more complex methods as well as cther social choice
models. The approach developed here extends, in part, to these other svstems.

The central theme of this paper is to determine what can go wrong with
positional voting and to explain why. To understand what paradoxes can occur and
to avoid the standard approach of finding them in a piecemeal fashion, I
sible subsets of

candidates for all possible positional voting methods and all possible profiles of

characterize all possible election outcomes over all

\ﬂ
D

voters. The reader will recognize the similarity of this goal with the
Sonnenschein program [23] where he, Mantel [10]. Debreu [47, =2nd others
characterized (for the message system of price dynamics) all possible ageregate
excess demand functions for all numbers of commditiss for all simple trading
economies based on necclassical utility functions. A cataleg, or dictionary tor
voting outoomes, could be used in mich the same way as the Sonnenschein-Mantel-
Debreu classification: both serve as a starting point to determine what =lse can
and carmot occur. In this manner, a dictionary serves as the foundation to
analyze voting procedures. By using the dicticnary, it is easy to create new
paradoxes - just check the listing to find what wnexpected rankines occcur aver
different subset of candidates with the same sincere votsrs. We can compare arnd
combine paradoxes into classes - paradoxes that depend on similar dictionary
listines vrohably are related. We can understand strategic voting - just compars
ths election rankings for nearby profiles of voters. (After 3 manipulsting voter

marks the ballot, the actual =lection is determined by a praofile that Aiffers from

ot

the sincere one. ) All of this is illustrated hers

For reasons explained in a companion paper {157, it is not practiczl to
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7T

of candidates 5,. Let the svstem vector, Wo = (W ... W ,,), b2 ths listin

k

=8

these tallying procedures.

Example 1. For n=3, {{a;.a;}. {a3.2,}, {a;. a5}, {a,.8;,3;1} is a listing

Fh

1
of the 23-4 = 4 sulsets of two or more candidates. The system vector W =
of ¢

(1,0:1,0;1,0;2,1.0) signifies that the first three sets candidates are tallied
with a majority vote - the voting vector is (1,0) - while an election for 3, is
tallied with the BC vector (2,1,0).

To describe our results, we need a space of "all possible election
outcomes’ . Toward this end, let Rj be the listing of 3ll possible rankings of the
|Sj‘ alternatives that are generated by complete, transitive, symmetric (to admit
tie votes) binary relationships on SJ. For instance, 5, = {a,.a,}. 50 R; =
fa;>a,. a;=3,, az»a,}. If |5;] = 3. then R, has 13 rankings - £ of them are
without any ties, while each of the other 7 have at lsast one tie. ILet In, the
universal set, be the cartesian product Ryx. . xR, (,,,. An 2lement of 0 is a
listing of 2n-(n+1l) rankings: there is one for each subset of candidates. The ijth

ranking. or symbol, of this listing is a ranking for 5.

Example 2. The sequence {a;%a,, 2,%233. 23%3;. A,>3;7as+ 15 an =lenment of
3. Each svmbol is the ranking for the appropriate subset of alternatives.

5

A profile is a listing of each voter’s linear ranking of the n candidat

—+
D
4]

[et Pn be the space of all possible profiles of the n alternatives: we imx
restrictions on the (finite) number of voters. Once a profile, p. from v iz
given. then., in the ohbvious manner, Wn is used to uniquely determine the o
rankings for each of the 2n-(n+l) subsets of candidates. This listine <f 2n-(n+1;
rankings is called a word, and a word is an element of Ua.  Ther=s i3 an important
difference between a word and an element of Un; an element of Un micht be =
arbitrary listing of rankings that has nothins to do with elections, hut a word
generated by W is a list of election rankings that is attained with a mrorile of
votars., For instance, in the beverage example, the electicn results

fwiswa, wirbe, bed>wa, wacherwil 1s a word ir. 3 generated by the system vector
(1.0 ,0:1,0,0) hecanse these rankings are attained with the specified
profile. Let
2.1 f(-. W)y Pn ————- > [n

ke the mapping that determines the word for a given profils,
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then Eq. 2.3 is satisfied.
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S0, for almost all choices of Wi, amthing can happen.  This means that
the wildeszt paradox one could poszible imagine actually can occur for almost all
choices and combinations of voting. vectors. Spectacular paradeoyes now are =acy 4o
creats,

Example 4. 1.

outcoms 1

lﬂ

subsets of candidates

generated by the reversad binarv relationship aj ey
2. Let n>3. There exists a profile of voter:
rankings alternate with the mmber of candidates

There exists a profile of voters zo
A4 >Ag Ay Ay, but the same votars ’

is the exact reverse of this —-

9

that the plurality

0y
)

ot alternatives, its plurality rankings are gener
subset has an odd number of candidates, its (1,1.0,
two top ranked candidates) is generated Ly the revers
< 3.

Theorem 1 includes and significantly extends manv results in the
literature. For instance, a widely guotad example due to P Fizhbuian (5] iz whe)
the group’s plurality ranking is a;>a;>a;ca,. btut if a4, is remowved. then the sams
eroup’s phrality ranking now iz a;>3,v3,. Haaril [15] °T
+hiszs kind could be extended in many different ways thera conid e any rumber o

and W _,.

candidates, one could use any choice of voting vectors, W

oonld

involve il

candidates that are rem-ved is arbitrary and

thizs marner, and the rankings could e selectzd ot

both Fis

hournm s

ST

remaining 9 symools in anv desired manner, and there is a protile to suprort it
4s an illustration, by chocsing appropriate rarkings for fhe bairs oF
alternatives, Fishbhorn's example can be extended so that a, . the middlz ranked
alternative in the two s2lactions is the Condorcet winner, bot the winnery «f tls

first electicn, a;. is the antimajority candidate while the winner ~f the szcond
elaction, ay. almost 13 the antimajority candidate becanze it only beats 3, in the
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alection procedures and other issues raised in the Introduction.

Example 5. 1. One form of a runoff election starts by first ranking the
original n candidates with a positional election. The k; top ranked candidates
are advanced to the next stage to be reranked with another positional election.

If k,»2, it may be necessary to have still ancther runcff electicn with the k, ftop
ranked candidates. Indeed, if n i1is sufficiently large. one conld imacine =
process involving several elimination stages as charactarized by ths posibive
integers k = (ky,.. K)o kjoks, . k22

Why use other procedurss?  Why not just accelerate the hy letiing

k=2, won't the ocutcome be the same? The (known) answer is no, not neceszarily.

Indeed, with Thecorem 1, it now is easy to extend the known results by showing that

for almost all choices of W, there are profiles of votars where different choices
of the sequence k lead to completely different =laction rasults.  In fao7m, it now
is easy to prove there 15 a profils and a-2 cholcas of runoff procedirss 50 Ch3t

whan the J8 procedure Iis used, a, is the winner, i=1... . .n-=2,

7

I will illustrate the aszertion for n=z4:. the same procf holds for all

values of n. For n=4. there are only two runcffs: (3.2) and (25, First, chooze 3
word with the symbols a;ra,>az>a,, a;733%3,. &,°3,. and a,ca;. With these
election rankings, the first (3,2) runoff is among {a;.a, .37, 2and 2, wins the

second runeff between a; and a,.  On the other hand, a, is the winnsr of the (O

off between a, and g - This completes the procf bhecause, accordirg o Theorsm

f—

, there are profiles that define this word. (To prove this aszertion, we nesd to

s=lact rankings for subsets of candidates that are not admitted by [ 19
The sams approach works for all valuss of n and for almost 211 votine

vertors The idea 1s simple: different =limination proceduras cansa different

sutsets of candidates to b= reranked. But, if thers is =0 much as a one candidate

&)

difference hetween suhsets, their rankings can be chosen in any desired manner:
there need not be any consistency among them. By choozing the rankinzs in an
ppropriate mamner., We can prove that radically different outoomes axist.  Theorem

1 asserts that, for almost all choices of W, a profile e

to support the

zelectad rankinegs.

2. The runoff example did not wuz= all of the svmbls in 2 word, The=e

2yvtra svmbols introduce added flexibility to find even more zurprizing

conclusicns.  For instance, for all pairs of altarnatives (z,,3,;}, choose the
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n(n-1) /2 symbols for the pairs, so the rankinegs of the remaining pairs —conld be
selected to determine different winners of various rmnoff procedures, =to.
Namely, for n2d, there is 2 mrofile of voters, n agendas. and n-2 runoff slection
procedures so that when the jth agenda is used, the outcome is Ayep- J=1

and when the kth runoff procedure is used, the outcome is a,, k=1,...,n-Z.  This
example can be enhanced by adding "almost Condorcet winners' to exhibit certain
features, ete.  Actually, by using Theorem 1, the kinds of exzumples that can hbe

created are limited only by one’s imagination.

3. ANY GOOD NEWS?

ot
ct

e

Theorem 1 proves that a lot can 80 wrong with positional elactions. bu

r_n
./
}._J

150 hints there may be good news. It suggests there might be a lowsr dimensiona

+

subset of W's where the cutcomes don’t depend so sensitively upon which siibset o

=y

candidates just happen to be presented. It sugegests there are choices of syste
vectors, Wi where D(Wn) is a proper subset of Un. Buat, because an is an algebrain
set, it also means that the component voting vectors of a favorable W's must he
carefully coordinated to avoid the negative aspects of Eq. 2.3, Thecrem 2
characterizes an for n=3,4. (An extension to larger values of n reguires a

different technical development.) First, some preliminaries.

Definition. A voting vector W, = (W;,...w,) is a Borda Vector iff w,-w,,, is the
same nonzero constant for j=1,..,n-1. Let Bn denote the system vector where Borda
vectors are used to tally all subsets of three or more altermatives.

It is easy to see that an election tallied with a Borda Vector and with
the BC always have the sam=s ranking. This manifests the fact that an =lection
tallied with W and with W™ = aW + b(l,...1) always agree if 2:0. These

mmdifications affect the tally, but not the relative razrkings of the candlidates,

Theorem 2. 1.{17] For n=3, D(W) is a proper subset. of B iff W is a Borda

Vector.
2. For n=4, if D(W) is a proper sulset of 4, then either at least one of

the voting vector components of Wt is a Borda Vector, or the last vector component.
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speclal, singular cas=. Morecver, 1t is easy to show that if a svetan vector has
a Porda vector as a componsnt voting vector, then the dictionary avoids certain
paradoxes. (The procf of this statement is an slementary axtension of the oroof
of Theorem 2.) In fact, the next statement demonstrates an sven stronger, favored

feature enjoyed by BC for all values of n.

Theorem 3. Let n>3, and let the system vector Wa have at least one non Borda
vector for a subset of at least three candidates. Then,
3.2 D(Br) C_ D(Wn).

=

Thecrem 3 means that Borda's method admits fewsr paradoxes. or words, than

-
on

any other choice of system vectors. (The =xact dictionary. DiBn

characterized in [157.) Eq. 3.2 has many important implications. It means that

any fault or paradox admitted by Borda s method also must be admitted by all other
mesiticonal voting msthods For instanos, it follows from (157 that Bordz 'z method

eed not rank a2 Condorcet winner in first place; e.g., for n=3, the word a3, =,.
Ay "33, 8,733, Ay a3 2231 15 in D(B). Consequently, from Theorem 3. this sape wor

mist e in all other dictionaries, D(We).  Thus, any criticizm oF Borda = method

advanosd by means of election rankings also serves as a criticism for all nessihis
viating vectors.  Conversely, all other W's admit words (1.2, paradoxes) that are

not permittad by Borda’'s method., Namelv., all othsr syvatem veotors introducs
additional indeterminacies - this means that the resulting election cuticom=s 2an
b= far more sensitive to which subgroup of candidates just happen to e presentsd.
These new =lactoral difficulties introduced by the other syvstem vectors are not

admitted by Borda’s Mathod., Thess statemsnts zerve as strong arguments Loy uslng

Borda’s method over any other choice.

4. WHAT FISE CAN HAPPEN?

Theoram 1 is not the ultimate description of poszitional voting paradoes
To show this, w2 offer two thecrems, bath in twe parts, T indicate what =is2 can
happen; a more compleats desaription is planned for =lsawvhere. (The proof of
) .

Thecrem 4 mativates the proofs of Theorems 1-3.)  While these thecrems are based

on the ideas developed for Theorem 1, thev are of independent interest bhecause
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independent set.. for each j = 1,..,n-1, choose j rankings of the alternatives in

Sj< There exists a profile of voters so that. when the jth set is tallied with the

kth vector Chésen for Sj, the outcome is the kth selected ranking for Sj,

j=1,..,n-1; k-1,..,].
Example 6. 1. Let n=4. For S, choose the vectors (1,0.0.0). (3,2,1,0),

(0,0,0,1) and the rankings ag>as as>a;, 238,73, 33, . 8233 A4 734 Lor 5, choose

(1.0,0) and (0,0,1) with the two identical rankings a,%a,>a;: and for 3, chocse

le that realices all

-

(1.0} and =,*a,. According to Theorem 4.2, there is a prof

1
L

of these ocutcomes with changes in the choice of the tallying vectors. &0, the

plurality elections for 35, and 5, show some consistency. but the pluralizy ranking

for 5, 1s the reverze of what one might expect. On the other

obtainad by voting for vowr bottom ranked alternative, (0.0,0,

consistency

Z. This thecrem can be usad to show how the Coombs., the (2. .23, =rd th=

2y rnoffs all give different cutcomas. st choose the purality ranking w0 e
Ay +33 2@, fAy . the plurality ranking of a,2a;ra;, and the majority ETREE

50, the winner of the (3.2) runoff is a,, whils the winnsr of the (0 runcff is

either a; or a3. Now., choose the (0.0,0,1) ranking to be a;=a;=a,>3,. 13 only a,

szdvanced by the Coombs system
Theorem 4.2 1is not sufficient to completely ansliyce rmmncirs and ~ther,

more complicated procedures, because 1t doss not admit all zubsets of candidatas.

For instance, in Examwle 6.1, if the first stage of the 2lection 13 ranksd with

the BD, then 5, is the set of candidates that iz to e reranked. BHeowever, 1f =2
Coomba method is used. then {a..a5.3,4} needs to e veranved, and this suba=t iz

not admitted by Theorem 4.2, Theorem 5 is a step toward a more 2ensval re=sult.

Theorem 5. 1. Let n>3, and let F be the family of sutsets of candidates that
consists of all n(n-1),2 pairs of candidates and the set of all n candidates.
Choase n—2 vectors in Rn that, along with (1,..,1) form a linearly independent
set. Furthermore, suprose the span of the m—2 vectors and (1,1....1) do not
include a Borda Vector. Choose a ranking for each of the mairs and choose n-2
rankings for the set of n altermatives. There is a profile of voters so that for

each pair of altematives, their majority ranking is the selected one. When their
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This result generalizes and extends a nice =xample of Fishbarn's [
Fishburn ereated a profile for n=3 to prove that there exist sitiations where the
Condorcet winner never is =lectad by any positional voting method. Theorem 5. Z
extends this kind of statement in all possihle wsys. 1t asserts that for any n.
voul can select any feature of Porda’s method that can he expressed in terms of t
rarkings over subsets of candidates. This feature defines a word in the Bords
Jdictionary, D(Br). Then, according to this corollary, there =xists vrofiles where

the same featurs holds for al

+
oy
w
o}
ct
oy
L
g
i
[oF
Qv
-

ictionary. This is because if this new word is not admitied by 2O
then the conclusion cannot possibly held.
Example 8. There exists a profile so that no matter what oocitional

2lection method is used, the outcome is (a;ra, . 3;°2;, A,%33. A4 03, 78, ).

5. THE GEOMETRY OF THE SPACE OF PROFILES

Before turning to the proofs, it is appropriate o auestion whsther thage

— T T
1 =YEID

new results are robust, or whether they derend upon specially constricts
that disaprear with even the slightest perturbaticn of the profiles.  They are
robust. This answer, based on the following representation «f the ztacs of

profiles, Pn, uses the fact there are n! different rarkings: 1.2 tlere are n!

different types of voters. The basic idea can be see=n with the bevearass examnli-s.

Al

N

There is no gualitative change in the 2xampls 1f 1 replicatsd
tripling the nomber of voters with each ranking. This is becm

ths rarkings do not depend on the numbers of voters, hat on

number of voters of each tyvpe., S0, a profile can be characte

what raction of All voters hasve A partion

p can te identified with 3 vector with n! non-negative ~omcon=nts that =znm to

unity.  Namely., p can b2 viewed as being o veotor on the it simmisy, 51!y, in
the positive arthant of ko',
Ther= i3 a 3light tachnical difficulty. A ovrofile definss A v=ctor in

21n!) with rational components, and vice versa.  Fart of the stvensth of oy

approach is to use all of the striucture of Sinmiy: T embad ths dizorare pyoblem of
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Thus all paradoxes hased on election rankings without ties are supported
by open sets, so they are robust. The paradoxes involving tie votes are not
robst; a slight change in the profile can alter the outcome. On the surface,
Theorem 6 appears to be a technical theorem concerned with the robustness of
certain words. In fact, when used with the earlier theorems, Theorem 5 is a
mine" for explaining, extending, and describing several other results of current
interest. For instance, manipulation and strategic behavior is a topic currently
of great concern. But note, if a voter successfully manipulates the outooms of an
election with a strategic vote, the sincers profile is on one side of the
hyperplane given by a tie vote, and the manipulatad profile is on the other.
Consequently, the structure of these "tie vote” hyperplanes provide valuable
informtion about how susceptible a syvstem is to being manioulated by individuals
or small groups. Such an analysis 1s in Saari (187, A similar topic would = the
sansitivity of a system - small changss in how the vetsrs mark the ballots alizrs.
the outcome. Using the techniques of [181, it is easy to determine which svstems
are more sensitive than others.

Results of a different but related flavor concern those fascinating
statements asserting that., by voting, a voter hwrts bhis or her intarests. ao by
abstaining the voter is better off. The first result of this tvpe that I am aware
sf concerns a runoff el=ction with a plurality vote, and it was fouond by Brams and
Fishburn {2]. With Theorems B and 1, it is =asy to extend and characterize szl
pessible methods that have this bahavior., To 322 how this i3 done, we offer hors
a partial result that is easy to prove. Toward this =nd. call = social ~hojos
method that selects a single candidate disjoint if 1) the outcoms iz bazed on the
system vector, W, positional voting rankings of the subsets of candidates., 1iid
the ranking of some one subset of candidates detsrmines or affects which one of

zsaeveral subset of candidates will be the final set to be ranked - indeed. just th

i)

reversal of the relative rankings of some two adjacently ranked cardidates can
change the choice of the final set, and iii) the final cuteome is based on the
ranking of the final subset of candidates, and iv) the method is not ~rnstant, at
least, two different outccmes are vozzible for each choice of 3 final =4t A3 =n
evample. all runcff procediares, whether of the Coomhs ti3= or the more standard

kind definad bv the intessrs k are disicint methods.  This 13 because by zwitehing
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definiticn of a disjoint method. Start with the ranking of the third set having
a, tied in the swing position. Construct the ranking for the two voters to have
a, as top ranked, the cutcome of the set they don 't get by voting and advancin
the ranking of a, as second ranked, and the outcome of the zet they do get by
advancing a, in third place. The rest of the analysis is the same.

In this proof, there are many other symbols that have not been specified,
50 they can be assigned in any desired manner to prove other conclusions.  For
instance, for certain disjoint systems, it is possible to show that, in addition
to what already has bee=n proved, the Condorcet winner need not get electad, that
the cutcome of a runoff election differs from thess conclusions, =ts. (This
generalizes a result of Moulin [127.) As an illustraticon, we can combine several

of the features already described.

Corollary 6.2. lLet n>4 and suppose the plurality vote is used to rank all sulsets
of candidates. There are i) n-2 runoff procedures, i1i) n agendas, iii) a profile
of voters and iv) two other voters with the same ranking that has a, top ranked,
and a; bottom ranked, so that a) when the original voters use the jth runoff
procedure, a; is the winner, j=1,...n2, and b) when the kth agenda is used. a,
wins, k=1,..,n. If the two additional voters vote, then outcome of all elections
remain the same excépt for the two procedures where a, won. In both of these

procedures, the new winner now is a;.

Other kinds of paradexes, such as explaining why twe subcommitrtzss can
independently reach ths same conlusicn, but whan joined as a2 full committes, they
select a different alternative can bz based on other geomstric structiwvrss of

Theorem 6. Details will be given elsewhere.
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profile p is a vector in Si(n!), =0 the election ocutcone is in the convex hall of

the vectors {W. ,r. In furn, this hull is in the affine plan=e paszing throngh
these points and <(1...,1) where ¢ is the sum of the components of W, Ths
analysis is much easier when this plane is a linear subspacs of R, This
motivates the first of the two assumptions I impose on the voting vectors.

Because the election outcome for W always agress with the outcome for W o= aW +

i)

b(l,..,1), these two assumptions only fix the values of a and b. Ths first one

fixes the value of b.

VECTOR NORMALIZATION: The sum of the components of a voling vector equals zero.

Example 8. The voting vector for a plurality elzcticn is (L1.0,.. . 0. =

vector normalized form is (n-1.-1,...-1). A vector normalized form of the B

n-1.n-2,...1.0) is (n-1.n-3....nt1-21i,...1-n). So, if n=3. the ve-tor normaliced
form of a Borda vector is (2 -2) whils it iz (3.1,-1,-3) for n=4.

The vector normalization forces the vectors W, ., to b2 orthogonal to
(1...,1), so the vote tally, Ba. 6.1, is in the linear subspace of bn with the
normal vector (1,..,1). Let En denote this (n-1) dimensional sepace; it is ths
space of interest.

Now, consider all Zn-(n+l) subsets of candidates. Corresponding to =ach

set 5., there is a divisicn of an Fuclidean space of dimension [ [into ranking

regions. For convenience, assume that the s, coordinates of thiz zpace have The

same subscript as the alternatives, and that they are listed in increasing corder,

For instance, if S,.={a;.a;.a;}. the th2 corresponding owo dimensional Jinesr
subspace for the tlree candidates, 3, has the coordinates <, xg. and .

Let E(n) be the cartesian product of the 2n-n+1) linear subspaoes Bk,

ranking region in E(n) is obtained for the product of the ranking regions ~2f the

component spaces.  For instance, {X;=X;, Xp2Xa. Xj<Xq. ¥ooXy 0¥t 15 A raniing

% 27N
region in E(4) that responds o the element (a;=2,. 3,2, 2,935, 3, 3y 0 b
J4. Tt is easy to see that there is a one to one correspondence betwean the

ranking regions of E(n) and the entries in n
In the obvious manner., the rankine A defines A ranking for =ach of the
suteets of candidates. Let W be the system vecto Bv the choice of the

coordinate axis for each of the component smaces of BEind, Wo iz in the ranking
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is game ranking region. A1l that needs to he proved is that p” can be foind

t
p

ot
5
ot

has rational components. This simple argoment is given in the first part of

the proofs in {177, This completes the proof of the Proposition 2.

Proof of Thecoraem 6. This iz A simple exercise uzing the inverse image of
G. If a symbol does not involve any tie, 1t is in an open ranking region. and the
inverse image of an open set is open. Secondly, the structiwe of these sets with

the hyperplanes follows immedizately from the linear form of G

According to the proposition, to prove Theorem 1 we want to show that

V(W) = E(n) for most system vectors. My proofs are hased on the aleebraie,

permitation group structure involved in changing a rarkiing from A oo wid). To
illustrate the basic idea, I will start with ths proof of Theorem 4. 1. Here, the
group structure is simpler because it involves the permutations of onlyv one get of

candidates.

Procf of Theorem 4.1, This thecrem involves only the ==t of all n
candidates. The interesting featur=s is that with the rn-1 different tallving
processes, the set of outcomes is replicated n-1 times. Therefore the =lection

tally is

6.4 G(—.W,,.. W _,): 5i(n!}) -—-> (En)n-1
where {W.1, i=1... n-1, are the T

cf the thecrem and where, 1f p = {n; ., !, then
g ol Vo= T oy (
6.5, Gip W M) = 2 ey Wimgay o Wy miay?
From the assumptions on the voting vectors., for =
stan{W, neayt. To prove the theorsm, we nead to prove that

Ve = spaniMyy ey oo Wit sy )

Let P (x):En-->En ba the permitation mapping
and the kth components of x. and let P (X = (P7 o (x;) ..\ P7 (%) &= 3
mapping from {Enin-1 hack to itself where X = (x;... ., ;. Let G, He ths groomp
of permutations ger=rated by the nin-1)/0 permutation mappingz {F.,.1, and define
L{Gp} = {ViV i3 a linear subspace of {(En)n-1 that is invariant mderv (1. DI
if V is in L(Gp). and if P iz a permutation mapeing from . then F(Viz=V.  auch &
mappling, P, just permtes the components o»f the vectors, therefﬂre VA Lsodn LG,

To prove the theorem, I will characteric

[ ]
D
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(n-1) because, from Claim 3, dim(Vk) = (n-1)dim(Vk,,) = (=112 = dim({Enin-1}  sq
Vk = {Enin-1,

Assume that dim(V¥,,) = j and that a basis for V¥, iz <cyt, i=1....].
Using a standard row reduction argument of the type used to convert a matrix into
a diagonal form, we can assume that the basis {c;} 1is replaced with the equivalent
basis {dl2;} where
8.7 diz;, = (ai (e;-e;)....,al _;(le;-e))

where ai, = 1 if i=k, i=1,...3; aiy, = 0 for k<j and k diffarsnt from i and not

311 of the remalning ail, terms can equal zero because this would foree Vx Lo be
zero for these component spaces. (In turn, this forces the contradicticrn W.=0.)

According to Claim 2, a basis for V*lj is given bw Eg. 6.7 where the indev
2 is replaced with ji the ai, terms are the same. Thiz means that the vector

1

(W, ... ,W,_;) can be expressed as a linear combination of the {dik,:. Eut i

5

J=dim(Vxi<n-1, it follows that there are i eguations, W, = -Zas, W . where the

sumation is over k=i+l,. . .n-1, and s=1,...,j. This means that the set of vectors

{Wj} is linearly dependent. This contradiction proves the theorem.

The procf the Theorem 4.1 is based upcon the permutation group striotubs
satisfied by the linear space defined by the vote tally. 7You can view this in the
following manner. If there is a permutation in the voters ™ preferences., then the
new vote tally must also be in V. The change in the votars ™ praferences just
permuted the entries of the voting vectors. Indeed, the only propasrty abhit A
voting vector that was used is that with appropriate choices of Flop. any W,
can be mapped to some other wjn’(A)- Thus, the conclusion holds should veting
vaectors be replaced with any other vector. The proofs of all of cwr theorers are
proved in much the sam: fashion; we characterize what happens 33 the permatation
groups act on the domain, or preferences of the votars.,  The proof of Theorsm 4.2
demonstrates there is a difference in the analy=sis when wa have myre than one
subset of candidates: this difference is basic for 31l of social choloe mapoines.

[

Proof of Theorem 4.2, To demnstrate the bhasic ideas, T will first

o)
the thecrem whers only cne voting vector is selected for =sach 3=2t. S0, let W be

1_*'
xS
I
=
v
o+
>

the voting vector for the set S.=(a,....a.,,}, and lat
svstem vector for this family of sets.  For each set 9., thers is an assoeiated j

dimensional subspace, Ei, of the j+1 candidates. We ne=sd to zhow that the
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candidates. Then, the arsuments from the procf of Theorem 4.1 applv to finish the

In the proof of the rest of the thecrems, the permutations always effect
more than one subset of candidates., so this complicates the proofs. Technically,
we are using aspects of the orbit of the iferated wreath product of permutation
groups to prove the theorem. (It turns out that related arsuments can be used to
prove and extend Arrow’s theorem.) To help with the boolikeeping, we introduce the

following definitions.

Definition. ILet n alternatives be given. Both the subset of alternatives §; and
its correspornding linear subspace B4’ are called (3,..,kK) component sulspaces iff

Sq contains the alternatives {aj,.. yap b

The next definition corresponds to choosing a valu= of "a" in the chelce

~f a representation for a voting vector.

Definition. A scalar normalization of a system vector Wn is a choice of 2n-(n+1)
positive scalars, Cj used to define the equivalent systam vector

(cqWy. .. »Cj Nj y.- ). The standar scalar nornmlization for B2 is where the the Borda
vector for k altermatives is given by (k-1,k-3,.. ,k+1-2i,..,1-k) and the vectors

for two altermatives are (1,-1).
First we prove the following.
Proposition 3. Dim(V(Bn)) = n(n-1) 2.

Proof. Ceonsider
6.9 Yix = Bigay - BB,
whers m(A) ranges through all rankings where a;
is the (i+tl1)th ranked candidate. i = 1....,n-1. This vector differencs is 0 in any
component spacs B that is not a (j.K) component space, and, in the (3,
acomponent spaces, it is Zie,-ey). Ther=fora, Y, is well d=fined

Ther= are only nin-1)/2 distinct vecctors in the s=t (Y.} What we show

is that V(B") = span{{Y;, }t{, and that the vectors {Y;,t are linearly independent.
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as a non-nagative multiple of e -e, in each (j.k) component zpace and O in all

others.  In each (1,.k) component space, thers are choices of n(A) where ths

miltiple is positive. Therefore, if all of the vectors obtained from Ea. 5. 12
added. the sum has 0 for any non-(j.k) compnent space, and a positive multiple

e;-e for all (j.K) component spaces. This multiple depends onlv on the choice
the voting vector for each (i, k) component space, not on the choice of the
particular j and k. (This is because the scalar for a particular (i, k) compons

space depends only on how often twe alternatives can be ranked in the ith and

nt

(i+1ith positicn as 7(A) varies over all spacified rankings - it is independent of
ths particular choice of ths alternatives. ) Thus the scalar components ares
independent of j. k and i; they depend only on the choice of the voting vector for
the set of candidates. Choose the scalar normalization for W so that. after
normalized, all of the scalars in the sum equal the sozlar obtained fnr the binary
{aj,ak}. This means that the sum is a multiple of Y,,. This is trus for al
values of (j.k)., so it now follows that V(B is a linezr subepsce of VW,
Finally, we mist show that if Wn = B, then V(Br) is a provper subsmace of
ViWn), This involves a more careful application of the last arsunent.  Becauvse
the choice of i and k determines only which subset of candidates are heing
considered, we can start with the indices 1 and 2. Again. consider the vector
differances
6. 13 Winay — Fro (W)
where only m(A) varies. To simplify the notation, let wk., dencte the dirference

between the sth and the (s+1)th weights in the voting vector W..  When m(i) = A,

the vector difference in Eq. 6.13 has w*,,(e;-e, i in each (1.2} component smace

g

9. and 0 in all cthers. Next., consider all choices of n(A) where a; iz the
second ranked alternative and a, is the third ranked alternative. The only

alternatives that concern us are those rarked above a,. S0, consider the n-o

rankings obtained in the following order: The (i-Z)%h ranking has a. Top ranked,

the ranking of the alternatives below a, is given in zome arbitvary fashion.

11!

Here, the vector difference Eq. 6.13 has a scalar maltiple wk., for the (1.2.1)
component spsces, the multiple wk,, for the vest of the (1.27 crmponent spaces,
and O for all other spaces. This vector is independent of what alternative is

rankad in the kth position., k3.
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re in a particular lower dipensionsl

ar

maximal dimensicon only if the variables
algebraic s=t.  Namely, the spanning vectors {Wo y b have additional dependsncies
given by the vanishineg of certain determinents:; these determinent conditions
define the algebraic eguations.

supposa V(W) is a proper subspace of E(n)y. This means it has a normal
vector, N, in E(n). By using the basis for E(n), it follows that there is a
choice of (i k) and some component space of E(n) 30 that N is nonzero in a e -e,
direction. Without loss of generality, assume that (j,k) = (1.2). This means
that V(W) does not contain the subspace of E(n) generated by the product of (e -

e,) from =ach (1.2) componsnt subspace of E(n). The prootf of the theorem i3

—

ased on showing that there is a Wo whers V(W) contains the full subspace
generated by the product of the (e;-e,) subspace. This contradictz the exist=nce
of N and it proves the theorem.

The cholce of the svstem vector, Wn, is where all of the voting vector
components are plurality vectors., so wk, >0 for each (1.2) compon=nt space 5., and
w*C]:O for j»1l. To show independence, the rankinegs described in the proot of
Thesrem 3 are used. but T will start with the last rankinegs and word forvward., 5o,
if a, and a, are bottom ranked alternatives (i=n-1). then only in the s2t {a, a.}
can they be the two top ranked alternatives. For this m(A), the vector difizrsnce
Egq. £.13 has 0 in all component spaces except the one corresponding to this
pinary, where the entry is e -e,.

Hext, consider izn-2 where a. is the bottom ranked alternative,  ‘nlv in

Pand {a;.2, .4t are 3; and a, top ranked. For this wia), the

vactor difference Eq. 6. 13 has nonzero entries only in these two component 3paces.
The first vector obtained from izn-1 is nsed tc eliminate the {3, .3,} component of

this vector. Thus, V(W) contains both the vector with the only nonzero vector
e,-e, in the {3,.a,! component space and the vector with th2 only noncera
The obvious indietio-n sroument

component e,~e, in the {a;.a,,a;} component spacs.

3
proves that, for each (1,2) component space of E(n), E(n) has a3 vector wherse its=
only nonzero term is e;-e, in this componsnt space.  This completas the proci of
the theoremn.

Pronf of Theorem 2. Let n=3. The procf iz much the same as the proct ot
Theorem 1 except that I now show that the conclusicon holds for =ll non Forda

vectors.  Again, without loss of generality, we can cocncentrate on the (1.2
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The assumption on the voting vectors is that thev, and the borda veotor,
form n-1 lin=arly independent vectors. These vectors still ars lineariy
inderendent if they are revlaced by vectors giving the differences hetwze:
successive welghts. This matrix 13 the one given above. This provas the theorem.

Proof of Theorem 5.2. For n alternatives, consider the s=t of system
vectors {Wn.} that ars defined in the following manner. Each component voring
vectors of an is of the form (1.1...,1.0....0): 1t assigns one point to a votzr s

X top ranked candidates and zero for all others. Furthermore, Thers

one system vector corresponding to any assienment of voting vectors

to the suhsets of candidates. (Hence, for n=3. there ars only two svatem
vectors: (1,0;1,0:1.0:1,0,0) and (1.0;1,0:1.0:1.1.0). For n=4. there are 247
systam vectors.  For n alternatives, there are k(n) =
znin-1;)(n-23 /3! (3n(n-1)n-2)(n-3)/4') (n-1) systam vectors. ! Let
G(-.Wnl...‘wnk(n)i e the mapping that represents the voting tally ©or the n
system vectors. By using the argument showing that V(B is 3 subsroace of VWY,
it follows that the space spannad by (W 0 We, o0 4 contains the nin-1 /0
dimensional space given hy the span((ij.ij,...Y',Jl as i<k vary over all valvrs.
This means that if w is a word in D(Br) . then there 13 A orofile sach that fie
word for each of the n svstem vectors is w. Now, let W' be =znv avslem vector.
Crar choloe of kin) system.voeting vectors is a basis for the svstam vachors. and
any system vector is in their convex hull. This means that any outeoms of this

svstem vector, Wn', i1s in the convex hall of the outcomes for tirw hasis

vectors.  Pecause zll of the hasis system vectors have the same outoome. and

because (hy Theorem 68) the regions supporting a word are convex, the outoons Lo

Wr' iz in the same ranking region. This completes the proct.
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