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Abstract

We formulate a continuous time stochastic control problem and establish
the existence of the shadow price of information. This shadow price is the
Lagrange multiplier for the constraint that the control be adapted or
predictable; it is a stochastic process of integrable variation; and, in one
formulation, it is a martingale. The results are applied to problems of
security investment, selling an asset, and economic growth. In the last
application, it is shown that the existence of the shadow price of information

implies the wvalidity of the stochastic maximum principle.

Keywords: stochastic control, duality, martingales, stochastic maximum

principle, economic growth, optimal portfolios.



1. INTRODUCTION

In contrast with deterministic problems, a characteristic feature of
stochastic decision problems is that relevant information is acquired with the
passage of time. 1In this paper we ask: what prices would one pay for
acquiring information in advance? There are no natural units in which to
measure information, so we assess the prices in an indirect fashion. We seek
(state and time contingent) prices to be imposed on actions, which will be
such that the expected cost (measured in the units of the utility function) is
zero 1f the actions do not utilize advance information and such that the
decision-maker will be indifferent at the margin between using advance
information at the given expected cost and using only the information which is
naturally available. We call this system of prices the shadow price of
information.

The distinction between stochastic and deterministic problems is
eradicated if one introduces this shadow price into the former. Specifically,
the stochastic problem is reduced to a family of deterministic problems,
problems indexed by the various "states of nature.” 1In each of the
deterministic problems there is complete knowledge of the future but also an
additional linear term in the utility function. The coefficient of this term
specifies the price to be paid at each date for using advance knowledge of the
particular state of nature.

Rockafellar and Wets [21] first considered this issue and established the
existence of the shadow price of information for discrete-time finite-horizon
stochastic optimization problems. Dempster [10] and Flam [12] extended the
result to discrete-time infinite-horizon problems. The purpose of this paper
is to extend the result to the setting of continuous time. We also give

several applications.



The heart of the paper is Section 3 (Section 2 is devoted to
preliminaries). In that section we pose the general optimization problem and
establish the existence of the shadow price of information (Theorem 3.4). The
objective function of the problem is an extended-real—-valued concave function,
the domain of which is a space of bounded m-dimensional stochastic (control)
processes. The incompleteness of information at the various dates is modeled
by requiring the control process to be adapted to an exogenously given
filtration (it is important to note that even in formulating the price to be
paid for advance information, we are assuming that the information which would
arrive in the future is exogenously given, i.e., independent of the choice of
the control vector). More precisely, the adaptedness requirement is allowed
to take one of two forms: the control process is constrained either to be
predictable or to be optional. The Lagrange multiplier for this constraint is
the shadow price of information. It is a stochastic process of integrable
variation. The adding-up of the costs of using advance information at the
various dates is done in the form of a Lebesgue-Stieltjes integral, the
integrator being the shadow price.

Our proof is based on an adaptation to continuous time of the idea of
Rockafellar-Wets [21], an idea more fully elaborated in Rockafellar-Wets
[23]. Rockafellar and Wets [21] apply this idea by induction on the time set
(which is made possible by dynamic programming). We, instead, apply the idea
in a single step to the complete control problem, as Flam [12] has done for an
infinite—~horizon discrete-time problem. This forces us to assume that there
is a solution of the problem at which the state constraints, if any, are
"slack.” We should also note here that Topcuoglu [25] has proven the
existence of the shadow price of information in the discrete-time model by
assuming the existence of an interior solution. This result is weaker than

ours, since we allow for a (binding) constraint that the control process be a



selection of a given adapted multifunction (specifying the control set at each
date and state).

The applications are in Sections 4, 5 and 6. 1In Section 4 we consider
the problem of choosing a portfolio of securities at each date of a continuous
trading model. Harrison and Kreps [14] have shown that if markets are
"frictionless™ and this problem has a solution, then the security price
process must be a martingale under a probability measure mutually absolutely
continuous with the trader's subjective probability measure. It is easy to
see that in this case the security price process scaled by the Radon-Nikodym
derivative of the new measure is the shadow price of information. Thus the
Harrison—Kreps result implies the existence of the shadow price of information
(which can be interpreted as a first-order condition for optimal trading
strategies). We extend this implication of the Harrison-Kreps result to cases
in which there exist market frictions in the form of short-sales
constraints. We remark parenthetically that the martingale property of the
shadow price of information was emphasized by Pliska [16]. We should also
note that, unlike Harrison—Kreps [l14], we allow for trading strategies which
are not "simple.” 1In this we follow Harrison~Pliska [15]. However we also
impose an important restriction on the Harrison-Kreps [14] model: we require
the security prices to be of integrable variation.

In Section 5 we illustrate how the reduction to a family of deterministic
problems may be used to establish other properties of a stochastic
optimization problem (in this we also follow Rockafellar-Wets [22], [24]). We
consider the one-sector economic growth model formulated by Foldes [13] (and
also studied by Cox—Ingersoll-Ross [17] and Duffie-Huang [11]). Foldes
establishes for this problem a martingale property of the marginal utility

evaluated at the optimal consumption plan (Foldes [13], Theorem 6). This



result is a particular instance of the stochastic maximum principle studied by
Bismut in a series of papers, including (3], (4], and [5]. The martingale
property or maximum principle is known to be valid for this problem only when
the state constraint (nonnegativity of the capital stock) is not binding at
the optimum. We show that, regardless of whether the state constraint is
binding, if the shadow price of information exists then the stochastic maximum
principle is valid. Essentially one can construct a coextremal for the
stochastic problem by piecing together the coextremals for the various
deterministic problems to which the stochastic problem is reduced. This
provides what is hopefully a useful new perspective on the problem of
verifying the stochastic maximum principle. However we do not obtain a
stronger result on the validity of the maximum principle, because we assume
that the state constraint is not binding in order to establish the existence
of the shadow price of information.

Section 6 deals with a problem of optimally timing the sale of an asset
when confronted with an exogenous price process. One reason for considering
this problem is to demonstrate that the shadow price of information may exist
in circumstances other than those covered by our main result. Section 7

contains a few concluding remarks on possible generalizations.

2. NOTATION

As well as establishing the notation to be used, we collect here some
facts regarding the space of controls to be studied and the linear functionals
on that space. These are obtained from Yosida-Hewitt [26) (hereinafter cited
as YH). We will follow Dellacherie-Meyer [8, 9] (cited as DM) for stochastic

process theory.



Denote by (R,F,B) a complete probability space, and let (Ft)0<t<T be a
filtration satisfying the "usual conditions™ (DM, IV.48). Denote by N the
class of evanescent sets in [0,T] x Q. Let M= (B® F) v N, where B is the
Borel field of [0,T]. Take 0 (resp. P) to be the optional (resp. predictable)
o-field, also augmented by N. When we refer in the sequel to the measurable,
optional or predictable o-field, we always mean the respective augmented o-
field.

To avoid repetition of results valid for each of 0 and P, we allow S to
represent a o—-field which can be taken to be either  or P. We also use the

o _n

symbol "s" to identify the projection or dual projection of a process. These

are the projections identified by the superscript "p” in the predictable case
and "o" in the optional case by Dellacherie-Meyer. It is to be understood
that if S = P then s = p and if § = Q then s = o.

The controls and shadow prices will be mdimensional processes
X = (xl,...,xm) and A = (Al,...,Am). In Sections 5 and 6 we assume m = 1;
otherwise m < » ig arbitrary. As usual we identify indistinguishable
processes, i.e., processes Y = (Yl,...,Ym) and Z = (Z ,...,Zm) such that the
set {(t,w)lYt(w) # Zt(w)} is evanescent.

A process X will be said to be bounded if there is some a < » such that

i . . .
the set {(t,w)]maxi ]Xt(w)l > o} is evanescent. In this case, write
= '.,m

1,
IX¥  for the infimum of such a.

Denote by Lm(M) [resp. Lw(S)] the class of bouﬁded, M-measurable (resp.
S-measurable), m—dimensional processes. These are Banach spaces under the
norm H-Hw; see, e.g., YH, Theorem 2.2. We view LQ(S) as a subspace of Lw(M).

If T' is a multifunction from [0,T] X Q to Rm (i.e. a function on

[0,T] x Q whose values are subsets of Rm) we write Lm(M;T) [resp. Qw(S;P)]

for the family of X € Lw(M) [resp. X € Lm(s)] such that the set



{(t,w)lXt(w) ¢ Ft(w)} is evanescent.

Given X = (Xl,...,Xm) € Lm(M), denote by SX the vector (SXI,...,SXm)
where Sxi is the predictable (if s = p) or optional (if s = o) projection of
x1 (DM, VI.43). We have °x € L_(S).

The class of norm-continuous linear functionals on Lm(M) will be denoted
by L:(M). According to YH, Theorem 2.3, these functionals can be identified
with vectors m = (nl,...,nm) where each ni is a finitely additive set function
with domain M satisfying sup{ni(E)]E € M} < = and ni(E) =0, ¥ EE€N. The

value of ® at X is given by

m
XK,m> = ) [

Xl(w)dnl.
. t
i=]1

[0,T]xQ

*
Given 11 = (nl,...,nm) € Lm(M), denote by [n| the set function with values
i i ; ;
InI(E) = Z?zl[n+(E) + n_(E)], where ni and ni are the nonnegative set

. N .
functions such that nl =7, - ni (YH, 1.12).

*
Each m € L_(M) can be written uniquely as ﬂc + ﬂp where

1 m *
(nc,...,nc) € L (M) is a vector of countably additive measures and

]

T
[od

*

np (n;,...,nz) € L_(M) is a vector of "purely finitely additive" set
functions, (YH, Theorem 1.24).

if np € L:(M) is purely finitely additive and u is a finite, countably
additive measure on ([O,T] X Q M), then there exists a decreasing sequence of
sets En € M such that limn*wlu(En)l = 0 but Iﬂpl([O,T] x Q\En) = 0 for each n
(YH, Theorem 1.22). Here the symbol “"\" denotes, as usual, set-theoretic
subtraction.

Each c0untably additive measure ni is called a P-measure (DM, VI.64)

since it vanishes on evanescent sets. As a functional on L_(M), each

*
countably additive T, € L_(M) can be identified with a vector A = (Al,...,Am)



of M-measurable integrable variation processes under the representation

m . , m . .
izlf[o’T]xQXt(w)dﬂi = iZIE[I[O,T]Xt(w)dAt(w)]. (2.1)
See DM, VI.65 (use Remark VI.72(b) of DM to interpret condition VI.65.2).
Here, and throughout the paper, the symbol "E" denotes expectation under the
probability measure P.

Let IV(M) [resp. IV(S)] denote the family of vectors A = (Al,...,AM)
where each A:.L is an M-measurable [resp. S-measurable] integrable variation
process. For X € Lm(M) and A € TV(M), write E[jgxtdAt] for the right-hand
side of (2.1).

Given A = (Al,,,,,Am) € IV(M), denote by AS the vector (Als,...,Ams)
where ALS is the predictable (if s = p) or optional (if s = o) dual projection
of Al (see DM, VI.73). The defining characteristic of A® is that for each
X € L_(M), E[f'gxtdAi] = E[fgsxtdAt].

We will write as usual L_(Q,F,P) for the Banach space of (equivalence
classes of) essentially bounded real-valued functions with the ess—sup norm.

The dual space of Lm(Q,F,R) is characterized in a way similar to that of

L (M).
3. THE SHADOW PRICE OF INFORMATION

3.1. Introduction

We consider an optimization problem of the form

(*) maximize ®(X) subject to X € Lm(S)



where the objective function ® is a concave function from Lm(M) to
BU {—=,+2}., We assume —= < sup{@(X)IX € Lm(S)} { ®, We do not discuss in
this paper how the objective function is defined on the space of nonadapted
processes. Instead we simply take the function to be given. 1In applications
this definition of the function will be a delicate issue when the problem
involves stochastic integrals.

For any X € Lm(M) the condition "®(X) = —" is interpreted to mean that X
is an infeasible policy. Denote {X € Lw(M)lé(X) > ~r} by dom ®. Let T be a
multifunction from [0,T] X Q to E™ such that each set Pt(w) is closed and
convex. We assume dom & = Lw(M;F) N D for some set D yn(M)- As vet this is
unrestrictive, since we could have Pt(w) = Rw and D = dom ®.

We seek a shadow price for the nonanticipativity constraint that
X € Lw(S). Specifically we seek a process A € IV(M) such that (i) if

X € L_(S) then X solves (*) iff X solves
. T
maximize (X)) - E[foxtdAt] subject to X € L_(M) (3.1)

.. T
and (ii) E[joxtdAt] =0, ¥ X €L_(S).

We remark that in the case § = P the conditions (i) and (ii) imply the
existence of a martingale M such that (i') if i € L, (P) then X solves (*) iff

X solves
aximize ®(X) - E TX dM subject to X € L_(0).
m 0%t Mt
This will give us a martingale characterization of optimal security trading

strategies in Section 4. To see that it is true, take M = AO, the vector of

optional dual projections of the components Al,...,Am of the shadow price A.



We have E[ngtht] = E[ngtdAt] for each X € Lw(O), so (i) implies (i').
Since Lm(P) c Lm(o), the condition (ii) implies that E[ngtht] = 0 for each
X € L_(P), so the predictable dual projection (= predictable compensator) of M
is the null process. Hence M is a martingale (DM, VI.73).

Conditions (i) and (ii) hold if the process A solves a certain problem
dual to (*) and if the dual problem has the same value as the problem (*).
The exact nature of the dual problem will be evident, to those familiar with
Rockafellar [19], from the proof of Lemma 3.2. For the fact that, given the
equality of the values of the problems, solutions of the dual have properties
(i) and (ii), see Rockafellar [19, Corollary 15A]. Without relying explicitly
on the machinery of Rockafellar, here we can express this relationship in the

following convenient form.
LEMMA 3.1. Let A € IV(M). Then (i) and (ii) above hold if

sup (X)) = sup {@(X+Y) - E[ngtdAt]}. (3.2)
XeL_(S) XeL_(S),YEL_(M)

Proof. Assume (3.2) holds. By assumption ®(Z) > — for some Z € Lw(S).
If (ii) fails there is some Y € L_(S) such that -E [ngtdAt] > 1. Setting
Y, = nY and X, = YA Yn with n ¢+ » we see that the right—hand side of (3.2) is
+o, contrary to the maintained assumption that the left-hand side is finite.
Hence (ii) must be true.

It follows from (ii) that the value in braces in (3.2) is unchanged if
one replaces X by X' = 0 and Y by Y' = X + Y. Therefore the equality in (3.2)
means that the value of the problem (3.1) is the same as that of the problem

(*). Using (ii) again it is evident from this that the solutions

in Lw(S) coincide, so (i) is established. []
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3.2. A Generalized Shadow Price

A constraint qualification is needed in order to obtain a duality
result. It would be unduly restrictive to adopt a condition that would
directly yield a shadow price A € TV(M). A better result is obtained by first
exhibiting a "generalized shadow price” = € L:(M) and then using the Yosida-

*
Hewitt decomposition of L_(M) to obtain the desired shadow price A € V(M).

In doing so, we follow directly in the footsteps of Rockafellar-Wets [21].

Constraint Qualification. There exists E € Lw(S), € > 0 and a > — such

that ®(§+Y) > o for each Y € L (M) satisfying IlYllm < e

LEMMA 3.2, Assume the Constraint Qualification holds. Then there exists

*
n € L_(M) such that

sup B(X) = sup [8(x+Y) - <Y,n>] (3.3)
XeL_(S) X€L (S),YEL (M)

Proof. For X € Lm(S) and Y € Lm(M) set F(X,Y) = ®(X+Y) and
o(Y) = inf{F(X,Y)IX € Lm(S)}. In view of the Constraint Qualification, there
is a norm neighborhood of the origin in Lm(M) on which ¢(Y) < —®(§+Y) < —-a.
Hence from Theorems 16 and 17a of Rockafellar {19] there exists 5 € L:(M)

such that

inf F(X,0) = inf inf {F(X,Y) + <Y,n>}.
X€L_(S) XeL ($) YEL_(M)

Multiplying by -1, this is equation (3.3). {]
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3.3. Nonanticipativity of the Control Set

We view the problem (*) as being a control problem: the set Pt(w) is the
set of choices available for the control Xt(w) at time t and state w, and that
set does not depend on the past choices which have been made. State
constraints, if any, are modeled by restricting X to belong to the
set D ¢ Lw(M). It is natural to assume that the set Pt(w) evolves in a
nonanticipative way (in fact it will often be the case in applications that
Pt(w) is independent of w). Formally this means that the multifunction T is
S-measurable, in the usual sense that the set {(t,w)]Pt(w) nc¢c# ¢} belongs
to S, for each closed C ¢ Rm.

We will need the following characterization of measurability. The proof
is adapted from Valadier's analysis of the conditional expectations of

multifunctions (cf. Castaing-Valadier [6, Theorem VI1I.35]}). Recall that we

o)

write SY for the vector of predictable (if s = p) or optional (if s

projections of the components Yl,...,Ym of Y.

LEMMA 3.3. Assume the closed, convex~valued multifunction I is

S—-measurable. Then the operator Y SY maps Lw(M;P) onto Lm(S;P)-

Proof. Since the operator is a projection and Lm(S;P) c LE(M;P), it
suffices to show that the image of L_(M;T') is contained in Lm(S;P).

Let Y € L_(M;T). Fix a version of SY, and let
E = {(t,w)ISYt(w) ¢ Pt(w)}. It must be shown that E is evanescent.

m
For b € R , set

*
8 (t,w,b) = sup{xeb|x € Pt(w)}.



12

If (t,w) € E, then by the Separating Hyperplane Theorem (Rockafellar [18],

Corollary 11.4.2) there exists b € Rm and an integer n such that
s L,s 3.4
Y (0) ¢ b>—+ 38 (t,0,b) (3.4)

For each (t,w) let Xnt(w) denote the set of b for which (3.4) holds, and let

w

En = {(t’w)lZnt(w) # ¢}. Since E ¢© S En’ it suffices to show that each E, is
evanescent. o

If ' is §g-measurable then it admits a Castaing representation, i.e., a
family {yl,yz,...} of S-measurable functions such that
Ft(w) = cl{yi(w),yi(w),...} for each (t,w). See Castaing-Valadier [6,
Proposition III.12 and Theorem III.8]. This implies that, for any

S—-measurable function b,

5*(t,w,bt(w)) - supi{yi(w) ¢ b (]},

which is S-measurable.
We will show that Xn is S-measurable. For this it suffices to show that

the set {(t,w)lint(w) n K # @} belongs to S for each compact K < E™; see,

e.g., Rockafellar [17].
%
Let K be compact. Note that the extended-real-valued function § (t,w,e)

is lower-semicontinuous. Hence z t(w) NK#@ -~ i.e., there exists b € K
n
satisfying (3.4) — iff

%
sup{SYt(w)°b - & (t,w,b)|b € K} » %}

Since the supremum in the left-hand side can be taken over a countable dense
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subset of K, the left-hand side is S-measurable in (t,w). This implies that
zn is S -measurable.

Now by the results previously cited from Castaing-Valadier [6], there
exists an S-measurable function b, from En to g= such that bnt(w) € Znt(w)
for each (t,w) € E_. Note that En € 3, since En = {(t,w)lznt(w) n g" # g}.

If (t,w) ¢ En set bnt(w) = 0, Summarizing, we have
s 1 *
Y ()b (W) > =+ 8 (t,w,bnt(w)) (3.5)

for (t,w) € E .
n

Since Y € L_(M;T'), it is certainly the case that
<5*
Y (w)eb_ (W) < (t,w,bnt<w)) (3.6)

except possibly on an evanescent set. It has already been observed that the
right-hand side of (3.6) is S—-measurable. Since the S~projection is isotone
(DM, VI.43(a)), the right-hand side must majorize the S-projection of the

left. Using DM VI.43(b) and VI.44(e), this yields
Y ()b (W) < 8 (t,u,b_(w) (3.7)
(@b (W) < sw,b_ (w .
outside an evanescent set.
Comparing (3.5) and (3.7) we conclude that E, is evanescent. Hence E is

evanescent, and SY € Lm(S;F). (]

3.4. The Duality Theorem

We require two additional assumptions. One is a continuity condition for
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® on dom ®. The other is that the constraint that X € D be "slack™ at some
solution X of (*).

The continuity condition is relative to an otherwise arbitrary positive

P-measure p.

Continuity Assumption. There exists a positive P-measure p such that the

following holds: if X € dom & and (Xn) is a H-Hm—bounded sequence from dom &

satisfying
U {(e,w) X (W) 2 X ()} =0,
m=1 n=m nt t

then ®(X) < liminf &(X ).
me ' n

We remark that this would certainly be true if & were lower~
semicontinuous on dom & with regard to the topology of the pseudo-norm

1
}/p

XN IlXt(w)IIpdp.

wp = Uto,m1x
for any p < ®. It would also suffice to have lower-semicontinuity in the
Mackey topology of Lm([O,T] X Q, ,u;Em) for the pairing with
Ll([O,T] x @, ,u;E@). This is the assumption used by Bewley in his study of
competitive equilibrium [2, Theorem 3], and our use of the Continuity
Assumption will be the same.

The notation "int"” is used to designate the |l°!|°° interior of a subset of

L_(M).

THEOREM 3.4. Assume T' is S-measurable and the Constraint Qualification
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and Continuity Assumption hold. Assume further that there is some solution

X of (*) such that X € int D. Then there exists A € TV(M) such that (i) each

solution X of (*) solves (3.1) and each solution of (3.1) belonging to L (S)
w

solves (*), and (ii) E[fgxtdAt] =0, ¥ X € Lm(S).

COROLLARY 3.5. Assume I' is S-measurable and the Constraint Qualification
and Continuity Assumption hold. Let X € L_(S) n int D. Then X solves (*) iff

there exists A € IV(M) such that X solves (3.1) and such that

E[fgxtdAt] =0, ¥X€1_(9).

Proof of Corollary 3.5. The necessity is given by the theorem. On the

other hand it is clear that if i solves (3.1) for

any A € IV(p) satisfying E[fgxtdAt] =0, ¥ X € L_(S), then X solves (*). []

Proof of Theorem 3.4. Let m be as in Lemma 3.2. Reasoning as in the

proof of Lemma 3.1, one deduces from equation (3.3) that
<Z,m> = 0, ¥ Z €L_(S).

Let B be the element of IV(M) which represents m., and let A = B - B°.

It suffices to establish (3.2), and only the inequality

sup &(X) 2> sup {e(x+y) - E[IthdA 1} (3.8)
XeL_(S) XeL_(S),YeL_(M) ¢

is not obvious. We prove (3.8) by means of two lemmas.

LEMMA A, Under the hypothesis of Theorem 3.4, if X € Lm(S) and

Y € L_(M) satisfy X + Y € dom @, then



16
g[S % a8®] > [fF S (3.9)
0 tt 0(X+Y)tdBt] )

Proof of Lemma A. Let X € Lm(S) and Y € Lm(M) satisfy X + Y € dom &.

Since m is orthogonal to L _(S), we have

s s s s T2 s
—<X~X- Y,np) = <X-%X-"Y,m > m{fo(xrx— Y)tdBt}.

Moreover by the definition of the dual projectionm,
T, s T, S
B[ [, (x-x-"Y) dB ] = m[fo(x—x—Y)tdBt].
Hence (3.9) is equivalent to

K, > < <KX, > (3.10)
D D

Now fix € > 0 such that Z € D whenever n;(—znm ¢ €. Choose 0 < A < 1 such
that XH%—X—YHm < €. Since %, X+Y € dom @ < Lm(M;P) and each set Pt(w)bis
convex, we have [I—K]% + AX + AY € L_(S;T). The S-projection of this process
is [1—%]% + AX + ASY, by the linearity of the projection. It follows from
Lemma 3.3 that [1—x]§ + AX + XSY €L _(S;T).

Choose a decreasing sequence of sets E € M satisfying limn&wu(En) = 0,
limn>w|nc|(En) = 0, and |ﬂp|([0,T) x Q\En) = 0 for each n. Let

s_° ~
Zn = AMX+ Y—X)IE where "I" denotes the indicator function. Since X + Zn
~ n ~
s
equals X on the complement of E, and [1-A]X + AX + A Y on En’ we have

X + Zn € Lm(M;P), Moreover "Zn"m < xHX+SY—XHm, and since the S-projection is

S ~ ~
isotone, IX+ Y-XI_ < IX+Y—XI_. Hence "Zn“m < €& and we conclude that
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X+ Z_ € D.
n

By (3.3) and the fact that X solves (*), we have, for each n,
B(X) > &(X+2_ ) - <Z_,m>.
By the Continuity Assumption, liminfn»m@(x+zn) > ®(X), so the above yields
0> limsupn+m - <Zn,n>. (3.11)
By the construction of the sets E , we have 1imn»m<zn’nc> = 0 and
<Zn,np> = K<X+SY—X,np> for each n, so the right-hand side of (3.11)
equals x<x—x—SY,np>. Thus (3.11) implies (3.10), and the proof is

complete. []

LEMMA B. Under the hypothesis of Theorem 3.4, if X € Lm(S) and

Y € L_(M) then
B(X) - E[fg %tdgt] > B(X+Y) - E[fg(X+Y)tdBt]. (3.12)

Proof of Lemma B. Fix X € Lm(S) and Y € y»(M). We may without loss of

generality assume X + Y € dom ®. Let g A and the sets E, be as in the proof

of Lemma A. Let w = AN(X+Y— X)I( Then X + wn equals X on En and

(o, T]XQ)\E .

(1- K)X + A(X+Y) on the complement of E_ , so the convexity of the sets Ft(w)

n?

implies that X + wn € ym(M;P). Also HWnH < & so X + wn € D. Now the
Continuity Assumption implies that liminfn’m@(x+wn) > @((I—X)X + K(X+Y)).

From (3.3) and the fact that X solves (*) we have that, for each n,

B(X) + <wn,n> > @(X+wm). Combining these inequalities with the concavity
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of & gives
®(X) + liminf __<W_,7> > (1-0)@(X) + AD(X+Y) (3.13)

The construction of the sets En is such that
liminf = <MW ,m > = A<X+Y¥-X,nt > and <W_,n > = 0 for each n. Therefore (3.13)
me n’c c n’ p

implies
<X+Y-x,nc> > O(X+Y) - 3(X),

from which (3.12) follows by virtue of the fact that B represents © . (]
c

We now return to the proof of the theorem. 1In taking the supremum in the
right-hand side of (3.8) it certainly suffices to consider X, Y such that

X+ Y € dom &. 1In this case we have from the lemmas that

B(X+Y) - E[Jg(X+Y)tdAt] < B(X) - m[jg itdAt].

o - T T §
Since X, X € Lw(S) and A = B - BS, we have that E[ OxtdAt] = E[JO XtdAt] = Q.
Therefore
sup {a(x+Y) - E[ngtdAt]} < 3(X),

X€EL_( S),YEL_( M)

which implies (3.8). []
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4. SECURITIES MARKETS AND OPTIMAL PORTFOLIOS

The model will be the same as in Harrison-Pliska [15], except that the
security price process Z = (Zl,...,Zm) will be assumed to be of integrable
variation; that is, Z € IV(0). For a trading strategy X € L_(M), fgxsdzs is
the capital gains earned through date t. Trading strategies are constrained
to be predictable, reflecting the fact that price changes cannot be perfectly
anticipated.

In the background is a riskless asset (a bond), the price of which is

always one. Denote the holdings of this asset by By. Let w be the wealth of

b

the trader at date zero. Then his wealth at date t is y + fgx dz and this
s s

must equal the value of his portfolio, i.e.,

w+ [iXdz_ =B+ ] xizi. (4.1)
i=1

We will assume that Bt is not constrained, so one can regard (4.1) as being
simply a definition of By

Denote by u a concave, strictly increasing function from E to E. Assume
u(y(+)) is P-integrable whenever y € LI(Q,F,I). Interpret E[u(fgxtdzt)] as
the utility obtained from the total capital gains, where T < » is a fixed time
horizon. Note that the bond Bt does not appear in this expression, since no
capital gains can be earned by trading in an asset with constant price. Note
also that one would ordinarily take utility as being defined over final
wealth, w + ngtdZt, but since w is a scalar our formula follows by

translation.

We are interested in the following type of optimization problem:
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T
maximize E[u(fOXtdZt)] subject to X € L_(P) (4.2)

The outstanding result on this kind of problem is due to Harrison and Kreps
[14, Theorems 1,2]. They allow the price process Z to have unbounded
variation, provided Zi € LZ(Q,F,E) for each i and t. However, they restrict
the optimization problem to be over the class of simple processes X, so there
is no difficulty in the definition of the stochastic integral when X is not
predictable. Their result may be stated in the following fashion. Assume

that limn+mE[u(yn)] = E[u(y)] whenever lim y o= in LZ(Q,F,E)- Then there

> ©
exists p € LZ(Q,F,E) such that p > 0 a.s. and such that the process A with
values At(w) = p(w)Zt(w) satisfies (i) if X € Lm(P) then X solves (4.2) iff X

solves

maximize m[u(fgxtdzt) - gXtdAt] subject to X € L_(M) (4.3)

and (ii) E[fgxtdAt] =0, ¥ X€ L_(p). In other words, the shadow price of
information exists and is of the form A = pZ.
Actually, instead of proving that if X solves (4.2) then X solves (4.3),

Harrison and Kreps show that ; = fg }_(tdzt solves
minimize E[py] subject to y € LZ(Q,F,E)
T_
and E[u(y)] > E[u(fo X dz )].
t t
The Lagrangian for this, multiplied by -1, is

AE[u(y)] - Elpy]l.
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Dividing by A and restricting y to the class {fgxtdztlx € Lw(M)}, one obtains
the problem (4.3).

For the theory of contingent claim valuation, to which the Harrison-Kreps
paper is addressed, the important aspect of the above result is the condition
(ii). It means that the linear functional y» E[py] on LZ(Q,F,E) is
orthogonal to the class of capital gains ngtdZt which can be realized by
trading strategies X € Lw(P). From this it follows that the linear functional
is a "rational™ pricing scheme for contingent claims y € LZ(Q,F,E). Moreover
one can write E[fgxtdAt] = EQ[ngtdZt] where "E "

Q
dQ

ap - P Thus (ii) implies that the price process Z is a

denotes integration by the
measure Q defined by

martingale under a measure Q which is absolutely continuous with respect to B.

Another interpretation of the martingale result is that the process (Mt)
is a martingale under P, where Mt = E[pIFt]Zt. The maximization in (4.3)
implies that X maximizes E[u(fgxtdzt) - fgxtht] on L (0).

The set—~up implied by (4.2) is referred to as a “"frictionless market,”
because there are no constraints on the trading strategies X (other than being
bounded and predictable). For the balance of this section we shall use
Corollary 3.5 to obtain results when market frictions are present in the form

of restrictions on short sales. Using our earlier notation, set

I (@) =&, and D =1_(M). Define ®: L (W) > R U {==,=} by
T . i
E[u(foxtdzt)] if X € L_(M;T)
(X)) =

- otherwise.

Observe that dom & = Lw(M;F) by virtue of our assumptions about u and the fact
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that ngtdZt € Ll(Q,F,E) for all X € L (M). Note also that & is concave.
With these specifications problem (*) is the optimal portfolio problem
(4.2) with the modification that short sales of the risky securities (indexed
by 1 = 1,...,m) are prohibited. Note, however, that one can still sell the
bond short (i.e., one can have B, < 0) and that there is no particular lower
bound (such as zero) on overall wealth.
Here is the main result of this section. We do not impose the

Lz—continuity of expected utility assumed by Harrison and Kreps.

THEOREM 4.1. Let X € Lm(P). Then X solves (*) iff there exists a

martingale M € IV((Q) such that X maximizes H(X) - E[fgxtht] over X € Lm(O).

Proof. In view of the remark immediately following (3.1), it suffices to
apply Corollary 3.5. The only nontrivial hypotheses to check are the
Constraint Qualification and the Continuity Assumption.

With regard to the former, one could choose ii(w) =1 and £=1. 1If
IX-X1_ < 1, then X > 0 and thus 3(X) > —=. Moreover fgxtdzt > - 2f§]dzt|,
so, since u is increasing, E[u(fgxtdzt)] > E[u(-nglet[)] > =,

Finally, to verify the Continuity Assumption, let ui be the B-measure

defined by

f Xt(w)dui =g | xt(w)[dzil
[0,T]xQ [o,T]

1
for each bounded measurable X (see DM, VI.64), and set u = p +...+ um.

Suppose r < ®, X € dom &, and (Xn) is a sequence from dom & satisfying

1IXI < r, 1XH§ <r, and p{ N E) =0, where E_ = v {(t,w)|X (w) # X (w)}.
® ne n=1 n f=n 1t t

Then the random variables bn defined by
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i
b (w) = z f{wl(t w) € E }|dZt(w)|

i ? b = ®,
satisfy b_ > b . > 0, ¥n, and E[ n] u(En) ¥+ 0 as n~> Hence

lim b (w) = 0 a.s. Since
m® n
lfTX (w)dZ (w) - fTX (w)dz (w)] < rb (w) a.s
0" nt t 0"t t n t?
we have, almost surely,

Lin JoX  (0)dZ (@) = (X (w)dz (), and

[oK (@)dZ () = tb () < [0X_ (0)dZ (@) < [gX, (@)dZ, () + b, ().

Therefore the continuity and monotonicity of u(e) allows us to apply the

Lebesgue Convergence Theorem to conclude that &(X) = 1imn>w®(xn)' [1

The price process Z need not be a martingale under any equivalent
probability measure in this situation, where short sales of the risky
securities are prohibited. For example, the sample paths of Z could be
decreasing. However it is simple to show that Z must be a supermartingale
under an equivalent measure.

We conclude this section by remarking that our methods can be used to
study security models with other kinds of market frictions. However, the
duality theorem may not be valid if the market friction (constraint) is such
that the optimum is not in the interior of D. This difficulty can arise, for
example, if the terminal wealth w + ngtdZt is required to be nonnegative; see

Back [1] for the details.
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5. THE MAXIMUM PRINCIPLE FOR ECONOMIC GROWTH

5.1. The Optimal Economic Growth Problem

This section addresses the one-sector optimal economic growth (or optimal
savings) problem as formulated by Foldes [13]. The underlying assumption is
that the horizon is infinite. However we will truncate at some finite horizon
T and assign a value to the terminal capital stock. This truncation allows
one to accomodate the assumption that there is an optimal solution with the

capital stock being bounded away from zero.
A consumption plan will be a real-valued, nonnegative, optional process

C. A boundedness restriction will also be imposed below. The initial capital

stock is a positive constant K;., The evolution of the capital stock is

determined by the equation
dK = -C dt + K dwW , (5.1)
t t t t

where the rate-of-return process W is an exogenously given, continuous
semimartingale. By Ito's Lemma, the solution of (5.1) is

T
K= Koexp(Zt) - exp(Zt)fOexp(—ZS)CSds (5.2)

1
where Z = W — E‘(W,W>.
Let u: [0,T] x Q x B > R and V: Q x R+'* R. The following assumptions

will be maintained throughout Section 5.

A. TFor each (t,w) € [0,T] x @, the function ut(w,°) is concave, continuous

and monotone (i.e., u (w,d) > u (w,c) if d > c) on By, For
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each c € R+ the function (t,w) »> ut(w,c) is 0-measurable

and dt®dP-integrable.

B. For each w € @, the function v(w,*) is concave, continuous and monotone on

4 For each k € R, the function v(*,k) is F-measurable and

4o

P-integrable.

For future convenience extend each of ut(w,°) and v(w,*) to all of R by
setting ut(w,c) = v(w,k) = ~ if ¢, k < 0.

We remark that, in view of Corollary 3.1 and Theorem 4 of Rockafellar
[17], the function v is a "normal concave integrand.” This means in
particular that the function v(-,k(-)) is F-measurable when k{(*) is
F-measurable. The function u is a normal concave integrand by the same
reasoning, in this case with respect to the optional o-field 0. Since
normality with respect to 0 implies normality with respect to M, we have that
the process (t,w) > ut(w,Ct(w)) is optional when C is optional and measurable
when C is measurable.

The problem is to choose a consumption plan to maximize

(w,Ct(w))dt + v(w,KT(w)) 1, (5.3)

E[gut

where K is defined by (5.2) and subject to the restriction that the processes
C and K be nonnegative.

Note that (5.3) is well-defined in B U {+°} whenever C and K are
nonnegative, by virtue of the monotonicity of Uy and v and the integrability

of u, (+,0) and v(+,0).
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5.2. Relation to the Problem of Section 3

We will model the economic growth problem as being the problem of

choosing a process X € L (0), where m = 1. Given X € ym(M), define H by
H, = Ky - foxsds. (5.4)

Let Pt(w) = R+ and denote by D the class of X € Lm(M) such that HT defined by

(5.4) is nonnegative almost surely. If X € L_(M;T) n D let ®(X) denote the

value in (5.3) obtained by setting

Ct = Xtexp(Zt) and KT = HTexp(ZT).
Notice that, in view of (5.2), if X is nonnegative then the nonnegativity of
the process K is equivalent to the condition X € D. Therefore the constraints
of the economic growth problem are satisfied iff X is optional and belongs to
L (MT) nD. If X €L (M\L (MT) N D, set B(X) = —. We assume
sup{@(X)|X € Lm(O)} { ®, The inequality SUP{Q(X)lX € LQ(O)} > = follows from
Assumptions A and B (use X = 0).

We take as the economic growth problem the problem (*), where § = (. The
study of X rather than C (i.e., analysis in "reduced units") follows Foldes
[13], though the boundedness restriction is new.

For future convenience define Lt(m,x) = ut(m,exp(zt(m))x) and
2(w,h) = v(m,exp(ZT(w))h).

It is worthwhile to note here that under the assumptions already
introduced, the function (t,w) > Lt(w,Xt(w)) is dt®RdP-integrable and the
function w > l(m,h(m)) is P-integrable whenever X € L (M), h € L (Q,F,R),

Xt(m) > 0 dt@dP-a.e., and h(w) > 0 P-a.s. To see this, note that Assumptions
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A and B yield integrability when X = 0, h = 0. The assumption

sup{®(X)|X € Lo(0)} < « implies integrability when X = Ko/2T and H = Kg/2-
Using the monotonicity and concavity, these facts imply integrability for all

nonnegative bounded processes X and functions h.

5.3. The Maximum Principle and the Martingale Property

The maximum principle for this problem can be stated as follows.

Maximum Principle. There exists a martingale (pt)0<t<T such that X

solves (*) iff

dt®RdR~a.e., Lt(w,Xt(w)) - pt(w)Xt(w) >
(5.5)

Lt(w,x) - pt(w)x, ¥ x € B, and

a.S8., l(w,ﬁT(w)) - pT(w)ﬁT(w) >
(5.6)
2(w,h) - pT(w)h, ¥her

In the above we are of course taking H. = K.O - fgitdt. Conditions (5.9)

T
and (5.10) are Bismut's [3] coextremality conditions (4.9) and (4.10)
specialized to this problem. We can take (py) to be a martingale because the
state variable H. enters the objective function and constraints only at the
time t = T; therefore the dual variable 5, in Bismut's notation, must be the
null process. See Bismut's equation (1.12). Note also that in equation (5.6)
the minus sign in front of p» which does not appear in Bismut's equation

(4.10), reflects the fact that we have ﬁt = —Xt rather than ﬁt = Xt'
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It is clear from (5.5) that if ut(w,') is differentiable on R+ then,

dt®dP-a.e.,
exp(Zt(w))ué(w,exp(zt(w))it(w)) < pt(w), and
it(m)[exp(zt(w)) ut':(w,exp(zt(w))-)-(t(w)) - pt(w)] = 0. (5.7)

If it(w) > 0 on a set of full dt®dP measure, then (5.7) implies that the
"reduced™ utility process (eXp(Zt)ué) equals the martingale (p;), dtRdP-a.e.
This result was obtained by Foldes [13, Theorem 6], under the assumption
that ET is bounded away from zero. (Foldes also showed that ome can choose
modifications to obtain B-a.s. equality for each t, i.e., that the
process (exp(Zt)u;) is a martingale).

We will give a different proof that the maximum principle is valid when
there is a solution of (*) such that ﬁT is bounded away from zero. This proof
will utilize the shadow price of information. First we show that, regardless

of whether the state constraint HT > 0 is binding, if the shadow price of

information exists, then the maximum principle is wvalid.

5.4, The Shadow Price of Information and the Maximum Principle

We will assume in this subsection that A € IV(M) is the shadow price of
information for the problem (*), i.e., that A satisfies conditions (i) and

(ii) of Theorem 3.4.

Consider for fixed w the problem
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maximize fth(w,xt)dt + l(w,hT) - fgxtdAt(w)
(5.8)

subject to x € Lw([O,T],dt)

T
where hT = KO - foxtdt.

Let E(w) denote the set of p € R such that
T T T
supx{fOLt(w,xt)dt + l(w,KO- foxtdt) - foxtdAt(w)}
= sup, [JTL (w,x. )dt + L(w,b + K. - [Tz dt) - [ x dA_(w) - pb}
b,x'0t 7t ? 0 07t 07t Tt i

where the suprema are taken over x € Lm([O,T],dt) and b € R.

The problem (5.8) is a deterministic version of the economic growth
problem, one obtained by inserting the shadow price of information and
assuming the state w is known. The maximum principle for this deterministic
problem coincides with the existence of a Lagrange multiplier for the
constraint h, = Kg - fgxtdt. The set E(w) consists precisely of those
multipliers.

Consider the class of p € LI(Q,F,E) such that the following holds:
sup, E[ I (w,X (w)dt + 2w,k ~ fTX (w)dt)
XTI T ’70 07t
- [Tx (w)aa ()] (5.9)
0t t
T

= supb,XE[ OLt(w,xt(w))dt + 2{w,b(w) + Ky - fgxt(w)dt)

~ [oX (@)dA, (@) = plw)b(@)],
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where in this case the suprema are taken over X € Lm(M) and b € yw(Q,F,E).
Though we have not verified the truth of this assertion, it seems that such p
should be the integrable selections of Z. Regardless, we will show that such

p exist and determine coextremals for the economic growth problem.

THEOREM 5.1. Assume the shadow price of information A exists. Then the
Maximum Principle is valid. 1In fact one can take P, = E[p[Ft] for each t,
where p € Ll(Q,F,E) satisfies (5.9).

Proof. For X € Lm(M) and b € Lm(Q,F,E) set

F(X,b) = -E[ /L (X )dt + L(b+K. - [ X dt) - [°x dA_ ].

i 07t Tt 0 07t 07t Tt
The functional F is clearly convex in (X,b). Setting X = 0, we have
~ T

F(X,b) < -B{[ L (0)dt + 2(0)} < =
for all b € Lm(Q,F,E) such that ess supwlb(w)l < KO’ by virtue of the
monotonicity of . Therefore it follows from Theorems 18(a), 17(a), and 16

*

and equation (4.2) of Rockafellar [19] that there exists ¢ € L_(Q,F,R) such
that

inf{F(X,0)|X € L_(W)}

= inf{F(X,b) + <b,0>| X € L_(M), b € L_(Q,F,P)}. (5.10)



31

Let o = cc + cp be the Yosida-Hewitt decomposition of 0. We will now

show that
inf{F(x,0)|X € L_()}
= inf{P(X,b) + <b,cc>|X € L_(M), b€ L_(2,F,B)}. (5.11)

It is evident that the left-hand side is no smaller than the right. To
establish the reverse inequality we will use equation (5.10).

Consider an arbitrary X € Lm(M), b € Lw(Q,F,E). Select a decreasing
sequence of sets En € F such that limn+mP(En) =0, limn&wdc(En) = 0, and
cp(Q\En) = 0 for each n. Let X = XI([O,T]xQ)\([O,T]XEn) and b = bIQ\En.
Then

F(X_,b ) + <b_,0> = F(X_,b ) + <b_,0 >, ¥ n, (5.12)

limn?m<bn,cc> = <b,cc>, and (5.13)

lim F(X ,b ) = F(X,b). (5.14)
me® N’ n

Only (5.14) requires comment. Note that we have by assumption F(X,b) € R
unless fTL (X,) = = or (b + K, - fTX ) = —= on a set of positive

0Ott 0 07t
P-measure. Thus if F(X,b) & R then eventually F(Xn,bn) = F(X,b) = =, On the

other hand if F(X,b) € B then the functions fth(xt) and 2(b + K TXt) are

0“0
P-integrable. The same is clearly true of the functions fth(Xnt) and
,Q(bn + KO - fgxnt). Hence in this case (5.14) follows from the continuity of

the indefinite integral.
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Collecting (5.12), (5.13) and (5.14) we see that it certainly must be

true that
F(X,b) + <b,o > > inf{F(X,b) + <b,0>|X € L (M), b € L (Q,F,B)}.

Since the pair (X,b) was chosen arbitrarily, it follows that the right-hand

side of (5.10) majorizes that of (5.11). This completes the proof of (5.11).
do

Now let p be the Radon-Nikodym derivative dEC « Multiplying both sides

of (5.11) by minus one, we have exactly equation (5.9).

Let (pt) be an r.c.l.1l. version of the process (E[p|Ft]). It remains to

show that X solves (*) iff (5.5) and (5.6) hold.

Assume Y solves (*). Since A is the shadow price of information the

left-hand side of (5.9) must be @(i), which, using the fact that
Elpi.] = E[p(K, - [ X dt)] = K.E[p] - EIf pX.dt]
PHp P{%0 0%t 0"tP oPAAt)s
can be written as
T — -— — —
E[fo{Lt(Xt) - pX tde] + E[2(H) - pH ] + K Elp]. (5.15)

Now given any X € Lw(O) and HT € Lw(Q,F,E), we obtain from (5.9), by

setting b = HT - KO + fgxtdt, that (5.15) majorizes

B[ [o{L, (x> - px }dt] + E[2(n) - p,] + K Elp).

It must be therefore be that the expression
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E[fg{Lt(Xt) - pXt}dt] (5.16)

is maximized on Lm(O) at X and the expression
E[l(HT) - pH,] (5.17)
is maximized on Lm(Q,F,E) at ﬁT'

If X € L_(0) then the value of (5.16) is unchanged when p is replaced by

Pp* Consider the function f on [0,T] X Q X R with values

f(t,0,x) Lt(w,X) - pt(w)x

ut(w,exp(Zéw))X)— pt(w)x.

Since the process (pt) is optional it follows from Corollary {(3.1) and Theorem
4 of Rockafellar [17] that f is an 0-normal concave integrand. Clearly the
maximization of (5.16) on Lm(O) implies maximization on
Lm[[O,T] x Q,0,dt@dR). Using Theorem 3A of Rockafellar [21], we deduce from
this that (5.5) must hold.

The same reasoning establishes that the maximization of (5.17) on
L _(Q,F,B) implies (5.6).

Now, for the converse, assume that X satisfies (5.5) and (5.6). Then by

adding (5.5) with (5.6) and rearranging terms we have, for HT = KO - fgxtdt’

T

2(X) - ®X) > B[ p,

(it-xt)dt + pT(HT—HT)]

= E[Igpt(it—xt)dt] + E[prg(xt—it)dt]
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= fgm[pt(it—xt)]dt + jgm[pT(xt-it)]dt

which is zero since Pt = E[PT'Ft] and each of X; and it are Ft-measurable.

Hence X solves (*). []

5.5. Existence of the Shadow Price of Information

THEOREM 5.2, Assume there exists a solution X of (*) satisfying
ess sup fg Xt(w)dt < KO. Then there exists A € IV(M) satisfying conditions

(i) and (ii) of Theorem 3.4.

COROLLARY 5.3, Under the hypothesis of Theorem 5.2, the Maximum

Principle is wvalid.

Proof of Theorem 5.2. We must verify the hypothesis of Theorem 3.4. It

A

is clear that F is concave, I' is O-measurable and X € int D., We have assumed
that -= < sup{@(X)IX € Lm(O)} { @, It remains to verify the Constraint
Qualification and Continuity Assumption.

Let it(m) = KO/ZT for each (t,w) and set € = K0/2T. If X € gm(M)

T
Ky - fOXtdt > 0. Hence the

satisfies IX - Xl < &, then X > 0 and H,

monotonicity of L. and & yields
T
B(X) > m[fOLt(O)dt + 2(0)] > —.

For the P-measure P in the Continuity Assumption, take p = dtRdP.

Consider any X € dom & and bounded sequence (Xn) from dom ® satisfying

-] @

(v {(t,w) X (@ # X (W}) = o.
m=1 n=m nt t
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Let r be a constant such that Ilelm € r and lIanlm € r for each n. Set

E = U {(t,0)]X (w) # X ()}. Then
m mt t
n=m

2l {r (0,5, @) - 1 (0, () }ac]]

<

E {Lt(w’r) - Lt(w,o)}dl-l,
m
which converges to zero by the continuity of the indefinite integral.

For each w we have

T T
n

The random variables rf{t dt are monotone decreasing and converge in

| (£, #)€E )}
expectation to zero; hence they converge a.s. to zero. Now, given the

continuity and monotonicity of 2(w,*), we can use the Lebesgue Convergence

Theorem to conclude that

uim_ E[8(k, - [ox_.dt)] = B[k, - [ox.dt)].

This completes the verification of the Continuity Assumption. []
6. SELLING A RESOURCE

Our main result, Theorem 3.4, assumes the existence of a solution to the

~
optimization problem; in fact it assumes the problem is solvable by some X in
the I+l _-interior of the constraint set D. Here we will present some examples

in which there may be no solution, yet the existence of the shadow price of
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information can be established.
Let A be a positive constant and let (Zt) be a one-dimensional, bounded

adapted process.
We will take the dimension m of the control processes to equal one. Set

Pt(w) = [0,A] and denote by D the class of X € L_(M) such that X is right-

continuous and increasing. For X € D n Lm(M;P) set ®(X) = E[ gztdxt], and for

X € L_(M\D n L_(M;T), set &(X) —», The optimization problem is the problem

(*), where S = P.
The interpretation is that the decision-maker has the quantity \ of goods

to sell before time T, and X; is the amount sold through time t. The price at

time t is Zy», and the total revenue is jgztdxt. We assume there is some
(infinitesimal) time lag between the decision to sell and the actual
transaction, the price being determined only at the later event. This
inability to perfectly anticipate the price is modeled by restricting X to be
predictable. We seek to determine the significance of this restriction, i.e.,
to find the shadow price of information.

The hypothesis of Theorem 3.4 will not be satisfied even when the problem
has a solution, because the set D has no interior in the ll'llOD topology. An
instance in which the problem has no solution is the following: Ilet T be a
totally inaccessible stopping time, and assume Zt =0 for t < 1 and Z¢ = T-t
for t > =.

To define the shadow price of information without reference to a solution
of the problem, one can use the condition (3.2). This is equivalent to having

E[ngtdAt] =0, ¥ X € L_(P) and

sup &(X) = sup {B(X) - E[fgxtdAt]}.
X€L_(P) X€L (M)
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In keeping with the remark following (3.1) we will here establish, in two

particular cases, the existence of a martingale M satisfying

T
sup ®(X) = sup {[®(X) - m[joxtht]}. (6.1)
X€L_(P) X€L_(0)
PROPOSITION 6.1. If the process (Zt) is right-continuous with left-

limits, and if Zp_ = Zp a.s., then (6.1) holds with M = 0.

Proof. Let X € Lm(O) be an arbitrary strategy for which ®(X) > —. Let
€ > 0 be arbitrary. We need to show there exists some X € ym(P) such that
B(X) + £ 3> ®(X).

Decompose X in the form of DM, VI.53:

X, = x: +] BT

t {s <t}?
n n

where the S, are (predictable if X is predictable) stopping times with
disjoint graphs, H, is a nonnegative random variable measurable with respect

to Fg (FS if Sn is predictable), and XC is continuous. Each of the stopping
n

n
times S takes values only in [0,T] U {=»}. Then f Z dX_ has the
[0,T]
decomposition
c
[ zax_ = [ zdX_ + ) BZ I;q .1~ (6.2)
[0,T] t [0,T] ttoan Sn {Sn< }

It suffices to show how to construct X from X.

‘e c c ‘¢
Let X =X, so E| f thXt] E{ f thXt]. If S, is predictable and
~ [0,T] N [0,T]
H €F , then set § =6 and H = H . For the remaining case we shall also
n Sn— n n n n
take H = H , but for S we shall take
n n n
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S+ %‘ if S +'% <T
n i n i
S =
n
1
© if S +T> T,
n i

where i is chosen large enough so that

E[H 25 Ty ooyl + g/2" > B[Rz, I (6.3)

{s <o {s e }]

Note for any i that H € Fg _and S is predictable. To see that S can be

n
chosen so that (6.3) holds, our assumption that Sn # T, as well as the right-
continuity of Z, imply ZS I{S <m}-* ZSnI{Sn<m} as i > o, Since H, and Z are

bounded, this means that E[H Z I ]+ E[H Z

1
n S {8 <=}
n n

] as { + », Summing

{s (=}

(6.3) over n now completes the proof [1]

PROPOSITION 6.2. Suppose S, U, and V are stopping times with U
predictable, V totally inaccessible, and S = U A V. Suppose Z = AW, where
Wt = I{S<t}' Then Xt = KI{U?t} is the optimal selling strategy and (6.1)

holds with M = W - ﬁ, where ﬁ is the predictable compensator of W.

Proof. Let X € Lm(O) be an arbitrary process such that &(X) D>-=.

Clearly

3(X) = E[[OIT]ztdx ] = E[AXSI{S<T}}

1l
=
—

[ ax

th]. (6.4)
[0,T]
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Moreover, if also X € Lm(P), then

E[AXSI{SQT}] = E[AXUI{UQT}]U<V]P(U<V) + E[AXVI{VgT}|V<U]P(V<U)

= E[AXUI{UgT}[U<V]P(U<V),
since P(AXV>O) = 0. Consequently, for arbitrary X € Lm(P) with &(X) > -,

B(X) < AE[I lucv]p(ucy) = B(X),

{vgT}

A

and so X is the optimal selling strategy.
With M = W - W it follows from (6.4) that for arbitrary X € L_(0) with

(X) > —,

ox) -8 [ xam ] =8 [ mxaw ] -E [ axaMm] - [ x a1 ]
[o,T] ¢ °© lo,r}] * °© o,r] ¢ °© [o,71 ¥ ¢

Bl [ sxai]~-E [ x_a1]
lo,r] © °© (o,e] = ¢

Bl [ AX.dW ]m

[o,T]
where the last equality is because the stochastic integral of the predictable
process X_ with respect to the martingale M is a martingale. Now by DM VI.76,
AﬁU = E[AWU[FU_] = P(U(VlFU_) and W is continuous outside the graph of U.

Thus for arbitrary X € Lm(O) with ®(X) > - one has
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3(X) - E[[OIT]Xtht] = E[AXUAﬁUI{U<T}]

= E[AX P(UV) | Fy DTy ]

< AP(UKV, ULT) = ®(§) -ef | X th],
[0,7] *

and so X maximizes &(X) - E[ [ Xth ]. This implies (6.1). []
(0,T]

In view of the preceding result one may be tempted to conjecture that if

Z = AW, where W is any adapted right-~continuous process with left limits, of

integrable variation, and with W, = 0, then (6.1) holds with M = W - W.

0

However, Proposition 6.2 does not extend to the case of several jumps, as is
shown by the following simple three—-period example.

Suppose Q = {wl,wz}, Fo = {6,Q}, F1 = Fy = {¢,Q,w1,w2},

1
P(w)) = P(w,) =7, W, =0, W

= = W = . i
0 1, Wz(wz) 1, and 2(w2) 3. Note that W is

1

W and M = 0. By considering the adapted process

n

predictable, so W
= = AX =AX =0. i
AXl(wl) AXZ(wz) A and 1(wz) 2(wl) it follows that the right hand
side of (6.1) is at least as large as E[Z AX, + Z,0%,] = (3/2)\. TFor the left

hand side of (6.1) one should consider predictable processes X of the form
AXl = ¢, where ¢ is a constant with 0 € ¢ € A, and AX2 = A —- ¢. For any such

X one has E[ZIAX1+ZZAX2] = A,

7. CONCLUDING REMARKS

We have analyzed continuous time problems in this paper by means of a

fairly direct translation of techniques developed for discrete-time

problems. It would in fact be more precise to say that we have used
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techniques developed for single-stage problems (see Rockafellar-Wets [23]).
In this translation, predictable or optional projections play the role of
conditional expectations, evanescent sets play the role of null sets in
defining the L, space, and integrable variation processes play the role of
integrable functions in representing the countably additive parts of dual
variables in the Yosida-Hewitt [26] decomposition.

In making this translation we have avoided one issue specific to the
continuous time setting, namely the choice of definition of the stochastic
integral when the integrand is not predictable. This imposed a significant
constraint in our applications. 1In the portfolio choice problem we assumed
that the security prices were of integrable variation in order to obtain an
unambiguous definition of capital gains. It would have been much better to
have allowed for general semimartingales (in particular for geometric Brownian
motions) as in Harrison-Pliska [15]. Our economic growth problem is also
quite special in that the stochastic differential equation for the capital
stock can be explicitly solved and the solution is meaningful for any
measurable control (consumption) process. To broaden the range of
applications of our theory, it will be necessary to deal with this issue. One
possibility of which we are aware is the use of the compensated stochastic
integral (DM, VIII.32). However this might render trivial the comparison of
optional and measurable controls, since, as Yor has shown, any measurable
process has the same compensated stochastic integral as its optional
projection (DM, VIII.35).

The accomodation of more general processes will also likely require a
modification of our theory. For example it seems unlikely that one would
obtain a shadow price of integrable variation in the portfolio choice problem

if the security prices were not of integrable variation. Since a dual
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variable in L:(M) exists under quite mild assumptions, it is possible that one
might find a dual stochastic process outside of IV(M) by relaxing the
Continuity Assumption.

A closely related concern is that our shadow price might be less useful
if stochastic integrals are defined only in a probabilistic rather than a
pathwise sense. Certainly our discussion in the introduction of reducing a
stochastic problem to a family of deterministic problems would not apply if
the state of the system were undefined pathwise. However the existence of the
shadow price could still be of interest, as in the portfolio choice problem
where, when the shadow price is of the form A = pZ, the factor p defines a
rational pricing scheme for contingent claims.

In our applications we were also constrained by our assumption that there
be an optimal solution belonging to the interior of D. This assumption is not
of mere technical convenience. The shadow price may not exist when the
assumption is not satisfied (see Back [1]). Even in deterministic problems
the maximum principle must be modified in the presence of state constraints
(by allowing for jumps in the co-extremals —-—- equivalently, for purely
finitely additive measures; see the papers of Rockafellar referenced in
[19]). We obtained a modified shadow price, m € L:(M), when the state
constraints are binding; however it would be useful to know whether a better
modification is possible. One reasonable conjecture is that one could obtain
a functional of the form X+ E[fgxt(w)c(w,dt)], where o(w,*) is a finitely
additive measure on [0,T]. We think that a proof of this would require the
use of dynamic programming as in Rockafellar-Wets [21].

Finally we were somewhat constrained in the study of the economic growth
problem by our requirement that controls be bounded. There may be some

control problems for which is it unreasonable to assume that the controls
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belong to L_, though even when this is apparently the case, an appropriate
choice of units (e.g., "discounting”) can sometimes justify the L
formulation. For other problems, our results can be applied in the following
way.

Assume the space of controls is some space L(S) > L (S). Assume X

maximizes ® on L(S). Define a functional £ on L (M) by setting

E(Y) = ©(§+Y). Theorem 3.4 can be applied to the problem of maximizing & on

Lm(S). Under the hypothesis of that theorem, there must exist A € IV(M) which

is orthogonal to Lw(S) and which has the property that
B(X) > B(X+Y) - B[S ¥ dA_]
0t 't

for every Y € Lm(M). Thus we still obtain a shadow price of sorts for the

bounded use of advance information.

A stronger result would be that
B(X) > 3(x+Y) - E[[ Y dA_ ]
07t t

for every X € L(S) and Y € Lw(M). This does not follow from Theorem 3.4, but

we conjecture that it can be proven under very similar assumptions, since the
duality argument depends only upon the perturbations (the variable Y in
equation (3.3)) being bounded and not upon the boundedness of the controls.
We also conjecture that this result could be used to prove Foldes' result on

the maximum principle without the additional boundedness restriction appearing

in Section 5.
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