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Abstract

Consider a decentralized, dynamic market with an infinite horizon in
which both buyers and sellers have private information concerning their
values for the indivisible traded good. Time is discrete, each period has
length δ, and each unit of time a large number of new buyers and sellers
enter the market to trade. Within a period each buyer is matched with
a seller and each seller is matched with zero, one, or more buyers. Ev-
ery seller runs a first price auction with a reservation price and, if trade
occurs, both the seller and winning buyer exit the market with their real-
ized utility. Traders who fail to trade either continue in the market to be
rematched or become discouraged with probability δµ (µ is the discour-
agement rate) and exit with zero utility. We characterize the steady-state,
perfect Bayesian equilibria as δ becomes small and the market–in effect–
becomes large. We show that, as δ converges to zero, equilibrium prices
at which trades occur converge to the Walrasian price and the realized
allocations converge to the competitive allocation.
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1 Introduction
Asymmetric information and strategic behavior interferes with efficient trade.
Nevertheless economists have long believed that for private goods’ economies
the presence of many traders overcomes both these imperfections and results
in convergence to perfect competition. This paper contributes to a burgeon-
ing literature that shows the robust ability of simple market mechanisms to
elicit almost accurate cost and value information from buyers and sellers even
as at it allocates the available supply almost efficiently. It shows how a com-
pletely decentralized market with two-sided incomplete information converges
to a competitive outcome as each trader’s ability to contact other traders serially
increases. Thus a market that for each trader is big over time–as opposed to
big at a moment in time–overcomes the difficulties of asymmetric information
and strategic behavior. This is another step towards a full understanding of
why price theory with its assumptions of complete information and price-taking
works as well as it does even in markets where the validity of neither of these
assumptions is self-evident.
These ideas may be made concrete by considering a bilateral bargaining

situation in which the single buyer has a value v ∈ [0, 1] for an indivisible
good and the single seller has a cost c ∈ [0, 1]. They should trade only if v ≥
c, but neither knows the other’s value/cost. Instead each regards the other’s
value/cost as drawn from [0, 1] in accordance with a distribution G (·) .Myerson
and Satterthwaite (1983) showed that no individually rational, budget balanced
mechanism exists that both respects the incentive constraints the asymmetric
information imposes and prescribes trade only if v ≥ c. Bilateral trade with
two-sided incomplete information is intrinsically inefficient.
An instructive example of this phenomenon is the linear equilibrium Chat-

terjee and Samuelson (1983) derived for the bilateral 12 -double auction when G
is the uniform distribution on [0, 1]. The rules of this double auction are that
buyer and seller simultaneously announce a bid B (v) and offer S (c) and they
trade at price p = 1

2 (B (v) + S (c)) only if the buyer’s bid is greater than the
seller’s offer. In their linear equilibrium trade occurs only if v − c ≥ 1

4 , i.e., the
asymmetric information and resulting misrepresentation of value/cost inserts an
inefficient “wedge” of thickness 14 into the double auction’s outcome. Moreover
the magnitude of this wedge is irreducible. Myerson and Satterthwaite (1983)
showed that subject to budget balance, individual rationality, and incentive con-
straints this equilibrium maximizes the ex ante expected gains from trade and
therefore is ex ante efficient.
A sequence of papers on the static, multi-lateral k-double auction in the in-

dependent private values environment have confirmed economists’ intuition that
increasing the number of traders causes this wedge to shrink and ultimately van-
ish in the limit. In the multilateral double auction there are n sellers each sup-
plying one unit and n buyers each demanding one unit. Each trader’s cost/value
is private and, from the viewpoint of every other trader, independently drawn
from [0,1] with distribution G. Sellers and buyers submit offers/bids simulta-
neously, a market clearing price p is computed, and the n units of supply are
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allocated at price p to those n traders who revealed through their offers/bids
that they most value the available supply. Satterthwaite and Williams (1989)
and Rustichini, Satterthwaite, and Williams (1994) established that as n in-
creases the thickness of the wedge and the relative inefficiency associated with
each equilibrium are O (1/n) and O

¡
1/n2

¢
respectively. Relative inefficiency is

the expected gains that the traders would realize if the market were perfectly
competitive divided into the expected gains that the traders fail to realize in
the equilibrium of the double auction market.
Thus, quite quickly, the static double auction market with independent pri-

vate values converges to ex post efficiency–that is, perfect competition–as the
number of traders grows.1 This is despite dispensing with the technically im-
portant, but often unrealistic assumption of auction theory that the seller’s cost
is common knowledge among all participants. These results acknowledge that
the effectiveness of a trading institution depends as much on its ability to elicit
accurate information from both sides of the market as it does on its ability to
allocate goods efficiently in accordance with that information.
These results, however, are derived under three restrictive assumptions:

costs/values are independently drawn private signals, sellers have unit supply
and buyers have unit demand, and the timing of the market is a one-shot static
game. Papers by Fudenberg, Mobius, and Szeidl (2003), Cripps and Swinkels
(2003), and Reny and Perry (2003) relax the first two assumptions. Specifically,
Fudenberg, Mobius, and Szeidl show that for large markets in an environment
with correlated private costs/values an equilibrium to the static double auction
exists and traders misrepresentation of their true values is O

¡
1
n

¢
. Cripps and

Swinkels, using a somewhat more general model of correlated private values,
additionally dispense with the unit supply/unit demand assumption and show
that the relative inefficiency of the static double auction is O

¡
1

n2−ε
¢
where ε

is arbitrarily small. Reny and Perry loosen the first assumption more dramati-
cally, allowing traders’ cost/values to have a common value component and their
private signals to be affiliated. They show, if the market is large enough, that
an equilibrium exists, is almost ex post efficient, and almost fully aggregates
the traders’ private information, i.e., the double auction equilibrium is almost
the unique, fully revealing rational expectations equilibrium that exists in the
limit.
This paper, while retaining the independent private values and unit sup-

ply/unit demand assumptions, eliminates the third assumption that traders are
playing a one-shot game in which, if they fail to trade now, they never have
a later opportunity to trade. Commonly a trader who fails to trade now can
enter into a new negotiation within a short time, perhaps even within minutes.
To account for this possibility we consider a dynamic matching and bargaining
model in which trades are consummated in a decentralized matter and traders
who do not trade in the current period are rematched in the next period and
try again. Gale (1987) and Mortensen and Wright (2002) study models of this

1 Indeed Satterthwaite and Williams (2001) show that for this environment converges as
fast as possible in the sense of worst case asymptotic optimality.
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type and show that, as the friction that impedes traders’ abilities to search for a
favorable price goes to zero, the outcome approaches the competitive outcome.
Their models, however, assume complete information and therefore can not test
if such markets can succeed in eliciting traders’ private information even as they
allocate supply.
A reasonably complete, though somewhat informal description of our model

and result is this. An indivisible good is traded in a market in which time
progresses in discrete periods of length δ and generations of traders overlap. The
parameter δ is the exogenous friction in our model that we take to zero. Every
active buyer is randomly matched with an active seller each period. Depending
on the luck of the draw, a seller may end up being matched with several buyers,
a single buyer, or even no buyers. Each seller solicits a bid from each buyer with
whom she is matched and, if the highest of the bids is satisfactory to her, she
sells her single unit of the good and both she and the successful buyer exit the
market. A buyer or seller who fails to trade remains in the market, is rematched
the next period, and tries again to trade unless he should become discouraged
and decide spontaneously to exit the market without trading.
Each unit of time a large number of potential sellers (formally, measure

1 of sellers) enters the market along with a large number of potential buyers
(formally, measure a of sellers). Each potential seller independently draws a cost
c in the unit interval from a distribution GS and each potential buyer draws
independently a value v in the unit interval from a distribution GB. Individuals’
costs and values are private to them. A potential trader only enters the market
if, conditional on his private cost or value, his equilibrium expected utility is
positive. Potential traders who have zero probability of profitable trade in
equilibrium elect not to participate.
If trade occurs between a buyer and seller at price p, then they exit with

utilities v − p and p− c respectively discounted back at rate r to the time that
they entered. As in McAfee (1993) unsuccessful active traders may become
discouraged and exit. This occurs for each trader each period with probability
δµ > 0 where µ is the discouragement rate per unit of time. If δ is large (i.e.,
periods are long), then a trader who enters the market is impatient, seeking to
consummate a trade and realize positive utility amongst the first few matches
he realizes. Otherwise he is likely to become discouraged and exit with zero
utility. If, however, δ is small (i.e., periods are short), then a trader can wait
through many matches looking for a good price with little concern about first
becoming discouraged and exiting with no gain.
Buyers with higher values find it worthwhile to submit higher bids than

buyers with lower values. At the extreme, a buyer with a value 0.1 will certainly
not submit a bid greater than 0.1 while a buyer with a value 0.95 certainly might.
The same logic applies to sellers: low cost sellers may be willing to accept lower
bids than are higher cost sellers. This means high value buyers and low cost
sellers tend quickly to realize a match that results in trade and exit. Low value
buyers and high cost sellers may take a much longer time on average to trade
and are likely to exit through discouragement rather than trade. Consequently,
among the buyers and sellers who are active in the market in a given period t,
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low value buyers and high cost sellers may be overrepresented relative to the
entering distributions GB and GS .
We characterize subgame perfect Bayesian equilibria for the steady state of

this market and show that, as the period length goes to zero, all equilibria of
the market converge to the Walrasian price and the competitive allocation. The
Walrasian price pW in this market is the solution to the equation

GS (pW ) = a (1−GB (pW )) , (1)

i.e., it is the price at which the measure of entering sellers with costs less than pW
equals the measure of entering buyers with values greater than pW . If the market
were completely centralized with every active buyer and seller participating in
an enormous exchange that cleared each period’s bids and offers simultaneously,
then pW would be the market clearing price each period. Our result is this.

Given a δ > 0, then each equilibria induces a trading range
h
p
δ
, p̄δ

i
. It is the

range of offers that sellers of different types make, the range of bids that buyers
make, and the range of prices at which trades are actually consummated in
this equilibrium. We show that limδ→0 pδ = pW and limδ→0 p̄δ = pW , i.e., the
trading range converges to the competitive price. That the resulting allocations
give traders the expected utility they would realize in a perfectly competitive
market follows as a corollary.
This result, both intuitively and in its proof, is driven by two phenomena:

local market size and global market clearing.2 By local market size we mean
the number of other traders with whom each individual trader interacts. This
contrasts with global market size–the total number of traders active in the
entire market–which is always large in our model. Thus as the time period
δ shrinks each trader expects to match an increasing number of times before
becoming discouraged and exiting. Each trader’s local market becomes big over
time as opposed to big at a point in time as is the case in the standard model
of perfect competition or in the centralized k-double auction. This creates a
strong option value effect for every trader. Even if a buyer has a high value,
he has an increasing incentive as δ decreases to bid low and hold out for an
offer near the low end of the offer distribution. Therefore all serious buyers bid
within an increasingly narrow range just above the minimum offer any seller
makes. A parallel argument applies to sellers, with the net effect being, as δ
becomes small, all bids and offers concentrate within an interval of decreasing
length, i.e., the trading range converges to a single price.
Local market size only forces the market to converge to a single price, not

necessarily to the Walrasian price. It is global market clearing that forces con-
vergence to the Walrasian price. To see this, suppose the market converges to
a price p that is less than the Walrasian price. At this price more buyers want
to buy than there are sellers who want to sell. Buyers are rationed through dis-
couragement, for even a high value buyer may fail to be matched with a seller
who wants to sell at p before he becomes discouraged and exits. This, however,

2De Fraja and Sákovics (2001) introduced these distinctions.
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is inconsistent with equilibrium: the high value buyer can increase his bid above
p and guarantee that he will trade and not be rationed out. This increases his
expected utility and contradicts the hypothesis that the equilibrium converges
to the price p rather than the Walrasian price.
A substantial literature exists that investigates the non-cooperative founda-

tions of perfect competition using dynamic matching and bargaining games.3

Most of the work of which we are aware has assumed complete information
in the sense that each participant knows every other participant’s values (or
costs) for the traded good. The books of Osborne and Rubinstein (1990) and
Gale (2000) contain excellent discussions of both their own and others’ contri-
butions to this literature. Papers that have been particularly influential include
Mortensen (1982), Rubinstein and Wolinsky (1985, 1990), Gale (1986, 1987)
and Mortensen and Wright (2002). Of these, our paper is most closely related
to Gale (1987) and Mortensen and Wright (2002). The two main differences be-
tween their work and our’s is that (i) when two traders meet they reciprocally
observe the other’s cost/value and (ii) each trader pays a small participation
fee.4 The first difference–full versus incomplete information–is fundamental,
for the purpose of our paper is to determine if a decentralized market can elicit
private valuation information at the same time it uses that information to as-
sign the available supply efficiently.5 The second difference prevents traders
who have low or zero probabilities of successfully trading from entering and
accumulating in the market. In our model the two assumptions that serve the
same purpose are (i) only traders with positive expected utility enter and (ii)
all active traders become discouraged with probability µ per unit time.
Butters (circa 1979), Wolinsky (1988), De Fraja and Sákovics (2001), and

Serrano(2002) are the most important dynamic bargaining and matching models
that incorporate incomplete information, albeit one-sided in the cases of Wolin-
sky and of De Fraja and Sákovics.6 Of these four papers, only Butters considers
the same problem as us. In an incomplete manuscript, he analyzes almost the
identical two-sided incomplete information model that we study and makes a

3There is a related literature that we do not discuss here concerning is the micro-structure
of intermediaries in markets, e.g., Spulber (1999) and Rust and Hall (2002). These models
allow entry of an intermediary who posts fixed ask and offer prices and is assumed to be
large enough to honor any size buy or sell order without exhausting its inventory or financial
resources.

4Mortenson and Wright assume a small per period participation fee.
5Gale (1987, p. 31) comments that within a limit theorem such as the one he proves

there and the one we prove here the complete information assumpiton is “restrictive.” This,
somewhat surprisingly is not true within “theorems in the limit.” Then, he observes, “there is
no scope for inferring an agent’s type from his willingness to delay. The only effect of assuming
incomplete information is to force an agent to treat all other agents symmetrically. For
example, in [Gale (1985)] it is strictly easier to show the bargaining equilibrium is Walrasian
under incomplete information than complete information.”

6The models of Peters and Severinov (2002, 2003) also have two-sided incomplete infor-
mation, are not one-shot games, and do robustly converge to perfect competition, but are
intermediate in structure between the full centralization of the static double auction and the
radical decentralization of our model. In particular, their model includes a centralized author-
ity that makes all bids and offers public to all traders and allows traders to scan the available
prices and seek actively the best available price.
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great deal of progress towards proving a variant of the theorem that we prove
here.7

Wolinsky (1988) considers the steady state of a market in which each seller
sets a reservation price on his single unit of an indivisible differentiated good and
the randomly matched buyers bid for his unit supply. The cost of each seller’s
good is zero. Each buyer each period independently draws his idiosyncratic
value of the good for which he is bidding from a distribution G. Traders time
discount their expected gains so they are impatient. Wolinsky shows that if the
discount rate approaches zero, which implies that buyers can almost costlessly
search a very large number of sellers, then the equilibrium price in the market
converges to zero even if the ratio of buyers to sellers in the market is much larger
than one. The reason for this non-Walrasian result is the differentiated product
assumption that is central to his model. For small discount rates each buyer
patiently waits until he is matched with a seller whose good is almost a perfect
match for him, i.e., he waits until he realizes a value from the extreme right
of G’s tail. When he does obtain such a draw he, somewhat paradoxically, can
bid close to zero even if he is bidding against several other buyers. The reason
is that the other buyers almost certainly are not well matched with the seller’s
good; consequently they bid essentially zero and wait for a better match.8

The major difference between the models of Wolinsky (1988) and De Fraja
and Sákovics (2001) is that in the latter model the good traded is homogeneous,
not differentiated. Therefore, as in our model, each buyer’s value remains con-
stant when he fails to trade and is rematched in the next period to a new seller.
They ensure a degree of competition in the local market by assuming that each
seller each period has positive probability that two buyers will be matched with
her and have to compete with each other. The entry/exit dynamics are that
if a buyer of value v succeeds in trading, then both the buyer and seller–who
always has cost zero–exit and are immediately replaced with a buyer of the
same cost v and a seller. This latter assumption is both technical and sub-
stantive. It is technical in that it guarantees a steady state in their market.
But it is also substantive in that it both exogenously fixes the distribution of
buyer types that are active in the market and allows the distribution of entering
traders to adjust endogenously in order to clear the market. As a consequence
a multiplicity of prices may be supported as the discount rate approaches zero.
Given the manner in which they define the Walrasian price, their conclusion is
that the price distribution only converges to the Walrasian price as discounting
vanishes if the parameters of the matching process are chosen fortuitously.9

7We thank Asher Wolinsky for bringing Butters’ manuscript to our attention in April 2003
after we had completed an earlier version of this paper.

8Coles and Muthoo (1998) have extended Wolinsky’s model and results to a market in which
buyers do not randomly search, but rather preferentially seek out newly entering traders.

9More specifically, because each pair of traders who consummates a trade is replaced by
an identical pair, if there is a single price in the limit, then this price, by construction, clears
the market of entering traders. Thus, if Gale’s (1987) concept of flow equilibrium is adopted
(and this is the concept we use), then by construction the market converges to the Walrasian
price. If, on the other hand, one follows De Fraja and Sákovics in defining the Walrasian price
in terms of the steady state “stock” of traders in the market rather than the “flow” of traders
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Serrano (2002) studies a one-time entry market with two-sided incomplete
information. He assumes discrete distributions of trader types. Each period
traders are randomly matched in pairs. Trade between each matched pair is
mediated by a discrete 0.5-double auction: traders may only announce prices
from a set of three pre-specified prices. Traders who do trade leave the market
and, because no new traders are entering, the market runs down over time until
trade ceases among the remaining buyers and sellers. Serrano finds that, as
discounting is removed, “equilibria with Walrasian and non-Walrasian features
persist.”
Stepping back from the details of Wolinsky (1988), De Fraja and Sákovics

(2001), and Serrano (2002), the simplest explanation why they fail to converge
robustly to the Walrasian price and allocation is that the information/allocation
problem each attempts to solve is different than the problem that large, static
double auctions solve robustly. Think of the baseline problem as being this.
Each unit of time measure 1 sellers and measure a buyers enter the market, each
of whom has a private cost/value for a single unit of the homogeneous good.
The sellers’ units of supply need to be reallocated to those traders who most
highly value them. Whatever mechanism that is employed must both induce
the traders to reveal their costs/valuations and carry out the reallocation. The
static double auction literature shows that an enormous, centralized, double
auction held once per unit time solves this problem essentially perfectly by
closely approximating the Walrasian price and then using that price to mediate
trade.
Our model considers the same problem, but within a maximally decentral-

ized market structure in which each period each buyer is randomly matched
with one seller. If the discouragement rate and period length are both set equal
to unity (µ = 1 and δ = 1), then every trader is certain to become discour-
aged prior to the next period. Our model is then just a sequence of small,
decentralized, one shot markets that solves the problem quite poorly. But, as
δ becomes small–the period length becomes short–our model becomes one of
small, decentralized markets that are tightly connected over time through the
rematching of traders who were initially unsuccessful. Our result is that, as
the period length approaches zero, these small, connected markets solve the in-
formation/allocation problem equally as well as static double auctions that are
held once per unit time.
Given this definition of the problem that both the static double auction and

our matching and bargaining market solve, the reason why Wolinsky (1988),
De Fraja and Sákovics (2001), and Serrano (2002) do not obtain competitive
outcomes as the frictions in their models vanish is clear: the problem their
models address are different and, as their results establish, not intrinsically per-
fectly competitive even when the market becomes almost frictionless. Wolinsky’s
model relaxes the homogeneous good assumption and does not fully analyze the
effects of entry/exit dynamics. De Fraja and Sákovics’ model’s entry/exit dy-
namics do not specify fixed measures of buyers and sellers entering the market

through it, then they show that the limiting price may or may not be Walrasian.
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each unit of time and therefore have no force moving the market towards a
supply-demand equilibrium. Serrano’s model is a market that may initially
be large but, as buyers and sellers successfully trade, becomes small and non-
competitive over time, an effect that the discreteness of its prices aggravates.
The next section formally states the model and our main result establishing

that the Walrasian price robustly emerges as the market becomes increasing
frictionless. Section 3 derives basic properties of equilibria and presents a com-
puted example illustrating our result. Section 4 proves our result and section 5
concludes with a discussion of possible extensions.

2 Model and theorem
We study the steady state of a market with two-sided incomplete information
and an infinite horizon. In it heterogeneous buyers and sellers meet once per
period (t = . . . ,−1, 0, 1, . . .) and trade an indivisible, homogeneous good. Every
seller is endowed with one unit of the traded good that she is willing to trade
if the price she can obtain is at least her cost c ∈ [0, 1]. This cost is private
information to her; to other traders it is an independent random variable with
distribution GS and density gS . Similarly, every buyer seeks to purchase one
unit of the good if the price he can obtain is at most his value v ∈ [0, 1]. This
value is private; to others it is an independent random variable with distribution
GB and density gB. Our model is therefore the standard independent private
values model. We assume that the two densities are bounded away from zero:
a g > 0 exists such that, for all c, v ∈ [0, 1], gS(c) > g and gB(v) > g.
The length of each period is δ. Each unit of time a large number of potential

sellers and a large number of potential buyers consider entering the market; for-
mally each unit of time measure 1 of potential sellers and measure a of potential
buyers consider entry where a > 0. This means that each period measure δ of
potential sellers and measure aδ of potential buyers consider entry. Only those
potential traders whose expected utility from entry is positive actually elect to
enter and become active traders.10 Active buyers and sellers who did not leave
the market the previous period carry over. Let ζ be the endogenous steady state
ratio of active buyers to active sellers in the market. A period consists of three
steps:

1. Every buyer is matched with one seller. His match is equally likely to
be with any seller and is independent of the matches other buyers re-
alize. Since there are a continuum of buyers and sellers the matching
probabilities are Poisson: the probability that a seller is matched with

10 In an earlier version of this paper we assumed that potential traders whose expected utility
is zero did enter the market and become active. These traders had zero probability of trading
and ultimately exited the market through discouragement. Our convergence result (theorem
2 below) still holds under this alternative assumption, though the proofs of claims 16 and 17.
are somewhat more complicated because of the presence among active traders of traders who
have zero probability of trading.
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k = 0, 1, 2, . . .buyers is11

ξk =
ζk

k! eζ
. (2)

Consequently a seller may end up being matched with zero buyers, one
buyer, two buyers, etc. Each seller, at the time she decides which if any
bids she accepts, knows how many buyers with whom she is matched.
Each buyer, at the time he submits his bid, only knows the endogenous
steady-state probability distribution of how many buyers with whom he
is competing.

2. The matched traders bargain in accordance with the rules of the buyers’
bid double auction: each buyer simultaneously announces a take-it-or-
leave-it offer B (v) to the seller with whom they are bargaining. The seller
accepts the highest offer she receives provided it is at least as large as her
reservation value S (c) .12 If two or more buyers tie with the highest bid,
then the seller uses a fair lottery to choose between them. If a type v
buyer trades in period t, then he leaves the market with utility v −B(v).
If a type c seller trades at price p, then she leaves the market with utility
p − c where p is the bid she accepts. Each seller, thus, runs an optimal
auction; moreover their commitment to this auction is credible since the
reservation value each sets stems from their dynamic optimization.13

3. Every active buyer and active seller who fails to trade decides for exoge-
nous reasons if he will remain in the market the next period. Let µ > 0 be
the discouragement parameter. Each period with probability δµ > 0 each
active trader’s situation may change sufficiently that he becomes discour-
aged and decides to exit the market to pursue other opportunities.

Traders discount their expected utility at the rate r ≥ 0 per unit time. Together
µ and r induce impatience in each trader. Let β = µ+ r denote traders overall
degree of impatience; δβ is therefore the rate per period at which each trader
discounts his utility.
Step 3’s assumption that a trader every period has probability δµ of be-

coming discouraged, turning to another sort of opportunity, and spontaneously
exiting is important because every trader who enters must have a probability of
either trading or exiting that, per unit of time, is bounded away from zero. Oth-
erwise traders whose probability of trading is infinitesimal but positive would
accumulate in the market and jeopardize the existence of a steady state. An
alternative assumption for accomplishing the same purpose is the assumption
that Gale (1987) and Mortensen (2002) employ in their full information models.

11 In a market with M sellers and ζM buyers, the probability that a seller is matched with
k buyers is ξMk =

¡ζM
k

¢ ¡
1
M

¢k ¡
1− 1

M

¢ζM−k
. Poisson’s theorem (see, for example, Shiryaev,

1995) shows that limM→∞ ξMk = ξk.
12 See Satterthwaite and Williams (1989) and Williams (1991) for a full analysis of the

properties of the buyers-bid double auction.
13We do not know if these auctions are the equilibrium mechanism that would result if we

tried to replicate McAfee’s analysis (1993) within our model.
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They assume that each trader both discounts utility and incurs a small partici-
pation cost for being active within the market. This causes any potential trader
who has a low or zero probability of trading to refuse entry while traders who
have non-negligible probabilities of trade only exit through trade, no matter
how many periods it takes.
We do not adopt this approach for two reasons. The first reason is sub-

stantive: casual empiricism suggests that discouragement–or distraction by
alternative opportunities–is a real phenomenon. In any case, discouragement
(i.e., spontaneous exit) is a venerable assumption to make within theories of bar-
gaining. See, for example, Binmore, Rubinstein, and Wolinsky’s (1986) careful
discussion of the distinction between impatience stemming from an exogenous
probability of bargaining breakdown and impatience stemming from time pref-
erence. Also see the model of McAfee (1993) that incorporates an exogenous
probability of exit into a similar model that has one-sided incomplete informa-
tion. The second reason is expedient: equilibria of double auctions with partici-
pation costs are not yet well understood, so tractability argues for incorporating
discouragement rather than participation costs into the model.14

As explained in the introduction, a seller who has low cost tends to trade
within a short number of periods of her entry because most buyers with whom
she might be matched have a value higher than her cost and therefore tend
to agree to trade. A high cost seller, on the other hand, tends not to trade
as quickly or not at all. As a consequence, in the steady state among the
population of sellers who are active, high cost sellers are relatively common and
low cost seller are relatively uncommon. Exactly parallel logic implies that, in
the steady state, low value buyers are relatively common and high value buyers
are relatively uncommon. Moreover, this tendency of traders to wait several
periods before trading or exiting implies that the total measure of traders active
within the market may be larger–perhaps much larger–than the total measure
(1 + a)δ of potential traders who consider entry each period.
To formalize the fact that the distribution of trader types within the market’s

steady state is endogenous, let TS be the measure of active sellers in the market
at the beginning of each period, TB be the measure of active buyers, FS be
the distribution of active seller types, and FB be the distribution of active
buyer types. The corresponding densities are fS and fB and, establishing useful
notation, the right-hand distributions are F̄S ≡ 1− FS and F̄B ≡ 1− FB. Let,
in the steady state, the probability that in a given period a type c seller trades
be ρS [S(c)] and the let the probability that a type v buyer trades be ρB [B(v)].
DefineWS (c) andWB (v) to be the beginning-of-period steady-state net payoffs

14 Jianjun Wu at Northwestern University is exploring the properties of static double auc-
tions as part of his dissertation.
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to a seller of type c and the buyer of type v, respectively. Let

c ≡ S (0) , (3)

c̄ ≡ sup
c
{c |WS (c) > 0},

v ≡ inf
v
{v |WB (v) > 0} , and

v̄ ≡ B (1) ,

Since a trader only becomes active in the market if his expected utility from
participating is positive, no seller enters whose cost exceeds c̄ and no buyer
enters whose value is less than v.We show in the next section that active sellers’
equilibrium bids all fall in the interval [c, c̄], active buyers’ equilibrium offers all
fall in [v, v̄] , and that these intervals are equal: [c, c̄] = [v, v̄] ≡ [p, p̄].
Our goal is to establish sufficient conditions for symmetric, steady state

equilibria to converge to the Walrasian price and competitive allocation as the
period length in the market goes to zero. By a symmetric, steady state equi-
librium we mean one in which every seller in every period plays an anonymous,
time invariant strategy S (·) , every buyer plays an anonymous, time invariant
strategy B (·) , and both these strategies are always optimal. Formally, given
the friction δ, a perfect Bayesian equilibria consists of strategies {B,S}, ratio
ζ, and distributions {FB , FS} such that (i) {B,S}, ζ, and {FB , FS} generate ζ
and {FB, FS} as their steady state and (ii) no type of trader can increase his or
her expected utility by a unilateral deviation from the strategies {B,S}.15 We
assume that:

A1. Sellers always bid their full dynamic opportunity cost.

A2. For each δ > 0 an equilibrium satisfying A1 exists in which each potential
trader’s ex ante probability of trade is positive.

Assumption A1 is natural given that in the buyer’s bid double auction the sellers
can never affect the price at which trade occurs. It also makes possible a simple
proof that the strategy S of sellers is increasing, a feature that is intuitive and
necessary in the proofs. Assumption A2 states that well behaved equilibria
exist in which trade occurs. This is necessary for two reasons. First, a no-trade
equilibrium always exists in which neither buyers nor sellers enter the market.
Second, it is an open question whether such non-trivial equilibria always exist,
though numerical experiments (see section 3.5) suggest that they do for well
behaved distribution GS and GB.
In order to state our theorem we must define admissible sequences of equi-

libria. An admissible equilibrium sequence rules out sequences in which the
buyer-seller ratio ζδ goes to either 0 or ∞ as δ goes to 0. Consider for exam-
ple a sequence of equilibria indexed by δ such that δ1, δ2, . . . , δn, . . . → 0 and
ζδ → ∞. Such a sequence is uninteresting because it violates the spirit of as-
sumption A2’s requirement that each trader’s ex ante probability of trading is
15Requirement (ii) that each period each active trader must solve his dynamic optimization

problem guarantees that all equilibriia are subgame perfect.
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positive. Specifically, the number of buyers with which each seller is matched
grows unboundedly. Therefore each seller is sure to sell to a buyer whose value
v is arbitrarily close to 1 and each buyer whose value is significantly less than
1 is certain not to trade. In fact, if PEABδ denotes the ex ante probability that a
potential buyer will trade, then in such sequences limδ→0 PEABδ = 0 because the
probability of a buyer drawing value v = 1 is zero.

Definition 1 A sequence of equilibria indexed by δ such that δ1, δ2, . . . , δn, . . .→
0 is admissible if a ζ̄ > 0 exists such that the equilibrium for each δn ex-
ists, satisfies A1, gives each trader an ex ante positive probability of trade, and
ζδ ∈ (1/ζ̄, ζ̄).

We are now ready to state our main result.

Theorem 2 Fix any admissible sequence of equilibria and let {Sδ, Bδ} be the
strategies associated with the equilibrium that δ indexes, let [cδ, c̄δ] = [vδ, v̄δ] be
the offer/bid ranges and buyer seller ratios respectively those strategies imply,
and let WSδ (c) and WBδ (v) be the resulting interim expected utilities of the sell-
ers and buyers respectively. Then both the bidding and offering ranges converge
to pW :

lim
δ→0

cδ = lim
δ→0

c̄δ = lim
δ→0

vδ = lim
δ→0

v̄δ = pW . (4)

In addition, each trader’s interim expected utility converges to the utility he
would realize if the market were perfectly competitive:

lim
δ→0

WSδ (c) = max [0, pW − c] (5)

and
lim
δ→0

WBδ (v) = max [0, v − pW ] . (6)

A word of explanation may be helpful here concerning the theorem’s second
half. If the market were completely centralized and cleared each period at the
Walrasian price–that is, if it were perfectly competitive–then each buyer of
type v who traded would realize utility v − pW and each seller who traded of
type c would realize utility pW − c. Participants who failed to trade would exit
with zero utility.
The proof of the theorem is contained in section 4.

3 Basic properties of equilibria
In this section we derive basic properties that equilibria of our model satisfy.
These properties–formulas for probabilities of trade, the strict monotonicity
of strategies, and necessary conditions for a strategy pair (S,B) to be an
equilibrium–enable us to compute the examples of equilibria and provide the
foundations for the proof of our main result. We assume throughout both this
section and section 4 that that δ and the equilibrium it indexes is an element of
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an admissible equilibrium sequence. We also assume that δ is sufficiently small
so that δµ < 1, i.e., active traders have a positive probability of continuing in
the market if they fail to trade.

3.1 Discounted ultimate probability of trade

An essential construct for the analysis of our model is the discounted ultimate
probability of trade. It allows a trader’s expected gains from participating in
the market to be written as simply as possible because it incorporates both
the possibility that a trader may become discouraged prior to consummating
a trade and the effect time discounting has on the value of a trade that may
occur several periods into the future. Define recursively PB (λ) to be a buyer’s
discounted ultimate probability of trade if he bids λ:

PB (λ) = ρB (λ) + ρ̄B (λ) (1− δµ)(1− δr)PB (λ)

≈ ρB (λ) + ρ̄B (λ) (1− δβ)PB (λ)

= ρB (λ) + ρ̄B (λ) (1− δβ) {ρB (λ) + ρ̄B (λ) (1− δβ) [ρB (λ) + · · · ]}

recalling that ρB (λ) is the probability that the trader will trade in a given
period if he bids λ, ρ̄B (λ) = 1 − ρB (λ), and β = µ + r. Observe that the
formula incorporates traders’ time discounting into the probability calculation.
Also observe that the approximation becomes increasingly good as δ → 0; we
use this approximation throughout the paper because our interest is the small
δ case.
This construct is useful within a steady state equilibrium because it converts

the buyer’s dynamic decision problem into a static decision problem. Specifi-
cally, if successfully trading gives the buyer a gain U, then for small δ his dis-
counted expected utility WB from following the stationary strategy of bidding
λ is

WB (λ,U) = ρB (λ)U + ρ̄B (λ) (1− δβ) {ρB (λ)U + ρ̄B (λ) (1− δβ) [ρB (λ)U + · · · ]}
= (ρB (λ) + ρ̄B (λ) (1− δβ) {ρB (λ) + ρ̄B (λ) (1− δβ) [ρB (λ) + · · · ]})U
= PB (λ)U.

Solving this recursion gives the explicit formula:

PB (λ) =
ρB (λ)

δβ + (1− δβ)ρB (λ)
. (7)

The parallel recursion for sellers implies that

PS (λ) =
ρS (λ)

δβ + (1− δβ)ρS (λ)
. (8)

In section 3.3 we derive explicit formulas for ρB (·) and ρS (·) .
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3.2 Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria sat-
isfy: equilibrium strategies are strictly increasing. As a preliminary, we first
characterize the set of traders that are active in the market. We then turn to
the monotonicity results.

Claim 3 In any equilibrium v < 1, c > 0, and

(v, 1] ⊆ {v|WB (v) > 0}, (9)

[0, c) ⊆ {c|WS (c) > 0}. (10)

Proof. If an equilibrium has positive ex ante probability of trade for each po-
tential trader, then TB

R 1
v
ρB [B (v)] fB(v)dv > 0 and TS

R c
0
ρS [S (c)] fS(c)dc >

0. This is true only if v < 1 and c > 0. By bidding B(v) in every period, a buyer
gets an equilibrium payoff WB(v) = vPB [B (v)] −DB (B (v)) where DB (v) is
his discounted expected equilibrium payment. By Milgrom and Segal’s (2002)
theorem 2,

WB(v) =WB (v) +

Z v

v

PB [B (x)] dx,

soWB(·) is non-decreasing on (v, 1]. Assume, contrary to (9), thatWB [B (v
0)] =

0 for some v0 ∈ (v, 1]. It then follows by the monotonicity of WB (·) that
WB(v) = 0 for all v ∈ (v, v0), contradicting the definition of v. Therefore
WB (v) > 0 for all v ∈ (v, 1], establishing (9). The proof of (10) is exactly
parallel and is omitted.¥

Claim 4 B is strictly increasing on (v, 1].

Proof. WB(v) = supλ≥0(v − λ)PB(λ) = (v − B (v))PB(B (v)) is the up-
per envelope of a set of affine functions . It follows that WB (·) is a continu-
ous, increasing, and convex function that is differentiable almost everywhere.16

Convexity implies that W 0
B (·) is non-decreasing on [v, 1]. By the envelope the-

orem W 0
B(·) = PB [B (·)] ; PB [B (·)] is therefore non-decreasing on [v, 1] at all

differentiable points. Milgrom and Segal’s (2002) theorem 1 implies that at
non-differentiable points v0 ∈ [v, 1]

lim
v→v0−

W 0
B (v) ≤ PB (B (v

0)) ≤ lim
v→v0+

W 0
B (v) .

Thus PB [B (·)] is everywhere non-decreasing on [v, 1].
Pick any v, v0 ∈ (v, 1] such that v < v0. Since PB [B (·)] is everywhere

non-decreasing, PB [B (v)] ≤ PB [B (v
0)] necessarily. We first show that B is

non-decreasing on (v, 1]. Suppose, to the contrary, that B(v) > B(v0). The
rules of the buyer’s bid double auction imply that PB (·) is non-decreasing;
therefore PB [B (v)] ≥ PB [B (v

0)]. Consequently PB [B (v)] = PB [B (v
0)] . But

this gives v0 incentive to lower his bid to B(v0), since by doing so he will buy with
16An increasing function is differentiable almost everywhere.
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the same positive probability but pay a lower price. This contradicts B being
an optimal strategy and establishes that B is non-decreasing. If B(v0) = B(v)
(= λ) because B is not strictly increasing, then any buyer with v00 ∈ (v, v0) will
raise his bid infinitesimally from λ to λ0 > λ to avoid the rationing that results
from a tie. This proves that B is strictly increasing.17¥

Claim 5 S is continuous and strictly increasing on [0, c).

Proof. Assumption A1 states that since sellers in the market do not affect
price, they bid their total opportunity cost:

S(c) = c+ (1− δβ)WS(c) (11)

for all c ∈ [0, c) where WS(c) is the equilibrium payoff to a seller with cost c. In
a stationary equilibrium WS(c) = D(S (c)) − cPS(S(c)) where PS [S (c)] is her
discounted ultimate probability of trading when her offer is S (c) and D(S (c)) is
the expected equilibrium payment to the seller with cost c. Milgrom and Segal’s
theorem 2 implies that WS (·) is continuous and can be written, for c ∈ [0, c̄], as

WS (c) = WS (c̄) +

Z c̄

c

PS(S(x))dx (12)

=

Z c̄

c

PS(S(x))dx (13)

where the second line follows from from the definition of c̄ and the continuity of
WS (·). This immediately implies that WS (·) is strictly decreasing (and there-
fore almost everywhere differentiable) because the definition of c̄ implies that
PS (S (c)) > 0 for all c ∈ [0, c̄). It, when combined with equation (11) , also
implies that S (·) is continuous. Therefore, for almost all c ∈ [0, c),

S0(c) = 1− (1− δβ)PS [S(c)] > 0

because W 0
S (c) = −PS [S(c)]. Since S (·) is continuous, this is sufficient to es-

tablish that S (·) is strictly increasing for all c ∈ [0, c).¥

Claim 6 [c, c̄] = [v, v̄] = [S(0), S (c̄)] = [B (v) , B(1)] = [p, p̄].

Proof. Given that S is strictly increasing, S (0) = c is the lowest offer any
seller ever makes. A buyer with valuation v < c does not enter the market
since he can only hope to trade by submitting a bid at or above c, i.e. above
her valuation. S is continuous by claim 5, so a buyer with valuation v > c will
enter the market with a bid B (v) ∈ (c, v) since he can make profit with positive
probability. Therefore limv→c+B (v) = v = c.
By definition c̄ ≡ supc{c |WS (c) > 0}. Equation (11) therefore implies that

S (c̄) = c̄. A seller with cost c > v = B(1) will not enter the market, so c̄ ≤ B(1).

17Alternatively, one can use Theorem 2.2 in Satterthwaite and Williams (1989) with only
trivial adaptations.
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If c̄ = S(c̄) < v̄ ≡ B(1), then a seller with cost c0 ∈ (c̄, B (1)) can enter and,
with positive probability, earn a profit with an offer S (c0) ∈ (c0, B (1)) . This,
however, is a contradiction:

sup
c
{c |WS (c) > 0} ≥ c0 > c̄ ≡ sup

c
{c |WS (c) > 0}.

Therefore S(c̄) = c̄ = v̄ = B(1).¥
These findings are summarized as follows.

Proposition 7 Suppose that {B,S} is a stationary equilibrium. Then B and
S are strictly increasing over their domains. They also satisfy the boundary
conditions p = v = c = S(0) = B (v) and p̄ = c = v̄ = B(1) = S (c̄)

Note that strict monotonicity of B and S allows us to define their inverses,
V and C: V (λ) = inf {v : B(v) > λ} and C(λ) = inf {c : S(c) > λ}. These
functions are used frequently below.

3.3 Explicit formulas for the probabilities of trading

Focus on a particular seller of type c who has in equilibrium has a positive
probability of trade. In a given period she is matched with zero buyers with
probability ξ0 and with one or more buyers with probability ξ̄0 = 1−ξ0. Suppose
she is matched and v∗ is the highest type buyer with whom she is matched. Since
each buyer’s bid function B (·) is increasing by proposition 7, she accepts his
bid if and only if B (v∗) ≥ λ where λ is her offer. The density from which v∗ is
drawn is f∗B (·); it is generated by the steady state density of buyer types fB (·)
and the distribution {ξ0, ξ1, ξ2, . . .} specifying the probabilities with which each
seller is matched with zero, one, two, or more buyers. Formally, the distribution
F ∗B is conditional on the seller being matched and is defined as, for v ∈ [v, 1],

F ∗B(v) =
1

ξ̄0

∞X
i=1

ξi [FB (v)]
i

=
e−ζF̄B(v) − e−ζ

1− e−ζ
.

The density f∗B is the derivative of F ∗B. Notice that F ∗B exhibits first order
stochastic dominance with respect to FB , i.e., for all v ∈ [v̄, 1], F ∗B(v) ≤ FB (v).
Finally, it follows that if a seller offers λ, her probability of trading conditional
on being matched with at least one buyer is

ρ̂S (λ) =
1− e−ζF̄B(V (λ))

1− e−ζ
.

The unconditional probability of trade ρS (λ) is related to the conditional prob-
ability by the formula ρS (λ) = ξ̄0ρ̂S (λ) .
A similar expression obtains for ρB (λ), the probability that a buyer sub-

mitting bid λ successfully trades in any given period. Focus on a particular
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buyer in the steady state and let ω1 be the probability that no other buyers be
matched with the same seller as he, ω2 be the probability that one other buyer is
matched with the same seller as he, ω3 is the probability that two other buyers
are matched with the same seller as he, etc. Recall that ξk is the probability
that a seller will be matched with k buyers in a given period. Then

ωj =
j ξjX∞
k=1

k ξk
=

j ξj
ζ
;

that this correct can be seen by considering a large number of sellers and, given
the probabilities {ξ0, ξ1, ξ2, . . .}, counting what proportion of buyers have no
competition, what proportion have one competitor, and so forth.
A buyer who bids λ and is the highest bidder has probability FS(C (λ)) of

having his bid accepted; this is just the probability that the seller with whom
the buyer is matched will have a low enough reservation value so as to accept his
offer. Similarly if j buyers are matched with the seller with whom he is matched,
then he has j − 1 competitors and the probability that all j − 1 will bid less
than λ is [FB (V (λ))]

j−1 . Therefore the probability the bid λ is successful in a
particular period is

ρB (λ) = FS (C (λ))
X∞

j=1
ωj [FB (V (λ))]

j−1

= FS (C (λ)) e
−ζFB(V (λ)),

where the second equality follows by direct calculation.

3.4 Necessary conditions for strategies and steady state
distributions

In this subsection the goal is to write down a set of necessary conditions that are
sufficiently complete so as to form a basis for calculating section 3.5’s example
and, also, to create a foundation for section 4’s proof of theorem 2. We first
derive fixed point conditions that traders’ strategies must satisfy. Consider
sellers first. Substituting (12),

WS (c) =

Z c̄

c

PS(S(x))dx (14)

into (11) gives a fixed point condition sellers’ strategies must satisfy:

S (c) = c+ (1− δβ)

Z c̄

c

PS(S(x))dx. (15)

The parallel expression for a buyer’s expected utility is18

WB(v) =

Z v

v

PB [B(x)] dx (16)

18Formally, theorem 2 of Milgrom and Segal (2002) justifies this standard expression.
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for v ∈ [v, 1]. Alternatively,
WB(v) = max

λ∈[0,1]
(v − λ)PB(λ) = (v −B(v))PB (B (v)) .

Substituting (16) into this and solving gives a fixed point condition buyers’
strategies must satisfy:

B(v) = v − 1

PB [B(v)]

Z v

v

PB [B(x)] dx for v > v. (17)

for v ∈ [v, 1] .
In our model, the distributions {FB , FS} are endogenously determined by

traders’ strategies. In any steady state, the numbers of entering and leaving
traders must be equal. This gives rise to three necessary conditions. First, in
the steady state, for each type v ∈ [v, 1], the density fB must be such that the
mass of buyers entering equals the mass of buyers leaving:

aδgB(v) = TBfB (v) {ρB [B (v)] + ρ̄B [B (v)] δµ} (18)

where the left-hand side is the measure of type v buyers of who enter each period
and the right-hand side, is the measure of type v buyers who exit each period.
Note that it takes into account that within each period successful traders exit
before discouraged traders. Second, the analogous steady state condition for
the density fS is, for c ∈ [0, c̄],

δgS (c) = TSfS (c) {ρS [S (c)] + ρ̄S [S (c)] δµ} . (19)

Third, trade always occurs between pairs consisting of one seller and one buyer.
Therefore, given a cohort of buyers and sellers who enter during a given unit of
time, the mass of those buyers who ultimately end up trading must equal the
mass of sellers who ultimately end up trading:

a

Z 1

v

PB (v) gB (v) dv =

Z c̄

0

PS (c) gS (c) dc. (20)

Together the fixed point conditions (15 and 17), the expected utility formulas
(14 and 16), the steady state conditions (18 and 19), and the overall mass
balance equation (20) form a useful set of necessary conditions for equilibria of
our model.

3.5 A computed example

These necessary conditions (14-20) supplemented with boundary conditions en-
able us to compute an illustrative example of an equilibrium for our model and
to show how, as δ is reduced, the equilibrium converges towards the perfectly
competitive limit. The boundary conditions are

S (0) = c, S (c̄) = c̄,WS (c̄) = 0

B (v) = v,B (1) = v̄,WB (v) = 0
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where c = v̄ = p̄ and v = c = p. Our computation specifies that traders’ private
values are drawn from the uniform distribution (gS (c) = gB (v) = 1) on the
unit interval, the mass of buyers entering each unit of time exceeds the mass
of sellers entering by 10% (a = 1.1), the discouragement rate is one per unit
time (µ = 1.0), and the discount rate is zero (r = 0.0). The Walrasian price for
these parameter values is pW = 0.524. We computed the equilibrium by fitting
sixth degree Chebyshev polynomials to the set of conditions using the method
of colocation.
Figure 1 graphs equilibrium strategies S,B and steady state densities fS , fB

for these parameter values.19 The left column of the figure graphs strategies and
densities for period length δ = 0.2; the right column does the same for period
length δ = 0.1. Visual inspection of these equilibria shows the flattening of
strategies that occurs as the period length shortens and each trader’s option to
wait another period for a better deal becomes more valuable. Thus, as δ is cut in
half, the trading range [p, p̄] narrows from [0.375, 0.574] down to [0.445, 0.550],
which is almost a halving of its width from 0.199 to 0.105. In both equilibria
the buyer-seller ratio is ζ = 1.570. Observe that for both period lengths the
trading range includes the Walrasian price. Inspection of the densities shows
that, as the period length shortens, sellers with costs just below c̄ and buyers
with values just above v tend to accumulate within the market.
Given that for the static double auction’s relative inefficiency converges to

zero at a quadratic rate, of particular interest from our computations is that cut-
ting δ in half only cuts the relative inefficiency I of the equilibrium by slightly
less than half: I = 0.106 for δ = 0.2 and I = 0.559 for δ = 0.1. Thus, even
though each trader’s market size is doubled in the sense that his expected num-
ber of matches before becoming discouraged doubles, there is only a linear de-
crease in the relative inefficiency. The reason for this slow rate appears to be
that the matching market’s structure each period forces δµ proportion of each
trader type to leave the market discouraged, irrespective of their potential gains
from trade. By contrast, the quadratic convergence of the k-double auction is
achieved because the “wedge” in that market excludes from trade only those
traders who have the smallest gains from trade to realize. This difference in
exclusion mechanics, evidently, accounts for the static double auction’s much
faster, quadratic rate.
This raises an important question that is well beyond the scope of this paper,

but that nevertheless requires brief comment. If this dynamic market’s rate is
so much slower, then why do we observe in the world dynamic markets with
continuous trading so much more often than we observe markets organized with
periodic, static double auctions? An answer to this question would appear
to require an accounting for both the benefits and costs of continuous trade.
First, on the benefit side, we are not aware of any good story explaining why
markets value continuous trading as much as appears to be the case. Second,
the costs may in fact be very small. If in our example δ were reduced to 0.01
or even 0.001–not unreasonable lengths if the unit of time is one year–then

19We do not know if this equilibrium is unique.
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the relative inefficiency would be very close to zero. In addition, our model may
be identifying the slowest possible rate of convergence for a dynamic market
because the matching technology it uses is as dumb as possible–buyers are
randomly matched with any active seller. Smarter, more efficient matching
technologies can easily be imagined that likely would speed up the convergence
rate.

4 Proof of the theorem

4.1 A restriction on the shape of B

Our purpose in this subsection is to show that buyers’ equilibrium strategies
B (·) must be within δ1/3 of either v or v̄ except within some interval contained
in [v, 1] that has length no greater than δ1/3. The first claim we establish is a
preliminary restriction on the shape of B (·) .
Claim 8 In equilibrium, for all c ∈ [0, c̄],Z 1

V (S(c))

[B (x)− S (c)] fB (x) dx ≤ 2ζ̄βδ. (21)

Proof. WS(c), a seller’s expected utility can be written recursively as the
sum of the seller’s expected gains from trade in the current period plus her
expected continuation value if she fails to trade in the current period:

WS (c) = ξ̄0

Z 1

V (S(c))

B (x) f∗B (x) dx− ξ̄0F̄
∗
B (V (S (c)))

+
©
ξ0 + ξ̄0F

∗
B (V (S (c)))

ª
(1− δβ)WS (c) .

where F ∗B (V (S (c))) is the probability that, conditional on at least one buyer
being matched with her, she fails to trade in the current period. Move all
terms involving WS (c) to the left-hand-side (LHS) and insert the expression
−S(c)+ c+(1− βδ)WS (c) = 0, which is equation (11) rewritten, into its RHS:

WS (c)
©
1− (1− δβ)ξ0 − (1− δβ)ξ̄0F

∗
B (V (S (c)))

ª
=

ξ̄0

Z 1

V (S(c))

B (x) f∗B (x) dx− ξ̄0cF̄
∗
B (V (S (c)))

+ ξ̄0F̄
∗
B (V (S (c))) {−S (c) + c+ (1− δβ)WS (c)} .

Cancel two terms on the RHS and move terms to the LHS to get

WS (c)

½
1− (1− βδ)ξ0
−(1− δβ)ξ̄0

£
F ∗B (V (S (c))) + F̄ ∗B (V (S (c)))

¤ ¾ =
ξ̄0

Z 1

V (S(c))

B (x) f∗B (x) dx− ξ̄0F̄
∗
B (V (S (c)))S (c) .
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Recall that F ∗B(v) + F̄ ∗B (v) = 1 and ξ0 + ξ̄0 = 1. Then

δβWS (c) = ξ̄0

Z 1

V (S(c))

[B (x)− S (c)] f∗B (x) dx, (22)

i.e., in equilibrium, for a type c seller, the expected marginal cost of waiting an
additional period to trade is equal to the expected marginal expected gain from
waiting.
Rearranging (22) givesZ 1

V (S(c))

[B (x)− S (c)] f∗B (x) dx =
βδ

ξ̄0
WS (c) ≤ βδ

ξ̄0

because WS(c) ≤ 1. First order stochastic dominance implies thatZ 1

V (S(c))

[B (x)− S (c)] fB (x) dx ≤
Z 1

V (S(c))

[B (x)− S (c)] f∗B (x) dx;

Therefore Z 1

V (S(c))

[B (x)− S (c)] fB (x) dx ≤ βδ

ξ̄0
(23)

for all c ∈ [0, c). The probability that a seller will not be matched with any
buyer is

ξ0 =
ζ0

0! eζ
=
1

eζ
< e−1/ζ̄ (24)

because the equilibrium is an element of an admissible sequence and therefore
ζ ∈ [1/ζ̄, ζ̄]. A bound on the the complementary probability is

ξ̄0 > 1− e−1/ζ̄ >
1

2ζ̄

because 1 − e−x = x − x2

2 + . . . and 1
2ζ̄
is both small and positive. Using this

observation, we conclude from (23):Z 1

V (S(c))

[B (x)− S (c)] fB (x) dx ≤ 2ζ̄βδ.¥ (25)

The bound (25) does not have any bite if fB (x) becomes small as δ becomes
small. Therefore in the next claim we establish a lower bound on fB (v) that is
independent of δ.

Claim 9 For all v ∈ [v, 1], fB (v) ≥ g (c̄−B (v)) .

Proof. Consider the highest type buyer, v = 1. In equilibrium he bids B (1)
instead of some λ < B (1) . His expected gain from following this strategy is
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PB (B(1)) (1−B (1)) . If he bids λ < B (1), then his expected gain is PB (λ) (1−
λ). Revealed preference implies PB (B(1)) (1−B (1)) ≥ PB (λ) (1−λ). Therefore

PB (λ) ≤ PB (B(1)) (1−B (1))

1− λ
=

PB (c̄) (1− c̄)

1− λ
. (26)

Note also that, for λ < B (1) , ρB [B (1)] ≥ ρB (λ) because ρB is a non-decreasing
function.
Inequality (26) permits us to bound ρB (λ) from above. It and formula (7)

imply the following sequence of inequalities

PB (λ) =
ρB (λ)

ρB (λ) + δβ [1− ρB (λ)]
≤ PB (c̄) (1− c̄)

1− λ
, (27)

ρB (λ)

ρB (λ) + βδ
≤ PB (c̄) (1− c̄)

1− λ
,

ρB (λ) ≤
βδ

1−λ
PB(c̄)(1−c̄) − 1

,

ρB (λ) ≤
βδ

1−λ
(1−c̄) − 1

, and

ρB (λ) ≤
βδ (1− c̄)

c̄− λ

where the second line follows from dropping the less than unity factor (1− ρB (λ)) ,
the third line from solving the inequality, the fourth line from PB (c̄) ≤ 1, and
the fifth line from simplifying the fourth line.
Inequality (27) allows us to establish the desired lower bound on fB (v)

provided we have an upper bound on TB, the mass of buyers active in the
market. Suppose all potential buyers (measure a each period) entered and
became active, none successfully traded, and all left the market only due to
discouragement. The total mass of active buyers in the market would then be
TB = a/β. Since many buyers leave as a result of successful trade an upper
bound on the mass of sellers in the market is TB ≤ a/β. Solve (18) for fB (v)
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and substitute in the bound on ρB (λ) to get

fB (v) =
1

TB

aδ gB (v)

ρB [B (v)] + ρ̄B [B (v)] δµ
(28)

≥ 1

TB

aδ gB (v)

ρB [B (v)] + ρ̄B [B (v)] δβ

≥ 1

TB

aδ gB (v)

(1− βδ) βδ(1−c̄)c̄−λ + βδ

≥ gB (v)

(1− βδ) 1−c̄c̄−λ + 1

≥ g

(1− βδ) 1−c̄c̄−λ + 1

≥ g
(1−c̄)
c̄−λ + 1

=
g

λ
(c̄− λ)

≥ g (c̄−B (v))

where β = r + µ ≥ µ implies the second line, (27) implies the third line,
TB < a/β implies the fourth line, g being the lower bound on the densities gB
and gS implies the fifth line, (1− βδ) ≤ 1 implies the sixth line, and λ ≤ 1
implies the seventh line.¥
We now use the bounds established in claims 8 and 9 to place a strong

restriction on the shape of B. Figure 1 shows the construction used in the next
claim and shows how the claim’s conclusion confines B (·) to a narrow band of
width proportional to δ1/3.

Claim 10 Suppose c̄− v ≥ 2δ1/3. For given δ > 0, let v∗ = V
³
v + δ1/3

´
and

v∗∗ = V
³
c̄− δ1/3

´
. Then

v∗∗ − v∗ ≤ 2ζ̄
g

βδ1/3 (29)

Proof. Substituting inequality (28) into (25) gives

g

Z 1

V (S(c))

(B (x)− S (c)) (c̄−B (x)) dx ≤ 2ζ̄βδ.

The special case of this inequality in which c = 0 gives the restriction on the
buyers’ strategy B (·):Z 1

v

(B (x)− v) (c̄−B (x)) dx ≤ 2ζ̄βδ
g

(30)

because S (0) = c = v and V (v) = v.
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Note that, for x ∈ [v∗, v∗∗], the following inequalities are true: B (x)− v ≥
δ1/3 and (c̄−B (x)) ≥ δ1/3. ThereforeZ v∗∗

v∗
(B (x)− v) (c̄−B (x)) dx ≥ δ2/3 (v∗∗ − v∗) .

This inequality together with the observation that the integrand of (30) is pos-
itive for the whole interval of integration [v, 1] implies

aβδ

g
≥

Z 1

v

(B (x)− v) (c̄−B (x)) dx

≥
Z v∗∗

v∗
(B (x)− v) (c̄−B (x)) dx

≥ δ2/3 (v∗∗ − v∗) .

The first and last terms of this sequence of inequalities imply (29).¥

4.2 The law of one price

In this subsection, we demonstrate that limδ→0(c̄δ − vδ) = 0. Since all trades
occur at prices within the interval [vδ, c̄δ] this means that as the period length
approaches zero all trades occur at essentially one price. Intuitively this is driven
by increasing local market size and the resulting option value: as δ becomes
small each trader can safely wait for a very favorable offer/bid.

Proposition 11 Consider any ζ-admissible sequence of equilibria δn → 0. Then

lim
δ→0

(c̄δ − vδ) = 0.

Proof. Suppose a sequence of equilibria indexed by δ exists such that
δ1, δ2, . . . , δn, . . . → 0 and limδ→0(c̄δ − vδ) = η > 0. We show that this is a
contradiction: therefore, necessarily, limδ→0(c̄δ − vδ) = 0. From now on, fix a
subsequence such that limn→∞(c̄δ − vδ) = η and c̄δ − vδ > η.
Pick a small δ from the subsequence and let the strategies {S,B}, proba-

bilities {ξ0, ξ1, ξ2, . . .}, and distributions [FS , FB ] characterize the equilibrium
associated with it. Recall that S (0) = c = v = B(v) and B (1) = v̄ = c̄ = S (c̄) .
Also recall above from above the definitions of v∗ and v∗∗. Define in addition

ṽ = v̄ − 1
4
(v̄ − v), b = B (ṽ) , b0 = b+ δ1/3, and ṽ0 = V (b0)

as shown in figure 2. We prove the proposition with a sequence of four claims,
the last of which has the proposition as a corollary. The first of these claims
derives three intermediate inequalities.
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Claim 12 Given the construction of ṽ, v∗, v∗∗, b, and b0 and given that, by
assumption, limδ→0(c̄δ − vδ) = η > 0, if δ is sufficiently small, then

ṽ ≤ v∗, (31)

inf
v∈[ṽ,ṽ0]

(v̄ −B (v)) ≥ 1
2
η, (32)

ṽ0 − ṽ ≥ 1
8
η. (33)

Proof. We begin with three observations:

O1 The assumption that v̄ − v ≥ η for all δ in the sequence and the definition
ṽ = v̄ − 1

4(v̄ − v) imply ṽ + 1
4η < v̄.

O2 The definition B (v∗∗) = v̄ − δ1/3 and the inequality B (v∗∗) ≤ v∗∗ imply
that v̄ − δ1/3 ≤ v∗∗. That B (v∗∗) ≤ v∗∗ follows from the fact that v∗∗ ∈
(v, c̄) and therefore ρB (v

∗∗) > 0; hence bidding λ ∈ (v, v∗∗) generates a
positive payoff and bidding λ ∈ (v∗∗, 1) generates a negative payoff.

O3 Recall from (29) that v∗∗ ≤ v∗ + 2ζ̄
g βδ1/3.

To derive (31), note that O2 and O3 imply

v̄ ≤ v∗ +
µ
1 +

2ζ̄β

g

¶
δ1/3

Combining this with O1 gives

ṽ ≤ v∗ − 1
4
η +

µ
1 +

2ζ̄β

g

¶
δ1/3.

Thus, for small enough δ,
ṽ ≤ v∗. (34)

Turning to (32), that B (·) is increasing, ṽ ≤ v∗, B (ṽ) = b, B (v∗) = v+δ1/3,

b0 = b + δ1/3, and B (v∗∗) = b0 together imply that b ∈ [v, v + δ1/3] and b0 ∈
[v + δ1/3, v + 2δ1/3]. Consequently, for sufficiently small δ,

inf
v∈[ṽ,ṽ0]

(v̄ −B (v)) ≥ v̄ − b0 (35)

≥ v̄ − v − 2δ1/3
≥ η − 2δ1/3

≥ 1

2
η.
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This proves (32). Finally, to establish (33), note that by construction v∗ < ṽ0.
Therefore

ṽ0 − ṽ > v∗ − ṽ (36)

≥ v∗∗ − ṽ − 2ζ̄
g

δ1/3

≥ v̄ − ṽ −
µ
1 +

2ζ̄

g

¶
δ1/3

≥ 1

4
η −

µ
1 +

2ζ̄

g

¶
δ1/3

≥ 1

8
η

where line two follows from v∗∗ ≤ v∗ + 2ζ̄
g δ1/3, line three follows from v∗∗ >

v̄−δ1/3, line four follows from v̄− ṽ ≥ 1
4η, and line five follows if δ is sufficiently

small.¥

Claim 13 Given limδ→0(c̄δ − vδ) = η > 0, if δ is sufficiently small, then a
γ > 0 exists such that

ρB (b
0)

ρB (b)
> 1 + γ.

Proof. Since V (b0) = ṽ0 and V (b) = ṽ, the ratio of ρB(b
0) and ρB(b) is

ρB(b
0)

ρB (b)
=

FS (C (b
0)) e−ζFB(ṽ

0)

FS (C (b)) e−ζFB(ṽ)

≥ eζ[FB(ṽ
0)−FB(ṽ)]

≥ 1 + ζ [FB(ṽ
0)− FB(ṽ)]

≥ 1 +
1

ζ

Z ṽ0

ṽ

fB (x) dx,

where the second line follows from b0 > b and both FS and C being increasing,
the third line follows by ex ≥ 1 + x (x ≥ 0), and the last line follows from
ζ ≥ 1/ζ. Recall from (28) that fB (v) ≥ g (v̄ −B (v)) . Therefore

ρB(b
0)

ρB (b)
≥ 1 +

g

ζ

Z ṽ0

ṽ

(v̄ −B (v)) dx

≥ 1 +
g

ζ
(ṽ0 − ṽ) inf

v∈[ṽ,ṽ0]
(v̄ −B (v))

≥ 1 +
g

ζ

µ
1

8
η

¶µ
1

2
η

¶
= 1 +

1

16

g

ζ
η2

= 1 + γ
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where line three follows from (32) and (33) and line five follow from γ =
1
16ζ

gη2.¥

Claim 14 Given limδ→0(c̄δ − vδ) = η > 0, if δ is sufficiently small, then

PB (b
0)

PB (b)
≥ 1 + γ∗

where γ∗ = 1
4γη > 0.

Proof. Direct calculation proves this. Recall from (7) the formula for
PB (b) . Therefore

PB (b
0)

PB (b)
=

ρB (b
0)

ρB (b)

βδ + ρB (b)− βδρB (b)

βδ + ρB (b
0)− βδρB (b

0)
.

Define x and y so that ρB (b
0) = βδx and ρB (b) = βδy. Then, after some

manipulation,

PB (b
0)

PB (b)
=

1 + 1
y − βδ

1 + 1
x − βδ

≥ 1 + 1+γ
x − βδ

1 + 1
x − βδ

= 1 +
γ
x

1 + 1
x − βδ

≥ 1 +
γ
x

1 + 1
x

= 1 +
γβδ

ρB (b
0) + βδ

≥ 1 +
1

2
γ (v̄ − b0)

where line two follows from claim 13’s implication that 1y ≥ 1+γ
x , line four follows

from βδ ∈ (0, 1) , line five follows from the definition of x, and line six follows
from inequality (27) and 1 − b0 < 1. By construction b0 ∈ (v + δ1/3, v + 2δ1/3).
Hence, for δ sufficiently small,

PB (b
0)

PB (b)
≥ 1 +

1

2
γ(v̄ − v − δ1/3)

≥ 1 +
1

4
γη

because v̄ − v ≥ η.¥

Claim 15 Given limδ→0(c̄δ− vδ) = η > 0, if δ is sufficiently small, then a type
ṽ buyer has an incentive to deviate from bidding B (ṽ) = b to bidding b0 > b.
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Proof. If we denote the expected utility of a type v buyer who bids λ as
πB (λ, v) , then to prove this we need to show that πB(b0, ṽ) − πB (b, ṽ) > 0
for δ sufficiently small. First note that by construction ṽ = v̄ − 1

4 (v̄ − v) and
b < v + δ1/3. Therefore

ṽ − b ≥ v̄ − 1
4
(v̄ − v)− v − δ1/3

=
3

4
(v̄ − v)− δ1/3

≥ 3

4
η − δ1/3

≥ 1

2
η

for sufficiently small δ because v̄ − v > η. Next observe that, for sufficiently
small δ,

πB(b
0, ṽ)− πB (b, ṽ) = (ṽ − b0)PB (b0)− (ṽ − b)PB (b)

≥ [(1 + γ∗) (ṽ − b0)− (ṽ − b)]PB (b)

=
h
(1 + γ∗)

³
ṽ − b− δ1/3

´
− (ṽ − b)

i
PB (b)

=
h
γ∗(ṽ − b)− (1 + γ∗) δ1/3

i
PB (b)

≥
·
1

2
η γ∗ − (1 + γ∗) δ1/3

¸
PB (b)

> 0

where line 2 follows from claim 14. ¥
Claim 15 directly implies proposition 11 because it contradicts the main-

tained hypothesis that an admissible subsequence of equilibria exists such that
limδ→0(c̄δ − vδ) = η > 0.

4.3 Convergence of the bidding and offering ranges to the
Walrasian price

Recall that the Walrasian price pW is the solution to the equation

GS (pW ) = a ḠB(pW ); (37)

it is just the price at which the measure of sellers entering the market with cost
c ≤ pW equals the measure of buyers entering the market with values v ≥ pW .
This price would clear the market each period if there were a centralized market.
In this subsection we prove our main result: as δ → 0 the bidding range [v, v̄]
collapses to the Walrasian price. More formally, for any sequence of equilibria
indexed by δ such that δ1, δ2, . . . , δn, . . .→ 0, both

lim
δ→0

vδ = pW and lim
δ→0

v̄δ = pW . (38)
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We show this through the proof of two claims. Each of these claims uses the
idea that if the price is not converging to the Walrasian price, then the market
does not clear globally and an excess of traders builds up on one side or the
other of the market. Traders on the long side then have an incentive to deviate
from their prescribed bid/offer in order to trade before becoming discouraged.

Claim 16 limδ→0v̄δ ≥ pW .

Proof. Let v∗ = limδ→0v̄δ and assume, contrary to the statement in the
claim, that v∗ < pW . For the remainder of this proof, fix a subsequence v̄δ →
v∗. Let ṽδ = v̄δ +

√
v̄δ − vδ (note that ṽδ ∈ (v̄δ, 1] for all small enough δ, by

proposition 11). Revealed preference implies that

πB (Bδ (ṽδ) , ṽδ) ≥ πB (Bδ (1) , ṽδ)

[ṽδ −Bδ (ṽδ)] PBδ [Bδ (ṽδ)] ≥ [ṽδ −Bδ (1)] PBδ [Bδ (1)] .

Therefore

PBδ [Bδ (ṽδ)] ≥ ṽδ −Bδ (1)

ṽδ −Bδ (ṽδ)
PBδ [Bδ (1)] (39)

≥ ṽδ −Bδ (1)

ṽδ − vδ
PBδ [Bδ (1)] ,

where the second inequality follows from the fact that Bδ (·) is strictly increasing
and therefore Bδ (ṽδ) ≥ Bδ (vδ) = vδ. Note that

ṽδ −Bδ (1)

ṽδ − vδ
=

ṽδ − v̄δ
ṽδ − vδ

(40)

=

√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
,

where the equality in the first line follows from Bδ (1) = v̄δ, and the equality
in the second line is the substitution of the definition ṽδ = v̄δ +

√
v̄δ − vδ.

Combining (39) and (40) we get

PBδ [Bδ (ṽδ)] ≥
√
v̄δ − vδ√

v̄δ − vδ + v̄δ − vδ
PBδ [Bδ (1)] ,

So in particular, PBδ [Bδ (1)] = 1 and, by proposition 11, limδ→0(v̄δ − vδ) = 0
imply20

lim
δ→0

PBδ [Bδ (ṽδ)] = 1.

Mass balance, equation (20) above, states thatZ 1

vδ

agB(x)PBδ [Bδ (x)] dx =

Z v̄δ

0

gS(x)PSδ [Sδ (x)] dx. (41)

20A type 1 buyer always trades immediately because B (1) = v̄ = c̄ = S (c̄) .
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Given that PBδ [Bδ (·)] is increasing and ṽδ > v,Z 1

vδ

agB(x)PBδ [Bδ (x)] ≥ PBδ [Bδ (ṽδ)]

Z 1

ṽδ

agB(x)dx ≥ PBδ [Bδ (ṽδ)] aGB(ṽδ)

and Z v̄δ

0

gS(x)PSδ [Sδ (x)] dx ≤ GS [v̄δ] .

Therefore it follows from (41) that

PBδ [Bδ (ṽδ)] aGB(ṽδ) ≤ GS [v̄δ]

or, since PBδ [Bδ (ṽδ)] ≤ 1,

aGB(ṽδ) ≤ GS [v̄δ] . (42)

By taking limits in (42) as δ → 0 and invoking continuity of GS and GB, we
obtain

aGB

µ
lim
δ→0

ṽδ

¶
≤ GS

µ
lim
δ→0

v̄δ

¶
. (43)

The definition of v∗ and proposition 11 imply limδ→0 ṽδ = limδ→0 [v̄δ +
√
v̄δ − vδ] =

v̄δ and, by hypothesis, limδ→0 v̄δ = v∗. Therefore we obtain from (43):

aGB(v∗) ≤ GS (v∗) .

This, however, is a contradiction because the the maintained assumption that
v∗ < pW implies that aGB(v∗) > aGB(pW ) = GS (pW ) > GS (v∗).¥

Claim 17 limδ→0cδ ≤ pW .

Proof. Verification of this claim follows the same logic as that of claim
16. Define c∗ = limδ→0cδ and suppose, contrary to the statement in the claim,
that c∗ > pW . For the remainder of this proof, fix a subsequence cδ → c∗.
Let ecδ = cδ +

√
cδ − cδ noting that proposition 11 implies ecδ ∈ [0, cδ) for all

small enough δ. A seller who offers and succeeds in trading does not realize
Sδ (v) as her revenue. She realizes something more because the bid she accepts
is at least as great as Sδ (v) . Therefore, for each δ sufficiently small, a function
φδ (·) : [0, c̄δ]→ [cδ, c̄δ] exists that maps, conditional on consummating a trade,
the seller’s offer into her expected revenue from the sale. Thus φδ [Sδ (c)] is
a type c seller’s expected revenue given that she offers Sδ (c) . Take note that
φδ [Sδ (c)] ∈ [Sδ (c) , c̄δ] because the expected revenue can not be less than the
seller’s offer Sδ (c) . Revealed preference implies that

πS (Sδ (c̃δ) , c̃δ) ≥ πS (Sδ (0) , c̃δ)

[φδ [Sδ (c̃δ)]− c̃δ] PSδ [Sδ (c̃δ)] ≥ [φδ [Sδ(0)]− c̃δ] PSδ [Sδ(0)] . (44)
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Solving,

PSδ [Sδ (c̃δ)] ≥ φδ [Sδ(0)]− c̃δ
φδ [Sδ (c̃δ)]− c̃δ

PSδ [Sδ(0)] (45)

≥ cδ − c̃δ
cδ − c̃δ

PSδ [Sδ(0)]

=

√
cδ − cδ

cδ − cδ +
√
cδ − cδ

PSδ [Sδ(0)]

where the second line follows from the fact that φδ [Sδ(0)] ≥ Sδ (0) = cδ and
the third line follows by substitution of the definition for ecδ. So in particular,
PSδ [Sδ(0)] = 1 and, by proposition 11, limδ→0(cδ − cδ) = 0 together imply

lim
δ→0

PSδ [Sδ (c̃δ)] = 1. (46)

As in the proof of claim 16, the mass balance equation (41) must hold:Z 1

cδ

agB(x)PBδ [Bδ (x)] dx =

Z cδ

0

gS(x)PSδ [Sδ (x)] dx. (47)

Since Z cδ

0

gS(x)PSδ [Sδ (x)] dx ≥ PSδ [Sδ (c̃δ)]GS(c̃δ)

and Z 1

cδ

agB(x)PBδ [Bδ (x)] dx ≤ aGB(cδ),

it follows from (47) that

aGB(cδ) ≥ PSδ [Sδ (c̃δ)]GS(c̃δ)

or, since PSδ [Sδ (c̃δ)] ≤ 1,
aGB(cδ) ≥ GS(c̃δ). (48)

By taking limits in (48) as δ → 0 and invoking continuity of GS and GB, we
obtain

aGB

µ
lim
δ→0

cδ

¶
≥ GS

µ
lim
δ→0

c̃δ

¶
. (49)

Since limδ→0 c̃δ = c∗ and limδ→0 cδ = c∗ by proposition 11, (49) implies

aGB(c∗) ≥ GS (c∗) .

This, however, is a contradiction because the maintained assumption c∗ > pW
implies aGB(c∗) < aGB(pW ) = GS (pW ) < GS (c∗).¥
Proof of the main theorem. Claims 16 and 17 together with infδ→0(c̄δ−

vδ) = 0 establishes (38): prices realized in the market converge to the Walrasian
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price. The proofs of those two claims together show that an arbitrarily small
deviation upward in a buyer’s equilibrium bid or an arbitrarily small deviation
downward in a seller’s equilibrium offer can guarantee trade, provided δ is suf-
ficiently small. This, together with the result that realized prices converge to
the Walrasian price, establishes (5) and (6): equilibrium expected utility for
both buyers and sellers approaches what they would expect if the market were
competitive.¥

5 Conclusions
In this paper we have proven that essentially all equilibria of a simple, dynamic
matching and bargaining market in which both sellers and buyers have incom-
plete information converge to the Walrasian price and competitive allocation
as the model’s friction–the length of the matching period–goes to zero. This
convergence is driven by the interaction of two forces within the model: local
market size and global market clearing. The significance of our result is to show
that in the presence of private information a fully decentralized market such
as the one we model can deliver the same economic performance as a central-
ized market such as the k-double auction that Rustichini, Satterthwaite, and
Williams (1994) studied. This is an important extension of the full informa-
tion dynamic matching and bargaining models, for it shows that a decentralized
market can handle the elicitation of private values and costs even as it allocates
the market supply to the traders who most highly value that supply.
The limitations of our model and results immediately raise further questions.

Six particularly stand out for future investigation:

• The numerical experiments reported in section 3.5 suggest that the k-
double auction’s quadratic rate of convergence towards efficiency does not
carry over to this dynamic model and is in fact linear. How fast, in fact,
does the market converge to the competitive allocation as δ decreases? Do
other matching technologies achieve a faster rate of convergence?

• We only considered the buyer’s bid double auction mechanism. Does con-
vergence robustly hold for a broader class of trading mechanisms, e.g., the
0.5-double auction?

• Our model assumes independent private values and costs. We would like
to know if our results generalize to both correlated costs/values and to
interdependent values with a common component and affiliated private
signals.

• It would be attractive to incorporate into our model the alternative as-
sumption that every active trader pays a small participation cost as in
the full information bargaining and matching models of Gale (1987) and
Mortensen and Wright (2002).
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• An important feature of the centralized k-double auction as studied by
Rustichini, Satterthwaite, and Williams (1994) is that if the number of
traders on both sides is large, then a trader who reports his cost or value
truthfully as opposed to following his equilibrium strategy realizes almost
no reduction in expected utility. In other words, for large markets the
k-double auction is almost a strategy-proof mechanism.21 Traders are not
so fortunate in our bargaining and matching market even if the period
length is very short. To play optimally–or even acceptably–they must
have good knowledge of the distribution of prices at which trades are oc-
curring. Nevertheless the following conjecture appears worth exploring: if
our matching and bargaining market were populated with non-optimizing
buyers and sellers, then a class of simple learning rules exists such that
the market converges to the Walrasian price and competitive allocation.
If this is true, then those rules would be almost-dominant strategies and
the market as a whole would be almost strategy-proof.

• Kultti (2000) studies a complete information model in which each buyer,
as part of his optimization, decides whether to be a searcher or waiter.
Sellers do the same. Searching buyers are then randomly matched with
waiting sellers and searching sellers are randomly matched with waiting
buyers. Giving every trader the choice to be a searcher or waiter would be
an elegant way of endogenizing the model’s market structure rather than
mandating that all buyers are searchers and all sellers are waiters.

If these and other questions can be answered adequately in future work, then
this theory may become useful in designing and regulating decentralized markets
with incomplete information in much the same way auction theory has become
useful in designing auctions. The ubiquity of the Internet with its capability for
increasing local market size and reducing period length makes pursuit of this
goal attractive.
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Figure 1: This figure graphs two equilibria for the case in which gS and gB
are uniform, a = 1.1, µ = 1.0, and r = 0.0. On the left side period length
is δ = 0.20.It has relative inefficiency I = 0.106 and masses of active traders
TS = 0.199 and TB = 0.313. On the right side period length is δ = 0.10. It
has relative inefficiency I = 0.0559 and masses of active traders TS = 0.105 and
TB = 0.165.
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