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Abstract

The polyhedral structure of the K-median problem on a tree is examined. Even for

very small connected graphs, we show that additional constraints are needed to describe the

integer polytope. A complete description is given of those trees for which an optimal integer

LP solution is guaranteed to exist. We present a new and simpler demonstration that an LP

characterization of the 2-median problem is complete. Also, we provide a simpler proof of

the value of a tight worst case bound for the LP relaxation. A new class of valid inequalities

are identified. These inequalities are lifted to define facets for the K-median problem on a

general graph. Also, we provide polyhedral descriptions for several types of trees. As part

of this work, we summarize most known results for the K-median problem on a tree.

Key words and phrases: Polyhedral description, valid inequalities, facets, lifting



1 Introduction

The K-median problem on a graph is a well known and much studied NP-hard problem (see

Mirchandani [10]). To describe this problem, let G = (V,E) be a connected graph where V

is the vertex set and E is the edge set. For each i, j ∈ V, let wij be the shortest distance

between vertex i and vertex j. We assume that n = |V | ≥ 3 and that wij ≥ 0 for all i and

j. The goal is to select K vertices, called medians, so that the sum of the distances of each

vertex to its nearest median is minimized. Let the decision variable

xij =




1, if vertex i is assigned to a median at vertex j for i, j ∈ V
0, otherwise.

If xjj = 1, then a median is located at vertex j ∈ V . An integer programming formulation is

z∗ = min
∑
i∈V

∑
j∈V

wijxij

(IP )

sub. to
∑
j∈V

xij = 1, i ∈ V

xij ≤ xjj, i, j ∈ V
∑
j∈V

xjj = K

xij ∈ {0, 1}, i, j ∈ V.

While NP-hard in general, this problem is solvable in polynomial time if the underlying

graph is a tree. The fastest known algorithm (in a worst case sense) takes O(Kn2) steps

and is due to Tamir [11]. In spite of this, no exact linear programming formulation of the

K-median problem on trees is known.

The only sustained investigation of the K-median polytope is a 1986 dissertation by

Lemke [8]. His thesis identifies some necessary and sufficient conditions for inequalities to

be facets of the K-median problem. For the case where the problem is restricted to trees,

he finds the dimension of the polytope. On the subject of the K-median problem restricted

to trees, Lemke closes the dissertation on the following pessimistic note:
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“However, I found that merely finding the dimensionality of the polytopes to be

sufficiently challenging to deter me from making a major effort to find the facets,

although they may turn out to have a rather simple form.”

In this paper, we survey what is known about the polyhedral structure of the K-median

problem on trees. Little of this survey appears in published sources. Some general results

appear in Section 2. In this section, we show that even for connected graphs on four vertices,

additional constraints are needed to describe the integer polytope. Also, we characterize

those graphs for which the LP polytope (the relaxation of the IP constraint set where 0 ≤
xij ≤ 1 for all i, j ∈ V ) is either integral or has an optimal integer extreme point solution.

In Section 3, a description of the 2-median problem is provided. We present a shorter and

more direct proof than Goemans [6] that the description is complete. In Section 4, a new

proof of the worst case bound of an LP solution is developed. This proof is simpler than the

one found in Ward et al. [12]. In Section 5 we identify restrictions satisfied by at least one

optimal solution. We determine the class of trees for which this restricted LP polytope is

integral. A new set of valid inequalities are constructed in Section 6. We show that these

inequalities are facets for the K-median problem on a general graph. In Section 7, these

inequalities are used to find a description of a restricted integral polytope for trees called

2-stars. We conclude with some open issues.

2 Properties of the Optimal Solution

In this section, we show that the LP polytope is not integral even for graphs with only four

vertices. Then, we examine two types of graphs that always have integral linear program-

ming solutions. We show that for any other graph, there are cases when no integral linear

programming solution exists. Finally, we find values of K that guarantee the existence of an

integral polytope.
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Unless otherwise specified, we assume that the connected underlying graph G is a tree,

T . Each vertex of the tree can be a median, and each vertex has a unit demand which must

be satisfied by a median.

We define vertex j to be a median if xjj > 0. A median where xjj = 1 is called integral,

and a median where 0 < xjj < 1 is called fractional. We let M ⊆ V be the set of medians

and I ⊆M be the set of integral medians.

One difficulty in developing an exact linear programming representation of the K-median

problem is incorporating the special structure of the objective function. Each wij, i, j ∈ V ,

in the objective function corresponds to a shortest path distance in the underlying tree.

By incorporating additional path consistency constraints, researchers capture some of this

structure. For i, j ∈ V , let τ(i, j) be the set of vertices on the unique path between i and j,

inclusively. Then, the path consistency constraints are

xij ≤ xpj, p ∈ τ(i, j) and i, j ∈ V.

Let P (V ) = P be the polytope defined by

∑
j∈V xij = 1, i ∈ V

xij ≤ xpj, p ∈ τ(i, j), i, j ∈ V

x ≥ 0.

It follows from a result of Barany et al. [3] that extreme points of P are integral. The

polytope QK = P ∩ {x :
∑

j∈V xjj = K} defines the set of feasible solutions to (LP), the

linear relaxation of the K-median problem. Unfortunately, even for small graphs, some

extreme points are not integral.

Theorem 1 Every tree with at least four vertices has a data set where QK has a fractional

extreme point.
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Figure 1: Graphs with fractional LP solutions for K = 2.

Proof. Every tree with at least four vertices has one of the two graphs in Figure 1 as

embedded subgraph.

For the case when K = 2, consider the solution x0
ii = x0

i2 = 1/2 for i = 1, . . . 4, x0
23 = 1/2

and x0
ij = 0 otherwise. Suppose that x0 is not an extreme point. Then, x0 is the convex

combination of two points x1, x2 ∈ QK . This implies that x1
ij = x2

ij = 0 whenever x0
ij = 0.

Because each vertex assigns the maximum amount to a median (if an assignment is made),

it is not feasible to change x0
ij for i �= j without also changing the median assignments.

Because vertices 1, 3 and 4 are assigned to 2, we cannot reduce x0
22, and still maintain

feasibility. Thus, x1
22 = x2

22 = 1/2.

Suppose we try to increase x0
ii for some i ∈ {1, 3, 4}. To maintain feasibility, we must

decrease x0
22. However, we have established that this is not possible. Thus, x0 is an extreme

point solution.

To extend the embedded subgraph to a tree, for each additional vertex (over the four

needed for the subgraph) increase K by one and assign large distances to any new edges.

If

wij =




1, i = 2, j = 3

2, i = 1, 3, 4, j = 2

10, otherwise,

then the fractional extreme point solution given in the proof of Theorem 1 is the unique

optimal solution. Observe that the values of w are not symmetric and do not satisfy standard

distance conditions. Thus, the characterization of the polytope for the K-median problem
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should include constraints that account for the fact that the distances between vertices are

not arbitrary.

We say that w > 0 has the distance property if wij = wji and wij =
∑

(s,t)∈τ(i,j)wst. Let D

be the set of w’s with the distance property. We assume that w ∈ D throughout this work.

The fractional solution associated with the path in Figure 1a occurs because assignments

“skip” over fractional medians. Formally, skipping occurs whenever there are at least three

vertices i, p and j such that p ∈ τ(i, j), xpp, xjj > 0, 0 ≤ xip < xpp and xij > 0 . Observe

that this does not violate path consistency. However, when the solution is integral, path

consistency prevents skipping. A solution x has the no-skip property if xij > 0 implies that

xip = xpp for i, j ∈ V and p ∈ τ(i, j).

Remark If w ∈ D, then an optimal solution to LP has the no-skip property.

Proof. Suppose that p ∈ τ(i, j), xij > 0 and xip < xpp. Then, increasing xip and reducing

xij by a suitably small ε > 0 reduces the solution value because wip < wij.

Given the values of xjj for each j ∈ V , we can determine a no-skip solution to (LP)

(a fast procedure is described in Megiddo et. al. [9]). When xjj ∈ {0, 1} for all j, then

there is a no-skip solution to (IP). For vertex i ∈ V , let j1, j2, . . . , jn−1 be an ordering of

the vertices in nondecreasing distance from i. Also, let t be the smallest index such that

∑t
k=1 xjkjk ≥ 1− xii. Then,

xijt =



xjkjk , 1 ≤ k ≤ t− 1

1 − ∑t−1
k=1 xjkjk , k = t

0, k ≥ t+ 1.

(1)

We now examine some properties of QK .

Property 1 (Ward et al. [12]) Every extreme point x0 of QK is either an extreme point of

P or the strict convex combination of two adjacent extreme points, xA and xB, of P . If x0
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is not an extreme point of P , then
∣∣∣∑i∈V x0

ii −
∑

i∈V xAii
∣∣∣ > 0 and

∣∣∣∑i∈V x0
ii −

∑
i∈V xBii

∣∣∣ > 0.

Further, if K is integral, then
∣∣∣∑i∈V xBii −

∑
i∈V xAii

∣∣∣ ≥ 2.

Proof. Since QK is the intersection of P and a hyperplane, an extreme point of QK must

lie on an edge of P .

If x0 is the strict convex combination of two adjacent points of P and
∑

i∈V x0
ii =

∑
i∈V xAii =

∑
i∈V xBii , then x0 is not an extreme point of QK .

When K is integral, so is
∑

i∈V x0
ii. By assumption, x0 = λxA + (1 − λ)xB for λ ∈

(0, 1), and
∑

i∈V xAii and
∑

i∈V xBii are integral. Observe that
∑

i∈V x0
ii cannot be integral if∣∣∣∑i∈V xBii −

∑
i∈V xAii

∣∣∣ ≤ 1.

Define J̄ to be the complement of set J .

Property 2 Suppose an extreme point x0 ∈ QK has the set of integral medians I. Let tree

T ′ = (V \ I, E ′), where (i, j) ∈ E ′ if x0
ij > 0 or x0

ji > 0, for i, j ∈ V \ I. Then, at most one

connected component of T ′ contains fractional medians.

Proof. Suppose that T ′ has two connected components with vertex sets V1 and V2, where

each component contains fractional medians. For i = 1, 2, let Ji = Vi ∪ {k ∈ I : x0
jk >

0 for some j ∈ Vi} and let Ki =
∑

j∈Ji
x0
jj. Since x0 is an extreme point of QK , x0 restricted

to Ji, denoted by x0
Ji
, is an extreme point of QKi

(Ji)∩{x : xkk = 1 for k ∈ I}. Furthermore,

x0
Ji

is fractional.

Polytope P (Ji) is integral, for i = 1, 2. Hence, P (Ji) ∩ {x : xkk = 1 for k ∈ I} is

also integral. Now, Property 1 implies that x0
Ji

is a convex combination of two extreme

points of P (Ji) ∩ {k ∈ I : xkk = 1} for i = 1, 2. As a result, for some ε > 0, there are

points (not necessarily extremal) x1
Ji

∈ QKi+ε(Ji) ∩ {x : xkk = 1 for k ∈ I} and x2
Ji

∈
QKi−ε(Ji) ∩ {x : xkk = 1 for k ∈ I} where x1

Ji
/2 + x2

Ji
/2 = x0

Ji
. Define ⊕ to be the operator

that concatenates two vectors with s1 and s2 components, respectively, into one vector with
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s1+s2 components. Let xa = x1
V1
⊕x2

V2
⊕x0

V1∪V2
and xb = x2

V1
⊕x1

V2
⊕x0

V1∪V2
. Since xa, xb ∈ QK

and xa/2 + xb/2 = x0, we have that x0 is not an extreme point of QK . Contradiction.

Although Theorem 1 establishes that QK may not be integral, there are two types of

graphs where an optimal integral LP solution exists. While the next result appears to be

well known, a proof is provided because we have not found one in the literature. Let zLP be

the optimal value of the LP solution.

Theorem 2 If G is a path, then zLP = z∗.

Proof. Assume that the vertices of the path are numbered in increasing order. Suppose

an extreme point solution x0 to (LP) has some fractional medians. From Property 2, the

graph induced by the set of fractional medians is exactly one line segment. From Property 1,

x0 is a convex combination of two integral extreme points of P , xA and xB. Hence, x0 =

λxA + (1− λ)xB where 0 < λ < 1. Let A = {j : xAj = 1} and B = {j : xBj = 1}.
If the membership of the fractional vertices along the line segment alternate between

sets A and B, then ||A| − |B|| ≤ 1. This violates Property 1. Thus, some pair of adjacent

medians, i1 and i2, where i1 < i2 belong to the same set. Without loss of generality, let this

set be B.

Because xB is integral, there is some vertex q ∈ [i1, i2] such that xBji1 = 1 for j ∈ τ(i1, q)
and xBji2 = 1 for j ∈ τ(q + 1, i2). Now, suppose that xAjk > 0 for some j ∈ [i1, q] and k > i2.

Since x0 = λxA+(1−λ)xB, we have that x0
ji2

= 0. However, x0
jk > 0 contradicts the no-skip

property. A similar argument applies if xAjk > 0 for j ∈ [q + 1, i2] and k < i1. Thus, xAjk = 0

for j ≤ q and k ≥ q, and for j ≥ q + 1 and k ≤ q. Consequently, the solution corresponding

to x0 has two disconnected components, both of which have fractional medians. However,

this contradicts Property 2.

For an alternative demonstration of Theorem 2, Kolen and Tamir [7] present an extended

formulation for the k-median problem on a tree. When the tree is a line graph, the constraint
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matrix is totally unimodular. This implies that the polytope corresponding to the extended

formulation is integral. While projecting out the extended variables is non-trivial, the k-

median polytope must also be integral.

Now, consider a tree where only the center vertex, c, has degree d ≥ 3. Each path from

the center vertex to a leaf node contains at most v = (n− 1)/d vertices. We call this graph

a v-star. Figure 1b is an example of a 1-star and Figure 4 in Section 6 is an example of a

2-star.

Theorem 3 If G is a 1-star, then zLP = z∗.

Proof. Let x∗ be an optimal fractional solution to LP. Suppose that x∗cc = 1. Then

Property 2 establishes that only one leaf node has a fractional value. This implies that K is

not integral. Contradiction.

As a result, we assume that x∗cc < 1 for every optimal solution to LP. Consequently, for

some q ∈ V \ {c}, we have that x∗cq > 0. Consider the new solution x′ where

x′jj =



x∗cc + x

∗
cq, j = c

x∗qq − x∗cq, j = q

x∗jj, j �= c, q,

and all other assignments are made according to (1). Since wcq = wqc, this new solution is

optimal. Repeat this process with other leaf nodes until the median value of c is 1. The

procedure terminates because one fractional median is removed at each step. This contradicts

the assumption that x∗cc < 1.

We provide the negative result that for any other type of tree, all optimal linear pro-

gramming solution may be fractional.

Theorem 4 The only trees where zLP = z∗ for all values of K and all w ∈ D are paths and

1-stars.
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Figure 2: Graph with fractional LP solution for K = 2.

Proof. Consider the graph in Figure 2. This graph is embedded in each tree which is

not a path or a 1-star. When K = 2 and the arc distances are w12 = 2, w23 = 1, and

w34 = w35 = 4, the unique optimal solution to (LP) is xLPjj = 1/2 for j = 2, 3, 4, 5 and all

other assignments made according to (1). Hence, by an appropriate choice of arc distances

(set distances to a suitably small ε > 0 for all arcs not part of the embedded subgraph) and

increase K by the number of additional vertices, we can construct a nonintegral extreme

point.

For a given K, we now describe necessary and sufficient conditions for the LP polytope

to be integral for a general graph.

Theorem 5 If K ∈ {1, n−1, n}, then QK is integral. There exist counter-examples for any

K ∈ {2, 3, . . . , n− 2}.

Proof. When K = 1, an extreme point solution cannot be a convex combination of extreme

points of P . Consequently, from Property 1, the solution must be integral.

Suppose K = n − 1. If there is a fractional extreme point solution x0, then it follows

from Property 1, that there are sets A and B, and λ ∈ (0, 1), where |A| ≤ n − 2, |B| = n,

and x0 = λxA + (1 − λ)xB. Consequently, xBii = 1 for all i ∈ V . Since x0 is fractional, there

are at least two fractional medians. Because the medians must be in the same component

by Property 2, there are vertices j, k ∈ V such that 0 < x0
jk < 1 and 0 < x0

kk < 1. This

implies that xAjj = xAkk = 0. Hence, xAjk = 0. Since xBjk = 0, it is not possible that x0
jk > 0.

Contradiction.
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Figure 3: Graph with fractional LP solution for K �∈ {1, n− 1, n}.

When K = n, the only solution is to have an integral median at every vertex.

For any other value of K, consider the graph shown in Figure 3. The distances on the

arcs are w12 = 2, w23 = 1, w35 = w45 = 4, and wi1 = 100 for i = 6, 7, . . . , K + 3. From

the proof of Theorem 4, the embedded graph with vertices {1, 2, . . . , 5} has a fractional LP

solution.

3 When K = 2

Lemke [8] refers to an unpublished manuscript for a proof that the following is a complete

linear description of the 2-median polytope (LP2):

∑
j∈V

xij = 1, i ∈ V
∑
i∈V

(di − 2)xij + xjj = 0, j ∈ V (2)

xij ≤ xkj, i, j ∈ V, k ∈ τ(i, j),

where di is the degree of vertex i.

Independently, Goemans [6] establishes that the above formulation describes an integer

polytope. His proof uses an extended formulation of the 2-median problem. Then, the

auxiliary variables are projected out. In this section, we provide a simpler proof as well as

show that both the cardinality constraint
∑

i∈V xii = 2 and the non-negativity constraints

are redundant.
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Theorem 6 Any solution x to (LP2) satisfies
∑

j∈V xjj = 2.

Proof. Summing (2) over all j ∈ V gives

∑
j∈V

xjj = − ∑
j∈V

∑
i∈V

(di − 2)xij

= − ∑
i∈V

(di − 2)[
∑
j∈V

xij]

= − ∑
i∈V

(di − 2)

= 2.

The last equality holds because
∑

i∈V di = 2(n − 1) when the graph is a tree. Thus, (2)

implies the cardinality constraint.

Theorem 7 Any solution x to (LP2) is non-negative.

Proof. To show that the non-negativity constraints are redundant, we establish that xlp ≥ 0

for every vertex p and leaf vertex l. Non-negativity of all other variables follows by path

consistency. Let L be the set of leaves of tree T . We consider two cases: p ∈ L, and p �∈ L.
Case 1. p ∈ L.
Let l ∈ L and l �= p. Since dl = dp = 1,

∑
i∈V

(di − 2)xip + xpp =
∑

i∈V \L
(di − 2)xip −

∑
j∈L\{l,p}

xjp − xlp. (3)

We first establish that
∑

i∈V \L(di− 2)xip−∑
j∈L\{l,p} xjp ≥ 0. Let H ⊆ T be the graph of

the unique path from l to p, and let VH be the associated vertex set. Let dHj be the degree

of vertex j ∈ VH in H. Because H is a path, dHj = 2 for j ∈ VH \ L. Since there are no leaf

nodes in H other than l and p,
∑

i∈VH\L(dHi − 2)xip − ∑
j∈(VH∩L)\{l,p} xjp ≥ 0.

Now, select k ∈ L \ VH . Consider the unique path τ(k, p) from k to p. Let q be the first

vertex in H reached on this path. With the exception of q and k, d
τ(k,q)
i = 2 for each vertex i

on the path τ(k, q). The degree of k is 1 and dHq ≥ 2. Let H ′ = H ∪ τ(k, q). Since xqp ≥ xkp
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by path consistency,

∑
i∈VH′\L

(dH
′

i − 2)xip −
∑

j∈(VH′∩L)\{l,p}
xjp

=
∑

i∈VH\L
(dHi − 2)xip −

∑
j∈(VH∩L)\{l,p}

xjp + [(dHq + 1 − 2) − (dHq − 2)]xqp − xkp
≥ 0.

Let H = H ′, and repeat the process. When L \ VH = ∅, we have that H = T and

∑
i∈V \L(di − 2)xip − ∑

j∈L\{l,p} xjp ≥ 0. From (3), −xlp ≤ 0, and non-negativity of the

variables is established for this case.

Case 2. p �∈ L.
Select k ∈ L such that p is on the path τ(k, l). Since dk = dl = 1,

∑
i∈V

(di − 2)xip + xpp = 0 =
∑

i∈V \L
(di − 2)xip −

∑
j∈L\{k,l}

xjp + xpp − xkp − xlp. (4)

Similar to Case 1, we can show that
∑

i∈V \L(di − 2)xip − ∑
j∈L\{k,l} xjp ≥ 0. From (4),

xpp − xkp − xlp ≤ 0. Since xpp ≥ xkp, we have that −xlp ≤ 0. Thus, non-negativity of the

variables is implied by the constraints of (LP2).

We show that (LP2) is integral.

Theorem 8 If x0 is an optimal extreme point solution of (LP2), then x
0 is integral.

Proof. Consider an extreme point solution x0 to (2) and suppose it is fractional. Then,

x0 can be expressed as a convex combination of integral extreme points of (P), i.e. x0 =

∑t
r=1 µrx

r.

For each p ∈ M and each r, let N r
p = {i ∈ V : xrip = 1}. Let N r

p be the vertex set of

graph Hr
p . If i, j ∈ N r

p and (i, j) is an edge in tree T , then let (i, j) be an edge in Hr
p . Graph

Hr
p is a tree because path consistency implies that Hr

p is connected.
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Denote the number of edges of T with exactly one endpoint in N r
p by δ(N r

p ). Since Hr
p is

a tree and since the sum of the degrees of the nodes in a tree is 2 × (number of nodes −1),

δ(N r
p ) =

∑
i∈Nr

p

di − 2(|N r
p | − 1) =

∑
i∈Nr

p

(di − 2) + 2. (5)

From (2),

0 =
∑
i∈V

(di − 2)x0
iq + x0

pp

=
t∑

r=1

µr[
∑
i∈V

(di − 2)xrip + xrpp]

=
t∑

r=1

µr[δ(N
r
p ) − 1]xrpp. (6)

The last term follows from (5) and the integrality of xr.

Let Kr =
∑

j∈V xrjj. Then,
∑t

r=1 µrK
r = 2. Given an integral solution xr, for each p such

that xrpp = 1, contract the vertices in N r
p into a single vertex. The result is a tree with one

vertex corresponding to each p such that xrpp = 1. Further, the degree of this vertex is δ(N r
p ).

Consequently, δ(N r
j ) ≤ Kr − 1 for all j ∈ V .

Since x0 is fractional, there is an r, call it r′, such that Kr′ ≥ 3. Otherwise, x0 is a

convex combination of 2-median solutions and is not an extreme point. Because every tree

contains at least one leaf node, there must be a q ∈ V such that xrqq = 1 and δ(N r
p ) = 1.

Consequently, for r′, there is a q ∈ V such that xr
′
qq = 1 and δ(N r′

q ) < Kr′ −1. Now, (6) gives

0 =
t∑

r=1

µr[δ(N
r
q ) − 1]xrqq

=
∑
r 
=r′

µr[δ(N
r
q ) − 1]xrqq + µr′ [δ(N

r′
q ) − 1]

<
∑
r 
=r′

µr[K
r − 2] + µr′ [K

r′ − 2]

=
t∑

r=1

µrK
r − 2

t∑
r=1

µr

= 0.

This contradiction establishes the result.
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4 Strength of the LP Relaxation

When the constraint that
∑n

j=1 xij = 1 is relaxed for one or more i ∈ V , Ward et al. [12]

show that

z∗/zLP ≤ 2 − 2/(K + 1). (7)

They also show that this bound is tight. The proof involves the analysis of an algorithm for

finding a special kind of vertex cover. Their proof can be extended to (IP). In this section,

we present a shorter proof for (IP) by replacing the algorithm with an induction argument.

Analogous results for general graphs can be found in Arya et al. [1].

Given a set of medians M , let

z(M) =
∑
i∈V

min
j∈M

{wij}.

Hence, the K-median problem can be expressed as minM⊆V {z(M) : |M | = K}.
From Property 1, associated with each fractional extreme point solution of QK are two

sets A,B ⊆ V and λ ∈ (0, 1) such that

|A| < K < |B|

z(A) ≥ zLP ≥ z(B)

zLP = λz(A) + (1− λ)z(B)

K = λ|A| + (1− λ)|B|.

We construct a set S ⊆ A ∪ B with cardinality K which satisfies (7) with equality. The

proof of (7) is based on Lemmas 1 and 2. Theorem 9 as well as the statement of Lemma 2

are found in Ward et al. [12].

Let F (A,B) be a forest, where A,B partitions the vertices of F so that adjacent vertices

are in different sets. Without loss of generality, assume that a = |A| ≤ b = |B|. A K-cover
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is defined to be a set of K vertices of a given graph such that every arc is incident to at least

one element of the set.

Lemma 1 Suppose that every vertex v ∈ A of F (A,B) has degree at least three. Then, for

any integer K where a ≤ K ≤ b, there is a K-cover S such that |S ∩B| ≥ 2K − b.

Proof. If K = b, then S = B satisfies the conditions of the lemma. As a result, we only

consider the case when K < b. The remainder of the proof is by induction on d = b − a.
When d = 0, the lemma is true because S = B is the required cover.

Now, let F (A,B) be a graph with the smallest d ≥ 1 for which the lemma is false. First

we show that there is at least one vertex p ∈ A which has at least two neighbors that are

leaves. Since all vertices of A have degree at least three, all leaves of F (A,B) are elements of

B. Delete all the leaves of F (A,B) and their incident edges. In this reduced tree, no vertex

in B is a leaf. Consequently, at least one vertex, p, in A must now be a leaf. Let Lp be the

neighbors of p that are leaves in F (A,B). Since all vertices in A have degree at least three,

|Lp| ≥ 2 and at least two neighbors of p are leaves.

Construct F (A′, B′) by deleting p, two vertices of Lp, and the incident edges. Thus,

|A′| = a − 1 and |B′| = b − 2. Also, these changes do not alter the degree of the vertices

in A \ {p}. Hence, F (A′, B′) satisfies the conditions of the lemma. Since K < b, the

induction hypothesis implies that there is a K−1 cover S ′ for F (A′, B′) such that |S ′∩B′| ≥
2(K − 1) − (b − 2) = 2K − b. However, S = S ′ ∪ {p} is a K cover for F (A,B) where

|S ∩B| ≥ 2K − b. Contradiction.

Consider a set of real valued weights uj, j ∈ B, such that
∑

j∈B uj ≥ 0. Let U =
∑

j∈B uj.

Lemma 2 Suppose we are given F (A,B), integer K for a ≤ K ≤ b, and real valued weights

uj such that j ∈ B. Then, there is a vertex cover S of cardinality K, such that

(2b−K − a) ∑
j∈B∩S

uj ≥ (K − a)U.
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Proof. If a = K, then S = A satisfies the conditions of the lemma. Also, if b = K, then

S = B satisfies the conditions of the lemma. Consequently, we consider the case where

a < K < b.

The remainder of the proof is by induction on the number of vertices in F (A,B). When

F (A,B) has two vertices, then one is in A and the other is in B. The result is established

by observing that a = b = K.

Now, let F (A,B) be a graph with the fewest number of vertices that is a counterexample

to the lemma. Suppose that F (A,B) has a vertex p ∈ A, where p has degree one or two.

When p has degree one, let v1 ∈ B be the neighbor of p. Then select any neighbor p′ of v1

if v1 has degree greater than one. Let v2 ∈ B be a neighbor of p′, where v2 �= v1 if such a

neighbor exists. Otherwise, let v2 ∈ B be any vertex other than v1. If p has degree two,

then let v1, v2 ∈ B be the two neighbors of p.

Construct a new graph F (A′, B′) by deleting p and its incident edge from F (A,B).

Replace v1 and v2 by a single vertex v, where v is adjacent to all vertices that were adjacent

to either v1 or v2. The vertex weights in this new graph are

u′j =



uv1 + uv2 , j = v

uj, j ∈ B \ {v1, v2}.

With this specification, U ′ =
∑

j∈B′ u′j = U . Thus, A′ = A \ {p} and B′ = B ∪{v} \ {v1, v2}.
By assumption, there is a K − 1 cover, S ′ such that

(2b−K − a) ∑
j∈B′∩S

u′j = (2|B′| − (K − 1) − |A′|) ∑
j∈B′∩S

u′j

≥ (K − 1 − |A′|)U

= (K − a)U.

If v �∈ S ′, then S = S ′ ∪ {p} is a K-cover for F (A,B), where
∑

j∈B∩S uj =
∑

j∈B′∩S′ u′j. If
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v ∈ S ′, then S = S ′ ∪ {v1, v2} \ {v} is a K cover for F (A,B) with
∑

j∈B∩S uj =
∑

j∈B′∩S′ u′j.

In either case, F (A,B) satisfies the conditions of the lemma.

Consequently, we suppose that all vertices of A in F (A,B) have degree at least three.

From Lemma 1, there is a K cover S such that |S ∩ B| ≥ 2K − b. Since F (A,B) is a

counterexample to the lemma,

(2b−K − a) ∑
j∈B\S

uj > (2b−K − a)U − (K − a)U = 2(b−K)U.

Let t = argmaxi∈B\S{ui}. Because |B \ S| ≤ 2(b − K) and (2b − K − a) ∑
j∈B\S uj >

2(b − K)U , (2b − K − a)ut > U . Construct a new graph F (A,B \ {t}) by deleting t and

its incident edges. Since the induction hypothesis applies to F (A,B \ {t}) and a < K < b,

there is a K − 1 cover S ′ where (2b−K − a− 1)
∑

j∈B∩S′ u′j ≥ U ′(K − a− 1).

Observe that S = S ′ ∪ {t} is a K-cover for F (A,B). Also,

(2b−K − a) ∑
j∈B∩S

uj = (2b−K − a)

 ∑
j∈(B∩S)\{t}

u′j + ut




≥ (2b−K − a)
(

K − a− 1

2b−K − a− 1
U ′ + ut

)

= (2b−K − a)
(

K − a− 1

2b−K − a− 1
(U − ut) + ut

)

≥ (2b−K − a)(K − a− 1)U + (2b− 2K)(2b−K − a)ut
2b−K − a− 1

>
(2b−K − a)(K − a− 1)U + (2b− 2K)U

2b−K − a− 1

= (K − a)U.

Thus, F (A,B) satisfies the lemma. Contradiction.

For the original graph, consider the solution xA associated with the set of medians A.

For each j ∈ A, let Nj(x
A) be the set of vertices assigned to j. Similarly, define xB and

Nj(x
B) for each j ∈ B. Construct a bipartite graph H(A,B) with a+ b vertices. The edge
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(i, j) exists if Ni(x
A)∩Nj(x

B) �= ∅. Notice that H(A,B) does not have any isolated vertices

or any cycles. A cycle in H(A,B) implies a cycle in the underlying tree. Thus, H(A,B) is

acyclic.

To apply Lemma 2 to H(A,B), we assign weights to the vertices of B. Let

φA(i) = the distance of i to nearest median in A

φB(i) = the distance of i to nearest median in B

uj =




∑
i∈A

∑
k∈Ni(xA)∩Nj(xB){φA(k) − φB(k)}, j ∈ B \ A

0, otherwise.

For j ∈ B \ A, uj is the distance savings for assigning all vertices of Nj(x
B) to j instead of

the medians of A. Note that uj might be negative and that U =
∑

j∈B uj = z(A) − z(B).

Using the cover established by Lemma 2 as the set of medians, we construct a solution

to (IP). If edge (i, j) is covered by j ∈ B, then assign the vertices in Ni(x
A) ∩Nj(x

B) to j.

If (i, j) is covered by i ∈ A \B, then assign the vertices Ni(x
A) ∩Nj(x

B) to i.

Theorem 9 z∗/zLP < 2− 2/(K + 1).

Proof. Suppose we are given a vertex cover S that satisfies Lemma 2. From the definition

of uj,

z(S) = z(A) − ∑
j∈B∩S

uj.

From Lemma 2,

z(S) ≤ z(A) − K − a
2b−K − a [z(A) − z(B)] =

2(b−K)z(A) + (K − a)z(B)

2b−K − a .

Since λ = (b−K)/(b− a),

zLP = λz(A) + (1− λ)z(B)

=
b−K
b− a z(A) +

(
1 − b−K

b− a
)
z(B)

=
(b−K)z(A) + (K − a)z(B)

b− a .
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Hence,

z∗

zLP
≤ z(S)

zLP

≤ [2(b−K)z(A) + (K − a)z(B)] /(2b−K − a)
[(b−K)z(A) + (K − a)z(B)] /(b− a)

<
2(b− a)

2b−K − a

≤ 2((K + 1) − 1)

2(K + 1)−K − 1

= 2− 2

K + 1
.

The last inequality follows because the fraction is maximized when b = K+1 and a = 1.

For the problem where only a subset of vertices are assigned to medians, [8] presents an

example which shows that (7) is asymptotically tight. For our problem, a slightly different

example is needed. For a specified K, we construct a v-star, where v ≥ 2, c has degree

K + 1, each path from c to a leaf node has v nodes, each arc incident to c has a distance of

1, and all other arcs have distance ε = 2/(v + 1)v(v − 1). The optimal integer solution is to

assign medians to c and to K − 1 of the vertices adjacent to c. The distance of this solution

is 2v + 1. The optimal LP solution assigns 1/K to c and (K − 1)/K to each of the K + 1

medians adjacent to c. The value of the LP solution is (K +1)v/K + (K − 1)/K +1. Thus,

z∗

zLP
=

2v + 1

(K + 1)v/K + (K − 1)/K + 1

= 2 − 2v + 3K − 2

v(K + 1) +K − 1
. (8)

As v goes to ∞, the right hand side of (8) goes to 2− 2/(K + 1).

5 Restricting the Feasible Region

Theorem 1 establishes that QK is not integral when n ≥ 4. In this section, we add a class of

constraints that restricts QK , while retaining an optimal solution. Then, we find the types
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of trees for which this new polytope is integral.

Theorem 10 For a general graph, there exists an optimal solution x∗ to either (IP) or (LP)

where x∗il = 0 for all l such that l is a leaf node and i �= l.

Proof. From the path consistency constraints, if x∗il > 0 for some leaf node l, then x∗ql > 0

where q is the unique neighbor of l. Consider the solution x′ where

x′jj =



x∗qq + x∗ql, j = q

x∗ll − x∗ql, j = l

x∗jj, j �= q, l,

and all other assignments are made according to (1). This solution is feasible and has a

value no larger than the value of x∗.

Theorem 10 implies that we can add the following constraints

xil = 0 for all i ∈ V and leaf nodes l where i �= l (9)

to the K-median formulation.

Let P̂ (V ) = P̂ = P ∩ {x : x satisfies (9)}. Also, let Q̂K = P̂ ∩ {x :
∑

j∈V xjj = K}.

Remark If QK is integral, then Q̂K is integral. Moreover, the converse is not true.

Properties 1 and 2 can be extended in a straightforward way to Q̂ and P̂ . We define

these new results as Property 1′ and Property 2′, respectively.

The next result establishes when Q̂K is an integral polytope.

Theorem 11 Q̂K is integral for all K iff G is a 1-star.

Proof. ⇒. If n = 3, then G is a 1-star. If n ≥ 4 and G is not a 1-star, then G has an

embedded path of at least four vertices. The example of a path presented in Theorem 1

shows that Q̂K is not integral.
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⇐. Let x0 be an extreme point solution to (LP). Because all vertices in V \{c} are leaf nodes,

constraints (9) establish that x0
cj = 0 for j ∈ V \ {c}. Thus, x0

cc = 1. By Property 2′, there

is at most one leaf with a fractional median. Since K is integral, this is not possible.

Note that the polytope is not integral if constraints (9) are not included in the formulation

(see Theorem 1).

6 Facets for General Graphs

In this section, we introduce a class of facets for the K-median problem on a general graph.

They are not contained in the class identified by Avella and Sassano [2] nor are they subsumed

by the facets identified for the uncapacitated facility location problem (see for example

Cornuejols and Thizy [5] or Cho et al. [4]). The facets we identify in the next result are used

in the next section to give a complete polyhedral description for a class of trees.

Theorem 12 For every R ⊆ V where K ≤ |R| = r and for every S where ∅ ⊆ S ⊆ V \R,

(r−K+1)
(
(r−K)

∑
i∈R
xii −

∑
i,j∈R
i�=j

xij
)
+ (r−K)

(
(r−K+1)

∑
j∈S
xjj −

∑
i∈R
j∈S

xij
)

≤ (r−K+1) (r−K) (K−1) (10)

is valid.

Proof. Since only integral solutions are considered, I =M . First suppose that M �⊂ R∪S.
Then, there is at least one median not in R ∪ S. Therefore,

∑
i∈R
xii +

∑
i∈S
xii ≤ K − 1.

This implies that

(r −K + 1) (r −K)


∑
i∈R
xii +

∑
j∈S
xjj


 ≤ (r −K + 1) (r −K) (K − 1) .
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In the left hand side of (10), only variables xkk for k ∈ V have positive coefficients. Thus,

(10) is established when M �⊂ R ∪ S.
Alternatively, suppose that M ⊂ R ∪ S. Then,

∑
i∈R∪S

xii = K.

Since all medians are contained in R ∪ S, every vertex in R \M is assigned to a vertex in

R ∪ S. If S ∩M = ∅, then ∑
i,j∈R
i�=j

xij = r −K.

Thus, an upper bound on the left hand side of (10) is

(r −K + 1) (r −K)K − (r −K + 1) (r −K) = (r −K + 1) (r −K) (K − 1) .

If S ∩M �= ∅, then

(r −K + 1)
∑

i,j∈R
i�=j

xij + (r −K)
∑
i∈R
j∈S

xij ≥ (r −K)
∑
i∈R

∑
j∈S∪R

i�=j

xij

≥ (r −K) (r −K + 1) .

An upper bound for the left hand side of (10) is

(r −K) (r −K + 1)K − (r −K) (r −K + 1) = (r −K) (r −K + 1) (K − 1) .

We now show that an inequality (10) for K < r and ∅ ⊂ S ⊂ V \ R generates a facet

F of the K-median polytope. For a given inequality, we consider three types of median

assignments that define points in F :

Type 1: All K medians are in R. The left hand side of inequality (10) is (r −K + 1)((r −
K)K − (r −K)) = (r −K)(r −K + 1)(K − 1).

22



Type 2: K−1 medians are in R∪S. All non-median vertices in R are assigned to the median

in (R ∪ S). The left hand side of inequality (10) is (r − K + 1)(r − K)
∑

i∈R∪S xii =

(r −K + 1)(r −K)(K − 1).

Type 3: K − 1 medians are in R, the last median is in S, and all non-median vertices in

R are assigned to the median in S. The left hand side of inequality (10) is (r −K +

1)(r−K)(K − 1) + (r−K)[(r−K + 1)− (r−K + 1)] = (r−K + 1)(r−K)(K − 1).

Since these points satisfy (10) at equality, F generates a face of the integer polytope of

the constraint set of (IP).

To simplify notation, assume thatR = {1, 2, . . . , r} and S = {n−|S|+1, n−|S|+2, . . . , n},
where r + 1 �∈ S.

For a given F defined by (10), let π′x ≤ π′0 be valid for the polytope and generate a face

that contains F . Construct

πx ≤ π0, (11)

which induces the same face as π′x ≤ π′0, by adding multiples of
∑n

j=1 xij = 1 for i ∈ R so

that πi,r+1 = 0. Then for i ∈ R̄, add multiples of
∑n

j=1 xij = 1 so that πi1 = 0. Also, add a

multiple of
∑n

i=1 xii = K so that πr+1,r+1 = 0. Finally, multiply the resulting inequality with

a positive number so that

πrr = δ(r −K)(r −K + 1),

where δ ∈ {−1, 0, 1}. (Later we show that δ ∈ {0, 1}.)
To determine the possible values of π and π0, three kinds of arguments are used:

Argument 1 Suppose x is a feasible integer solution where xij = xll = 1 for i �= j �= l. Let

x′ij = 0, x′il = 1, and x′kq = xkq for all (k, q) �= (i, j) or (i, l). If x, x′ ∈ F , then πij = πil.

Proof. Since x, x′ ∈ F , they satisfy (11) with equality. Therefore, πx = πx′ and πijxij =

πilx
′
il.
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Argument 2 Suppose x is a feasible integer solution where xij = xll = 1 for j �= i, l, and

where xhl = 0 for all h �= l. Let x′ij = x′ll = 0, x′lj = x′ii = 1, and x′kq = xkq for all

(k, q) �= (i, i), (i, j), (l, l), or (l, j). If x, x′ ∈ F , then πij + πll = πii + πlj.

Proof. Since x, x′ ∈ F , they satisfy (11) with equality. Therefore, πx = πx′ and πijxij +

πllxll = πiix
′
ii + πljx

′
lj.

Argument 3 Suppose x is a feasible integer solution where xij = xjj = 1 for j �= i, and

where xlj = 0 for all l �= i, j. Let x′ij = x′jj = 0, x′ji = x′ii = 1, and x′kq = xkq for all

(k, q) �= (i, i), (i, j), (j, j), or (j, i). If x, x′ ∈ F , then πij + πjj = πii + πji.

Proof. Since x, x′ ∈ F , they satisfy (11) with equality. Therefore, πx = πx′ and πijxij +

πjjxjj = πiix
′
ii + πjix

′
ji.

Lemma 3 πij = πil for i ∈ V and j, l ∈ R \ {i}.

Proof. Consider the incidence vector x with the following Type 1 assignment: medians are

at j, l and at K − 2 additional vertices in R \ {i}, vertex i is assigned to j, and all other

vertices are assigned to arbitrary medians.

Let the assignment x′ only differ from x in that vertex i is assigned to median l. Since

x′ has a Type 1 assignment, x′ ∈ F . Use Argument 1 for vertex i and medians j and l to

conclude that πij = πil.

Lemma 4 πij = 0, for i ∈ R̄ and j ∈ V \ {i}.

Proof. We first establish that πij = πil for i ∈ R̄, j ∈ R, and l ∈ R̄ \ {i}. There are two

cases: l ∈ S \ {i} and l ∈ (R ∪ S) \ {i}.
Case 1. l ∈ S \ {i}.
Consider the incidence vector x with the following Type 3 assignment: medians are at j, l

and at K − 2 additional vertices in R, vertex i is assigned to j, and all other vertices are

assigned to l.
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Let the assignment x′ only differ from x in that vertex i is assigned to median l. Since

x′ has a Type 3 assignment, x′ ∈ F . Use Argument 1 for vertex i and medians j and l to

conclude that πij = πil.

Case 2. l ∈ (R ∪ S) \ {i}.
Consider the incidence vector x with the following Type 2 assignment: medians are at j, l

and at K − 2 additional vertices in R, vertex i is assigned to j, and all other vertices are

assigned to l.

Let the assignment x′ only differ from x in that vertex i is assigned to median l. Since

x′ has a Type 2 assignment, x′ ∈ F . Use Argument 1 for vertex i and medians j and l to

conclude that πij = πil.

Thus, πij = πil for i ∈ R̄, j ∈ R, and l ∈ R̄ \ {i}. Using Lemma 3, πij = πil for i ∈ R̄ and

j, l �= i. By construction, πi1 = 0 for i ∈ R̄. Hence, πij = 0, for i ∈ R̄, and j ∈ V \ {i}.

Lemma 5 πij = −δ(r −K + 1) for i, j ∈ R and i �= j.

Proof. First, we show that πil = πjl, for i, j ∈ R and l ∈ R \ {i, j}.
Let J ⊂ R and l ∈ R \ J where |J | = r −K. Consider the incidence vector x with the

following Type 2 assignment: a median is at r+1, and at the K−1 vertices in R \ (J ∪{l}),
vertices in J ∪ {l} are assigned to r + 1, and all other vertices are assigned to arbitrary

medians other than r + 1.

Let the assignment x′ only differ from x in that there is a median at l instead of at r+1,

and the vertices in J are assigned to l. Since x′ has a Type 1 assignment, x′ ∈ F . From

the construction of π,
∑

i∈J∪{l}∪{r+1} πi,r+1 = 0. From Lemma 4, πr+1,l = 0. Thus, πx′ = πx

implies that
∑

i∈J∪{l} πil = 0.

Now, consider two subsets J, J ′ ⊆ R of cardinality r−K, where J \J ′ = {i} and J ′ \J =

{j}. We have that
∑

k∈J∪{l} πkl = 0 =
∑

k∈J ′∪{l} πkl. Since
∑

k∈J∪{l} πkl −
∑

k∈J ′∪{l} πkl =

πil − πjl, πil = πjl.
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We now establish that πir = −δ(r −K + 1) for i ∈ R \ {r}. The above analysis implies

that
∑

j∈J∪{r} πjr = (r −K)πir + πrr, where i ∈ J , r /∈ J and l = r. From the construction

of π, πrr = δ(r−K)(r−K +1). Because
∑

j∈J∪{r} πjr = 0, we have that (r−K)πir + δ(r−
K)(r −K + 1) = 0. Now, r −K > 0 implies that πir = −δ(r −K + 1).

From Lemma 3, πij = −δ(r −K + 1) for i ∈ R \ {r}, j ∈ R \ {r} and i �= j. With the

previous observation πil = πjl applied to πrl = πjl establishes that πrj = −δ(r −K + 1) for

j ∈ R \ {r}.

Lemma 6 πii = δ(r −K)(r −K + 1) for i ∈ R ∪ S.

Proof. For i = r, the lemma is true by construction of π. For i �= r, there are two cases:

i ∈ R \ {r} and i ∈ S.
Case 1. i ∈ R \ {r}.
Consider the incidence vector x with the following Type 1 assignment: medians are at r,

and at K − 1 additional vertices in R \ {i}, vertex i is assigned to r, and all other vertices

are assigned to arbitrary medians other than r.

Let the assignment x′ only differ from x in that there is a median at vertex i instead of

at r, and r is assigned to i. Since x′ has a Type 1 assignment, x′ ∈ F . Use Argument 3 to

conclude that πrr + πir = πri + πii. By the construction of π, πrr = δ(r −K)(r −K + 1),

and by Lemma 5, πir = −δ(r −K + 1) = πri. Hence, πii = δ(r −K)(r −K + 1).

Case 2: i ∈ S.
Consider the incidence vector x with the following Type 2 assignment: medians are at r,

r + 1, and at K − 2 additional vertices in R, all other vertices are assigned to r + 1.

Let the assignment x′ only differ from x in that there is a median at i instead of at r,

and r is assigned to r + 1. Since x′ has a Type 2 assignment, x′ ∈ F . Use Argument 2 to

conclude that πi,r+1 +πrr = πii+πr,r+1. By the construction of π, πrr = δ(r−K)(r−K+1)

and πr,r+1 = 0. From Lemma 4, πi,r+1 = 0. Hence, πii = δ(r −K)(r −K + 1).
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Lemma 7 πil = 0 for i ∈ R and l ∈ (R ∪ S).

Proof. Consider the incidence vector x with the following Type 2 assignment: medians are

at i ∈ R, l ∈ (R ∪ S), and at K − 2 additional vertices in R \ {i}, all non-median vertices

are assigned to l.

Let the assignment x′ only differ from x in that there is a median at n ∈ S instead of

at i, and i is assigned to l. Since x′ has a Type 2 assignment, x′ ∈ F . Use Argument 2 to

conclude that πnl + πii = πnn + πil. From Lemma 6, πii = πnn = δ(r−K)(r−K +1). Thus,

πil = πnl. Since Lemma 4 implies that πnl = 0, πil = 0.

Lemma 8 πll = 0 for l ∈ (R ∪ S).

Proof. Consider the incidence vector x with the following Type 2 assignment: medians are

at r+1, and at K− 1 additional vertices in R, all non-median vertices are assigned to r+1.

Let the assignment x′ only differ in that there is a median at l ∈ (R ∪ S) instead of at

r+1, and all non-median vertices are assigned to l. Since x′ is a Type 2 assignment, x′ ∈ F .

From Lemmas 4 and 7, πij = 0 for j ∈ {r + 1, l} and i ∈ V \ {j}. Thus, πx = πx′ implies

that πr+1,r+1xr+1,r+1 = πllx
′
ll. Since πr+1,r+1 = 0 and xll = 1, we conclude that πll = 0.

Lemma 9 πil = −δ(r −K) for i ∈ R and l ∈ S.

Proof. First, we show that πil = πjl for i, j ∈ R and l ∈ S. Consider the incidence vector x

with the following Type 3 assignment: medians are at j ∈ R, l ∈ S and at K − 2 additional

vertices in R \ {i}, all non-median vertices are assigned to l.

Let the assignment x′ only differ from x in that there is a median at vertex i instead of at

j, and j is assigned to median l. Since x′ is a Type 3 assignment, x′ ∈ F . Use Argument 2

to conclude that πil + πjj = πii + πjl. From Lemma 6, πii = δ(r − K)(r − K + 1) = πjj.

Hence, πil = πjl for i, j ∈ R and l ∈ S.
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Now, consider the incidence vector x with the following Type 1 assignment: medians are

at i ∈ R and at K − 1 additional vertices in R \ {i}, all non-median vertices are assigned to

i.

Let the assignment x′ only differ from x in that there is a median at vertex l ∈ S instead

of at i, and all non-median vertices are assigned to l. Since x′ is a Type 3 assignment, x′ ∈ F .

Consequently, πx = πx′. Thus,

∑
j∈R\M

πji + πii +
∑
j∈R̄

πji =
∑

j∈R\M
πjl + πil +

∑
j∈R̄\{l}

πjl + πll.

Now, πji = πjl = 0 for j ∈ R̄, from Lemma 4, and πii = πll from Lemma 6. As a result,

∑
j∈R\M

πji =
∑

j∈R\M
πjl + πil.

Because |R \M | = r −K, πji = −δ(r −K + 1) for j ∈ R \M from Lemma 5, and πjl = πil

for j ∈ R \M , we have that

−(r −K)δ(r −K + 1) = (r −K)πil + πil

−δ(r −K) = πil.

We now establish the main result of this section.

Theorem 13 For K < r and ∅ ⊂ S ⊂ V \ R, the inequalities (10) induce facets for the

general K-median (K ≥ 2) polytope.

Proof. By the construction of π and from Lemmas 4–9, the coefficients of inequality (11)

are determined up to δ. We first show that π0 = δ(K − 1)(r −K)(r −K + 1).

Consider the incidence vector x with the following Type 2 assignment: medians are at

l ∈ (R ∪ S), and at K − 1 vertices in R, all non-median vertices are assigned to l. Then,

π0 = πx

=
∑

i∈R∩M
πii + πll +

∑
j∈R̄\M

πjl +
∑

i∈R\M
πil

= (K − 1)δ(r −K)(r −K + 1) + 0 + 0 + 0.
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where the last equality follows from Lemmas 6, 8, 4, and 7.

Consider another incidence vector x̂ with the following assignment: medians are at l ∈ S,
and at K − 1 vertices in R, all non-median vertices are assigned to medians in R. While x̂

is feasible, this assignment might not be in F . Now,

πx̂ =
∑

i∈(R∪S)∩M
πii +

∑
j∈R̄\M

∑
i∈R∩M

πji +
∑

j∈R\M

∑
i∈R∩M

πji

= Kδ(r −K)(r −K + 1) + 0− (r −K + 1)δ(r −K + 1).

where the last equality follows from Lemmas 6, 4, and 5. Because πx̂ ≤ π0 = δ(K − 1)(r −
K)(r −K + 1),

Kδ(r −K)(r −K + 1)− (r −K + 1)δ(r −K + 1) ≤ (K − 1)δ(r −K)(r −K + 1)

δ(r −K) ≤ δ(r −K + 1).

Consequently, δ ∈ {0, 1}. If δ = 0, then πx ≤ π0 reduces to 0x ≤ 0, which is trivially true.

Therefore, the original inequality π′x ≤ π′0 is only a linear combination of valid equations

for the polytope. As a result, it induces a trivial face (the polytope itself). Alternatively, if

δ = 1, then the inequality πx ≤ π0 is identical to the inequality of type (8) that induces F .

Consequently, πx ≤ π0 also defines F . Hence, F is not contained in any other proper face

of the polytope and is therefore a facet.

Notice that the condition that K < r is used in Lemma 3 and is needed so that inequality

(11) is not trivially true. Also, the condition that S �= ∅ is used in Lemma 7.

7 Stars with at Most Two Vertices Per Branch

An example of a 2-star is presented in Figure 4. Denote the K-median problem on a 2-star

as (IP2) and the associated linear relaxation as (LP2). We assume that the path consistency

constraints and constraints (9) are included in this formulation. In this section, we present
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Figure 4: A 2-star.

an integral polyhedral description for (IP2) that restricts the feasible set, while retaining an

optimal solution.

The degree of the center vertex c is d, and the set of neighbors of c is Nc = {1, 2, . . . , d}.
We label the vertices so that the neighbors of Nc \{c} are {d+1, d+2, . . . , n} = L. Further,

if vertex i �= c is a neighbor of q ∈ Nc, then i = q + d. A branch is a pair of vertices of the

form (q, q + d) where q ∈ Nc.

We now establish some properties of an optimal integer solution. From Theorem 5, we

restrict the analysis to the cases where 2 ≤ K ≤ n− 1.

Lemma 10 If G is a 2-star, then Q̂K ∩ {xcc = 1} is integral.

Proof. From Property 2, an extreme point solution to (LP2) has at most one branch with

fractional medians. However, this branch is a path on three nodes. From Theorem 5, there

is an integral assignment of the fractional medians to the branch.

Lemma 11 There exists an optimal integer solution x∗ to (IP2) where x∗iq = 0 for q ∈ Nc

and for all i ∈ V \ {c, q, q + d}.
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Proof. Suppose x∗cc = 1. Then, the result follows from path consistency. As a result, we

assume that x∗cc = 0. Hence, there is a vertex q ∈ V \ {c} such that x∗cq = 1. If we satisfy

(9), then q ∈ Nc.

The graph induced by the vertices of Nq(x
∗) \ {q} forms two subtrees. One subtree has

at most one vertex, a leaf node. The other subtree has at least two vertices. Thus, we can

set x∗cc = 1 and x∗qq = 0. The value of this new solution is no larger than the original optimal

solution and xiq = 0.

We restrict (IP2) and (LP2) to those solutions that satisfy Lemma 11 by adding the

equations

xiq = 0 for q ∈ Nc and i ∈ V \ {c, q} (12)

to the formulation. Let Q′
K = Q̂K ∩ {x : x satisfies (12)}

Remark If x0 ∈ Q′
K is an extreme point of Q̂K, then x0 is also an extreme point of Q′

K.

Thus, Lemma 10 holds when Q̂K is replaced by Q′
K .

Lemma 12 If G is a 2-star, then Q′
K ∩ {xcc = 0} is integral.

Proof. From (9) and Lemma 11, no vertex in one branch is assigned to a median in another

branch. As a result, each branch is optimized independently. Since each subproblem is a

path on three nodes, Theorem 5 establishes that an extreme point solution is integral.

Suppose an optimal extreme point solution, x∗, has x∗cc = 1 or 0. Then by Lemmas 10

or 12, respectively, an optimal extreme point LP solution is integral. Therefore, we consider

the case when x∗cc = θ where 0 < θ < 1.

We use (10) to generate a set of valid inequalities. Let

R = Nc ∪ Yt and S = L \R, (13)
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where Yt ⊂ L and |Yt| = max{K − d+ t, 0} for t ∈ {1, 2, . . . , n− d}. Note that
∑

i∈R
j∈S
xij = 0

holds from Theorem 10. Substituting R and S into (10) yields

(r −K + 1)(r −K)(K − xcc) − (r −K + 1)
∑

i,j∈R
i�=j

xij ≤ (r −K + 1)(r −K)(K − 1)

(r −K)(K − xcc) −
∑

i,j∈R
i�=j

xij ≤ (r −K)(K − 1)

(r −K)(1− xcc) ≤ ∑
i,j∈R
i�=j

xij. (14)

We now show that adding all equations (10) to (LP2), where R and S are given in (13),

provide a formulation where the polytope is integral.

If d ≥ K + 1, then Y1 = ∅. As a result,
∑

i,j∈R
i�=j

x∗ij = 0. Thus, (14) implies that x∗cc ≥ 1,

and θ cannot be fractional. Consequently, we assume that d ≤ K. From the definition of R,

t = r −K. Then, inequality (14) is equivalent to

t(1− θ) ≤ ∑
i,j∈R
i�=j

xij.

Because |Yt| = r − d, R = Nc ∪ Yt, and xij = 0 for i, j ∈ Nc,

∑
i,j∈R
i�=j

xij ≤ (r − d) − ∑
j∈Yt

xjj = (K + t− d) − ∑
j∈Yt

xjj.

Thus, constraints (14) imply that

∑
j∈Yt

xjj ≤ K − d+ tθ, (15)

where Yt ⊂ L and |Yt| = K−d+t. When inequalities (15) are included in the formulation for

(LP2), Property 1 and Property 2 may no longer hold. This can happen only if an inequality

(15) is tight at an optimal solution x∗.

The next result provides a lower bound for x∗qq.

Lemma 13 For q ∈ Nc, x
∗
qq ≥ 1 − θ.
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Proof. From (12), x∗qi = 0 for q ∈ Nc and i ∈ V \ {c}. Since x∗cc = θ and
∑

i∈V x∗qi = 1, the

result follows.

Given an extreme point solution x∗, Lemma 13 implies that the branches of the 2-star

can be partitioned into the following sets:

A1 = {q ∈ Nc : 1− θ < x∗qq < 1}

A2 = {q ∈ Nc : 0 < x∗q+d,q+d < θ, x
∗
qq ∈ {1− θ, 1}}

A3 = {q ∈ Nc : x∗qq = 1− θ, θ < x∗q+d,q+d < 1}

A4 = {q ∈ Nc : x∗qq = 1, θ < x∗q+d,q+d < 1}

A5 = {q ∈ Nc : x∗qq = 1− θ, x∗q+d,q+d = 0}

A6 = {q ∈ Nc : x∗qq = 1− θ, x∗q+d,q+d = θ}

A7 = {q ∈ Nc : x∗qq = 1− θ, x∗q+d,q+d = 1}

A8 = {q ∈ Nc : x∗qq = 1, x∗q+d,q+d = 0}

A9 = {q ∈ Nc : x∗qq = 1, x∗q+d,q+d = θ}

A10 = {q ∈ Nc : x∗qq = 1, x∗q+d,q+d = 1}.

We first establish some properties of these sets and show that some of them are empty.

In what follows, we exploit the argument of transferring ε between medians.

Lemma 14 If q + d ∈ Yt for t ∈ {1, 2, . . . , n− d} and x∗q+d,q+d /∈ {θ, 1}, then the constraint

(15) associated with Yt is loose.
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Proof. Suppose that x∗q+d,q+d < θ. If
∑

j∈Yt
x∗jj = K − d + tθ where t ∈ {2, 3, . . . , n − d},

then
∑

j∈Yt\{q+d} x
∗
jj > K − d+ (t− 1)θ. Feasibility is violated for constraint (15) associated

with the set Yt \ {q + d}. When q + d ∈ Y1, it is not possible that
∑

j∈Y1
x∗jj = K − d + θ.

Hence, if xq+d,q+d < θ, then q + d /∈ Yt.
Suppose that |{l ∈ Yt : θ < x∗ll < 1}| = 1. Then, all other elements of Yt have values θ or 1.

Since |Yt| = K−d+ t and t(1−θ) ≤ ∑
i,j∈R, i
=j xij, we have that |{l ∈ Yt : x∗ll = 1}| ≤ K−d.

As a result, it is not possible that
∑

j∈Yt
x∗jj = K − d + tθ. Therefore, we assume that

|{l ∈ Yt : θ < x∗ll < 1}| ≥ 2.

Let t̄ = max{i : constraint (15) is tight for Yi}. If l ∈ L \ Yt̄ and x∗ll ≥ θ, then Yt̄ ∪ {l}
is tight for (15). Because this contradicts the definition of t̄, we assume that x∗ll < θ for all

l ∈ L \ Yt̄. Thus, if Yi is the associated set for any tight constraint (15), then Yi ⊆ Yt̄. Also,

l ∈ Yt̄ \ Yi implies that x∗ll = θ.

Let l1, l2 ∈ {l ∈ Yt : θ < x∗ll < 1}. For a suitably small ε > 0, construct a new solution x1

from x∗ by transferring ε from median l1 to median l2, i.e.

x1
l1l1

= x∗l1l1 − ε
x1
l2l2

= x∗l2l2 + ε

x1
l1,l1−d = x∗l1,l1−d + ε

x1
l2,l2−d = x∗l2,l2−d − ε
x1
ij = x∗ij for all other variables.

Notice that no component of x∗ is driven to zero by this change. Further, no component of

x∗ that is zero becomes non-zero. Also, x1 satisfies all the same constraints that x∗ does.

Now, consider an alternative solution x2 where −ε is transferred from median l1 to median

l2 in x∗. Again, x2 is a feasible solution. However, x∗ is a convex combination of x1 and x2.

Thus, x∗ is not an extreme point solution. Contradiction.

Lemma 15 For q ∈ A1, x∗q+d,q+d ∈ {0, θ, 1}.
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Proof. For a suitably small ε > 0, construct a new solution x1 from x∗ by transferring ε from

median q to median q+ d. No component of x∗ is driven to zero by this change. Further, no

component of x∗ that is zero becomes non-zero. If x∗q+d,q+d /∈ {θ, 1}, then Lemma 14 implies

that the associated constraint (15) is loose. Thus, x1 satisfies all the same constraints that

x∗ does.

Consider an alternative solution x2 where −ε is transferred from median q to median

q + d in x∗. Again, x2 is a feasible solution. However, x∗ is a convex combination of x1 and

x2. Thus, x∗ is not an extreme point solution. Contradiction.

Lemma 16 A1 ∪ · · · ∪ A4 = ∅.

Proof. We first assume that |A1 ∪ · · · ∪ A4| ≥ 2. Suppose that q, q′ ∈ A1 ∪ · · · ∪ A4. Then,

there are 42 = 16 cases depending on which of the four sets q and q′ belong to.

Suppose that q ∈ A1 and q′ ∈ A2. Let ε > 0 be suitably small. Construct a new solution

x1 from x∗ by transferring ε from median q to median q′ + d, i.e.

x′jj =



x∗qq − ε, j = q

x∗q′+d,q′+d + ε, j = q′ + d

x∗jj, j �= q, q′ + d

and all other assignments are made according to (1). No component of x∗ is driven to zero

by this change. Also, x∗q′q′ + x
∗
q′+d,q′+d �= 1, and from Lemma 15, x∗qq + x∗q+d,q+d �= 1. Thus,

no component of x∗ that is zero becomes non-zero. Further, from Lemma 14, no leaf node

associated with an element of A2 is part of any tight constraint (15). Thus, x1 is feasible

and satisfies all the same constraints that x∗ does.

Consider an alternative solution x2 where −ε is transferred from median q to median

q′ + d in x∗. Again, x2 is a feasible solution. However, x∗ is a convex combination of x1 and

x2. This contradicts the assumption that x∗ is an extreme point solution.

35



The proof of the other fifteen cases are similar. When q ∈ A1, the median value is

transferred to and from vertex q. When q ∈ A2 ∪ A3 ∪ A4, the median value is transferred

to and from vertex q + d.

The above analysis analysis establishes that |A1 ∪ · · · ∪ A4| ≤ 1. Now, suppose that

q ∈ A2. Since 1 − θ from vertex c is assigned to the nearest median, let q∗ ∈ Nc such that

x∗cq∗ = 1 − θ. The K median problem, ignoring constant terms, can be written as

min f(θ, xq+d,q+d) = wcq∗(1− θ) + wq+d,q(1− xq+d,q+d) +
∑
q∈A5

2wqcθ

+
∑

q∈A6∪A7

wqcθ +
∑

q∈A6∪A9

wq+d,q(1− θ).

subject to 1 ≥ θ ≥ 0

θ ≥ xq+d,q+d ≥ 0

θ + xq+d,q+d + (1− θ)|A5| + |A6| + (2− θ)|A7| + |A8|

+(1 + θ)|A9| + 2|A10| = K.

Observe that in this formulation, the constraints (15) are automatically satisfied and do

not restrict the feasible set. In a linear program with two variables, upper bound, lower

bound and one equality constraint, at an optimal extreme point one of the following must

be true:

1. θ = 0, in which case the optimal solution is integral.

2. θ = 1, in which case the optimal solution is integral.

3. xq+d,q+d = 0, in which case q + d /∈ A2.

4. xq+d,q+d = θ, in which case q + d /∈ A2.
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Thus, A2 = ∅.
When q ∈ A3 ∪ A4, the proof is similar, with changes in the bounds of xq+d,q+d.

When q ∈ A1, the second variable in the linear program is xqq. From Lemma 15, if

x∗q+d,c = 0, then it remains 0 in the LP solution.

Theorem 14 Suppose equations (15) are included in (LP2). Then, the polytope is integral.

Proof. Because A1 ∪ · · · ∪ A4 = ∅, the cardinality constraint
∑

j xjj = K is

K = (1− θ)|A5| + |A6| + (2− θ)|A7| + |A8| + (1 + θ)|A9| + 2|A10| + θ

= |A5| + |A6| + |A7| + |A8| + |A9| + |A10| + |A7| + |A10| + θ + (|A9| − |A5| − |A7|)θ.

Since |A5| + |A6| + |A7| + |A8| + |A9| + |A10| = d,

K = d+ θ + |A7| + |A10| + (|A9 − |A5| − |A7|)θ.
Because all leaf nodes have median values 0, θ or 1, constraint (15) establishes that

|A7 ∪ A10| ≤ K − d. Thus,

K ≤ θ + d+K − d+ (|A9| − |A5| − |A7|)θ,

|A5| + |A7| ≤ |A9| + 1.

Suppose that |A5| + |A7| = |A9| + 1. Then {j ∈ V : x∗jj = 1 − θ} = {j ∈ V : x∗jj = θ}.
Transferring ε between those medians with value θ and those with value 1− θ shows that x∗

is not an extreme point solution.

This contradiction implies that |A5|+ |A7| ≤ |A9| and that |A7 ∪A10| < K − d. The first

inequality shows that all constraints (15) are loose.

When |A5|+ |A7| = |A9|, there is one more median with value θ, than value 1− θ. As a

result, it is not possible to have a total median value of K.

Thus, we assume that |A5| + |A7| ≤ |A9| − 1. Suppose that |A9| ≥ 2. Then, transfer ε

between the leaf nodes associated with A9. Because all constraints (15) are loose, we have

that x∗ is not an extreme point solution.
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This contradiction establishes that |A9| ≤ 1 and that A5 ∪A7 = ∅. When |A9| = 1, then

let q ∈ A9. Transfer ε between c and q+d and between the vertices of each branch associated

with A6. This establishes that x∗ is not an extreme point solution.

Hence, A9 = ∅. The only remaining fractional vertices are c and those associated with

A6. Because it is not possible to have a total median value of K, c cannot be fractional.

8 Some Open Questions

To find the integer polytope, one important open question is how to characterize the set

of constraints that describe the tree distances. Another interesting issue is that few results

are known for the K-median problem on a tree with unit edge length. The graph given in

Figure 2 has integral optimal point solutions for these arc distances. For the formulation of

the 2-star, the inequalities (15) are exponential in the input size. The question of whether

there is a linear size formulation is open. Finally, for which classes of graphs other than

2-stars, are the inequalities (10) useful in describing an integral polytope.
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