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ABSTRACT

Estimation and inference for weighted nonlinear least squares regressions
are examined for the case in which the regressors are stochastic, rather than
fixed, and where errors may be both heteroscedastic and serially correlated.
The usual least squares parameter covariance matrix estimator may be invalid
in such cases, and a new covarlance matrix estimator is given. General
statistics for testing hypotheses about the parameters are provided, as well
as new tests for model misspecification. The methodology is appliéd to the
estimation of population dynamics models for the northern anchovy (Engraulis

mordax).

KEY WORDS: nonlinear least squares, heteroscedasticity, misspecification,

population models, northern anchovy.
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The weighted nonlinear least squares {WL3) estimator en solves the
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where Q is the admissible parameter space, and {Wt} is taken to be a sequence
Qf boundéd positive weights which may themselves be random variables. In
particular, the weights may be functions of the explanatory variables. The
properties of én are of important practical interest, For example, én should
5e a consistent estimator of 80, the true parameters of interest to the
investigator. The asymptotic distribution of the WLS estimgtor is required
for the purpose of testing hypotheses. Statistical tests of model adequacy
also depend  on such results.

In many applications, the vector of random yariables (Xt,Et) may not be
identically distributed or independent over time, This engenders both
theoretical and practical problems. General conditioﬁs which ensure the
consistency and asymptotic normality of the WLS estimator are provided in
Domowitz and White (1982). The purpose of this paper is to provide the
applied researcher with the practical consequences of the theory and to
provide an application to fish population models. With heterogeneous, time-
dependent explanatory variables and errors, the usual parameter covariance
gstimator is inapplicable, yielding standard errors of incorrect size and
invalidating common hypothesis testing procedurés. A covariance matrix
- estimator which is consistent regardleés of the presence of hetercscedasticity
and/or serial correlation of unknown form in regressors and errors is
presented. Robust forms of common test statistics are given, justifying

analogues of the familiar t and F tests. Direct tests for heteroscedasticity
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where szt is the pxp matrix with elements Szft(Xt,B)laeiBBj, i,jell,...,p},
evaluated at eo.
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Conditions are provided in Domowitz and White (1982) which guarantee that
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vn B, A (8 90) is asymptotically distributed as N(O,Ip), where B

denotes the inverse matrix square root of Bn’ which is assumed to be positive

definite for sufficiently large n. The asymptotic parameter estimator

covariance matrix may then be written as Cn = A;l Bn Anml. Note that C, may

be a function of n, and is not required to converge to a limit, a restrictive
and unnecessary assumption that is avoided here. The asymptotic normality
result provides the basis for hypothesis testing procedures, provided
consistent estimators for A, and B, can be found. Before examining this
issue, Insight into the covariance structure may be gained by examining
several special cases.
In the linear model with fixed regressors, AH/Z = i'i/n, where X is the

nxp matrix with rows thXt. in nonlinear modelé, the second term

(sztstwt) usually vanishes, because it is assumed that the conditional

expectation of ¢

. B
= 1
An 2n tzl E(Vft Vft).

The form of B, depends on the joint stochastic structure of the

. given the explanatory varibles Kt, is zero, yielding




C = Afl B A_l provides the time-series generalization of White's (1980)
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heteroscedasticity—consistent covariance matrix estimator. Along with the
asymptotic normality result, it may be used to develop asymptotically wvalid

hypothesis testing procedures. Suppose it is desired to test
H 8 =0
H s( o)
against the general altermative
: #*
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where s(9) is a coantinuously differentiable function, such that its Jacobian
at 80, Vs(@o), is finite and has full row rank k., For example, k linear
constraints would yield S(BO) = RSO - r, where R is a kxp matrix and r is a k—
vector of constants. Under similar conditions to those used to demonstrate
the asympototic normality of the WLS estimator, it can be shown that
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has the xz distribution asymptotically with k degrees of freedom, where
g = s(en)
Equation (9) is the familar Wald test [ecf. Rao (1973), p. 417] with a
robust parameter covariance estimator. It is sometimes the case that the
alternative 1s substantially more complicated than the model under the nulil

hypothesis., In such cases, the Lagrange Multiplier (LM) principle can be used

-

to test H, against Hj. Let en be the WLS estimator under the null hypothesis;

i.e., the minimizer of the weighted sum of squares subject to the constraint




inference. If the tests reject the null hypothesis that Bn = 2002An, further
calculations are necessary in order to construct the appropriate estimate of
C,s given by (6) and (7). These tests may be applied to unweighted

regressions, or to weighted or otherwise transformed regressions in order to

verify constant error variances after transformation., The tests will also be

sensitive to situations in which. the model is misspecified in such a way as to
“produce inconsistent estimates of Bo.
Without heteroscedasticity, the first term of Bn in equation (5) equals
2002An, and without serial correlation in Vf! ¢ W ;he remaining terms

t te?

vanish. Heteroscedasticity in isolation may be examined by comparing the
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first term of B to 20
n n

An' Serial correlation in the gradient-error
crossproduct may then be examined by comparing each of the remaining terms
of B to zero.

o .

The statistic for the heteroscedasticity/misspecification test is the
game ag that given in White (1982) for the case of independent observations.
Let,Vft(G) be the lxp vector with typical element fti(e) = aft(xt,e)/aei.
Under the conditions given in White and Domowitz (1981}, the appropriate test
statistic is asymptotically distributed as xi under the null hypothesis,

o
B = ZciAn, and is given by n times the constant-—adjusted RZ from the

n

artificial regression
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where Y _, is the lxk; vector with elements fti(en)ftj(en)’ i,j e{l,...,pl.
An analogous test for the presence of autoregressive conditional

heteroscedasticity [ARCH, see Engle (1982)} can be constructed under similar

conditions, replacing the vector wtO in (3.1) by a g-vector of lagged squared



This fact has been exploited previously in the context of maximum
likelihood estimation and agymptotically efficient estimators [e.g., Hausman
(1978) and White (1982)]. The next test does not rely on asymptotic
efficiency, since this would generally require a knowledge of the joint

distribution of the errors and covariance statiomarity.

Let {Sln} and {Gzn} be two sequences of WLS estimators using weights

{Wlt} and {WZt}' The sequence {Wlt} may simply be a sequence of ones,

making §

1n the unweighted nonlinear least squares estimator. Under the

conditions in Domowitz and White (1982), any misspecification

A

implying E(€t|Xt) # 0 is eventually measured by aln - an. If the model is

correct, /n(@ln - §2n) should have mean zerc and be asymptotically normally
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The covariance estimator required for the test statistic is given by
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where A_ , B, are evaluated at 98, .
in’ Tin in

Under conditions given in Domowitz and White (1982), the statistic



model are apparently incompatible. Comparisons of the test results with the
theory generating the model may suggest ways of respecifying the regression
function. Finally, the direct test for parameter inconsistency given by (15)
may be applied to determine whether the resulting specification is correct.

If the latter hypothesis cannof be rejected, the WLS estimator may be taken to
he consistent for parameters of interest, allowing proper interpretation of

_ the results. The heteroscedasticity-robust Wald or LM statistics may then be
used to test hypotheses of interest, even if the covariance structure of the
errors is incorrectly specified. Rejection is an indication of the
inconsistency of the WLS estimator for parameters of interest, and signals the
need for another careful reexamination of the model. These tests are
obviously dependent, and a treatment of the complicated pre—test problem
inherent in such a procedure is beyond the scope of this study. In any case,
such a prbcedure shoﬁid provide some insurance against improper use of a

misspecified model.

ESTIMATION OF ANCHOVY POPULATION DYNAMICS MODELS -
The fundamental basis of the current fishery management plan for the

northern anchovy (Engraulis mordax Girard) is a stochastic model of anchovy

population dynamics (see footnote 1). The results of the preceding sections
are applied here in the estimation of alternative anchovy population models.
The uorthern anchovy is abundant off the coast of California and Baja
California. The central stock extends from 30°N to 38°N and has been
estimated at 3 to 4 million short tons of spawning biomass in recent years

[Vrooman and Smith {1972), Smith (1972), MacCall (1980)]. The reader is

referred to MacCall (1980) for a discussion of historical growth patterns and

of the application of growth models to the management of the anchovy fishery.




where u, ig a randem disturbance resulting from stochastic variability in the

recruitment relation. For example, recrulitment might be approximated by a
Ricker curve, giving
(17) B =S B _ +ab___ e Bl -C __ +u.
t t-1"t-1 t-1 t-1 t
_More generally, surviving biomass and recruitment may be combined, and the

biomass dynamics approximated by a general parametric specification of the

form

where 9 denotes a vector of unknown parameters to be estimated.
Two alternative specifications for anchovy biomass dynamics were

investigated. The first is a simple power function model, given by

19 8 =aB® +yc o+

(19) t t-1 ¥ t-1 ut

in which the effect of the fishery enters additively. The second model is a
stock~stock logistic specification, derived from the deterministic logistice

function

B =B_/[1 +exp (- (M + rt))]
[see Huppert, MacCall, and Stauffer (1980)] where B_ is the maximum
equilibrium population size and r is the intrinsic rate of growth. The annual

biomass transitions are given by



correlation and found to be serially uncorrelated. The squared residuals were
also tested for up to sixth order autoregressive heteroscedasticlty using the
ARCH test, and no such effects were observed. The direct test for

heteroscedasticity given by (11) resulted in ¥2

statistics of approximately 16
for the unweighted power and logistic functions, indicating a strong rejection
of the null hypothesis of homoscedastic errors at the 5% level of
signifigance. The heteroscedasticity-robust standard errors are thus
appropriate, and the covariance matrix estimator An(én)_an(an)An(én)Ql is the
proper covarlance estimator for use In further diagnostic testing procedures.

Examination of residual plots revealed that the wvariance of the series
appears to increase as a function of the biomass level. The models were
reestimated using several alternative data-based weighting schemes. Since
none of them appeared to produce errors with constant variance, only the
simplest is presented here for ﬁurposes of comparison. The rows of Tables 1
and 2 labelled 1/B_ contain parameter estimates obtained by weighting the
squared residuals by the inverse of the biomass level at each time period.
Weighting the regression functiom appears to produce a higher equilibrium
biomass in ;he logistic model, but the rate of growth turns negative,
indicating an unstable model. The standard error on that parameter is quite
large, however. The weighting decreases equilibrium biomass in.the power
function specification, from 2.81 million tons to .27 million tons, although
forecasts of B, from the weighted and unweighted regressioné using By_; = 2
million. tons are 1.6 and 2.2 million tons, for example, a much less drastic °
difference.

The effect of catch on the biomass transitions decreases for the weighted

regressions, and the standard errors are large. The bottom rows of Tables 1

and 2 contain parameter estimates using only the raw biomass data, without



‘rejected. Tt might be noted that: the logistic model is not strengly rejected
based on this particular test of model adequacy. The instability of the model
estimated by Weighfed least squares casts additional doubt on its usefulness

as a forecasting and management tool, however.

SUMMARY AND CONCLUDING REMARKS

The practical implications of a unified theory of nonlinear estimation
methods and assoclated statistical inference is presented in this study for

the case of weighted nonlinear least squares estimation. Observations may

come from a stratified cross—-section, stochastic time-series, pooled cross-—
section/times-series, or eﬁperiﬁent. The data may be hetercgeneous with
respect to their distributiomal properties. Regression.errors may be serially
correlated and/or heteroscédastic.

The asymptotic distribution of the weighted least'squareé estimator is

normal, with mean zero and a covariance matrix which differs from that in the

classical theory. A consistent estimator for this parameter covariance matrix
is provided. These results are used to provide statisties valid for testing

hypotheses of interest in spite of heterogeneity in the data and errors.

Direct tests for heteroscedasticity and serial correlation in the
gradient-error crossproduét are given. These tests are useful in assessing
the validity of standard inferential procedures, as well as providing a check
on the efficacy of certain types of weighting schemes and data
transformations. Axtest for overall model misspecification is also provided.

The methodology is applied to the estimétion of alternative population
models for the northern anchovy. Diagnoestic testinag procedures reveal severe
weaknesses in the logistic population ﬁodel, which has been used previously in

assessing fishery management plans for the northern anchovy. A simple power



TABLE 1

POWER FUNCTION ESTIMATES

WELGHTS a 8 _ Y
1 6.03 774 | -1.48
(4.49) (.093) (1.05)
(3.83) (.082) (1.21)
1/By 1.72 .903 ‘ -.263
(1.36) (.105) (.732)
(1.25) (.094) (.723)
1 - 3.72 .823
(3.04) (.106)
(2.65) (.094)
1/3, 1.52 .916
{(1.19) (.106)
(.979) (.088)

Number of observations = 32



FOOTNOTES

1 sSee, for example, Huppert, MacCall, and Stauffer (1980) and MacCall (1980)
for a discussion of the issues in the anchovy management plan. This
plan is currently under review, partially due to changes in the anchovy

biomass data base.

2 More precisely, the condition states that L + @ gs n * ® guch that

2=0(n"), 0 <Y <8/(r+8) <1/2, where § > o and r > 1. The

parameter r indexes the amount of dependence in the regressors and

errors.

3 Treating Bn term by term leaves open the possibility of detecting some

departure from the null hypothesis appropriate for each term, which

2

nevertheless yields Bn = 200

An. Such cases should be rare, however.
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Figure 5

LOGISTIC MODEL
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