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Abstract

This paper builds models of nonlinear dynamics in the aggregate
investment and borrower net worth and uses them to study the causes and nature
of endogenous credit cycles.  The basic model has two types of projects: the Good
and the Bad.  The Bad is highly productive, but, unlike the Good, it generates less
aggregate demand spillovers and contributes little to improve borrower net worth.
Furthermore, it is relatively difficult to finance externally due to the agency
problem.  With a low net worth, the agents cannot finance the Bad, and much of
the credit goes to finance the Good, even when the Bad projects are more
profitable than the Good projects. This over-investment to the Good creates a
boom and generates high aggregate demand spillovers.  This leads to an
improvement in borrower net worth, which makes it possible for the agents to
finance the Bad. This shift in the composition of the credit from the Good to the
Bad at the peak of the boom causes a deterioration of net worth. The whole
process repeats itself. Endogenous fluctuations occur, as the Good breeds the Bad,
and the Bad destroys the Good.

The model is then extended to add a third type of the projects, the Ugly,
which are unproductive but easy to finance.  With a low net worth, the Good
competes with the Ugly, creating the credit multiplier effect; with a high net
worth, the Good competes with the Bad, creating the credit reversal effect.  By
combining these two effects, this model generates intermittency phenomena, i.e.,
relatively long periods of small and persistent movements punctuated
intermittently by seemingly random-looking behaviors.  Along these cycles, the
economy exhibits asymmetric fluctuations; it experiences a long and slow process
of recovery from a recession, followed by a rapid expansion, and possibly after a
period of high volatility, plunges into a recession.

JEL classification numbers: E32 (Business Fluctuations; Cycles), E44 (Financial
Markets and the Macroeconomy)
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aggregate demand spillovers, credit multiplier effect, credit reversal effect,
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1. Introduction.

It is commonly argued that an economic expansion often comes to an end as a result of

the changing nature of credit and investment at the peak of the boom.  According to the popular

argument, more credit is extended to finance “socially unproductive” activities.  Such an

expansion of credit causes volatility and destabilizes the economy. (See Kindleberger 1996 for a

review of the popular argument.)  Central bankers indeed seem concerned that financial frenzies

that emerge after a period of economic expansion might lead to misallocation of credit, thereby

pushing the economy into a recession, and they often attempt to take precautionary measures to

cool down the boom and to achieve a soft landing of the economy.

This paper develops dynamic general equilibrium models of endogenous credit cycles,

which provide a theoretical support for the view that changing compositions of credit and of

investment are responsible for creating instability and fluctuations.  Furthermore, the equilibrium

dynamics display some features reminiscent of the popular argument.  Contrary to the popular

argument, however, the agents are assumed to be fully rational and instability is not caused by

“irrational exuberance.” Indeed, fluctuations are not at all driven by the expectations of the

agents, whether they are rational or not.  In the models developed below, the equilibrium path is

unique, and the cycles are purely deterministic.  Endogenous fluctuations occur when the unique

steady state of the time-invariant, deterministic nonlinear dynamical system loses its stability.

They are based on neither ‘sunspots” nor “bubbles,” nor any form of indeterminacy or self-

fulfilling expectations.2

Behind instability in our models is the heterogeneity of investment projects.  Investment

projects differ in many dimensions.  They differ not only in profitability. They differ also in the

severity of agency problems, and hence are subject to differing self-financing requirements.  In

addition, they differ in the input requirements, so that they have different general equilibrium

effects, with different degrees of aggregate demand spillovers, or “backward linkages,” to use

Hirschman (1958)’s terminology.  As a result, not all the profitable investments contribute

equally to the overall balance sheet condition of the economy.

                                                                       
2For broad surveys on endogenous cycles, see Boldrin and Woodford (1990) and Guesnerie and Woodford (1992).
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For example, suppose that there are two types of profitable investment projects, which we

shall call the Good and the Bad.  The Good improves the net worth of the other borrowers in the

economy, because it generates demand for their endowment (or, put it differently, the capital

created by this type of projects is complementary with their input endowment).  The Bad may be

more profitable than the Good.  Unlike the Good, however, the Bad is “socially unproductive” in

the sense that they generate less demand for the endowment held by other borrowers (or, the

capital created by this type of projects is not complementary with their input endowment), hence

it contributes little to improve the net worth of other borrowers.  In addition, suppose that the

Bad projects are subject to self-financing requirements, due to some agency problems.  When the

net worth is low, the agents are unable to finance the Bad projects, and much of the credit goes to

finance the Good projects, even when the Bad projects may be more profitable than the Good

projects.  This over-investment to the Good projects generates high aggregate demand spillovers,

creating a boom and leading to an improvement in borrower net worth.  In a boom, with an

improved net worth, the agents are now able to finance the profitable-yet-difficult-to-finance,

Bad projects.  The credit is now redirected from the Good to the Bad.  This change in the

composition of credit and of investment at the peak of the boom causes a deterioration of

borrower net worth.  The whole process repeats itself.  Along these cycles, the Good breeds the

Bad, and the Bad destroys the Good, as in ecological cycles driven by predator-prey or host-

parasite interactions.3  We call these two types of projects the Good and the Bad, not because of

their welfare implications. We call them the Good and the Bad, because of the roles they play in

the propagation mechanism through their differential general equilibrium price effects.4  Crucial

for generating endogenous fluctuations are: a) some profitable investments contribute little to

improve borrower net worth than other profitable investments; and b) these investments are

subject to agency problems, which are neither too big nor too small, so that the agents can

finance them when and only when their net worth is sufficiently high.

                                                                       
3While the intuition behind fluctuations is similar with that of predator-prey cycles in biology, our models are quite
different from what mathematical biologists call the predator-prey models (see, e.g., Murray 1990).
4Note that we do not assume any negative technological externalities associated with the Bad.  We simply define the
Good (or the Bad) as the profitable projects that generate (or does not generate) aggregate demand spillovers.  In
other words, we capture the term “socially unproductive” in the popular argument by the (relative) absence of
positive pecuniary externalities of the Bad.  No moral connotation is intended by the terms, the Good and the Bad.
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Many recent studies in macroeconomics of imperfect credit markets have investigated the

role of borrower net worth in the propagation mechanisms of business cycles. Among the most

influential is Bernanke and Gertler (1989).  Their study, as well as many others, focused on the

credit multiplier mechanism: how the borrowing constraints introduce persistence into the

aggregate investment dynamics.  In the absence of exogenous shocks, there would be no

recurrent fluctuations in their model.5  The present study, on the other hand, emphasizes the

credit reversal mechanism: how borrowing constraints introduce instability into the dynamics,

which causes recurrent fluctuations even in the absence of any external shock.  It should be

pointed out that the present study and Bernanke-Gertler both share the observation that, in the

presence of credit market frictions, saving does not necessarily flow into the most profitable

investment projects, and that this problem can be alleviated (aggravated) by a higher (lower)

borrower net worth.  The two studies differ critically in the assumption on the set of profitable

investment projects that compete in the credit market.  In the Bernanke and Gertler model, all the

profitable investments contribute equally to improve net worth of other borrowers.  It is assumed

that the only alternative use of saving in their model, storage, is unprofitable, subject to no

borrowing constraint, and generates no aggregate demand spillovers.  This means that, when an

improved net worth allows more saving to flow into the profitable investments, saving is

redirected towards the investments that generate aggregate demand spillovers, which further

improve borrower net worth.  This is the mechanism behind the credit multiplier effect in their

model (and many others in the literature).  The present study departs from Bernanke and Gertler

in that not all the profitable investments have the same general equilibrium effect.  Some

profitable investments, which are subject to the borrowing constraints, do not help to improve the

net worth of other borrowers.  This means that, when an improved net worth allows more saving

to flow into such profitable investments, saving may be redirected away from the investments

that generate aggregate demand spillovers, which causes a deterioration of borrower net worth.

This is the mechanism behind the credit reversal effect.
                                                                       
5In one variation of their models, Kiyotaki and Moore (1997; Section III) demonstrated that the equilibrium
dynamics display oscillatory convergence to the steady state, which is why they called their paper, “Credit Cycles.”
However, these oscillations occur because they added the assumption that the investment opportunity arrives
stochastically to each agent.  The borrowing constraints in all of their models work only to amplify the movement
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Needless to say, these two mechanisms are not mutually exclusive and can be usefully

combined.  We will indeed present a hybrid model, which allows for three types of projects, the

Good, the Bad, and the Ugly.  Only the Good generates aggregate demand spillovers and helps to

improve the net worth of other borrowers; neither the Bad nor the Ugly improves borrower net

worth.  Unlike the Bad, the Ugly is not subject to any borrowing constraint, but the Ugly is not as

profitable as the Bad.  Thus, when the net worth is low, the Good competes with the Ugly, but

not with the Bad, so that the credit multiplier mechanism becomes operative, and when the net

worth is high, the Good competes with the Bad, but not with the Ugly, so that the credit reversal

mechanism become operative. By combining the two mechanisms, the hybrid model generates

intermittency phenomena.  That is to say, relatively long periods of small and persistent

movements are punctuated intermittently by seemingly random-looking behaviors.  Along these

cycles, the economy exhibits asymmetric fluctuations; it experiences a long, slow process of

recovery from a recession, followed by a rapid expansion, and, possibly after a period of high

volatility, plunges into a recession.

Before proceeding, mention should be made on the exposition.  The phenomena analyzed

in this paper, endogenous cycles and intermittency, are fundamentally nonlinear and dynamic in

nature.  The main challenge is to keep the dimensionality of the dynamical system down to make

a global analysis of nonlinear dynamics possible.  We have also made efforts to minimize the

number of the steps needed to derive the nonlinear maps that govern the equilibrium trajectory,

and to reduce the notational and algebraic burden to the reader, because presenting nonlinear

dynamics is inevitably long and intricate.  Whenever specification decisions had to be made, the

choice was made for the sake of brevity and simplicity and for the ease and clarity of

presentation, even at the risk of giving false impressions that the results were special or

empirically implausible.  To offset such risk, “Remarks” are provided throughout the paper to

discuss how the results would carry over under alternative specifications,6 and how various

                                                                                                                                                                                                                                      
caused by shocks, instead of reversing it.  In any case, in all of their models, the steady state is stable and any
fluctuations will dissipate in the absence of exogenous shocks.
6 Some of these alternative specifications are presented in companion papers, Matsuyama (2004b, c). We have found
both pluses and minuses in these different specifications.  First of all, each of these specifications proves to be
convenient for highlighting some specific points.  Second, although it is slightly simpler to derive the nonlinear maps
of the models in the companion papers, these maps are discontinuous, unlike those derived in this paper.  While the
discontinuity makes it easier to construct examples of endogenous cycles, it makes it difficult to characterize the
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variables and assumptions can be given alternative interpretations without affecting the formal

analysis, even though they would sometimes change empirical implications of the models.  The

reader mainly interested in understanding the mechanics of the models may want to skip these

“Remarks,” at least at first reading.

Section 2 presents the model of the Good and Bad projects.  Then, it derives the

dynamical system that governs the equilibrium trajectory under the additional assumption that the

Good has no agency problem and hence it is subject to no borrowing constraint. Section 3

characterizes the equilibrium for the full set of parameter values, which enables us to identify the

condition under which the steady state loses its stability and endogenous fluctuations occur.  The

main conclusion is that, when the Bad is sufficiently profitable, instability and fluctuations occur

when the agency problem for the Bad is neither too low nor too high.  Section 4 presents some

examples of chaotic dynamics.  Section 5 reintroduces a borrowing constraint for the Good

projects.  Section 6 develops a model of the Good, the Bad, and the Ugly, which combines both

credit multiplier and credit reversal effects and shows how intermittency and asymmetric

fluctuations occur.  Section 7 offers some concluding comments.

2. The Good and The Bad.

In the basic model, there are two types of investment projects: the Good and the Bad.  (A

third type, called the Ugly, is introduced in section 6.)  The Good and the Bad differ in two

dimensions.  They have different general equilibrium effects on the net worth of other agents.

They may also differ in the agency problem, and hence in the self-financing requirements.  To

capture these differences in a simple and tractable manner, the following modeling strategies

have been adopted.

First, following Bernanke and Gertler (1989), we adopt the Diamond (1965) two-period

overlapping generations (OG) model as a basis of our analysis.  In the Diamond model, a new

generation of agents arrives to the scene in each period with an endowment, called “labor.”  This

gives us a simple way of modeling differential aggregate demand spillovers, or general

                                                                                                                                                                                                                                      
dynamics for the full set of the parameter values, because the standard techniques in mathematics are available only
for the continuous maps.  The specification in the present paper is the simplest one that we found, which maintains
the continuity of the maps, enabling us to applying the standard techniques.
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equilibrium price effects between the Good and the Bad, by assuming that labor is used in the

former, but not in the latter. What is important is that the agents have some endowments, whose

equilibrium values depend on the composition of the current investments.  “Labor” in our model

should not be literally interpreted.  Instead, it should be interpreted more broadly to include

“human capital,” “land,” “patents” or any other endowments or assets held by the potential

borrowers, who could sell them or use them as collaterals to satisfy the self-financing

requirements of their investments.  The two-period OG framework also allows us to abstract

from the complication that arises from the presence of the wealth-constrained investments in the

intertemporal maximization problem. A “period” in our model should be interpreted as the time

it takes to complete a typical investment project.

Second, we introduce the borrowing constraints by assuming that the borrowers may not

be able to credibly commit to make a full repayment to the lenders. More specifically, it is

assumed, as in Matsuyama (2000a,b, 2004a), that they can pledge only up to a fraction of the

project revenue for the repayment.  The results do not depend on the particular microeconomic

story used to justify the borrowing constraints.  One could have instead relied on informational

asymmetry, for example, as in the standard moral hazard model, where the success of the

investment depends on the hidden effort by the agent, or as in the costly-state-verification

approach used by Bernanke and Gertler (1989).  These alternatives, however, would require that

investments would be subject to idiosyncratic shocks and that some projects would fail and the

defaults would occur in positive probability.  While these features might make the model

descriptively more attractive, they are not an essential part of the story.  The present specification

has been chosen because it drastically simplifies the exposition and reduces the notational

burden, and hence has the advantage of not distracting the reader’s attention away from the main

objective of this paper, i.e., dynamic general equilibrium implications of credit market frictions.

The detailed description of the model can now be stated.

Time is discrete and extends from zero to infinity (t = 0, 1, 2, ...). The economy is

populated by overlapping generations of two-period lived agents.  Each generation consists of a

continuum of agents with unit mass. There is one final good, which is taken as the numeraire and

can be either consumed or invested.  In the first period, each agent is endowed with one unit of
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labor, which is supplied to the business sector.  The agents consume only in the second.  Thus,

the aggregate labor supply is Lt = 1, and the equilibrium value of their labor endowment, wt, is

also the net worth of the young at the end of period t.  The young in period t need to allocate their

net worth to finance their consumption in period t+1.  The following options are available to

them.

First, all the young agents can lend a part or all of the net worth in the competitive credit

market, which earns the gross return equal to rt+1 per unit.  If they lend the entire net worth, their

second-period consumption is equal to rt+1wt.  Second, some young agents have access to an

investment project and may use a part or all of the net worth to finance it.  There are two types of

projects, both of which come in discrete units.  Each young agent has access to at most one type

of the project, and each young agent can manage at most one project.  More specifically,

The Good:  A fraction �1 of the young knows how to start a firm in the business sector.

Let us call them entrepreneurs.  Setting up a firm requires one unit of the final good invested in

period t.  This enables these agents to produce �(nt+1) units of the final good in period t+1 by

employing nt+1 units of labor endowment supplied by the younger generation at the competitive

wage rate, wt+1.  The production function satisfies �(n) > 0, ��(n) > 0 and ��(n) < 0 for all n > 0.

Maximizing the profit, �(nt+1) � wt+1nt+1, yields the demand for labor per firm, wt+1 = ��(nt+1). The

equilibrium profit from running a firm in period t+1 can thus be expressed as an increasing

function of the equilibrium employment, �t+1 = �(nt+1) � �(nt+1) � ��(nt+1)nt+1 with ��(nt+1) =

���(nt+1)nt+1 > 0.

If wt < 1, these agents need to borrow by 1 � wt > 0 in the competitive credit market to

start the project.  If wt > 1, they can start the project and lend by wt � 1 > 0.  In either case, the

second-period consumption is equal to �t+1 � rt+1(1�wt) if they start the project, which is greater

than rt+1wt (the second-period consumption if they simply lend the entire net worth in the credit

market) if and only if

(1) �t+1 � rt+1.

The entrepreneurs want to (or are at least willing to) set up firms if and only if the profitability

condition, (1), holds.
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The Bad: A fraction �2 	 1 � �1 of the young have access to a project, which requires m

units of the final good to be invested in period t and generates Rm units of the final good in

period t+1.  Let us call them traders.  Note that, unlike the entrepreneurs, their capital does not

require the use of “labor” as the complementary input.  We may thus interpret their activities as

hoarding the final good for one period to earn the gross return equal to R per unit, without

generating any input demand.

If wt < m, these agents need to borrow by m � wt > 0 to start the project.  If wt > m, they

can start the project and lend by wt � m > 0.  Hence, their second-period consumption is equal to

Rm�rt+1(m�wt) as a trader, which is greater than rt+1wt if and only if

(2) R � rt+1.

The traders are willing to start their operation if and only if (2) holds.

Remark 1:  It is not essential that different agents have access to different projects.  This

assumption was made solely for the expositional convenience.  One could alternatively assume

that all the agents are homogenous and have access to both types of projects.  As long as it is

assumed that no agent can invest both projects simultaneously and that the creditor can observe

the type of the investment made by the borrower, the results would carry over, even though it

would make the derivation of the equilibrium condition far more complicated.   Nor is it essential

that each agent can manage at most one project.  This assumption reduces the agent’s investment

decision to a binary choice, which greatly simplifies the analysis. (It does, however, introduce the

need for additional parameter restrictions; see (A2) and (A3), as well as Remark 5, later.)  The

assumption of the minimum investment requirement is essential.  Without the nonconvexity, the

borrowing constraint introduced later would never be binding.7  The assumption that the two

projects may have different minimum requirements does not play any essential role in this paper.8

                                                                       
7 This is partly due to the assumption that all the agents have the same net worth.  If there are sufficient mismatches
between those who own the endowment and those who have access to the projects, the borrowing constraint could be
binding even when the projects are divisible.  However, introducing such wealth heterogeneity within each
generation would increase the dimensionality of the nonlinear dynamical system, making it impossible to solve it
analytically.  We have chosen the model with the indivisible projects, because this makes it possible for the
borrowing constraint to be binding, even when all the agents have the same wealth, thereby keeping the system one-
dimensional.
8 This is in contrast to the model in Matsuyama (2004b), in which differences in the minimum requirements play a
critical role in generating cycles.
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Remark 2: Although we associate the Good with setting up business firms conducted by

entrepreneurs, and the Bad with the commodity trading conducted by traders, this is solely for the

sake of concreteness, and the designations should not be taken literally.9  The key difference here

is in their input requirements, which implies different general equilibrium price effects.  Nor

should one interpret the “labor” intensity of the production as the key distinction between the

Good and the Bad.  In the present setting, the young agents are equally endowed with the single

input.  For example, one could alternatively assume that different young agents are endowed with

different types of inputs, which are imperfect substitutes and enter symmetrically in the

production as in the Dixit-Stiglitz monopolistic competition model; each young agent, as a sole

supplier of its input, sells it to the firms set up by the old entrepreneurs. Then, the Good improves

the net worth of the young through an increase in the monopoly profit.  Aside from adding more

notations and paragraphs, this alternative specification would not affect the dynamical analysis.

More generally, one could assume that there are many sectors with different input requirements;

the young agents differ in their endowments or assets, which they can use to finance their

investments; they may also differ in quality as entrepreneurs or as traders. In such a general

setting, the key feature of the projects that determine aggregate demand spillovers that improve

borrower net worth would not be the “labor” intensity.10

Remark 3:  It is possible to give yet another interpretation to the Bad projects.  Both the

Good and the Bad set up firms in the business sector, but the latter merely generates “private”

consumption of Rm to the agents, without producing any (transferable) output.  As long as such

project does not generate any demand for the endowment held by others, the formal analysis

would not need to change.  However, it does change empirical implications, because a shift from

the Good to the Bad leads to a decline in the measured TFP in the business sector according to

this interpretation.  For this reason, some readers may prefer this interpretation.11  Nevertheless,

                                                                       
9 Of course, we could have simply called them Type-1 and Type-2 projects as well as Type-1 and Type-2 agents.
However, we are certain that that would make it harder for the reader to follow the argument.
10 It is also possible to generate endogenous cycles without different input requirements.  For example, in the model
of Matsuyama (2004b), the projects are not different in the input requirements.  The key difference there is the
minimum investment requirement.
11 Even with this interpretation, one should not automatically jump to the conclusion that the Bad projects have
negative welfare implications.  That those projects satisfy merely the ego of the agents or produce solely “private”
consumption to the agents simply mean that the output of those projects is not transferable; it does not necessarily
mean that they are inefficient.
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it should be remembered that the key conceptual distinction between the Good and the Bad here

is not the measured “productivity.”  Rather, it is the extent to which they improve the net worth

of the other borrowers.12

The Borrowing Constraints:

The credit market is competitive in the sense that both lenders and borrowers take the

equilibrium rate of return, rt+1, given.  It is not competitive, however, in the sense that one may

not be able to borrow any amount at the equilibrium rate.  The borrowing limit exists because the

borrowers can pledge only up to a fraction of the project revenue for the repayment.  More

specifically, the entrepreneurs would not be able to credibly commit to repay more than 
1�t+1,

where 0 	 
1 	 1. Knowing this, the lenders would allow the entrepreneurs to borrow only up to


1�t+1/rt+1.  Thus, the entrepreneurs can start their businesses only if

(3) wt � 1 � 
1�t+1/rt+1.

The borrowing constraint thus takes a form of the self-financing requirement.  The entrepreneurs

set up their firms, only when both (1) and (3) are satisfied.  Note that (3) implies (1) if wt 	 1 �


1 and that (1) implies (3) if wt � 1 � 
1.  In other words, the profitability is a relevant constraint

when wt > 1 � 
1, while the self-financing requirement is a relevant constraint when wt < 1 � 
1.

Likewise, the traders would not be able to credibly commit to repay more than 
2Rm, where 0 	


2 	 1. Knowing this, the lender would allow the traders to borrow only up to 
2Rm/rt+1. Thus,

they cannot start their operations unless

(4) wt � m[1 � 
2R/rt+1].

The traders invest in their operations, only when both (2) and (4) are satisfied. Note that (4)

implies (2) if wt 	 (1 � 
2)m and that (2) implies (4) if wt � (1 � 
2)m.  Again, the borrowing

constraint (4) can be binding only if wt 	 (1 � 
2)m.

The two parameters, 
1 and 
2, capture the agency problems associated with the two types

of projects and the resulting credit market frictions in a parsimonious way.  If they are equal to

                                                                       
12 For example, one could imagine that some firms that are set up merely to satisfy the ego of the founders might
require more inputs, say larger offices and corporate jets, so that they would help to improve the net worth of the
suppliers of those inputs.  In such a case, it is possible that the projects with a lower “measured” productivity can be
the Good, in that sense that they have higher aggregate demand spillovers.
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zero, the agents are never able to borrow and hence must self-finance their projects entirely.  If

they are equal to one, (3) and (4) are never binding, so that they can entirely rely on external

finance.  By setting these parameters between zero and one, we can deal with the whole range of

intermediate cases between these two extremes.  The reader may thus want to interpret this

formulation simply as a black box, a convenient way of introducing the credit market frictions in

a dynamic macroeconomic model, without worrying about the underlying causes of

imperfections.13

As it turns out, the borrowing constraint for the Good is not essential for generating the

credit reversal mechanism that causes instability and fluctuations.  We will therefore set 
1 = 1

and drop the subscript from 
2 and let 
2 = 
 < 1 until section 4.  This greatly minimizes the

notational and algebraic burdens, without changing the results fundamentally.  It will be shown in

section 5 that, for any fixed 
2 < 1, the results are robust to a small reduction in 
1 from 
1 = 1.

Allowing 
1 < 1 would be crucial for the extension in section 6, which introduces the credit

multiplier effect.

Remark 4.   The assumption that the Bad faces the tighter borrowing constraints than the

Good is made mostly for the expositional reason, but can also be justified in a couple of ways.

For example, those who invested in the business sector can pledge most of their project revenue,

because they hire labor (and purchase other inputs) and operate in the formal sector, which leave

enough of a paper trail of their activities, making it easy for the creditors to seize their revenue

when they defaulted.  On the other hand, the creditors can seize only a small fraction of the

revenue from the trading operation, because it may require nothing but hoarding and stockpiling

goods in a hidden place.  Another possible interpretation of 
1 and 
2 is that the investment

projects are partly motivated by the private benefits that accrue to the investors, and hence the

lenders value the projects less than the borrowers.  According to this interpretation, the Bad
                                                                       
13 Nevertheless, it is possible to give any number of moral hazard stories to justify the assumption that the borrowers
can pledge only up to a fraction of the project revenue. The simplest story would be that the borrowers strategically
default, whenever the repayment obligation exceeds the default cost, which is proportional to the project revenue.
Alternatively, each project is specific to the borrower, and the productivity of the project would be only a fraction
without his services.  Then, the borrower, by threatening to withdraw his services, can renegotiate the repayment
obligation down.  See Hart and Moore (1994) and Kiyotaki and Moore (1997).  It is also possible to use the costly-
state verification approach of Townsend (1979), used by Bernanke and Gertler (1989) or the standard ex-ante moral
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includes the projects primarily driven by the empire-building motives of the investors.  Again,

the formal analysis would not need to change under this interpretation, except that 
1 and 
2 are

no longer free parameters, because they are determined by the output structure of the projects

(see Matsuyama 2004c).  Of course, the empirical implications would be different under this

interpretation, see Remark 3.

Equilibrium Wage and Business Profit:

Let kt+1 	 �1 be the number of young entrepreneurs in period t that start their firms (hence

it is the number of active firms in period t+1). Let xt+1 	 �2 be the number of young traders in

period t that start their operations.  (The aggregate investment they make is thus equal to mxt+1.)

Since only the firms hire labor, the labor market equilibrium in period t+1 is nt+1kt+1 =1, from

which nt+1 = 1/kt+1.  Thus, the equilibrium wage rate and the business profit per firm in period t+1

may be expressed as functions of kt+1:

(5) wt+1 = ��(1/kt+1) � W(kt+1)

(6) �t+1 = �(1/kt+1) = �(1/kt+1) � ��(1/kt+1)/kt+1 � �(kt+1),

where W�(kt+1) > 0 and ��(kt+1) < 0. A higher business investment means a high wage and a

lower profit.  Note that the investment in the business sector, the Good, generates labor demand

and drives up the wage rate, thereby improving the net worth of the next generation of the agents.

In contrast, trading, the Bad, contributes nothing to the net worth of the next generation.

It is straightforward to show that these functions satisfy �(1/k)k = k�(k) + W(k) and

k��(k) + W�(k) = 0 as the identities.  In addition, we make the following assumptions.

(A1) There exists K > 0, such that W(K) = K and W(k) > k for all k � (0, K).

(A2) K < �1.

(A3) max k �[0, K] {W(k) � k} < m�2.

(A4) lim k � +� �(k) = +.

For example, let �(n)= (Kn)�/�, with K < �1 and 0 < � < 1. Then, (A1), (A2) and (A4) are all

satisfied. (A3) is also satisfied if K < (m�2)/�(1��)(1��)/�.  (A1) is introduced only to rule out an

                                                                                                                                                                                                                                      
hazard problem, where the effort made by the borrower affects the success probability of the project, and the ex-post
moral hazard problem used by Holmstrom and Tirole (1997).
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uninteresting case, where the dynamics of kt would converge to zero in the long run.  It will be

shown later that, if kt � (0, K], ks � (0, K] for all s > t, so that K may be interpreted as the upper

bound for the number of firms that the economy could ever sustain.  Thus, (A2) means that the

economy never runs out of the potential supply of the entrepreneurs.  In other words, (A2)

ensures that it is not the scarcity of the entrepreneurial talents, but the scarcity of the saving and

of the credit that will drive the dynamics of business formation in this economy.  (A3) may be

interpreted similarly. It ensures that the aggregate investment in trading is potentially large

enough, so that there are always some inactive traders in the steady state.  It turns out that

dropping (A3) would not affect the results fundamentally, but would drastically increase the

number of the cases that need to be examined.  (A4) ensures that some entrepreneurs invest in

equilibrium, kt+1 > 0.

Remark 5: (A2) and (A3) help to remove the unwanted implication of the assumption that

each agent can manage at most one project.  This assumption, which reduces the agent’s

investment choice to a zero-one decision, is made for the analytical simplicity.  Both (A2) and

(A3) would not be needed if the agents were allowed to invest at any scale, subject only the

minimum investment requirement.  It turns out, however, that such an alternative specification

would make the model algebraic cumbersome.  It should also be noted that these assumptions

can be weakened significantly.  (A2) can be replaced by W(min{K, kc}) < �1  and (A3) by W(kcc)

� kcc < m�2, where kc and kcc are the values defined later.  (A2) and (A3) are chosen simply

because kc and kcc depends also on R and 
2, hence the meanings of these alternative

assumptions may not be immediately apparent to the reader.

   The Investment Schedules:

Because we have set 
1 = 1, the borrowing constraint for the entrepreneurs, (3), is never

binding, whenever (1) holds, and (1) always holds because of (A4).  If (1) holds with the strict

inequality, all the entrepreneurs start firms.  If (1) holds with the equality, they are indifferent.

Therefore, the investment schedule by the entrepreneurs is given simply by the following

complementarity slackness condition,

(7) 0 < kt+1 	 �1, �(kt+1) � rt+1,
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which is illustrated in Figures 1a through 1c.  As shown below, (A1) and (A2) ensure that kt+1 <

�1 and �(kt+1) = rt+1 in equilibrium.  The investment demand schedule by the entrepreneurs is

thus downward-sloping in the relevant range.  Thus, the return to business investment declines

when more firms are active.

We now turn to the investment schedule by the traders.  First, let us define R(wt) �

R/max{(1 � wt/m)/
, 1}, so that

 
R/[1 � W(kt)/m] if kt < k�,

R(W(kt)) =

R if kt � k�,

where k� is defined implicitly by W(k�) � (1 � 
)m.  Figure 2 illustrates the function, R(W(kt)).

If rt+1 < R(W(kt)), both (2) and (4) are satisfied with the strict inequality, so that all the traders

start the trading operation.  If rt+1 > R(W(kt)), at least one of the conditions is violated, so that no

one starts the trading operation.  A fraction of the traders starts their operation, if and only if rt+1

= R(W(kt)).  In words, R(W(kt)) is the rate of return that the lenders can expect from the credit

extended to the trading operation.  Note that R(W(kt)) is constant and equal to R for kt � k�, when

the profitability constraint, (2), is more stringent than the borrowing constraint, (4).  On the other

hand, it is increasing in kt for kt < k�, when the borrowing constraint, (4), is more stringent than

the profitability constraint, (2).  With a higher net worth, the traders need to borrow less, which

means that they can credibly offer a higher rate of return to the lender.

The investment schedule by the traders may thus be expressed as

= m�2 if  rt+1 < R(W(kt)),

(8) mxt+1 � [0, m�2] if  rt+1 = R(W(kt)),

= 0 if  rt+1 > R(W(kt)).

In each of Figures 1a through 1c, eq. (8) is illustrated as a step function, which graphs W(kt) �

mxt+1.
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The Credit Market Equilibrium:

The credit market equilibrium requires that rt+1 adjust to equate the aggregate investment

and the aggregate saving, i.e., kt+1 + mxt+1 = wt , or equivalently

(9) kt+1 = W(kt) � mxt+1.

Figures 1a through 1c illustrate three alternative cases, depending on the value of kt.14

In Figure 1a, W(kt) is sufficiently low that R(W(kt)) < �(W(kt)).  Thus, the net worth of

the traders is so low that they cannot finance their investment (xt+1 = 0) and all the savings are

channeled into the investment in the business sector (kt+1 = W(kt) < �1). The required rate of

return in equilibrium is too high for the traders (rt+1  = �(W(kt)) > R(W(kt))).  This case occurs,

when kt  < kc, where kc is defined uniquely by R(W(kc)) � �(W(kc)).

In Figure 1b, �(W(kt)) < R(W(kt)) < �(W(kt)�m�2) and the equilibrium rate of return is

equal to rt+1 = R(W(kt)) = �(kt+1) = �(W(kt)�mxt+1) and 0 < xt+1< �2.  This occurs when kc < kt <

kcc, where kcc (> kc) is defined uniquely by R(W(kcc)) � �(W(kcc)�m�2).  This is the case where

some, but not all, traders invest. An increase in kt thus has the effect of further increasing the

investment in trading. Its effect on business investment depends whether kt is higher or less than

k�.  If kt > k�, the borrowing constraint of the traders is not binding, so that the rate of return is

fixed at R(W(kt)) = R.  Thus, the investment in the business sector remains constant at ��1(R).

On the other hand, if kt < k�, the borrowing constraint for the traders is binding, so that R(W(kt))

increases with kt.  A higher net worth eases the borrowing constraint of the traders, so that they

can guarantee a higher rate of return to the lenders.  As a result, business investment is squeezed

out.  In short, kt+1 is a decreasing function of kt if kc < kt < kcc and kt < k�.

Finally, in Figure 1c, W(kt) is sufficiently high that R(W(kt)) > �(W(kt)�m�2) = rt+1 ,

hence xt+1 = �2 and kt+1 = W(kt) � m�2.   This occurs when kt > kcc.  This is the case where the

net worth is so high that all the traders invest.  Given that the trading opportunities are exhausted,

an increase in the saving translates to an increase in business investment.  Hence, kt+1 increases

with kt in this range. This situation occurs as an unwanted by-product of the assumption that the
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traders can manage at most one trading operation, which was made to simplify the analysis of the

trader’s decision problem.  Note, however, that we have imposed (A3) to ensure that kt+1 =

W(kt)�m�2 < kt in this range, so that this situation would never occur in the neighborhood of the

steady state.

 Remark 6: A Digression on Credit Rationing: For the case shown in Figure 1b, where rt+1

= �(kt+1) = R(W(kt)), only a fraction of the traders starts their operation.  When kt � k�, rt+1 = R

holds in equilibrium, and (2) is thus satisfied with equality.  Some traders invest while others do

not, simply because they are indifferent.  When kt < k�, rt+1 = 
R/[1 � W(kt)/m] < R, hence (4) is

binding, while (2) is satisfied with strict inequality.  In other words, all the traders strictly prefer

borrowing to invest, rather than lending their net worth to others.  Therefore, the equilibrium

allocation necessarily involves credit rationing, where a fraction of the traders are denied the

credit.  Those who denied the credit cannot entice the potential lenders by promising a higher rate

of return, because the lenders would know that the borrowers would not be able to keep the

promise.  It should be noted, however, that equilibrium credit rationing occurs in this model due

to the homogeneity of the traders.  The homogeneity means that, whenever some traders face the

borrowing constraint, all the traders face the borrowing constraint, so that coin tosses or some

random devices must be evoked to determine the allocation of the credit. 15  Suppose instead that

the traders were heterogeneous in some observable characteristics.  For example, suppose each

young trader receives, in addition to the labor endowment, the final goods endowment, y, which

is drawn from G, a cumulative distribution function with no mass point.  Then, there would be a

critical level of y, Y(wt, rt+1) � m(1 � 
R/rt+1) � wt, such that only the traders whose endowment

income exceed Y(wt, rt+1) would be able to finance their investment.  This makes the aggregate

investment in trading, mxt+1 = m[1 � G(Y(wt, rt+1))], smoothly decreasing in rt+1, and increasing

                                                                                                                                                                                                                                      
14Figures 1a-1c are drawn under the assumption, W(kt) < �1, which ensures kt+1 < �1 in equilibrium.  This assumption
will be verified later. These figures are also drawn such that W(kt) > m�2.  In the cases of Figures 1a and 1b, this
need not be the case, but it does not affect for the discussion in the text.
15 While some authors use the term, “credit-rationing,” whenever some borrowing limits exist, here it is used to
describe the situation that the aggregate supply of credit falls short of the aggregate demand, so that some borrowers
cannot borrow up to their borrowing limit.  In other words, there is no credit rationing if every borrower can borrow
up to its limit.  In such a situation, their borrowing may be constrained by their net worth, which affects the
borrowing limit, but not because they are credit-rationed. This is consistent with the following definition of credit
rationing by Freixas and Rochet (1997, Ch.5), who attributed it to Baltensperger: “some borrower’s demand for
credit is turned down, even if this borrower is willing to pay all the price and nonprice elements of the loan contract.”
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in wt.  Thus, the borrowing constraint would be enough to determine the allocation of the credit,

and credit rationing would not occur.  What is essential for the following analysis is that, when

the borrowing constraint is binding for marginal traders, an increase in the net worth of the

traders increases the aggregate investment in trading, for each rt+1.  Therefore, it is the borrowing

constraint, not the equilibrium credit rationing per se, that matters.  The equilibrium credit

rationing is nothing but an artifact of the homogeneity assumption, which is imposed to simplify

the analysis.

The Equilibrium Trajectory:

As should be clear from Figures 1a-1c, kt+1 = W(kt) if and only if kt 	 kc; �(kt+1) =

R(W(kt)) if and only if kc 	  kt 	 kcc; and kt+1 = W(kt)�m�2 if and only if kt � kcc.  These

observations can be summarized as follows:

W(kt)  if kt 	 kc,

(10) kt+1  = �(kt) � ��1(R(W(kt)))  if kc < kt 	 kcc,

W(kt)�m�2 if kt > kcc.

Equation (10) determines kt+1 uniquely as a function of kt.  Since kt 	 K implies kt+1 = �(kt) =

W(kt) � mxt+1 	 W(kt) 	 W(K) = K, � maps (0,K] into itself.  Thus, for any k0 � (0, K], this map

defines a unique trajectory in (0, K].  Furthermore, kt 	 K and (A2) mean that �1 > K = W(K) �

W(kt), as has been assumed.

The equilibrium trajectory of the economy can thus be solved for by applying the map

(10), �, iteratively, starting with the initial condition, k0 � (0, K].  This completes the description

of the model.  We now turn to the characterization of the equilibrium dynamics.

3. The Dynamic Analysis.
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It turns out that there are five generic cases of the equilibrium dynamics, as illustrated by

Figure 3a through Figure 3e. 16  Figure 3a depicts the case, where kc � K, so that kt+1 = W(kt) for

all kt � (0, K].  Thus, from the monotonicity of W and (A1), kt converges monotonically to k* =

K for any k0 � (0,K].   This is the case, where the traders never become active and all the saving

goes to the investment in the business sector.  The condition, kc � K, can be rewritten as �(K) �

R(W(K)) = R(K), or equivalently

(11) R 	 �(K) Max{(1 � K/m)/
, 1}.

With a sufficiently small R, the trading operation is not profitable and never competes with

business investment for the credit.  When W(K) = K < m, the condition (11) is also met when 


is sufficiently small for any R.  This is because the traders must borrow to start their operations

even when the net worth reaches its highest possible value.  If 
 is sufficiently small, they can

never borrow, and hence they can never invest, and hence all the saving goes to business

investment, even when kt+1 = W(kt) > ��1(R) so that the trading operation is more profitable than

the business investment.

In the other four cases, kc < K holds, so that some traders become eventually active; xt+1 >

0 for kt � (kc , K].  Figure 3b depicts the case, where k� 	 kc or equivalently, W(kc) � (1 � 
)m,

which can be rewritten as

(12) R 	 �((1 � 
)m).

Under this condition, W(kt) > (1 � 
)m and R(W(kt)) = R for all kt > kc.  This means that the

borrowing constraint is not binding for the traders, whenever they are active.  Eq. (10) is thus

simplified to

W(kt), if kt 	 kc

(13) kt+1 = �(kt) =  ��1(R) = W(kc), if kc < kt 	 min{kcc, K}

W(kt) � m�2. if kcc < kt 	 K.

                                                                       
16 Figure 3a through Figure 3e are drawn such that W(0) = 0 and W is concave.  These need not be the case.  (A1)
assumes only that W(k) > k for all k � (0, K] and W(K) = K.
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As shown in Figure 3b, the map has a flat segment, over (kc , min{kcc, K}), but it is strictly

increasing elsewhere.  Furthermore, (A3) ensures kcc > W(kcc) � m�2, so that the steady state is

located at the flat segment.17  The dynamics of kt hence converges monotonically to the unique

steady state, k* = ��1(R) = W(kc).  As the business sector expands, borrower net worth improves

and the profitability of business investment declines.  As soon as the equilibrium rate of return

drops to R, the traders start investing, because they do not face the binding borrowing constraint.

Thus, the equilibrium rate of return stays constant at R, and business investment remains constant

at ��1(R).

In the three cases depicted by Figure 3c through 3e, kc < k� holds.  As in Figure 3b, for kt

> k�, the borrowing constraint is not binding for the traders, so that the equilibrium rate of return

is equal to R, and hence kt+1 = �(kt) = ��1(R).  In contrast to Figure 3b, however, all these

figures show the intervals below k�, in which kt+1 = �(kt) > ��1(R) holds, suggesting an over-

investment in the business sector, �(kt+1) < R.  Inside these intervals, below kc, the saving

continues to flow only into the business investment; kt+1 = W(kt) > ��1(R).  For kc < kt < k�, on

the other hand, the saving starts flowing into the trading operation, even though the traders are

still constrained by the low net worth, and the equilibrium rate of return remains strictly below R.

Thus, we have

(14) kt+1 = �(kt) = ��1(
R/[1 � W(kt)/m])

for kc < kt < min {k�, kcc, K}.  Note that (14) is decreasing in kt. In other words, the map has a

downward-sloping segment, when neither (11) nor (12) hold.

It should be clear why an increase in kt leads to a lower kt+1 when trading is active but

borrowing constrained.  A higher kt, by improving the net worth of the traders, eases their

borrowing constraint, which enables them to make a credible commitment to generate a higher

return to the lenders.  This drives up the equilibrium rate of return.  To keep the investment in the

business sector profitable, the business sector must shrink.  Thus, more saving is channeled into

the investment in trading at the expense of the investment in the business sector.

Figure 3c depicts the case where the borrowing constraint for trading is not binding in the

steady state.  That is, the map intersects with the 45� line at a flat segment, i.e., over the interval,
                                                                       
17In both Figures 3b and 3c, kcc > K.  This need not be the case, nor is it essential for the discussion in the text.
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(k�, min{kcc, K}).   The condition for this is k� 	 k* = ��1(R) < kcc. Since (A3) ensures k* < kcc,

this occurs whenever k� 	 ��1(R), or equivalently, W(��1(R)) � (1 � 
)m, which can be further

rewritten to

(15) R 	 �(W�1((1 � 
)m)).

When (15) holds but (11) and (12) are violated, the dynamics of kt converges to k* = ��1(R) <

W(kc), as illustrated in Figure 3c.  The dynamics is not, however, globally monotone. Starting

from k0 < k�, the dynamics of kt generally overshoots k* and approaches k* from above.18

For the cases depicted by Figures 3d and 3e, (11) and (15) are both violated, which also

implies the violation of (12).19  Thus, the map intersects with the 45� line at the downward

sloping part, (kc , min{k�, kcc, K}).  Therefore, the traders face the binding borrowing constraint

in a neighborhood of the steady state.  By setting kt = kt+1 = k* in (14), the steady state is given

by

(16) �(k*)[1 � W(k*)/m] = 
R.

Both in Figure 3d and Figure 3e, the dynamics around the steady state is oscillatory.  The

two figures differ in the stability of the steady state, which depends on the slope of the map at k*.

Differentiating (14) and then setting kt = kt+1 = k* yield,

��(k*) = W�(k*)�(k*)/��(k*)[m � W(k*)] = � k*�(k*)/[m � W(k*)],

where use has been made of (16) and W�(k*)+k*��(k*) = 0.  From k*�(k*) + W(k*) =

k*�(1/k*), ���(k*)� < 1 if and only if

(17) k*�(1/k*) < m.

Note that the LHS of (17) is increasing in k*, while the LHS of (16) is decreasing in k*.  Hence,

(17) can be rewritten to

(18) 
R > �(h(m))[1 � W(h(m))/m],

where h(m) is defined implicitly by h�(1/h) � m.  This case is illustrated in Figure 3d. When (18)

holds, the steady state, k*, is asymptotically stable; the convergence is locally oscillatory.

On the other hand, if

                                                                       
18 The qualified “generally” is needed, because the equilibrium trajectory is monotone, if k0 � {W-�T(k*)�T = 0, 1,
2,...}, which is at most countable and hence of measure zero.
19 Figures 3d and 3e are drawn such that k� < K.  This need not be the case, nor is it essential for the discussion in the
text.
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(19) 
R < �(h(m))[1 � W(h(m))/m],

then ���(k*)� > 1 and hence the steady state, k*, is unstable, as illustrated in Figure 3e.  For any

initial condition, the equilibrium trajectory will eventually be trapped in the interval, I �

[max{�(W(kc)), �(min{k�, kcc})}, W(kc)], as illustrated by the box in Figure 3e.20  Furthermore,

if k� � min{kcc, K}, kt fluctuates indefinitely except for a countable set of initial conditions.  If k�

< min{kcc, K}, kt fluctuates indefinitely except for a countable set of initial conditions for a

generic subset of the parameter values satisfying (19) and violating (11) and (15).21  In other

words, the equilibrium dynamics exhibit permanent endogenous fluctuations almost surely.

To summarize,

Proposition 1. Let 
1 = 1 and 
2 = 
 � (0,1).  Then,

A. Let R 	 �(K)max{(1 � K/m)/
, 1} or equivalently, kc � K.  Then, xt+1 = 0 for all t � 0 and

the dynamics of kt converges monotonically to the unique steady state, K.

B. Let �(K) < R 	 �((1 � 
)m), or equivalently, k� 	 kc < K.  Then, the dynamics of kt

converges monotonically to the unique steady state, k* = ��1(R) = W(kc).  Some traders

eventually become active and never face the binding borrowing constraint.

C. Let �((1 � 
)m) < R 	 �(W�1((1 � 
)m))) or equivalently, kc < k� 	 ��1(R).  Then, the

dynamics of kt converges to the unique steady state, k* = ��1(R) < W(kc).  Some traders

are active and do not face the binding borrowing constraint in the neighborhood of the

steady state.

D. Let R > �(W�1((1 � 
)m))), �(h(m))[1 � W(h(m))/m]/
.  Then, the dynamics of k has the

unique steady state, k* � (kc , min{k�, kcc, K}), satisfying �(k*)[1 � W(k*)/m] = 
R.

                                                                       
20 In Figure 3e, k� < W(kc) < K < kcc.  Hence, I = [�(k�), W(kc)] = [��1(R), W(kc)].
21 To see this, let C � (0, K] be the set of initial conditions for which kt converges.  Let k� = lim t��  �t(k0) be the
limit point for k0 � C.  From the continuity of �, �(k�) = lim t�� �(kt) = lim t��  kt+1 = k�.  Hence, k� = k*.  Since
k* is unstable, kt cannot approach it asymptotically.  It must be mapped to k* in a finite iteration.  That is, there exits
T such that �T(k0) = k*, or C = {��T(k0)�T = 0,1,2,...}.  If k� � min{kcc, K}, the map has no flat segment and hence
the preimage of � is finite and hence C is at most countable.  If k� < min{kcc, K}, the map has a flat segment, at
which it is equal to ��1(R).  Thus, C is at most countable unless ��1(R) � {��T(k0)�T = 0,1,2,...}, which occurs only
for a nongeneric set of parameter values.  (As clear from this proof, it is easy to show that, even when k� < min{kcc,
K}, if W(kc) < min{k�, kcc}, the flat segment does not belong to I.  Hence, if we restrict the initial condition in I, kt
fluctuates indefinitely for almost initial conditions in I for all the parameter values satisfying (19) and violate (11)
and (15).)
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The traders face the binding borrowing constraint in the neighborhood of the steady state.

The steady state is asymptotically stable.  The convergence is locally oscillatory.

E. Let �(K)(1 � K/m)/
, �(W�1((1 � 
)m))) < R < �(h(m))[1 � W(h(m))/m]/
. Then, the

dynamics of k has the unique steady state, k*� (kc , min{k�, kcc, K}), satisfying �(k*)[1 �

W(k*)/m] = 
R.  The traders face the binding borrowing constraint in the neighborhood

of the steady state.  The steady state is unstable.  Every equilibrium trajectory will be

eventually trapped in the interval, I � [max{�(W(kc)), �(min{k�, kcc})}, W(kc)].

Furthermore, the equilibrium dynamics exhibits permanent, endogenous fluctuations for

almost all initial conditions.

In order to avoid a taxonomical exposition, let us focus on the case where K < m < K�(1/K) in

the following discussion.22   Proposition 1 is illustrated by Figure 4, which divides the parameter

space, (
, R), into five regions, where Region A satisfies the conditions given in Proposition 1A,

Region B satisfies those given in Proposition 1B, etc.  The borders between B and C and between

C and D are asymptotic to 
 = 1.  The borders between D and E and between A and E are

hyperbolae and asymptotic to 
 = 0.

If the economy is in Region A, the traders remain inactive and hence have no effect on

the dynamics of business formation, and the model behaves just as the standard one-sector

neoclassical growth model.  There are two ways in which this could happen.  First, if the trading

operation is unprofitable, not surprisingly, it never competes with business investment in the

credit market.  More specifically, this occurs if R 	 �(K), i.e., when the rate of return in trading

is always dominated by business investment.  Second, even if R > �(K), so that the trading

operation becomes eventually as profitable as business investment, the traders would not be able

to borrow if they suffer from the severe agency problem (a small 
).

If the economy is in Region B, the trading operation eventually becomes as profitable as

business investment, because R > �(K).  Furthermore, the agency problem associated with the

trading operation is so minor (
 is sufficiently high) that the traders can finance their investments

                                                                       
22Note K < K�(1/K) for any K, because K�(1/K) = K�(K) + W(K) > W(K) = K.  Matsuyama (2001) offers a
detailed discussion for the cases where m < K and m > K�(1/K).
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as soon as the equilibrium rate of return drops to R.  As a result, business investment stays

constant at ��1(R).  In these cases, trading changes the dynamics of business formation, but it is

simply because the credit market allocates the saving to the most profitable investments.

Furthermore the dynamics always converges to the unique steady state.

The presence of the profitable trading operation has nontrivial effects on the dynamics

when the economy is in Region C, D, or E, i.e., when 
 is neither too high nor too low.  In

particular, in the cases of D and E, the traders face the binding borrowing constraint in the

neighborhood of the steady state.  The agency problem associated with the trading operation is

significant enough (i.e., 
 is not too high) that the credit continues to flow into the business

sector, even if its rate of return is strictly less than R.  Of course, the traders are eager to take

advantage of the lower equilibrium rate of return, but some of them are unable to do so, because

of their borrowing constraint.  If 
 is not too low, an improvement in net worth would ease the

borrowing constraint, which drives up the equilibrium rate.  This is because, with a higher net

worth, they need to borrow less, and hence they would be able to guarantee the lender a higher

rate of return.  A rise of the equilibrium rate of return in turn causes a decline in the investment

in the business sector, which reduces the net worth of the agents in the next period.  When 
 is

relatively high (i.e., if the economy is in Region D), this effect is not strong enough to make the

steady state unstable.  When 
 is relatively low (i.e., if the economy is in Region E), this effect is

strong enough to make the steady state unstable and generates endogenous fluctuations.23  Thus,

Corollary 1.

Suppose K < m < K�(1/K).  For any R > �(K), endogenous fluctuations occur (almost surely) for

an intermediate value of 
.

This corollary is the main conclusion of the basic model.  Endogenous credit cycles occur when

the Bad project is sufficiently profitable (a high R) and when the agency problem associated with

the Bad project is big enough that the agents cannot finance it when their  net worth is low, but

small enough that the agents can finance it when their net worth is high.
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Region D is also of some interest, because the local convergence toward the steady state

is oscillatory, and the transitional dynamics is cyclical.  If the economy is hit by recurrent shocks,

the equilibrium dynamics exhibit considerable fluctuations.24  A quick look at Proposition 1D

(and Figure 4) verifies that a sufficiently high R ensures that the economy is in Region D.  Thus,

Corollary 2.

For any 
 � (0,1), the dynamics around the steady state is oscillatory for a sufficiently high R.

The intuition behind this result is easy to grasp.  In the presence of the agency problem, the

trader’s borrowing constraint becomes binding, if they are sufficiently eager to invest, i.e., if the

trading operation is sufficiently profitable.

4. Some Examples of Chaotic Dynamics

Propositions 1D and 1E give the conditions under which the model generates locally

oscillatory convergence and endogenous fluctuations for almost all initial conditions.  To be able

to say more about the nature of global dynamics, let us impose some specific functional forms.

Example 1:

Let �(n)= 2(Kn)1/2, with K < �1, 4m�2, which satisfies (A1) through (A4).  If R > K/(1�
)m, and

R > (1� K/m)/
, the economy is either in Region D (for 
R > K/m) or in Region E (for 
R <

K/m).  Furthermore, in order to avoid a taxonomical exposition, let us focus on the case, where

W(kc) < min {k�,  kcc} so that the map is strictly decreasing in (kc, W(kc)].25  Some algebra can

show that, by defining zt � (kt/K)1/2
, the equilibrium dynamics over this range can be expressed by

the map: �: (0, �(zc)]� (0, zc], defined by

                                                                                                                                                                                                                                      
23 Technically speaking, as the economy crosses 	R = �(h(m))[1 
 W(h(m))/m] from Region D to Region E, the
dynamical system experiences a flip bifurcation.
24 In addition, it is possible that there may be endogenous fluctuations in Region D.  When the parameters satisfy the
conditions given in Proposition 1D, we do know that the local dynamics converges, but little can be said of the
nature of global dynamics.  For example, if the flip bifurcation that occurs at the boundary of D and E is of
subcritical type, there are (unstable) period-2 cycles in the neighborhood of k* near the boundary on the side of
Region D: see Guckenheimer and Holmes (1983, Theorem 3.5.1).
25 For example, K < (1
	)m(1
	+	R) ensures k� > W(kc); K > mR2(1
	
�2 ) ensures kcc > k� , hence kcc > W(kc).
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zt+1 = �(zt) � min {zt
1/2

 , [1 � (K/m)zt]/(
R)},

where zc � (kc/K)1/2 < 1, which satisfies �(zc) = zc
1/2

 = [1 � (K/m)zc]/(
R).  The map is unimodal:

it is strictly increasing in (0, zc) and strictly decreasing in I� � (zc, �(zc)].   Furthermore, the slope

is constant in I�.  In Region D, where 
R > K/m, the slope in I� is less than one in absolute value.

Therefore, the economy converges to the steady state, z* = 1/(
R+K/m) � I�, for any initial

condition.  In Region E, the case illustrated in Figure 5a, the slope in I� is greater than one in

absolute value.  This means that, if zt � z*, the equilibrium trajectory will escape I� after a finite

iteration.  However, it will never leave I = [�2(zc), �(zc)], because the map is strictly increasing

in I+ � [�2(zc), zc).  Therefore, the equilibrium trajectory visits both I+ and I� infinitely often, for

almost all initial conditions in I (i.e., except for a countable set of initial conditions in I, for

which the equilibrium trajectory is mapped into z* in a finite iteration). Furthermore, if 
R > 2(1

� K/4m), then zc < 1/4, which ensures that the slope of the map is strictly greater than one in

absolute value anywhere in I+ � I�.26  This means that there are period cycles of every period

length, all of which are unstable, and the equilibrium trajectory does not converge to any periodic

cycle for almost all initial conditions.  In short, the map is chaotic.27

In the previous example, the functional form is chosen so that the slope of the map is

constant when zt > zc.  This guarantees that there exist no periodic cycles that stay entirely above

zc. In the next example, the functional form is chosen so that the slope of the map is constant also

when zt < zc.

Example 2:

Let  �(n) = 2(Kn)1/2 if n 	 1/kc ; = 2(zc)�1/2 + log(kcn)/zc, if n > 1/kc, which satisfies (A1) through

(A4) with K < �1, 4m�2. As in Example 1, let R > K/(1�
)m, and R > (1� K/m)/
, so that the

economy is either in Region D (for 
R > K/m) or in Region E (for 
R < K/m), and impose the

                                                                       
26 For example, �1 = 0.2, �2 = 0.8, K = 0.1, m = 0.05, 	 = 0.25, R = 7.8 satisfy the last condition, as well as all the
other conditions imposed earlier.
27 See, for example, Devaney (1987, Chapter 1.6 and 1.7).  The set of initial conditions for which the trajectory is
eventually periodic is a Cantor set, i.e., it is uncountable, but contains no interior or isolated points.  Furthermore,
this chaotic map is structually stable.  (For an introduction to the chaotic dynamical system written for economists,
see Grandmont 1986).
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same restrictions on the parameters to ensure W(kc) < min {k�,  kcc}.  Then, the dynamics is now

given by

zt+1 = �(zt) � min {(zc)�1/2zt , [1 � (K/m)zt]/(
R)},

on (0, �(zc)], as illustrated in Figure 5b.  This map differs from Example 1 in that the slope of the

map is constant in (0, zc), which is greater than one because zc < 1.  Therefore, for 
R < K/m, the

slope of the map is greater than one in absolute value anywhere in I+ � I�.  Thus, with this

functional form, the map is chaotic whenever the parameters satisfy the conditions in Proposition

1E.

5. Reintroducing the Borrowing Constraint in the Business Sector

So far, we have analyzed the equilibrium trajectory under the assumption that 
1 = 1 > 
2

= 
.  We are now going to show that, for any 
2 = 
 < 1, a small reduction in 
1 from 
1 = 1

would not affect the equilibrium trajectory.

Recall that the entrepreneurs start firms when both (1) and (3) are satisfied. (A4) ensures

that some entrepreneurs are active, kt+1 > 0, hence both (1) and (3) hold in equilibrium.

Furthermore, kt 	 K ensures that kt+1 = W(kt) � mxt+1 	 W(kt) 	 W(K) = K < �1 .  Therefore, at

least (1) or (3) must be binding, hence

(20) �(kt+1)/max{[1 � W(kt)]/
1, 1} = rt+1 .

The credit market equilibrium is given by (8), (9) and (20).  It is easy to see that, given kt, these

equations jointly determine kt+1 uniquely.

Let us find the condition under which the map given in eq. (10) solves the credit market

equilibrium, determined by (8), (9), and (20).  First, for any kt � kc, eq. (10) solves the credit

market equilibrium if and only if the entrepreneurs do not face the binding borrowing constraint,

that is, when (20) is �(kt+1) = rt+1, i.e., W(kt) � 1 � 
1 for all kt � kc.  The condition for this is 
1 �

1 � W(kc).  Then, in order for (10) to be the equilibrium, it suffices to show that xt+1 = 0 and kt+1

= W(kt) solve (8), (9) and (20) for kt < kc.  This condition is given by
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1�(W(kt))/[1 � W(kt)] if  kt < k�1

(21) R/max{[1 � W(kt)/m]/
2, 1} 	

�(W(kt))  if k�1 	 kt < kc,

where k�1 is defined implicitly by W(k�1) � 1 � 
1 and satisfies k�1 < kc.  Eq. (21) is illustrated by

Figure 6a (for kc < k�) and Figure 6b (for kc > k�).  By definition of kc, the LHS of (21) is strictly

less than �(W(kt)) for all kt < kc.  Since the RHS of (21) converges to �(W(kt)), as 
1

approaches one, there exists 
1� < 1 such that eq. (21) holds for 
1 � [
1� , 1].  Since the LHS of

(21) weakly increases with 
2, the lowest value of 
1 for which (21) holds, 
1�, is weakly

increasing in 
2. It is also easy to see that (21) is violated for a sufficiently small 
1, hence, 
1� >

0.  Furthermore, for any 
1 > 0, (21) holds for a sufficiently small 
2 > 0.  Thus, 
1� approaches

zero with 
2.  One can thus conclude

Proposition 2.

For any 
2 = 
 � (0,1), there exists �(
2) � (0,1), such that, for 
1 � [�(
2), 1], the equilibrium

dynamics is independent of 
1.28  � is nondecreasing in 
2 and satisfies �(
2) � 1 � W(kc), and

lim�2�0 �(
2) = 0.

Proposition 2 thus means that the analysis need not be changed, as long as 
1 is sufficiently high.

In particular, Proposition 1, their corollaries, as well as Examples 1 and 2 are all unaffected.

Even with a weaker condition on 
1, the possibility of endogenous fluctuations survives.

When 
1 < �(
2), the map depends on 
1, but shifts continuously as 
1 changes. Therefore, as

long as the reduction is small enough, k* is unaffected and remains the only steady state of the

map.  Therefore, as long as 
2 = 
  satisfies the condition given in Proposition 1E, the map

generates endogenous fluctuations, because its unique steady state is unstable.

The above analysis thus shows that the key mechanism in generating endogenous

fluctuations is that an improved economic condition eases the borrowing constraints for the Bad

more than those for the Good, so that the saving is channeled into the former at the expense of
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the latter.  The assumption made earlier that the Good faces no borrowing constraint itself is not

crucial for the results obtained so far.

6. The Good, The Bad and The Ugly: Introducing Credit Multiplier

This section presents an extension of the model of section 5, which serves two purposes.

First, recent studies in macroeconomics, such as Bernanke and Gertler (1989) and Kiyotaki and

Moore (1997), have emphasized the role of credit market imperfections in propagation

mechanisms of business cycles.  In particular, they stressed a credit multiplier effect.  An

increase in net worth stimulates business investment by easing the borrowing constraint of the

entrepreneurs, which further improves their net worth, leading to more business investment.  This

introduces persistence into the system.  The model developed above has no such a credit

multiplier effect.29  Quite the contrary, the mechanism identified may be called a credit reversal

effect, because an increase in net worth stimulates trading at the expense of business investment,

leading to a deterioration of the net worth.  This introduces instability into the system.  This does

not mean, however, that these two mechanisms are mutually exclusive.  Combining the two is

not only feasible but also useful because it adds some realism to the equilibrium dynamics.  In

the model shown below, both credit multiplier and reversal effects are present and the

equilibrium dynamics exhibit persistence at a low level of economic activities and instability at a

high level.

Second, in the previous models, trading, which is the only alternative to the business

investment, not only generates less aggregate demand spillovers than the other, but also faces

tighter borrowing constraints.  This might give the reader a false impression that these two

features, less spillovers and tighter borrowing constraints, must go together to have instability

and fluctuations. The extension presented below will show that this need not be the case, by

adding another investment opportunity, which generates less spillovers and face less borrowing

                                                                                                                                                                                                                                      
28 The function, �, also depends on other parameters of the model, m, R, K, as well as the functional form of �.
29 In the model above, an increase in the net worth leads to an increase in business investment when kt  < kc.  This
occurs because an increase in the net worth leads to an increase in the aggregate savings, all of which are used to
finance the investment in the business sector.  The aggregate investment in the business sector is independent of
whether the entrepreneurs face the borrowing constraint.  Therefore, it should not be interpreted as the credit
multiplier effect.
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constraints. What is needed for endogenous fluctuations is that some profitable projects have less

spillovers than others, and can be financed only at a high level of economic activities.

The model discussed in the last section is now modified to allow the young agents to have

access to a storage technology, which transforms one unit of the final good in period t into �

units of the final good in period t+1. The storage technology is available to all the young.

Furthermore, it is divisible, so that the agents can invest, regardless of their level of net worth.  It

is assumed that the gross rate of return on storage satisfies � � (
2R, R).  This restriction ensures

that storage dominates trading when net worth is low, while trading dominates storage when it is

high.  That is, the economy now has the following three types of the investment: i) The Good

(Business Investment), which is profitable, relatively easy to finance and generates demand for

the labor endowment held by the next generation of the agents; ii) The Bad (Trading), which is

profitable, relatively difficult to finance, and generates no demand for the labor endowment; and

iii) The Ugly (Storage), which is unprofitable, has no need for being financed, and generates no

demand for the endowment.

Let st be the total units of the final good invested in storage at the end of period t.  Then,

the credit market equilibrium condition is now given by

= m�2 if  rt+1 < R(W(kt)),

(8) mxt+1 � [0, m�2] if  rt+1 = R(W(kt)),

= 0 if  rt+1 > R(W(kt)).

(20) �(kt+1)/max{[1 � W(kt)]/
1, 1} = rt+1 .

= 0, if rt+1  > �

(22) st � 0, if rt+1  = �

= , if rt+1  < �

(23) kt+1 = W(kt) � mxt+1 � st.

Eqs. (8) and (20) are reproduced here for easy reference.  Introducing the storage technology does

not make any difference in the range where rt+1> �.  If the storage technology is used in

equilibrium, the equilibrium rate of return must be rt+1= �.
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Characterizing the credit market equilibrium and the equilibrium trajectory determined by

(8), (20), (22) and (23) for the full set of parameter values require one to go through a large

number of cases.  Furthermore, in many of these cases, the presence of the storage technology

does not affect the properties of the equilibrium dynamics fundamentally.  In what follows, let us

report one representative case, in which the introduction of the storage technology creates some

important changes.  More specifically, let us consider the case, where the following conditions

hold.  First, R and 
2 = 
 satisfy the conditions given in Proposition 1E.  This ensures that kc <

k* < k�.  Second, � is not too low nor too high so that kc < k� < k*, where k� is implicitly defined

by R(W(k�)) � �.  Third, 
1 is large enough that k�1 < k�, and small enough that the RHS of (21)

is greater than � for kt < k� and smaller than � for kt > k�. (It is feasible to find such 
1 because kc

< k�.)  These conditions are illustrated in Figure 7.30

  Then, for kt < k�, the business profit is so high that all the saving goes to the investment in

the business sector, and xt+1 = st = 0.  For k� < kt < k�, some saving goes to the storage, st > 0, and

hence rt+1 = �  > R(W(kt)), and the trading remains inactive, xt+1 = 0.  Within this range, the

borrowing constraint is binding for the entrepreneurs when k� < kt < k�1, and the profitability

constraint is binding for the entrepreneurs when k�1 < kt < k�. For k� < kt < min {k�, kcc, K}, the

storage technology is not used, st = 0. The entrepreneurs, whose borrowing constraint is not

binding, compete for the credit with the traders who become active, and face the binding

borrowing constraint, and the interest is given by rt+1 = R(W(kt)) > �.  The unstable steady state,

k*, shown in Proposition 1E, is located in this range.

The equilibrium dynamics is thus governed by the following map:

W(kt), if kt 	 k�,

 ��1(�[1 � W(kt)]/
1), if k� < kt 	 k�1,

(24) kt+1 = �(kt) � ��1(�), if k�1 < kt 	 k�.

 ��1(
2R/[1 � W(kt)/m]), if k� < kt 	 min {k�, kcc},

��1(R), if k� < kt 	 kcc,

W(kt) � m�2. if kt � kcc,
                                                                       
30 In Figure 7, k�1 < kc.  This need not be the case, nor is it essential for the discussion in the text.
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where k� is given implicitly by 
1�(W(k�))/[1 � W(k�)] � �.  Eq. (24) differs from (10) for k� < kt

< k�, where some saving go to the storage technology and the rate of return is fixed at �.  In

particular, for k� < kt < k�1, the investment in the business sector is determined by the borrowing

constraint,

(25) W(kt) = 1 � 
1�(kt+1)/�.

In this range, an increase in the net worth, W(kt), eases the borrowing constraint of the

entrepreneurs, so that their investment demand goes up.  Instead of pushing the equilibrium rate

of return, the rise in the investment demand in the business sector is financed by redirecting the

savings from storage.  Intuitively enough, an increase in �/
1 shifts down the map in this range.

The presence of the Ugly thus reduces the Good, which slows down the expansion processes.

Unlike the Bad, however, the Ugly does not destroy the Good.  And a higher business investment

today leads to a higher business investment tomorrow.  This mechanism is essentially identical

with the one studied by Bernanke and Gertler (1989); see also Matsuyama (2004a, Section 5).

The crucial feature of the dynamics governed by (24) is that the credit multiplier effect is

operative at a lower level of activities, while the credit reversal effect is operative at a higher

level, including in the neighborhood of the unstable steady state, k*.  In this sense, this model is a

hybrid of the model developed earlier and of a credit multiplier model à la Bernanke-Gertler.

Figure 8 illustrates the map (24) under additional restrictions, �(k�) = ��1(�) 	 min {k�,

kcc} and k�1 > �2(k�) = �(��1(�)).  The first restriction ensures that some traders remain inactive

at �(k�).  This means that the trapping interval is given by I � [�2(k�), �(k�)] = [�(��1(�)),

��1(�)].31  The second restriction ensures that the trapping interval, I, overlaps with (k�, k�1), i.e.,

the range over which the credit multiplier effect is operative.  Let us fix � and change 
1.  As 
1

is reduced, k�1 increases from �2(k�) to k�, and at the same time, the map shifts down below k�1.

Clearly, the map has the unique steady state, k*, as long as 
1 is not too small (or k�1 is

sufficiently close to �2(k�)).  As 
1 is made smaller (and k�1 approaches k�), the equilibrium

                                                                       
31 Note that this restriction is weaker than the restriction, W(kc) � min {k�, kcc}, because kc < k� implies �(W(kc)) =
R(W(kc)) < R(W(k�)) = , hence W(kc)  > ��1().
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dynamics may have additional steady states in (k�, k�1).32  The following proposition gives the

exact condition under which that happens.

Proposition 3. Let k* be the (unstable) steady state in Proposition 1E.

A. If 
1 < 1 � W(h(1)) and 
1 < �h(1), the equilibrium dynamics governed  by (24) has, in

addition to k*, two other steady states, k1**, k2** � (k�, k�1).  They satisfy k1** < h(1) < k2**,

and k1** is stable and k2** is unstable.

B. If 
1 < 1 � W(h(1)) and 
1 = �h(1), the equilibrium dynamics governed by (24) has, in

addition to k*, another steady state, k** = h(1) � (k�, k�1), which is stable from below and

unstable from above.

C. Otherwise, k* is the unique steady state of (24).

Proof.  See Appendix.

If 
1 > 1 � W(h(1)) or 
1 > �h(1), neither condition given in Proposition 3A or 3B hold,

endogenous fluctuations clearly survive, because the map has a unique steady state, k*, which is

unstable. Even if 
1 < 1 � W(h(1)) and 
1 	 �h(1), the equilibrium dynamics may still exhibit

endogenous fluctuations in I � [�2(k�), �(k�)].  This is because, if h(1) < �2(k�), k2** < �2(k�)

as long as 
1 is not too much lower than �h(1), and hence the map has a unique steady state in I,

k*, which is unstable, and, for any initial condition in I, the equilibrium trajectory never leaves I.

The above argument indicates that, as long as 
1 is not too small (or � is not too large),

the introduction of the credit multiplier effect does not affect the result that the borrowing-

constrained investment in trading generates endogenous fluctuations.  This does not mean,

however, that the credit multiplier effect has little effects on the nature of fluctuations.  The

introduction of the credit multiplier effect, by shifting down the map below k�1, can slow down

an economic expansion, thereby creating asymmetry in business cycles.  This is most clearly

illustrated by Figure 9, which depicts the case where �2(k�) < h(1) < k�1.  If 
1 = �h(1), as

indicated in Proposition 3B, the map is tangent to the 45� line at h(1), which creates an additional
                                                                       
32 Since k� < k* < ��1(), the map does not intersect with the 45� line in [k�1, k�).
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steady state, k** = h(1).  It is stable from below but unstable from above, and there are

homoclinic orbits, which leave from k**, and converges to k** from below.  Starting from this

situation, let 
1 go up slightly.  As indicated in Proposition 3A, such a change in the parameter

value makes the steady state, k**, disappear, and the map is left with the unique steady state, k*,

in its downward-sloping segment, which is unstable.33  The credit multiplier effect is responsible

for the segment, where the map is increasing and stays above but very close to the 45� line. Thus,

the equilibrium dynamics display intermittency, as a tangent bifurcation eliminates the tangent

point, k**, and its homoclinic orbits.  The equilibrium trajectory occasionally has to travel

through the narrow corridor.  The trajectory stays in the neighborhood of h(1) for possibly long

time, as the economy’s business sector expands gradually.  Then, the economy starts accelerating

through the credit multiplier effect.  At the peak, the traders start investing.  Then, the economy

plunges into a recession (possibly after going through a period of high volatility, as the trajectory

oscillates around k*).  Then, at the bottom, the economy begins its slow and long process of

expansion.  The map depicted in Figure 9 is said to display intermittency, because its dynamic

behavior is characterized by a relatively long periods of small movements punctuated by

intermittent periods of seemingly random-looking movements.34

Example 3.

As in Examples 1 and 2, let �(n)= 2(Kn)1/2 with K < �1, 4m�2, and impose the same restrictions

to ensure W(kc) 	 min {k�, kcc}.  This guarantees �(k�) = ��1(�) < W(kc) 	 min {k�, kcc}.  As

seen in Examples 1 and 2, 1 � K/m < 
2R < K/m, and R > K/(1�
2)m ensure that the conditions

in Proposition 1E are satisfied.   Let us choose � such that K/m�2 < (1 � 
2R/�) < K/m� (this is

feasible because 
2R + K/m > 1) and 
1 such that K/�2 < 1 � 
1 < m(1 � 
2R/�).  Then, (24) can

be rewritten in the relevant range as

                                                                       
33 Technically speaking, this is known as a saddle-node or tangent bifurcation.
34 What is significant here is that the introduction of the credit multiplier effect can create the intermittency,
regardless of the functional form of �.  Even without the credit multiplier effect, one can always choose a functional
form of �, so as to make the function W(k) = �(k) come close to the 45� line below kc to generate the intermittency
phenomenon.  In this sense, the presence of the credit multiplier effect is not necessary for the intermittency.  It
simply makes it more plausible.
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(zt)1/2, if zt 	 z�,

(26) zt+1 = �(zt) �  
1/�(1 � Kzt), if z� < zt 	 z�1,

1/�, if z�1 < zt 	 z�,

[1 � (K/m)zt]/(
2R), if z� < zt 	 1/�,

where zt � (kt/K)1/2 and z� � (k�/K)1/2,  z�1 � (k�1/K)1/2, and z� � (k�/K)1/2 satisfy (z�)1/2 = 
1/�(1 �

Kz�), 
1 = 1 � Kz�1 , and 
2R/� = [1 � (K/m)z�],  and z� < z�1 < z� < z* = 1/(
2R+K/m) < 1/� < 1.

Let 
1 < 1/2, or equivalently z�1 > (h(1)/K)1/2 = 1/2K.   If 
1 � �/4K, z* is the unique

steady state of (26).  If 
1 < �/4K, z1** � [1 � (1 � 4
1K/�)1/2]/2K and z2** � [1 + (1 �

4
1K/�)1/2]/2K are two additional steady states of (26).  They satisfy z1** < (h(1)/K)1/2 < z2**.  If

1/2K < �2(z�) = [1 � (K/m�)]/(
2R), then z* remains the unique steady state in I � [�2(z�), z�],

for all 
1 > 
1min , where 
1min  is defined by  [1 + (1 � 4
1minK/�)1/2]/2K � [1 � (K/m�)]/(
2R). If

1/2K > �2(z�) = [1 � (K/m�)]/(
2R), then a tangent bifurcation occurs at 
1 = �/4K, and

intermittency phenomena emerge for 
1 > �/4K.

7. Concluding Remarks

This paper has presented dynamic general equilibrium models of imperfect credit

markets, in which the economy fluctuates endogenously along its unique equilibrium path.  The

model is based on the heterogeneity of investment projects.  In the basic model, there are two

types of projects: the Good and the Bad.  The Bad is highly profitable, but generates less

aggregate demand spillovers than the Good.  Hence, the former does not improve the net worth

of other agents as much as the latter.  Furthermore, the Bad is relatively difficult to finance

externally, so that the agents need to have a high level of net worth to be able to start the Bad

projects. When the net worth is low, the agents cannot finance the Bad, and much of the credit

thus goes to the Good, even when the Bad is more profitable than the Good.  This over-

investment to the Good creates much aggregate demand spillovers, creating a boom.  With an

improved net worth, the agents are now able to invest into the Bad.  This shift in the composition

of the credit from the Good to the Bad at the peak of the boom causes a decline in net worth.  The

whole process repeats itself.  Endogenous fluctuations occur because the Good breeds the Bad
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and the Bad destroys the Good, as in ecological cycles driven by predator-prey or host-parasite

interactions.  An extension of the basic model introduces a third type of the projects, the Ugly,

which is unprofitable, contributes nothing to improve borrower net worth, but is subject to no

borrowing constraint.  In this extended model, when the net worth is low, the Good competes

with the Ugly in the credit market.  Thus, the credit multiplier mechanism is at work in

recessions.  When the net worth is high, the Good competes with the Bad.  Therefore, the credit

reversal mechanism is at work in booms.  By combing the two mechanisms, this model generates

asymmetric fluctuations, along which the economy experiences a long and slow process of

recovery, followed by a rapid expansion, and then, possibly after periods of high volatility, it

plunges into a recession.

Several cautions should be made when interpreting the message of this paper.  First, the

Good (the Bad) is defined as the profitable investment projects that contribute more (less) to

improve the net worth of the next generation of the agents.  These effects operate solely through

changes in the competitive prices.  They are based entirely on pecuniary externalities, not on

technological externalities.  Therefore, one should not interpret a shift of the credit from the

Good to the Bad as a sign of inefficiency.  Of course, more credit to the Bad means bad news for

the next generation of the agents, but it is also a consequence of good news for the current

generation of the agents, i.e., their net worth is high.

Second, one should not hold the Bad solely responsible for credit cycles.  True, the

presence of the Bad is essential for credit cycles. If the Bad were removed from the models (or if

it is made irrelevant by reducing R or 
 so as to move the economy from Region E to Region A

of Figure 4), the dynamics monotonically converges, as in the standard neoclassical growth

model.  Furthermore, the credit reversal takes place when the saving begins to flow into the Bad.

However, it is misleading to say that the credit extended to the Bad is the cause of credit cycles.

This is because credit cycles can be eliminated also if more credit were extended to the Bad.

Recall that, if the agency cost associated with the Bad is made sufficiently small (a large 
), the

economy moves from Region E to Region B in Figure 4.  One reason why endogenous

fluctuations occur in Region E is that the agency problem associated with the Bad is significant

enough that the saving continues to flow into the Good, even after the profitability of the Good
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becomes lower than that of the Bad.  Without this overinvestment into the Good, there would not

be a boom.  And without the boom that precedes it, the credit reversal could not happen. Viewed

this way, one might be equally tempted to argue that the credit extended for the Good is the cause

of credit cycles.  It is more appropriate to interpret that the heterogeneity of the investment

projects and the changing composition of the credit are the causes of credit cycles, and it should

not be attributed solely to the credit extended for the Good nor to the credit extended for the Bad.

Third, even though the credit market imperfections play a critical role in generating credit

cycles, our analysis does not suggest that economies with less developed financial markets are

more vulnerable to instability.  Figure 4 suggests that endogenous cycles can occur for an

intermediate range of the credit market imperfections.  Thus, an improvement in the credit

market could introduce instability into the system.  Nor should one conclude that a significant

improvement in the credit market could eliminate endogenous cycles.  In the formal analysis, we

have assumed, only for the convenience, that there is one type of the Bad projects.  One could

instead assume that there are many types of the Bad projects, and each type could generate

instability for a different range of the credit market imperfection.  Then, any further improvement

in the credit market may simply replace some types of the Bad projects by other types of the Bad

projects, in which case instability would never be eliminated.

Fourth, by demonstrating recurrent fluctuations through the iterations of the time-

invariant deterministic nonlinear maps, this paper is not trying to argue that exogenous shocks

are unimportant to understanding economic fluctuations.  What it suggests is that exogenous

shocks do not need to be large,--indeed, they can be arbitrarily small--, to generate large

fluctuations.  It would be interesting to extend the model to add some exogenous shocks and

investigate the interplay between the shocks and internal destabilizing mechanism of the

nonlinear system.  For example, consider adding some exogenous recurrent technology shocks to

the final goods production, which affects the profitability of the Good projects.  Imagine, in

particular, such an extension in the hybrid model of Section 6.  That would shake the nonlinear

map of eq. (24) up and down.  Suppose that, for most of the times, the shocks are so small that

the map satisfies the condition given in Proposition 3A, so that the equilibrium dynamics

oscillate around the unique stable steady state, k1
**, and hence can be described by the credit
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multiplier model a la Bernanke-Gertler. Every once in a while, the shocks are just large enough

to push up the map so that it briefly satisfies the condition given in Proposition 3C.  Then, after

such shocks, the economy experiences a rapid expansion, and possibly after a period of high

volatility, plunges into a recession, from which the economy recovers slowly to the old steady

state.  Such an extension may be useful for understanding why credit market imperfections, while

introducing the persistence into the investment dynamics, also make the economy subject to

intermittent episodes of “mania, panics, and crashes,” as described in Kindleberger, without

relying any irrationality. 35 

                                                                       
35 See Matsuyama (2004d).
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Appendix: Proof of Proposition 3.

Because the introduction of the storage technology changes the map only for (k�,k�), and since k�

< k* < ��1(�) implies �(kt) > kt in [k�1, k�), the dynamical system, (24), could have additional

steady states only in (k�, k�1), where it is given by

(*) kt+1 = �(kt) = ��1(�[1 � W(kt)]/
1).

By differentiating (*) and then setting kt = kt+1 = k**, the slope of the map at a steady state in this

range is equal to ��(k**) = � �W�(k**)/��(k**)
1 = �k**/
1, which is increasing in k**.  Since

� is continuous, and �(k�) > k� and �(k�1) > k�1 hold, this means that either

i) the map intersects with the 45� line twice at k1** and k2** > k1**;

ii) it is tangent to the 45� line at a single point, k**� (k�, k�1) and �(kt) > kt in (k�, k�1)/{k**};

or

iii) �(kt) > kt in (k�, k�1).

Consider the case of ii).  Then, �k**/
1 = 1 and k** = ��1(�[1 � W(k**)]/
1), which

imply that �(k**)k** + W(k**) = �(1/k**)k** = 1, or k** = h(1) = 
1/�.  Thus, 
1 = �h(1)

implies that (*) is tangent to the 45� line at k** = h(1).  Furthermore, h(1) = �(h(1)) < W(h(1))

implies that 
1�(W(h(1)))/[1 � W(h(1))] < 
1�(h(1))/[1� W(h(1))] = 
1/h(1) = � =


1�(W(k�))/[1� W(k�)], or equivalently, k** = h(1) > k�, and 
1 < 1 � W(h(1)) implies that k** =

h(1) < k�1. This proves Proposition 3B.  The case of i) can always be obtained by increasing �

from the case of i), which shifts down the map to create a stable steady state at k1** < h(1) and

an unstable steady state at k2** > h(1).  This proves Proposition 3A.  Otherwise, iii) must hold,

i.e., the map must lie above 45� line over the entire range, in (k�, k�1), which completes the proof

of Proposition 3.
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