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ABSTRACT. This is the first of three papers introducing a theory for positional voting methods
that determines all possible election rankings and relationships that ever could occur with a profile
over all possible subsets of candidates for any specified choices of positional voting methods. As
such, these results extend to all positional voting systems what was previously possible only for the
Borda Count and the plurality voting systems. In this first part certain mathematical symnetries
based on neutrality are used 1) to generalize the basic properties that cause the desired features
of the Borda Count and 2) to describe classes of positional voting methods with new types of
election relationships among the election outcomes. Some of these relationships generalize the
well-known results about the positioning of a Condorcet winner/loser within a Borda ranking, but
now it i1s possible for the Condorcet loser, rather than the winner, to have the advantage to win
certain positional elections. Included among the results are axiomatic characterizations of many
positional voting methods.

1. OVERVIEW AND SYMMETRY

How should the outcome of a positional voting election be interpreted? For instance, suppose
four candidates are ranked by the positional voting procedure where three points is assigned to
a voter's top-ranked candidate. one to a second-ranked candidate. and zero to all others. For
a given profile, are there restrictions among the admissible rankings for this positional method
and the plurality rankings of the four subsets of three candidates? (Yes.) Suppose ¢; wins in a
four candidate election where six, three. one, and zero points are given. respectively, to a top.
second, third and bottom ranked candidate. Does this fact impose any restrictions on how she
would fare in two and three candidate plurality electious? (It does.) Are there any restrictions
on the admissible choices of the plurality ranking of the four candidates and the anti-plurality
(or the plurality) rankings of the four scts of three candidates of a profile? (No.) These ques-
tions form a small portion of many natural 1ssues that can be raised about the interpretation
of single-profile positional voring eclections. The purpose of this study is to describe a theory
to answer these kinds of questions for all possible positional voting procedures.

More precisely. this is the first of three articles to extract and use new implications about
“neutrality™ to completely characterize all possible election outcomes of positional voting meth-
ods.! In this first part I introduce the positional voting processes and some of their election
relationships. As it will be shown, several new kinds of restrictions on election rankings energe.

This research was supported in part by NSF Grant [RT-9103180.
!Consequently this study completes the goal of characterizing the set of all possible kinds of single-profile

election rankings and relationships that ever could emerge over all subsets of candidates for any specified choices
of positional voting methods.
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For instance, while some of the election relationships involve extensions of the concepts of a
“Condorcet winner” and a “Condorcet loser,” we encounter the surprising conclusion that all
positional voting methods except the Borda Count can place a Condorcet winner at a distinet
disadvantage!

In the second paper (Saari [10}). T introduce other relationships and I deseribe the geometric
structure of this set of voting methods. From this geometry, a partial ordering is defined
over all positional voting methods; an ordering that characterizes which methods impose more
restrictions on the election rankings than others. The third paper (Saari [11]) is more technical:
here I describe the actual election rankings (norinalized tallies) of the different subsets of
candidates for a given profile. In this way, all of the election rankings associated with given
sets of positional voting procedures are characterized. The proofs for the major conclusions of
this three part study rely upon the technical details derived in this third part.

To start this first part. recall that a positional voting method for n candidates is defined by
a voting vector of weights

. ,
w' = (wp wa. . ... wy). w; 2wt =1,....n—1.wy > w, =0.

In the tally of a ballot, w; points are assigned to the ith ranked candidate: each candidate’s
election ranking is determined by the sum of poiuts assigned to Lher where “more is better.” In
this manner the plurality svstem 1s defined by the voting vector (1.0,...,0) while the Borda

Count (BC) is defined by Br = (n—~1.n-2,...,0).

The goal 1s to determine what kind of relationships emerge among the election rankings
when different positional voting methods are used. One 1ssue i1s to see what happens with
changes in the procedure used to tally the same n-candidate election: this is analyzed in Saari
[12]. In this current series of papers I consider clection relationships among the subsets of
candidates.

When considering election relationships over different subsets of candidates. the Borda
Count (BC) plays a critical role because. as we now know. the BC is the unique positional
voting system to minimize the numbers and kinds of single profile “paradoxes™ that ever could
occur. (See (Saari [6, 7, 8]); to be denoted as [S} in what follows.) Restated. this assertion
means that the BC is the unique positional voting syvstem to maximize the number and kinds
of relationships that occur among the clection rankings of the different subsets of candidates.
In particular. these relatiouships ([7]) prove that the BC is the unique system to maximize the
consistency of election rankings over all possible subsets of candidates.

While the results of [S] resolve several theoretical issues from choice theory. they also in-
troduce the new questions answered here. For instance. why does the BC have 1ts desirable
properties? If. in the above sense. the BC is the “best™ choice of a positional voting method.
are there “second-best.” “third-best.” methods? In fact, does any other positional voting
method admit relationships among the election rankings of the subsets of candidates and. if
so. why? As shown here. there are an infinite number of such methods.

These new classes of positional voting methods are derived by exploiting the standard sym-
metry assumption of neutrality (and, implicitly, anonymity). More specifically. the principal
idea of this study is to show that when neutrality is combined with certain voting vectors we
discover new kinds of symmetry that become apparent only when the election outcomes for
different subsets of candidates are analyzed simultancously. Tt is this “super-syvmmetry” that
creates the election relationships.
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To develop mtuition about these “super newtrality” symmetry properties and the relation-
ships rthey derermine, T reviess the BC o svmetry ro explain why it canses the desirable BC
properties: a short listing of these properties as given. Then. the svimmetry ideas are modi-
fied to create thie new classes of positional voring vectors. In Section 20 termns are formally
defined and several new results about clection rankings are given. In Secetion 3 applications
and axiomartic representations are considered. In both Sections 2 and 3. examples are given to
illustrate the basic results and to indicate what other kinds of conclusions can be obtained.

1.2 Neutrality and the Borda symmetry.
For n = 3 candidates. the BC is defined by the voting vector B* = (2.1.0). It turns out

__‘_._&' - . .
that by using B . the weight assigned by a voter to each candidate equals the suin of votes he
would assign to lier over the three majority vote (voting vector (1.0)) clections. To see this.
compare the following assignments of points for the preferences Ay = ¢ = ¢y = c3.

Method  Set of candidates  {c;} {2} {3}
AMajority {er.ea} 1 0
AMajority {e1.e5) 1 0
Majority {ca. s} 1 0
BC< {('1.('3.('7;} 2 1 0]

Thus. the BC voting vector 1s the aggresated version of the majority vote vector (1,03, With
this "aggregated majority vote” Interpretation. we sce why the BC (not the plurality vote) 1s
the "natural” exrension of the majority vote. I underscore this dependeney on (1.0) (which

. . —*-} —33 . .
may go back to Borda) with the notation B® = w”((1.0)). This assignment phenomena
—
extends to all values of n > 3 candidates: namely, with B = {(n — 1.n — 2.....1.0). a
voter gives cach candidate the same number of points as he would over the (1) majority vote
clections. Again, to emphasize the BC dependency on the majority vote voting vector {1.0) I
—
. —
use the notation B = w™({1.0)).

To express this relationship more formally, let S be a subset of candidates. let
.
tw "bl)

—e
5! be the
positional voting vector assigned to S, and let O s(p. be the number of points assigned

to candidate ¢; € § with profile p. As an illustration. let p_y,, denote the siugle voter profile

where this voter has the ranking A, = ¢; = ¢3 = -+ > ¢,. It follows that
i -
(1.1) Cisn Py By 2= ai;Chgere, (P (1.0))
i)

where the o, terms are scalars,
By itself, Eq. 1.1 1s of minimal interest hecanse, with appropriate choices of scalars a; j.any
voting vector admits such a representation for profile p., . For iustance. the plurality voting

vector 1s given by apy = 1, and all other a, ; = 0. At the other extreme. the anti-plurality
vector (1., .. 1.0V 1s captured by a0 = apy = - = a1 = 1 and all remaining a; ; = 0.

Whar distinguishes T from other voting veetors w0 is that the BC is the unique voting
vector where all a, ; terms equal the same positive scalur.

The assertion that all a; ; = « for some a # 0 is a symmetry property. To see this. recall
that the traditional symmetry assumption of neutrality assures us that an election outcome is
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based only on the voters™ profiles: the ranking 15 independent of the names of the candidates.
Namely. if all voters interchange their rankings of Anneli and Natri, then the resulting cleetion
ranking manifests this permutation. More formally. for n candidates. if o is a permutation of
the names of the candidates, if p is a profile. and if fyu(p. ") is the election ranking for the
subset of n candidates 5", then

(1.2) fonlo(p), @) =o(fou(p. T")).

The close relationship between the requirement that all ¢; ; = ain Eq. 1.1 and neutrality can
be seen by applying a permutation o to both sides of Eq. 1.1. The conelusion is that nothing
changes: the same equation holds because «; g = aVi.j. In other words. for all permutations
o. the BC 1s the unique method to satisfy the conditions

(1.3) o(Csn(pa. B")) = ;. 5"(‘7(p¢-1):§”):ZUi.jcj‘{c,,ci}(U(PA)-<1~O))
i<
or
(1.4) U(C'J‘,S”(I).A- _ﬁn)) = Zaa(z,j)C'j.n'({c;,Cj})(p.A~(1~U)}-
1]

Conversely. if these expressions hold. then all of the a, ; terms must equal a fixed consrant:
thie voting vector must be the BC.

The thrust of Equations 1.3 - 4 is that the BC satisfics a more exacting form of neutrality
where this stronger neutrality condition becomes apparent only if the outeomes of different
subsets of candidates are compared simultancously. In this sense. the BC is the unique method
to enjoy this stronger version of neutrality over all subsets of candidates. As an immediate
conscquence of this Borda symmetry. it follows that for any profile p

N
(1.5) Cisn(p. B")=ay Cierey(p(1.0))
1%
where @ = «,; = 1 is the comunon multiple. Thus. the election tally for a BC election is

umquely determined by summing the tallies for the different majority vote elections. and the
BC is the unique method for which this is true. Consequently the BC is the unigue voting
system where the number of points assigned by a voter to cach candidate is identical to what
she would have received in the majority votes over all () ') pairs of candidates.

To describe this “super-nentrality theme” in the more traditional terms of changing the
names of the candidates. notice that this symmetry condition requires the assignment of points
in Eq. 1.5 to be independent of

1. the names of the candidates and

2. the names of the oppouents in each pairwise election.

Thus, only the BC respects this super-neutrality.

As another way to emphasize the BC syunnetry. observe that when neutrality is applied to
a a family (a colleetion) of subsets of candidates F = {S;} where Wil s the voting vector
assigned to a 5; clection. where o is a permutation of the candidates” names. and where pis
the profile. we 11(1\ e that

(1.6) {Ffo, (alp). W g er = {o(fs, (p. W%

Should this family include all two-candidate subsets and should some of the voting vectors

s, er.

Wl he BC vecrors. then we must suspeet (from Eq. 1.5, 1.6) that the Borda svinmetry
ensures the existence of election relationships over the different subsets of candidates. This

happens: indeed. this is the source of the desirable BC properties.
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1.3 Borda Symmetry and Condorcet Winners.
There ave several ways to support my assertion that the desirable BC properties follow from
the Borda symmerry i Eqs. 1.3-51. To start. recall the following standard definition.

Definition 1.1. Candidare ¢; is o Condorect winner if she wins all majority vore eleetions
when compared with cacli of the other candidates, Candidate o is a Condorect loser if she

loses all majority vote clections wlhen compared witl eacli of the other candidares.

From Eq. 1.5, 1t can be shown, for instance, that a Condorcet winner never i BC botrom
ranked. a Condorcet loser never is BC rop-ranked. and a Condorcet winner always is BC
ranked above a Condorcet loser. (See Smich [14]. [S]. ete.) With reflection (using the above
discussion and Eq. 1.5). these conchusions must be expeeted. and. perhaps. they were known
by Borda. After all. in order for ¢; to be a Condoreet winner. she must win all of her (1 — 1)
pairwise elections. so her point total on the right hand side of Eq. 1.5 must exceed that of at
least one other candidate. This happens, and an elementary proof can be fashioned from this
deseription. To see this in the special case where there ave = 3 candidates. & voters, and ¢
is the Condorcet winner. we have that

. -1 :
Cigerry(ptl.0)) = 5 €1,k

| R
CJ‘{,I‘(‘)}[\I_).(]. ())):{3—Fl_)“[\‘.jﬁg.ﬂ.
| T
Cj‘{‘z.f':s}([)‘(l ()‘) = [f) *1-'(&-_».‘5‘:/‘1',

, 1 .
C;{,,_,H}(I).[l ()))“Lsf(lgﬂjgjh'

where € ; > 01is the (fractional) amount over & of ¢ 's victory over ;o the sien of fractional

difference (from 3) asy determines whether es or oy wins their PAITWIRC CONTEST.
Substituting these values into Eq. 1.5 leads to

{l

[1 + €10 T f[‘_‘j}/ﬁ > ke

¢ —.
Cyereeea) (P B
b

Y =[1= €10+ azylh

C'J-{f‘lv('zqf;s}(p'
CVJL{V:.F':J::;}(D. E:;) = H — €13 — ("_’,-‘iw"-

Now. if ¢p is not BC top ranked. then anothier candidate. say ¢,. is. This requires s 4 >
2¢1 0 4+ €13 > 0. But the fact that az 4 > 0 ensures that ¢y s BC bottom ranked. A similar
argument holds for all #» > 3. Closely related arguments prove other assertions such as the
Condorcet winner must be BC rauked strietly above a Condoreet loser. ete.

Although with Eq. 1.5 it is almost trivial to show that relationships among the Condoreet
winners (losers) and the BC election rankings must hold. what is not obvious is the much
deeper conclusion that the BC is the only positional voting wethod where its rankines muse
reflect. in any manuer whatsoever. the majority vote rankings of the pairs of candidates. This
assertion is one of several consequences of the Borda symmmetry properties derived in [S}: many
of these statements are generalized here.

I subtle ways the Borda symmetry admits other kinds of consequences. To illustrare, this
syumunetry condition plays a critical role in defining axioms to characterize the BC. For instance.



f3 DONALD G SAARI

the principal axiom in Young's important paper [17] chiaracterizing the BC essentially asserts
that if all pairwise elections end in tie votes, then the outcome of the full election must be a
complete tie. By use of Eq. 1.5, this condition holds trivially for the BC. so Young's condition
is a special case of the binary symuetry.? What is not obvious is that this condition does not
hold for other voting systems. Young showed that this condition is unique to the BC; in [S] it
1s shown that any such condition 1s unique to the BC. Extension are in Section 3.

Alternatively, in (Saari [7.8]) I showed how to construct many other axiomatic characteriza-
tions for the BC. In cach case the central axiom reflects either a "pairwise svmmetry condition.”
or. more often. a property derived from the Borda symmetry conditions. As thie BC is the only
method manifesting the binary symmetry, any such axiom or condition immediately isolates
the BC from all other positional voting methods. Using this idea, it can be shown (Saari [7])
that almost any condition relating an election outcome (or outcome of a choice function) to
what happens with the pairwise elections either plays e principal role in characterizing the BC.
or it leads to an vmpossibility theorem. For instance, Young's condition can be replaced with
the much weaker axiont that if the pairwise elections all are tie votes. then a single candidate
cannot be top-ranked. or with the sienificantly different requirement that a Condorcet loser
can never be top-ranked. These axiomatic representations are generalized in Section 3.

In a different but related direction (Saari [8]). this Borda symmetry condition is used to
characterize the families of subsets of candidates where eleetion relationships can emnerge. The
idea is to use the Borda symmerry to define o “binary independence property™ and the “evelie
dimension” of a family of subsets of candidates. These concepts are then used to characterize
those families of subsers of candidates that admit election relationships. {Also see J. Kellv's
column [4].) Generalization are in Seetion 3 and [10].

As a partial sample of srill other consequences of this binary symmetry. consider the set of
profiles defining a specified election ontecome. One might correctly suspect thar if the BC is
used in an election, then the BC symumnetry imposes a symmnetry on these sets of profiles. To
anticipate what consequences result from this fact. recall from geometry that the regions with
a maximuii volume or a minimum swrface area are the “symetry regions.” This suggests that
the BC symmetry imposes similar properties on the sets of profiles leading to certain election
outcomes. This is the case.

An application of the “maxiimum volume™ implication related to the BC is in J. Van Newen-
hizen’s paper [16]. She significantly extends the nice Fishburn and Gehrlein result [3] asserting
that the BC maximizes the probability that certain desired election rankings will occur. The
Fishburn- Gehrlemn proof is for n = 3 candidates: Van Newenhizen's result holds for all n > 3
candidates and for much larger classes of probability distributions.

As an example of the implications of the “minimal surface arca”™ related to the BC. it is
shown in (Saari [9]) that the BC either minimizes. or comes close to minimizing {(depending
on the value of 1) the likelihood rhat a small group of voters can suceessfully manipulate an
clection outcome. A related result is that the BC minimizes or comes close to minimizing
the likelihood that by changing the way they vote, a small group can change the election
outcome.? These assertions involve propertics of the houndaries of sets of profiles because if a
small group of voters can alter an clection outcome then the manipulated profile must be near

I\ ore technically, because the pairwize elections end in ties. these outcomes are invariant with respect to
any permutation of the names of the candidates. [If the election outcome for n candidates is to preserve the
same kind of neutrality, then it must be a complete tie.

The difference between the two conclusions is that. for the first. the change must benefit the manipulating
voters.
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the boundary of those protiles detimine the original ourcone.

On the other hand, with a laree, well coordinared group effort o manipulate an elecnion
outcowte. the BC rends to be one of the more manipulable systems [910 This is beeause with
laree, carcfully coordinated group manipulations. the manipulared protile can be anywhere
in the set of profiles leading to the sincere outcome, Consequently. this analysis involves the
volunie of the profile set associated with each outcome: a volume that tends to be maximized
by the BC symmerry.

All of these results are direct consequences of the bmary syrmmetry exhibited by the BC.
What is important for the current discussion is that all of these results extend to other classes of
positional voting methods when the binary syimnerry is replaced by the generalized svmmerry
considerations introduced below.  As such, this review of the BC conclusions serves as an
outline of what to expect from the new classes of voting vectors: these extensions are given

below and in [10. 11]

1.4 Extensions to four and more candidates.

For n = 3.1t is known [S} that the BC ix the only method to admit any kind of relationship
among the election rankings. So. to extend the BC synunetry properties to other methods we
need n > 4 candidates. The idea is to mimic the above construction with a A-fold symmerry
a symmetry that caprures distinetions among the elections of b-candidare subsers. Start with
b =3 and a voter with the ranliue Ay = ¢ = ¢ = ey = ¢y and find the munber of poinrs he
&

gives to cach candidate when w™” = (wy.wy. 0) 1s assigned to cach triplet of candidates. The

following occurs wiere I use wy instead of zero to display the wyws symmerry,

Subset of candidates  {¢} {c2} {eg} {eu}
{(‘].(‘g.(';;} 4381 [AN) s
{(.‘] LCoy (.'4} iy wa s
(1?) {(‘1.(‘:}.(‘_1} wy o Wy
{es ez} Uy wH 1w
Totals 3wy, wyp + 2ws 2w oy 3wy

From 1.7, it 1s reasonable to conjecture that there is a relationshinp ammong the (wy.oiws.0)
positional clection rankings of the four sets of triplets and the clecuon ranking of the four
candidates with the voring vector

Tl = W) = (3w oy A 2w 20w, 0).

This conjecture is true. Indeed, from the derivation of W ). we see that W w'?) is

3

the ageregated outcome of the four 0% elections — thas @' @) 1s the nartural extension of

@? from three-candidare subsers to the set of four candidates. The matliematical support
for the existence of relationships is that Egs 1.3 - 5 extend immediately (Eq. 1.8) to this
three-fold symmetry sitwation if @ is used with cacli three eandidare election. Consequently
the w1 ?) - pair generalizes the “BC-majority vote™ conneetion.

Proposition 1.1. For the candidates St = {ev.eaceqiey ). let Fy denote the four subsets of

three candidates where w? = (wy. w2, 0) Is assigned to cach of them. For any profile of voters.
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p. the following holds.

(1.3) CJ,S*( P. w t( T )= Z C'J‘b'( P. .

.S'e }‘.’{

An mmediate consequence of this proposition i1s that there must exist relationships —
restrictions on the admissible election rankings over the subsets of candidates — amone. say.
the plurality (1.0.0) rankings of the four sets of three candidates and the wW*((1.0.0)) =
(3.1,0.0) ranking of the four candidates. This particular “triplet-symmetry” generalization
of the binary “"Borda symmetry”™ justifies the first assertion in the introductory paragraph of
this paper.

Using Proposition 1 and examining the kinds of election relationships that occur for the
“BC-majority vote” pair. it is easy to conjecture what types of relationships are admitted by
“WW3)-w3" pairs. For instance. suppose ¢; is w° top-ranked whenever she is involved
in an clection of a subset of three candidates. (In Section 2. this is called a 7w -Condorcet
winner ). Municking what oceurs with the BC when Eq. 1.5 is used. it is reasonable to
conjecture that she cannot be @ @?) bottom-ranked in the set of four candidates. The
reasoning is that a w?-Condorcet winuer must win all three of the @? elections in which she
is involved. so she must garner more points in the ageregated w(w?) election than some
other candidate. In other word. the tallies from her w'? victories add substantially to the
terms 1n the summation of the right hand side of Eq. 1.8, The clementary proof showing that
this conjecture 1s correct closely follows my carlier argunent showing why a Condorcet winner
cannot be BC bottom ranked. but now Eq. 1.8 replaces Eq. 1.5 to reflect the rriplet-symmetry.
What i1s surprising is that this assertion holds only if all four sets of three candidates are talliod
with @ while the set of four candidates is tallicd with WY W?). (Saari [11].) For any other
choice of voting vectors for three candidate subscrs. no relationships whatsoever exist!* This
means that rankings can be arbitrarily assigned to the four sets of three candidates and the
set of four candidates. and a profile can be found where the assigned outcomes are the actual
election rankings! This assertion is illustrated in the next example.

Example. We have sufficient information to design several new. intricate comparisons of

election rankings. For instance, let n = 4 and let @1 = (3.1.0.0) be used to tally the election

for the set of candidates {¢y.ea.¢3.04}. Let the BC (33 = (1.0)) = (2. 1.0)) be used to
tally the elections for the four sets of three candidates. As (3.1.0.0) # @ 1((2.1.0)). there
need not be any relationship wharsoever among the election ranking of all four candidates
with the BC election rankings for the four sets of three candidates. Thus. for example. there
exists a profile p so that the (3.1.0.0) clection ranking is ¢; = 2 = ¢3 = ¢;. but each of
the three-candidate BC clection rankings is the natural restriction of the reversed ranking
¢y > c3 > ¢y > c¢r. In other words. even though ¢ 1s the BC-Condorcer loser. she wins the
(3.1.0.0) election. This must be viewed as a counter-intuitive conclusion.

Now consider what happens if instead of the BC, the plurality vote is used with the four sets
of three candidates. In this situation. no profile exists that defines the above set of five rankings

*This statement can be modificd with certain restrictions. For instance, if @3 is used only with the three
subsets {ep ea, o5} {epcaen b {er ez eq ) that include ¢ and if ¢ is a w?-Condorcet winner., then she cannot
be W (?)-bottom ranked. However. in this setting this assertion holds only for ¢y e.g.. if a different voting
vector s used with {ra. ey, e}, then, for any of these three candidates, there are profiles where the designated

candidate wins all elections with three candidates, but she is (7w ?)-bottom ranked.
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because 13.1.0.0) = w7 1.0.01), Thus, for iusrance. with the above profile p ensurine ¢ as
the (3.1.0.0) top-ranked candidare for the set of all four candidares. it 1s impossible for her
to be the plurality- Condorcet loser over the four =ets of three candidates. Sinilar assertions
apply to any Wttty W panr.

Nevertheless, if the BC is used with the three-candidate elections, we cnsure the existence of
other kinds of regulariry amoung the election outcomes: i.e.. relationships that cannot occur with

(1.0.0) and (3.1.0.0) election outcomes. This is because the {1.0.0) and (3. 1.0.0) election

outcomes are not related to the outcomes of the pairwise elections: ouly the BC outcomes

are. So, with rthe same profile p and rhe above BC (E"“ = 7 7((1.0))) election outcomes
for the four sers of three candidates, we know that it is impossible for ¢ to lose a majority
vote election to any two other candidates: it is impossible for ¢3 to lose to both ¢; and ¢..
This 1s because if ¢4 lost to both candidates. she would be a Condorcet loser in the subset
{e1. e ez}, s0 she could not be top BC ranked in this subset. Likewise. if ¢ lost two of the
pairwise elections. she would be the Condorcet loser for sonme subset of three candidares. and
this would preclude her being BC top-ranked in this subset. O

To extend this approach of creating pairs of voting vectors to all inreeer values of s n for
2 < s < n,start with a voting vector . With the one voter profile py, (i.e.. this voter has
the ranking A4, = ¢y > -+ > ¢,,). determine the nuber of points he assiens to cach candidate
over the (7) sets of s candidates where @7 is used. The sum of points assigned to candidate
e is the Jth weight (or component) for voting vector w™(w’*). j = 1..... . The resulting
voting vector w (1w ) is the aggregated version of the voting vector @®. so the W)
— ™ pair must reteet an s-fold symmetry mmony the election rankings: a syvmmetry ensured
by using W™ to tally cacli of the (") sets of s candidates. These relationships are of type
where a 10 -Condorcer winner cannot he 07w ” »-bottom ranked. or where a 077 Condoreet
winner is w0 ") ranked above a w® Condoreet loser. A formal study of this is started in
Section 2.

The W)~ pairs do not exhaust all ways there are to find positional voting methods
with relationships among clection rankings. To illustrate another possibility, let n = 4 and use
the single voter profile py, to compute the number of points assigned ro each candidate in
the four @ elections of three candidates and in the six binary elections. The swm of points
assigned 1n this way to ¢; defines the w; values. j = 1..... 4. for the voting vector for four
candidates: 1t 15

{ =
| +—

(1.9) T (1.0).

o] —

oy = (3 + 3. 20w + w0y + 2. 2w + 1.0).

~J
4

[
l

Inn defining this voting vector. equal emphasis is placed on the points assigned to the eandidates

from the binary elections as to those assigned in the clections of three candidates. (Tlhis is the
. . 1 1 v . . . .

meaning of the term {5.51) With mmother ratio where, say. twice as nmeh weight is placed

on the triplets as on the binaries, we obtain the different voting vector

21 1

a5 s }) = T‘(GH'; + 3.4U‘_} + 2[[‘] + 2.—11{‘2 + 10)

33 3

: : s —> 5 —_—

The voting vector @' {(a® 41.0). {2,317 is an ageregated forn of the @° and (1.0) our-

comes. so we must expeet these voting veetors to exhibir still a different kind of neutrality

W L0y

*This notation 15 temporary: in Section 2 it will he shighuly chauged to reflect propertios of the sealar
welghts,
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again. this symunetry becomes apparent only by simultaneously examining the three different
types of subsets of candidates. This symmetry can be expressed in a form similar to Egs.
1.3-4. or its extension Eq. 1.8. which 1s

C,si(p. W (1.0). Z Cisip. w’) + Z Cene, 1 P (1.0)).

SeFy 1<

H) =

SV
| =
|
VAR

We know from this symmetry relationship that voting vectors of the type given by Eq. 1.9
must admit relationships among election rankings. To develop intuition about what kinds of
election relationships to expect. consider the special case where the three candidate subsets are

plurality ranked (™ = (1.0.0)). and the set of four candidates is assigned the voting vector

wt = wH(1.0,0).(1.0). {%l}) = ;(6.3.1«0).
272 2
Now suppose profile p is such that ¢, is the Condorcet winner and ¢ 1s the plurality-Condorcet
winner. (Namely, cx wins all plurality elections of three candidates in which she is involved.)
As it turns out [11]. ¢; and ¢; need not be the same candidate: there are profiles where ¢; is
the plurality-Condorcet loser and ¢, 1s the Condorcet loser. In fact. there even exist profiles
where the above occurs and these two candidates are tied as being bottom- ranked 1 the

%(6.3. 1.0) election ranking! Thus this triplet (%(6.3. 1,0)-(1,0.0)-(1.0)) of voting vectors

does nat admit election relationships of the type guaranteed by E)"' =(3.2.1.0) = @'{{1.0)
(where ¢;, the top candidate from the binary elections. is assured of not being bottom ranked
in the set of all four candidates). nor of the type guaranteed by (3.1.0.0) = @ ((1.0.0))
(where cg, the top candidate from the triplets. 1s not bottom ranked).
To see what kind of refationships @ '((1.0.0).(1.0). { 1. 3 }) does impose among the election
rankings, we need the extra condition that ¢; = ¢x. (1.e., the same candidate is the Condorcer
winner and the plurality -Condorcer winner). In this restricted situation. she cannot be botrom-
ranked in the set of all four candidates when $(6.3.1.0) is used. Aorcover. unless a BC or
a wHW?)-w? pair is used. this is the only way to ensure that such a relationship exists.
Incidentally, this explains the second assertion of the introductory paragraph of this paper.
To give a hint about some of the surprises that can arise with the extension of this con-
struction, let me note that the same voting vector (6.3.1.0) can be derived by using point
totals assigned to candidates over the three-candidate subsets using (3. 1.0) and the pairwise
elections. With this information. it is reasonable to expect the above kind of assertion to hold
where if ¢; is both a (3.1.0)-Condorcet winner and a majority Condoreet winner. then she
cannot be (6.3,1.0) bottom ranked. However. this assertion is falser for many profiles ([11])
she 15 (6.3.1.0) bottom ranked. Instead, the operative relationship is
“if ¢ 1s both a (3,1,0)-Condorcet winner and a majority Condorcet {oser, then she cannot
be (6.3.1.0) bottom ranked.”

A related relationship emphasizing the lack of respect shown to the Condorcet winner is:
“if ¢; 1s a majority Condorcet winner and the {3.1.0) Condorcet loser. then she cannot
be top- ranked in a (6.3.1.0) election. However, it is possible for ¢; to be both the
(3.1.0)- Condorcet winner aud the majority Condoreet loser, and (6.3.1.0) top-ranked!”

These assertions are highly connter-intuitive. The reason the advantage m a (6.3.1.0)
election now goes to a Condorcet loser rather than a Condoreet winner 1s that the voting
vector (6.3.1.0) arises by finding how many pomts voter py, assigns to each candidate over
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the three-candidate sets with (3.1.0) (whichh aives the voring veeror (3.5.2.00. and then
subtracting the munber of points assigned to the candidate over rhe majority elecrion of pairs
of candidates. It is this subtraction effeer that reverses the role of the Condoreet winner and
loser in analyzing (6.3.1.0) eleetions. Consequently the agercoation cifeet of using (6.3.1.0)
forces the Condorcet winner to stack up huge point totals in the (3.1.0) cleetions m order for
her to counter the majority vote torals that are being subtracted.

It is easy to use this construction to design many other unexpected conclusions. For instance.
the voting vector (3.3.2.0) is obrained by giving double weight to the py, majority vote
outcomes. and then subtracting the py, three-candidate plurality vote totals. Tlos creates
a situation where the disadvantage in a (3.3.2,0) clection is shown to a plurality-Condorcet
winner of the three candidate elections. Thus. for example. we obtain relationships such as

“a candidate who 1s both a Condorcet winner and a (1.0.0) - Condorcet loser cannot be
bottom ranked in a (3.3.2.0) election: she 1s (3.3, 2.0) ranked above a candidate who 1s
both a Condorcet loser and a (1.0, 0)-Condorcet winner.”

Returning to the basie theme of these three papers which is to characterize election relation-
ships. it is instructive to consider these couclusions m terms of Arrow’'s Theorenn. Tt is trivial
to ensurc complete agrecent i the election rankings over the ditferent subsets of candidates:
first find a ranking of the n candidates. and then use the natural restriction of tlius ranking
for each of the subsetrs of candidates. However. the [IA axiom in Arrow’s theorem outlaws
this approach. So. an alternative construction is to go 1 the opposite direction: 1.e.. mavbe
we should use the rankings of the subsets of candidates to determine the rankings for rhe set
of all candidates. This is the approach developed here in the context of positional voting.
(These results extend to more abstract settings.) To ensure that the ageregated procedure
satisfies neutrality, I extend the synnnetry considerations of neutrality over families of subsets
of candidates. By exploiting the different versions of “super- neutrality,” all positional voting
voting methods where auy sort of relationships. positive or negative, exist among the election
rankings can be determined. Thus, at least for positional voting methods, this approach of
aggregating the election outcomes of the smaller subsets of candidates 1s the ouly viable ap-
proach that exists to overcome the challenge of Arrow’s Theorem. As a corollary. all classes of
voting vectors that admit election relationships must involve {TK(T“)} voting vectors. Thus
these voting vectors can be thought of as constituting a “basis™ for the space of all such classes
of voting veetors. This 1s discussed 1 Section 2 as well as in the other two parts of this study.

2, COMPOSITE VOTING VECTORS

In this section, I deseribe the voting vectors that adimit relationships among the election
outcomes of subsets of candidates. Applications are in Section 3.

The discussion of Section 1 motivates the formal definition of the voting veetor @ ™{(w ™).
2 < & < nfora given voting vector 100 = (. wa. ... . wo—1.0). The jth component of @ 2 w™)
is the number of points assigned by a voter with preferences A, to o) over the () elections of
s candidates with the voting vector @, This process leads to the following definition.

v . ; . — .
Definition 2.1. Let 2 < 5 < o and voting vector @w® = (wy.wa. ... 0,-1,0) be given. The
composite voting vector 1s

j . _
5 S n—1 ‘ j—1 n—j\ ‘
(2.1) Wty = | .1 Wio. ... Z L1 o AT VAN
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— . — . R . ~ .
"R A 1o be defined as a weishted sum of the polnts

One might correctly expect
cast by this voter with the voting vectors @5 and 0 over the appropriate b and s candidate
subsets. This is the case. but we need additional results to describe the weights A = {A\ ] Ay},

Proposition 2.1. The vector (%) is a voting vector with at least n — s +2 > 3 distinet

values for the defining weights. If the weights in W2 satisfv ey > wppr. then the jth component
of W™(W*) is larger than the (j + 1)th for

A<j<n—-—s+k

An immediate consequence is that the plurality and anti-plurality vectors. which have only
two values for the weights. are not composite voting vectors. The significance of this comment
becomes clear in the third article of this series [11] where it is proved that only a composite
voting vector can admit relationships among its eclection rankings and those of the subsets
of candidates. Thus such relationships are denied to the plurality and anti-plurality systems.
This explains the last assertion of the introductory paragraph of this paper.®

In the following. Proposition 2.1 is verified and Eq. 2.1 is derived.

Proof. To derive Eq. 2.1, start with a one voter profile p_y, and determine how many points

¢; receives over all s-candidate subsets where each subset is assigned the voting veetor w'™.

In various subsets of s candidates. ¢; may be top-ranked. second-ranked. ..., or jth-ranked;
which situation prevails depends upon who else is in the subset. For instance. for cj to be
top-ranked, none of the 4, hicher ranked candidates A ={eyiea ¢j—1} can be included.
so the remaining s — 1 candidates must come from B, = {cj4..... ¢t As there ave (777)
such subsets and as () = 1. ¢; veceives () ("27)wy first place points. To find the number

of kth place points. observe that ¢; is in bl place iff she is joined by & — 1 candidates from
4; and s — & candidates from Bj. As there are (i:ll)(';_—i) subsets of this type. ¢ receives
(i:ll) ("Z])wy points from kth place finishes. In total ¢ receives
L /i=1\ /n —J\

Icz::l F-1)\s—1)"F
powmnts. This1s Eq. 2.1.

To prove Proposition 2.1, observe that the weight assigned by @) to a top-ranked

. . . 0 _ — . . .

candidate (j = 1) is () ("2 )wr = ("2])wy > 0 because w; > 0. The weight assigned to a
. . . — 0 —

bottom ranked candidate (j = n)is 3, (;\‘_11) (o )ws = (f:_ll)zc",. = 0 because w, = 0.

It remains to show that the weight assiened to the jth ranked candidate bounds the welght
assigned to the (j + 1)th ranked candidate; naniely.,

S (117 >§ ARV
A UEBVACERY Y s AV a—k )UF

°It s worth noting that this assertion holds for all of the voting veclors where a voter votes for his &
top-ranked candidates. These are the vectors that define an approach kiown as “approval voting.” (See. for
instance, Brams and Fishburn [1].) Consequently, we must expeet serious voting inconsistencles, with assertions
that “anvthing can happen™ to be associated with this procedure. This is correct; sec. for example, Saari and
Van Newenhizen [13. 14]. Brams, Fishburn. and Mersil [2]. and Niemi [5].



SYMMETRY EXTENSIONS OF "NEUTRALITYT I ADVANTAGE TO THE CONDORCET LOSFR 13
There are two situations to constder with the py, assignment process: the first = where ¢
and ¢;41 borly are m the same s-candidate subset. and the second 1= where only one of them
is in the subset. When both are in the sanie subser. then, heeause o) 1s ranked above ¢,
c; recelves at least as many polnts as ¢j4p because wy 2wy As W07 Is a voting vector.
there is a value of & where wy > wigr: here akth ranked ¢ receives more points than G
Tlus positive difference ensures that the jth component of @ (70 15 strietly larger than the
() + 1)th whenever ¢; 1s Ath ranked o at least one s-(‘:m(hdat(‘ subsct. To construct such a
subset. we need & — 1 hieher ranked candidates in Ajos0) =12 k-1 Also we neced s — (A +1)
candidates ranked lower than e son—(j+1) > s =k +1). Thus the difference between wy
and w41 1s manifested in the weights of @’ (@ *) for values of j satisfving b < j <n —s 4 k.
The remaining case is where cither ¢; or ¢j4 1s In a s-candidate subset, but not both. By
interchanging c¢; and ¢j4;. there is a one-to-one identification between those s-candidate subsets
that include ¢; but not ¢;4; and those that include cj+; but not ¢;. Therefore, over these
subsets the number of Fth place rankings for cach candidate 15 the same. so hoth candidates
receive the same point total. This completes the proof. O
:

Example. The BC 1s a special case of this definition where W= = (1.0). For instance.

(2.1.0) = Z2((L.0)) and TLON =(n—1.n—=2.....

0) =
For n = 4 candidates, (3.1.0.0) = 7' ((1.0.0)) and (3 3 2.0
we have that wy > wy = w3y = 0. so & = 1 in Proposition 2.1,

_,

n
0) = -1((1 1.0)). For (1.0.0)
According to the proposition.
there must be three distinet values for the weights of 4 ((1.0.0)) where the jth component
18 larger than the (j + 1ith for 1 < ; < 2: this happens. For the anti-plurality vecror. the first
differences in weiglits occurs berween sy and wy. so the differences in weights i w H(1.1.0))
1s where 2 < 5 < 3. All of the weights m (3.1.0) are distinet, so according to the proposition
all of the weighes in 7w ((3.1.0)) = 19.3.2.0) mmst assume distinet vilues

Another voting veetor with distinet weights is @* = (2.1.0). the BC. Here we have that

l\J

(2.2) WH(2.1.0)) = (6.4.2.0) = 2(3.2.1.0) = 27 (1.0)). O

Equation 2.2 can be generalized and simplified with a standard equivalence relationship for

voting vectors. Nawmely. for a profile p the clection rankings determined by voting vectors w'”

T *

R P
and W™ always are the same iff

(2.3) W =aw" +b(1-- 1) for sealars @ > 0. b,
This is because the effect of the b1+ (1) vector 1s to add the same constant (b times the

number of voters) to each candidate’s rally while the « term ereates a multiple of the final
N . . - —_ . .
tallies. In this paper. two voting vectors ave equivalent, @ = " if they satisfv Eq. 2.3.

From this relationship and Eqgs. 2.2-3 we Lave that

W10 = wWH(1.0)).

. -— . . .y
More generally. a voting vector w ™ = (wyowa. .. .. wy ) 15 (equuivalent to) a BC vector ift
(2.4} w; — ey 15 A fived constant for 7 =1.. ... n—1.

Equation 2.2 is generalized by the nexr assertion,
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.. . —
Proposition 2.2, For 2 < s < k < n, and for any voting vector ' *
o= c > g —F
(2.5) W) = W),

. ; a . —
Conversely, if W™ (W?*) ~ W"(W") where s >t > 2, then W* ~ W ().

Thus if w* has a s-fold symmetry because W+ = Wk(W?), then w"(w*) inherits the
stronger s-fold symmetry because w™(w*) ~ W(W*(W*)) &~ W(w*). To illustrate with
the binary symmetry we have that w™((4,3.2,1.0}) ~ @ ™((1,0)) because (4,3.2,1,0) =
wP((1.0)). Likewise, wW™((3,1,0,0)) = @"((1,0,0)) reflects the three-fold symmetry guaran-
teed by (3,1,0,0) ~ w*((1,0.0)).

This proposition can be viewed as showing how a voting vector can be reduced to its basic
symmetry; this is similar to reducing a fraction to lowest terms. For instance as w?((2,1,0)) ~
w*((1,0)), the form W*((1.0)) better advertises its stronger binary symmetry property.

Proof. Each subset of s candidates appears in (';:;) of the k-candidate subsets. From

. — — e 8 .
the counting argument, we have that (:_3) (W) = W (wr(@*)). The conclusion follows
immediately.

The proof in the other direction is similar, so it is left for the reader. O

“ . . — — . . . .
Definition 2.2. A voting vector W () is in its reduced composite form if there does not
. . — —gy g, — — g —
exist a voting vector w .t < s.so that w"(w?®)~ W (wh).
n

A solitary voting veector '

W (W) for s <n. O

1s one that cannot be Cxpr(?ssed as a composite \'oting vector

The connection between the reduced composite vectors and the solitary vectors is that if
w (W) is a reduced composite voting vector. then @ must be a solitary voting vector.

2.2 Space of Borda Normalized Voting Vectors.

Using different values of @ and b with Eq. 2.3, we can define different normalizations for the
voting vectors to obtain a geometric representation of the vectors. The one used here is what
I call the Borda normalization because it requires the number of points given to a top-ranked

. . - . —_r
candidate to be the same for all voting vectors where the common value is determined by B .

Definition 2.3. The space of Borda normalized voting vectors is

BYV" = {3 |w; =n—1and w, = 0.}

Let W(n,s) C BV be the subset of Borda normalized voting vectors that are composite
voting vectors of the form W' (w*).0

Example. BV = {(2.5.0)]|s € [0.2]}. For instance. the values s = 0.1.2 correspond.
respectively, to the plurality vote. the BC, and the anti-plurality vote. The set W(3.2) = {73*3}
15 a point (the BC vector).

Forn =4, BUVY = {(3.5.£.0)]0 € ¢t € 5 K 3} while W(4.2) = {_3)1} 15 a point, and
W(4.3) = {(3.1 + 5.5.0)|s € [0.2]} is the line segment of normalized WHW?) vectors.
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—
Observe that B! separates W(4.3) inro two disjoint line segments. These two components
constitute the set of reduced composite voting vectors w(7w?). O
Those voting vectors representing the instructions to the voters “to vote for s of the candi-
dates™ play a critical role in our analysis. The Borda normalized form is

s terms

—_
El=(n—-1.....0=1,0..... 0)., s=1..... n— 1.

8

The geometric importance of these vectors is that they are the vertices of BUV1™". Namely.

—
-1 . —_— . — ,r- .
{ £7}52) form a convex basis for BV, so each voting vector @" € B17V" has a unique

convex representation

n—1 n—1
—
(2.6) = E ~s BT a2 0, E ~e =1
s=1 s=1

For instance. the BC voting vector is the barveentrie point of BV hecause
n-—1

—Zn 1 -,
b= n—lZ B

a=1

The composite voting vectors admit clection relationships. so it is important to understand
their relationship with the other voting veetors. This analvsis s started with the following

fundamental theorem that describes their geometric structure.

Theorem 2.1. a. Forn > s > 2. BV V" Is a compact. convex space with dimension n — 2.
!
—_
A convex basis for BVV" s { E*10 21

b. The set W(n, s) is a compact. convex subset of BV V" with dimension s — 2. The convey
s !

basts for W(n,s) is ?”(f‘*)}”_’ Thus if w'* = Z;: ‘,jf“. then

7/ y=1 J
a1 .
(2.7) W) = Zq,j?”(Ej).
j=1
Also
(2.8) BUV"DW(non —1)DWnon =2y D D W(n.2) = {B")].

T} N -t TV A A R U o ; ] ; ey . i T R
c. Lhevotmg vector w’( £ ) 1s an interior point of the line segment connecting w ' E e )

e —_ —
—7n s+1 T S N . : ‘o k T Jn s+l 1 s $+1
and u (Bl fork =1, .s—1 Tlus point Is = of the way from (E77 ) tow ET)
Consequently,

k times

?"(f;f_l):(fz~l ..... n—1.k.0... .. 0).
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d. The set of reduced composiie voting vectors w (0 ®) is Win.s)\Win.s — 1). The set
I 5
of solitary voting vectors 1s BUVUV™\W(n.n —1).

v . — -— N . . .
Proof. The definition of a w"({’?) composite voting vector defines an one-to-one linear
. rror iy v . trp s — gy rrrg .

mapping G7 0 BUV?Y — BUTV™ given by GIHWY) = W™ (W), As BV is a compact.
convex sct, 80 15 W(n.s) = GT(DB1 V7)) both the choice of the convex basis and the dimension
statement arc immediate. Eq. 2.7 follows from the linearity of G

It follows from Proposition 2.1 that
& o on fn—l 0—}—]
(29) GS = rn_loC 2 C
This relationship simplifies the proofs because. by using it. we only need to prove the assertions
for BVV** and W(s + 1.5) = G3H(BV17*): the relationship in Eq. 2.9 guarantces that the
derived properties are transported to B17V"

First I show that Wf(fi_]) is on the line segment joining E ;. and £ 141~ Observe from
Proposition 2.1 that the first & weights in 09 _ﬁi__l ) have the same value a. the (A +1)th has
a different (smaller) value denoted by 4. and the remaining components have the third value
which must be zero. Therefore.

g 1 — :
(2.10) ?J(E;f‘):j_l[(n—.f)Efk+.fE;_

A straightforward computation using the Borda norulaliymiou and Eq. 2.1 shows that a =

J— 1.3 = k. so this point is JL of the way from E w0 EJ bt 5 Gy 18 anone-to-one linear

—
mapping. it follows immediarely that @™ E{) is an interior point at the speeified location on

the line segment joining Tt*'”(fl*’” and ?”(f;i;). By use of Eq. 2.9 this relationship is
preserved in all of the subspaces Win.j).

To prove part d, note that a vector in B‘['V‘“\‘/\/‘(‘s. s — 1) must be a solitary voting vector.
The conclusion follows because Win, s)\W(n.s — 1) = GX(BVI "\ W(s.s — 1)).

The remaining assertions follow fmm Eq. 2.9 and the abox e constructions, O

Example. I find it easier to nuse Theorem 2.1-¢ and Eq. 2.7 to compute @"(0*) rather
than the definition. For instance. (3,1,1.0) = :)fll + %fi Therefore w?((3.1,1.0)) =
2WHEY) + LW EY). By wseof Eq. 2.7, this is 2(4.1.0.0.0) + 1(4.-1..4.3.0). O

2.3 A- Composite Voting Vectors.

With Theorem 2.1. we can define those voting vectors defined first by counting the points
cast by 'k over the (1) subsets for different choices of k. and then assiguing different weights
for the pomnt totals. According to Pr()p()s‘iti(m 2.1, given z > 1 \'oting vectors w ... L. W
the point totals obtained from p 4, with 0% is cquivalent to @™ (@ * ). This suggests that
the weighting process can be defined with the vectors {0 (™ )};:1 mstead of using the
direct count.

There is a further reduction: the goal of the definition is to extract the maximum syimnetries
enjoved by the voring veetor. This is best done by using the veetors in their reduced form.
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For instance. if 2™ = @00 s a veduced composire veetor, then the reduced veetor
. —_— —_— —_— —_— -

notation M @ % should be used rathier than w (%) to reflect the stroiger syinetry.

Notice that ~; > ¢, and that even if the s;%s assume distinet values: the #,°s need not. For

instance, w'((1.0.0)) and @7 ((1.1.0)) could be used to define a A form for 778,

. - . . - - —_—
Definition 2.4. Suppose given z > 1 solitary voring vectors @ V..., 'l where n >t >
2 t: 2 20 Tor a given set of nonzero scalars A = {A; ... A} the \-composite voting
vector 1s
c — g, =t — ¢ — g, ——t,
(2.11) w w i) = E A a .

J=1

The only restriction on the weights in .\ is that the summation on the right hand side of Eq.
2.11 remains in Bi"V". O

Because of the minimal restrictions on the A 's. a X composite veetor need not be in Win.n—
1). To see that YW(n.n—1) does not contain all linear combinations of COMIPOSILe vOTIng vectors.
observe that the relationship between BVTV™ and W{n.n — 1) changes with the value of n.

For example. with i = 3 the point W{3.2) = { B*} divides BV T into two components. This
division property also holds for n =4 because the line segment WL 3) = {(3.1 + ~. 5.0}

S &

[0.2]} divides the two dimensional rriangle 1717 into two components. However. as depicted
in Figure 1, this property fails to extend to 1 > 5 because Winon — 1) fails to divide BT
into two components.

—_
<)
El
s
EY r
— E
2 E3

Figure 1

To interpret Figure 1. the four vertices® of the three- dimensional simplex are { E;};:l and

W(5,4) is the shaded triangle defined by the three dots on the edges. According to Theorem

“With the Borda normalization. the values of the first and the fifth welghts are conumon to all w? voting

vectors. so a geometric representation in 1% can be given by plotting only the middle three coordinates.
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. . —_—
2.1, these vertices of WS, 4) are {70 E ;) i1

does not intersect the BUT? edge defined by E7 and E‘) W(5.4) fails to divide BYVV? into

two components.® This leads to the following definition.

The assertion now is obvious because W(5.4)

Definition 2.4. The set of exztended composite voting wvectors., LIV (0. s). is the intersection
of the s — 2 dimensional affine plane containing Wi{n.s) with B1'V". (0

LW (n,s)1s one of the spaces of .\ composite voting vectors. Because £317(n. s) is defined in
terms of intersections. this property is not transferred by G7 from one BTV set to another.
Instead. we have that

GULIV(j.5)) C LTV (n.s) C LW (ns + 1),

o . — . - .
Definition 2.5. A scoring vector = = (5).52,....5, = 0) is a non-zero vector. When =" is
used to tally a ballot, s; points are assigned to the jth ranked candidate. O

Example. The scoring vector (4.6.—2.0) assigns four points to a top-ranked candidate.
six to a second-ranked. a negative two points for a third-ranked candidate. and zero to a
bottom-ranked candidate. Thus. a scoring vector need not be a positional voting vector. but
a positional voting vector 15 a scoring vector that satisfies the “inequality”™ constraints on the
magnitudes of the weiehts. O

As indicated at the end of the introductory section. if A; € .\ is negative. then the composite
voting vector w (W ... .. W ) introduces a negative prejudice against a candidare who
did well in all @5 elections. Therefore it is important to understand which voting vectors
admit such a representation. This is done in the next statement where A\D is the set of points
in 4 that are not in B and where d4 is the set of boundary points of A.

Theorem 2.2. a. For solitary vectors W, ... Wl ty >ty > - > t. > 2 and A.
v —_— . Y -
(2.12) WL W N € LTV ().
Couverselv, if w € LYW (n ) \NCW (nt) — 1), then @ = W (wh. ..., W) for some
choice of t| >ty > - > ¢, 2 . .s()hmn voting veetors w 't W oand A, The veetor wh

must be in BT'V"\LU (t1.8; —1).

c. If & € OW(n.t, \01\/ (n.ty —1). then @ cau be expressed as a reduced composite voting
vector W (W) (where Wi € BUVONLIT (4.4, — 1)) and as a \ COmMpOosite voting vector
where some scalar in .\ must be negative.

d. If @ is in the interior of W(n. t)\W(n.t, — 1) where t, > 2. then @ can be expressed

ryrdi

as a compostte voting veetor and as a \ composite vector. Tliere are choices of W0, ... w

?According to Theorem 2.1, the first dot defining W(5.4) is ll the distance between 27 and £33, the

. 9 . IS S —_— B

second dot is § the distance between E3 and L 3. etes Morcover, wW?( EY) must be l; of the way along the
B . . . —_— T . “ - . -

line connecting the first two dots, while w?( E 3 s 5 along the line from the second dot to the third. These
two points define 1W(5.3), aud the BC veetor is at the midpoint of this line. Therefore Theorem 2.1 permits

an accurate representation of the Win, s} sets and how they are nested. See Figure 2.
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and .\ where all scalars in X arc positive, and other choices where at least one sealar in .\ must
he negative.
. — . . . . R ., . . . —_

e Ifa voring vector wos in LW {n iy \NWin ) but not in LYV {n.t; — 1). then 0 can be

A I qte veeror (T where 30 0s o seoring vector. ) 4 vesitional
expressed as a composite veeror w (75 ) where 371 Is a seoring vector, but not a positiona
voting vector. Alternatively, w0 can be expressed as a \ composite vector. but at least one
scalar in \ must be negative.

f. The vector B" is the oulv voting vector that cannot be expressed as a A-composite
voting vector with a negative cocfficient for the binaryv clections.

What does all of this mean? As shown in the third article of this series, if ™" & L1177 (n.t;)
for all 1,2 < t; < n, then @" can never admit election relationships with subsets of can-
didates. On the other hand, the above theorem asserts that should w" € LW (n.n — 1),
then there can be election relationships. However. if @™ € £ (n.n — 1) is a non-BC vector.
then the voting vecrors assigned to the subsets of candidates can require a negatioe correlation
among the clection outcomes. {This occurs when some A € X has a negarive value.) Indeed. if
woe LWV (n )\ W(n. ) and if voting vectors for the subsets of candidates are chosen so that
w is .\ composite (so election relationships must occur). then sone sealar in A must be negative
so these negative correlations must arise! Morcover, the voting vectors in L1V (0. ) \W(n.t;)
have the dubious distinction of being an ageregated version of the ourcomes of scoring vectors
that are not positional voting vectors!

We sce that OW(n. s) serves as a bifurcation set: on one side of the boundary the voting
vectors can admit both reduced composite and A represeutations with positive scalars. On
the other side. there is no reduced composite representation (at least with voting vectors) and
all A represenrations involve at least one negative scalar. The continuiry is manifested by the
vectors on the houndary stll admitting a reduced composite representation. bur where the A
form must have a negative scalar,

How bad are these restrictions on election rankings? Is it possible 1o choose a subset of
voting vectors so that. while they admit negative relationships. the admissible relationships
are positive at least with respeet to the majority vote outcomes?  As asserted i part f of
the theorem. only the BC has this property. In fact. any non-BC voting veetor in 1 {(n. ;)
admits a negative correlation with any choice of a voting vector used for a particular subset of
candidates. More precisely. choose a non-BC voting vector @ € £117(n. s, ) and a voting vector
w2, 59 < sp. There exist voting vectors {7 };:1 so that the voting vector is .\ composite
and Ay, 1s negative. This is just one of the many different possible constructions admirted by
the geometry defining the M-composite voting vectors. This geometry, which can be used to
derive other relationships. is deseribed in the proof of parts b and c.

Proof. Part a. This ix an immediate consequence of the definition of a .\ composite voting
vector which requires the composite voting vector to be in the linear span of the vectors

{W”(‘—‘“’)}izzl-

“For instance, in Figure 1 CW(5-0\V(5.4) is the part of the plane passing through the thiree dots that

does not inctude the shaded triangle. This is the triangular region defined by the vertices w5 ( I DL e,
and (4.2,2,2.0). (Theorem 2.3)
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Part b, The L1V (5. 5} sets define a coordinare system. The “origin™ is the point Win.2) =

—

{ B} This point divides the straight line segment W(n.3) iuto two parts: one seguient can
be designated as the “positive axis.” and the other as the “negative direction™ of this first
coordinate axis. Continuing, there is a unique line in the s — 1 dimensional space L1V (n, s + 1)

- - - - . .
that passes through B and is orthogonal to the s — 2 dimensional plane £1V(n.s); this is
the (s — 1)th coordinate axis. As L17(n, ) divides £117(n.s + 1) into two components. the
coordinate axis can be assigned a positive and a negative direction. This coordinate system
for n = 5 is illustrated in Figure 2; the triangle from Figure 1 is replaced with the extended
shaded plane £T17(3.4). the line connecting edges of the shaded region is W(5.3) and the dot
—b- . .
in the middle of the line is the “origin® B”. The second axis would be in the shaded area

. . =g
orthogonal to the W(5.3) line and passing through B2,

Figure 2

- . . cp v .. - -
Using the coordinate system. if @ € L (s + D\LT (1, s). then W must have a nonzero

component along the (s — 1)th coordinate axis. Consequently, it is impossible for @ to be
expressed as a lincar combination of vectors from £11(n, s). So. with the assumptions in part
b of the theorem. if W' € LTV (n. 4 )\LIW (1. ¢y — 1) and if @ has a .\ composite representation.
then one of the defining vectors must be in LI (n 6 NLIV(n.#, — 1). As this vector is in a
reduced composite form. it must be in W(n.t; \C1V (n.#; — 1).'° Thus this vector must have
the representation w™(w@ ') where @t € BUVVONLI (1.4, — 1).

Now choose voting vectors from W(n.t)) so that, along with % and @ (@ ). they form a
dependent set where W can be expressed as a linear combination of the other veetors. This is
one choice of a \-composite representation for . Observe that if & has one A decomposition.
it has an infinite number of different A decompositions.

Part c. In the construction of part b. there are two geometric possibilities. The first is that

Observe that in a A representation, the sign of the scalar for this vector depends on whether this vector

and w are both on the same component side of the (s — 1)th axis.
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the veerors detine a convex Indl where none of them are in the iterior of the hull. The secord
15 that some of the chosen voring vectors are in the wterior. Iy either case. if 7 = DNV t)
then, by construction. w0 is on the boundary of the convex hull. Thus when 7 is expressed
as a limear combination of the other chosen voting vectors, oue veetor must have a neeative
coetlicient. The only other possibility is that the convex set is degenerate — it is o point. In

this admissible case. W can be expressed as the (reduced) composite vector w0 )

—_—F . . . . ‘ . -

Part d. As w’ is in the interior of Win £, )\W(n.#; — 1). the voting vectors can be chosen

so that w is the sole interior point of the convex hull. This means that in the A composite
- —_ - . - . B . . -
form representation for 7. all of the scalars are positive. Similarly, ir ix possible to choose
the other voting vectors so that o is one of the vertices of the hull. This means that when
. — R

solving for ', some of the scalars must be negative.

Part e. If 0 € LTV (0.4, WW(n. ), then when the veetors are selected for the convex hull.
—_

w0 always must be a vertex. The conclusion follows,
Part . This 1s an immediate consequence of the above construerion and the fact that B °
15 in the one point component W(r. 2). O

Example. First I'll show for (4.2.2.2.0} = 21175, 1) that its reduced CONLPOSITe Tepresenta-

tion is with the scoring veetor 2E | — E3+2 £4 = (3.1.2.0). rather than with o voting vector.
- =, T e 2 — =, g
It follows from this linecar expression that Gi(3.1.2.0)) =20 E))— %y EYLy+ 2w EY.
P V5.

Using Theorem 2.1-¢ to compute @ E ). we have that G7{(3.1.2.0)) = (1.2.2.2. 0). so the
assertion is verified, Incidentally. beeanse 4.2.2.2.0) is on the line conneeting Ef and EJ.it
15 the missing vertex of L117(5. ).

To find a class of A-composite representation for (4.2.2.2.0) &= (2.1.1.1.0). observe that
any point on the fine #(3.1.2.0) + (1 — #)(3.2.1.0) = (3.2 = .1 = ¢.0} where L >t > —1

L]

defines a voting vector ). For instance, + = 4 defines (3. :f 2.00) = (2.1.1.0): # = 0 defines
= . _}l - . - . ) . 5 R . .
Btiand t = —1 defines £, Using the Lnearity of G2 with this line. we have that
1l —1—. 1 ..
(4.2.2.2.0) = e b” + ?F”(?,‘)

In this continuum of \ composite forms for (4.2.2.2.0)0. if 0 < # < L then the coefficient for
the majority vote outcomes is negative and the @2 @) coeticient ix positive. These roles are
reversed for —1 < ¢ < 0. The composite form is not defined at # = 0: the reason is explained
in the proof of part b,

A geometric deseription of the design of A composite representations can be given with
Figure 2. First. choose a voting vecror e from the shaded reglon and then draw o line passing

— - - - —_ ey . . .

through @ and B”. Next. choose o vector @) # B that is on the line and in the shaded
triangle region. Because w’y is in the trinngle region. it is a composite voting veetor. Now. if
w is between W'y and B0 then botl scalars must be positive ina .\ representation. I 'y is
between the two vectors, then the sealar for the BC is negative. and that for w0, is positive,

If B in the middle. then its sealar mnltiple is positive while that of o7, is negative,
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[

To derive more complicated A-composite forms for the same vector W', draw the line passing

through @ and the line W(5.3). Now choose a vector 104 on this line. another veetor off this
line but i W(5.3) and the BC. The sigus of the scalars in .\ are based on which vector is in
the interior (if any) of the convex hull defined by these points. [J

To conclude this section. I describe what happens with n = 4.
Theorem 2.3. a. LT17(5.4) is defined by the vertices (4,1,0,0,0).(4.4.2.0,0). (4.4.4.3.0),
and (4,2,2.2.0).

The set

LIV (5. 4)\W(5.4) =
(2.13)
{71(4,1,0.0.0) + 73(4.4.4,3,0) + (4, 2.2.2,0) [y1 + 73 + 7 = L.y > 0.~; > 0}.

1

" e n —_ ; . B 3
b. A necessary and sufficient condition for w1 = (wy. wa. s, wy) to admit choices of w3

that allow election relationships among the set of four candidates . the three candidate subsets
and/or the binary majority vote clections is thar

(‘21—]:) wp; — 311,‘2 + 311‘3 — Wy = 0.

Proof. The proof of part a follows immediately from the computations in the example and
from the properties of G7. For part b, it is shown in [S] that Eq. 2.14 is a necessary condition
for w* to admit clection relations. When @ is written in a Borda normalized form. Eq.
2.14 becomes (3.1 4+ 5.5.0). 5 € {0.2]. As shown. this requires the vector 1o be in YW(4.3): this
establishes the sutficiency assertion. O

3. Froy @ CONDORCET WINNERS AND LOSERS TO ANIOMS

Now that we have the composite voting vectors. some of the election relationships thev
admit are described next.
Definition 3.1. Let n > 3. ¢;, and 5. 2 < 5 < 1. be given. Let @* be assigned at least to
all s-candidate subsets that include ¢;. Candidate ¢; is the @'* Condoreet winner if ¢y 1s top-
ranked in all of these elections. Candidate g is the @ Condorcet loser if @ is assigned at
least to the s-candidate subsets that inelude e and in all of these elections ¢k is bottom-ranked.

Suppose given the set of voting veetors {0 }i-y and the set of scalars A = {A ..., A} A
candidate ¢x is a \-Condorcet winner if for cach A; € Nwhere A; > 0, e is the @ Condorcet
winner, and for each A; € A\ where A; < 0. ¢f s the @% Condoreet loser: j = 1...., =,

A candidate ¢ 1s a A-Coudorcet loser if for A; > 00 ¢ 1s the ¥ Condorcet loser. and for
A; < 0. ¢y is the @ Condorcet winner. [

The next theorem shows that the relationships between the @ (@) positional clection
rankings and the () @ positional election rankings mimic those obtained for the BC and

majority vote clections. Indeed. if 767 = W = (1.0). we recover the carlier assertion relating
the BC outcomes with the majority vote rankines.
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Theorem 3.1. a. Lert 2 < s < n Le given. Let @ be a voring veeror. The 70 - Condorcet
winner cannot he "7 Lottomrauked: a W - Condoreer loser cannor he T top-

ranked: and a (_("”—Cund(u‘(‘('r winner is alwavs w0 W) ranked above a F’*fC()11<I()1~(-<)r loser.

ho Let W = w(iwh ... W) be a A composite voting veetor. Suppose w0 (w00 )
is assigned to all sj-candidare subsers. j = 1.... .z, Therctore the vecrors { o’ 1=y ds
used along with the set X to define the \-Condorcer winners and losers. A A - Condorcet
winner cannot be W, W0 A) bottomeranked: a A - Condoreer loser cannot be
W, W ) toperanked; and a A-Condorcet winner is always (@t LN

ranked above a \-Condorcet loser.
If any other choices of (non-cquivalent) voring veetors are used, then the conclusion does
not hold.

Example. Suppose for n = 5 that (6.6.5.3.0) is assigned to the Ave-candidate subset.
(3.3.2,0) to the four-candidate subsets, and (4.3.0) ro the three-candidate subsets. The
types of clection relationships that can cmerge is hased on the fact that (6.6.5.3.0) =

WI((3.3.2.00). Thus. a (3.3.2.0) Condorcet winuer (loser) cannot he (6.6.5.3.0) bottomn-
ranked (top-ranked).

The election relationships among the pairs and triplvrs with the other candidates is governed
by (6.6.5.3.0) = w0 {(£.3.0).(1.0). {1 ,} and (3.3.2.0) = Ww((4.3.0). 10 {l i
(Because (6.6.5.3.0) ;md (3.3.2.0) are. respectively. on the l)()lmdnnm of BV 17 and BV 1"
1t follows from Theorem 2.2 that one of the scalars in the X representation must be negative.)
Therefore if a candidare 15 borli the Condoreet winner and the {4.3.0)-Coudorcet loser. she
cannot be top-ranked in any of the four candidute subsets nor in the Hve candidate subset:
mdeed. she would be ranked below any candidate who happened to be the Condoreet loser
but the (4.3.0)-Condorcet winner. There are more refined relationships: for instance. ¢ may
be the winner in all (4.3.0)-three-candidate clections involving ¢o. ¢y ¢y and lose to cach of
these candidates in a pairwise clections.  In this case. e canunot be bottom-ranked in the
{c1,c2. 3. ¢4} clection.

As (4.3.0) # B?. there need not he any relationships among the three-candidare and the
two-candidate elections. O

For other examples. see the comments in the introductory section. Indeed. using the ap-
proach developed in Section 2 to (1(‘.1r(‘ A-composite vectors. it is clear that an infinite number
of different examples can be created.!

This theorem generalizes the Borda relationship between the majority vote onteomes and the
Borda outcomes to much larger classes of voting vectors. However, it s important ro remember
that a A-Condorcet winner can. in fact. he required to be the @ -Condoreet {oser for several
voting vectors. Iu fact. any non-BC voting veetor that admits eleetion relationships can always
have this property even with respeet to the binary clections. Nevertheless. when this surprising
conclusion is viewed in terms of the extra symmetry ntroduced by the composite voting
vectors, 1t becomes a result that must be expected. In fact, the reason for the relationships is
that the outcome of the n-candidare subset is nniguely determined by the eleetion tabulations

HPart of the purpose of the sccond article [10] of this series is to develop o “bookkeeping™ approach to
handle all of the possibilitics.
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of the subsets with various numbers of candidates, The following theorem gives this exact
relationship.

- . — g, —
Theorem 3.2. Suppose given a voting veetor w (W, ... @' \). Suppose the reduced

composite vector WY (W) Iy assigned to all s;-candidate subsers. j = 1..... z. For some
fixed scalar value a, the clection tally for ¢ Is given by

CJ"Cn(p.W"(F“....,c_r”:“\)):(IZ)\k Z Cps(p. )
k=1 Sis=t

(3.1) :ai:% Y Cslp. ™)

k=1 te .S,',I.S‘,‘l:.'!k

Proofs. The proof of Theorem 3.2 follows the ideas of Section 1 along with Proposition 2.1,
2.1. The binomial term in Eq. 3.1 is explained in the proof of Proposition 2.2, An clementary
proof of Theorem 3.1 follows that used in the first section to prove the assertions about the
BC rankings of the Condorcet winners and losers. (A different proof is given in [11].) To show
the 1deas, I outline the proof that a A-Condorcet winner. cg. must be @™ (w0 @ =,.\)
ranked above a A-Condorcet loser ¢;.

Assume that A; € .\ is positive. so ¢ wins all s;-candidate elections in which she is involved.
This means that in each such clection, she must receive more than % of all points cast. On

the other hand. ¢;, as the loser. must receive less than % of all vores cast. Thus, over all

s;-candidate elections. ¢ receives more points thau ¢;. When these points are meluded in the
right hand side of Eq. 2,13, they are scaled by the positive multiple AL so ¢p has a point total
advantage over ¢;.

On the other hand. for those elections where A; Is negative, ¢ loses the s;-candidate
clections, so she receives less than % of the total vote while ¢; receives wmore than i of the
total vote. However. when these points are included in the appropriate position in the right
hand side of Eq. 2.13. these point totals are multiplied by a negative scalar. Thus the point
total applied to cx’s total is strictly larger than that applied to ¢;’s. This completes the proof.

d
3.2 Applications.

As an interesting application of Theorem 3.1. suppose we wish to desien a run-off election
procedure that always seleers a (1.0.0)-Condorcet winner (when one exists). According to
the theorem, the way to do this is to assign @ "*((1.0.0)) as the voting vector to rank the n
candidates. Then the bottom ranked candidate is dropped and the remaining n — 1 candidates
arc advanced to the next stage. The induction step with s candidates. s = n — 1..... 4, 1s
to use w*((1.0.0)) to rank the set of s candidates. drop the bottoni-ranked candidate.!? and
then advance the remaining ~ — 1 candidates to the next stage. When only three candidates

remaiil, seleet the winner of the plurality election,

7 . e - . . . .
12 As a slight modification, at each stage with s candidates, one could drop all candidates who receives less
than 17 of the total tally. This is because as shown in the proof of Theorem 3.2, the 7 (@ 3)-Condorcet winner

always receives at least L of the total tally.
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To see why this procedure alwavs elects the plurality-Condoreet winner. notice from The-
orem 3.1 that at cach stage she cannot be bottome-ranked, so she cannor be climinated. At
the last stage, <he must be eleered. On the other hawd. if voting veetors not equivalent to the
above are used at anv stage. or if o fixed nuber of more than one candidate 15 to be dropped
at any stage, then examples can be constructed to prove that the plarality-Condoreet winner
need not be selected! Tlis 1s because the plurality-Condorcet winuer can be bhortom ranked at
some stage if a voting veetor not equivalent to w¥((1.0.0)) is used. or next to botrom ranked
even if @W¥((1.0.0)) 1s used (vet she receives over 1/s of the toral tally) at a stage where more
than one candidate 1s eliminared.

Of course. there 1s nothing particular about the plurality vote: if the requirement is to select
a w?-Condorcet winner. then the climination process uses @ ¥(@?) at cach stage. A similar
argument applies to other elimination procedures. For instance. to generalize the idea of an
agenda, one might take the first four candidates from a listing of all n candidates. Based on
an election outcome, a certain nuber of candidates are dropped from further consideration.
and they are replaced by the next candidates on the geiven listing. The process continues until
only three candidates remain. aud then o @? eleetion is held ro derermine the “winner.” If
the goal 15 to end up with, say. the (3.1.0)-Condoreet winner, then the voting veetor assigned
to the groups of four must be wWi((3.1.0)) = (9.5.1.0). and cither all but the botrom-ranked
candidate, or all candidates receiving at least l; of the total rally must be advanced. Of course.
for the final group of three. the (3.1.0) winner 1s determined. For the same reasons as given
above. if a (3.1.0) Condorcet winner exists. she wins.

These examples illustrate an important class of application for Theorems 2.2, 3.1. The idea
15 that these conclusions. wlich are of independent interest. also form a powerful tool for the
analysis of different types of cholce procedures. In fact. most of the kinds of conclusions found
in the literature relating. in some way. the BC and the majority vote outcomes now can be

extended from the @™ ((1.0))  (1.0) pair to any w "(w*) 7 pair.

3.3 Axiomatic Representations.

To further underscore this assertion about the kinds of results one now can expect. re-
call that one application of the relationship between the BC and the majority vote elec-
tions is the axiomatic characterizations of the BC. This type of result extends to all choices
of composite and .\ composite voting vectors. Suppose. for mstance, that we want an ax-
iomatic representation for (9.3.1.0) (= (3. 1.0))). or for (3.3.2.0) (= @ '((1.1.0))). or for
(6.3.1.0.0) (= 2 >({1.0.0))). As I now illustrate. for any composite voring vector, it is easy to
find many sets of characterizing axioms! The following 1s one such cholee that extends Young's
[16] characterization of the Borda Count to all composite voting vectors.

Theorem 3.3. Let 1w > b > 2 candidates be given. Suppose Fis a choice procedure that is
anonymous, neutral. consistent. and somewhar faithful." Furthermore. suppose for a specified
A.

— . .o — . . .
¥ the choice procedure satisfies the @ F-cancellation property wherehy whenever all () of

the w* clections end in a complete tie. then all n candidates are sclected. The procedure is
A choice procedure is consistent if f{p) N fip’) # @ then fip+p')y = fip) N fip'). A choice procedure

is somewhat faithful if for the one voter profile p. fip) does not include the voter’s bottom ranked candidarte.
These terms are discussed in greater detail o [7.5, 17]
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- . . - . —_— —_— B -
equivalent to choosing the top- ravked candidate(s) from a @™ (w®) clection. When b = 2.

this is a characterization of the BC.

Thus. for example, suppose we want a procedure with the first set of properties that chooses
all candidates in those situations where, whenever subsets of five candidates are considered, l)
of the voters have each candidate top-rauked. This procedure must be equivalent to seleeting
the top- ranked candidates from a w*((1.0.0,0,0)) election. Theorem 2.4 follows by slightly
modifying the argument in [7] and using the fact that the @"(*) is the only voting vector
to satisfy the cancellation property.

For other axiomatic generalizations of w™((1,0)) — (1,0) pair to more general classes. recall
my assertion from Section 1 that “almost any condition relating an clection outcome to what
happens with the pairwise elections cither plays a principal role in characterizing the BC,
or it leads to an impossibility theorem.” A similar assertion hold for other composite voting
vectors. Namely. most axioms relating a choice procedure outcome with what happens with
the elections associated with a particular 0 * either leads to a characterization of W), or
an impossibility theoren. The following is one of many possible examples of an impossibility
theorem and a characterization theorem.

Theorem 3.4. Let n > 3 candidates be given. Suppose F is a choice procedure that is
anonymous. neutral, consistent, and somewhat fairhful.
a. Suppose the procedure is to sclect a (1.0.0) - Condorcet winner whenever one exists.
No such procedure exists.
b. Suppose there is a candidate ¢ so that whenever she is in a subset of three candidates.
more voters have her bottom ranked than any other candidare. Whenever such a candidate
exists, suppose the procedure must not select her. This procedure is equivalent to selecting
the top ranked candidates from a W"((1.1.0)) election. If more than one candidate is
top-ranked, the procedure can reqnire a scries of Young run-off clections to make a refined
selection among these candidates C'. This is where a specified positional election is held for
all candidates. The resulting election rankings provides a relative ranking of the candidates
in C. Irom this ranking. the top-ranked candidates are selected.
c.  Suppose the procedure never sclects a candidate who is both a Condorcet loser and a
(1.0,0)-Condorcet winner. The procedure is equivalent to choosing a @ ™((1.0.0).(1,0). A)
vector where the scalar for the plurality election is negative and that for the majority elec-
tions is positive. The top-ranked candidate is selected. A series of Youne run-off elections
can be applied to break ties.

Qutline of the proof. The basic set of axioms define a procedure equivalent to choosing the
top-ranked candidate with a positional voting method. There 15 the option of breaking ties
with an iterated sequence of the positional voting procedures. (This conclusion is an extension
[7} of Young's nice work [17].} The goal is to identify the positional voting methods. For part 1,
if such a procedure exists, it must he equivalent to first using the @7 ((1.0.0)). However. this
election procedure cannot gnarantee thar the plurality-Condoreet winner will be top- ranked.
only that she will not be bottom-ranked. Thus. an impossibility theoren follows.

For the second part. the requirement about ¢; means she is a {1.1.0) - Condorect loser.

- . . —3 .
Using a procedure equivalent to a @((1.1.0)) ¢lection means she must be dropped at the
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first stage. The procedure could require an lterared Youne run-off to retine who is =elected.
Thus. here a possibility theorem cmerees.

For part ¢ the conditions identifv a .\ composite voting vecror.  However. there is no
particular cholce: thus this 1s an axiomatic representation for a class of voting vectors., O

—_—
. P . - r — . : .
Another example is to replace condition 1 of Theorem 3.3 with =if all @ %= B? clections
end up in a tie vote, then more than one candidate 1s selected.™ This leads to a process where

— 1
w ;

the top-ranked candidates in a w"( ) election are kept. but now a Youne run-off is admitted.

3.4 Ternary inclusion property.

As a last illustration of these results: recall from (Saari [8]) that if & family F of subsets of
candidates admits relationships among the BC election rankings. then & must have a subfamily
Fi that satisfies the binary inclusions property (bip). This is where at least one subset of
candidates in | has three or more candidates. and if S; € Fy is such that |S;] > 3. then there
1s another subset of candidates Sy € Fy so that two of the candidates from S, are also i Sg.
For instance. no subfamily of F = {{e1.co. 5} {e5.chve5). {e5. .01 )} satisties bip. so there
need not be any relationship whatsoever among the election rankings of these three subsets of
candidates for any choice of positional voting methods. That is. arbirrarily choose a ranking
for cach subset. Then. for any choice of positional voting methods. there exists a profile so
that the election rankings are the sclected rankings.

What happens if the BC is not used for any subset of candidates? Will the bip condition
suffice as an indicator of whether a family will admit election relationships? The answer is no:
a more exacting requirement manifesting the more crude symumnetry requirements is needed.,

Definition 3.2. A family F satisfies the ternary inclusion property. tip. if
1. cach subset in F has at least three candidates and one has at least four candidates. and
2. if 5 € Fis such that [S)] > 4 then there is a different set Sp € F and a triplet of
candidates from §; that are also in S, O

Theorem 3.5. If no subfamily of F satisfics the tip and if the BC is not assigued to any
subset in F. then for any assignment of voting vectors. there are no relationships auong the
election rankings. That is. the election raukings for cach subset of candidates can be seleeted
m any desived manner. For any choice of non-BC voting vectors assigued to these subsets.
there exists a profile so that the sclected rankings are the sincere election rankings.

Example. Let n > 4 and let Fy be the family of all (';) sets of three candidates. No
subfamily of F satisfies tip. so. if the BC is not assigned to any of these subsets. then there
are no relations among the election rankings. On the other Land. election relationships are
admitted if the BC is used. To see what they arve. see (Saart [7. 8]).

Theorem 3.2 can be extended to reflect other symmetries. For instance. shonld the assigned
voting vectors not reflect any binary (BC) or ternary (@ (. (1.0). ) svinmerry, then even
more strict Inclusion properties ave required. In particular. an s-fold inclusion property (sip)
forms the necessary conditions should nowne of the assiened voting veetors admit any form of
a k-fold symmetry. b < s. This is a further illustration of the eritical role sviimetry playvs in
~ the analysis of voting processes. [

The proof of this theorem follows that in Saari [8]: a different proof is in 11l
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Somewhat surprisingly. simple symmetry properties can be used to sienificantly extend the
basic properties of the Borda Count to a large number of other classes of positional voting
procedures.  In this manner it is scen that the connection between the Condoreet winner
and the Borda Count rankings are not unique: closely relared connections arise with the
election rankings of sets of s candidates and & candidates. s < k. should appropriate choices of
positional voting vectors be used. In particular. the relationship between the choices of voting
vectors that need to be used manifest the kind of relationship that exists between the Borda
Voting Vector and the majority vote vectors. For the conclusions derived here. the positional
voting vector for the larger sets of candidates must be an “aggregated™ version of the voting
vectors assigned to the other sets of candidates.

One of the basic messages of this article. then. is the eritical role symmetry - extensions of
neutrality — plays in understanding the kinds of clection outcomes that oceur with different
choices of positional voting vectors.
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