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Abstract

This paper considers an environment where two principals sequentially contract with a com-
mon agent and studies the exchange of information between the two bilateral relationships. We
show that when (a) the upstream principal is not personally interested in the decisions taken
by the downstream principal, (b) the agent’s exogenous private information has a "vertical"
structure in the sense that the sign of the single crossing condition is the same for upstream and
downstream decisions, and (c) preferences in the downstream relationship are separable, then
the upstream principal optimally commits to full privacy, whatever price the downstream prin-
cipal is willing to pay to receive information. On the contrary, when any of the above conditions
is violated, the upstream principal may find it strictly optimal to disclose a (noisy) signal of the
agent’s exogenous type and/or the result of his upstream contractual activity, even if she can
not make the downstream principal pay for the information she receives. We also show that
disclosure does not necessarily reduce the equilibrium payoff of the agent and may lead to a
Pareto improvement for the three players.
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1 Introduction

In many contracting environments, multiple principals sequentially interact with the same agent.1

In organizations, for example, a division manager (in the role of an upstream principal) who hires
a worker (agent) typically expects the latter to change employer after a while and pass under the
control of other managers (downstream principals). In politics, the ruling administration (upstream
principal) that signs a procurement contract with a contractor (agent), or that offers a trade
policy to a lobby, expects its counterpart to contract also with the next appointed administration
(downstream principal). Similarly, in commerce, a seller (principal) who sets up a menu of contract
offers, expects her buyers (agents) to procure products and services also from other vendors. In
financial contracting, a venture capitalist or an investment bank (upstream principal) who offers a
contract to a start-up (agent) anticipates that the firm will also contract with other investors, as
well as with suppliers, retailers and, perhaps, regulatory agencies (downstream principals).

In environments characterized by sequential bilateral contracting, a (downstream) principal
who offers a contract to an agent makes the best possible use of any information that derives
from the agent’s upstream contractual experiences. First, the surplus in a downstream relationship
may well depend on upstream decisions. For example, the ability, or the cost, for a worker to
perform a task is likely to depend on the activities the agent performed on behalf of his previous
employers. Similarly, in a trade relationship, the willingness to pay for a certain product or service
usually depends on the complementarity or substitutability with products and services procured
from upstream suppliers. When this is the case, a downstream principal is likely to be interested
in the endogenous information the agent may possess about upstream decisions. Second, the
observation of the result of upstream contractual activities, whenever possible, is also a useful
signal of the agent’s exogenous private information (i.e. information the agent may have acquired
prior to any contractual relationship). For example, the terms of a financial contract between a
venture capitalist and an entrepreneur may convey information to downstream investors about the
probability of success of the project as well as the personal characteristics of the entrepreneur,
information that is likely to affect the result of downstream financial contracting. Similarly, in a
trade relationship, the history of past purchases of a consumer may reveal information about the
consumer’s preferences and may thus influence the personalized offers a consumer receives from
downstream vendors.

In a sequential bilateral contracting environment, an upstream principal is thus likely to take
advantage of her Stackelberg position by designing the upstream relationship in such a way that
optimally controls for the influence it has on downstream contracting. There are two ways a contract
can affect another one: directly, through the decisions that are stipulated (contractual externalities)
and indirectly, through the information that the contract discloses (informational externalities). In
this paper we investigate how a principal should control for both informational and contractual
externalities by designing a mechanism that screens the agent’s exogenous type and strategically

1The distinction between a principal and an agent is often just conventional: in what follows, we will refer to a
principal as the party who offers the contract. We also adopt the convention of using masculine pronouns for the
agent and female pronouns for the principals.



Privacy in Sequential Contracting 3

discloses exogenous and endogenous information to a downstream principal.
Our first result shows that when (a) the upstream principal is not personally interested in

the decisions taken by the downstream principal, (b) the agent’s exogenous private information
has a "vertical" structure in the sense that the sign of the single crossing condition is the same
for upstream and downstream decisions, and (c) preferences in the downstream relationship are
(additive) separable in the two contractual decisions, then the optimal disclosure policy consists in
keeping all information secret. This is true even if the upstream principal can sell information to
the downstream principal.

Note that when the agent and the downstream principal’s preferences are separable, the optimal
contract in the downstream relationship does not depend on upstream decisions. The only benefits
from influencing downstream contracting by disclosing information about the agent’s exogenous
type then come from either an information trade effect, i.e. the possibility to make the downstream
principal pay for the information she receives, and/or a rent shifting effect, namely the possibility
for the upstream principal to increase the agent’s rent in the downstream relationship by disclosing
a noisy signal of his type. Both effects may well be positive. To illustrate the rent shifting effect,
consider the following example. Suppose there are two sellers who sequentially contract with a
common buyer. Suppose the buyer has either a low or a high valuation for the downstream product.
If the downstream seller’s prior beliefs assign high probability to the agent’s high valuation (for
example because the proportion of high-valuation buyers is significantly high), then the optimal
price in the downstream relationship will be equal to the agent’s high valuation and leave no surplus
to either type. The upstream principal can then adopt a policy which discloses two signals, say
s1 and s2, as function of the agent’s type. Suppose she discloses signal s2 with certainty when
the agent reports he is a low type and with probability δ when he reports he is a high type. If
δ is sufficiently low, s2 becomes informative of the low type and induces the downstream seller to
reduce her price. Furthermore, when s2 is disclosed with positive probability also when the agent is
a high type — that is when δ ∈ (0, 1) — it gives the latter a strictly positive rent in the downstream
relationship. The rent shifting effect then consists in making the agent pay a higher price for the
increase in his expected utility with the second principal.

However, due to the asymmetry of information between the upstream principal and the agent,
the latter must be provided with incentives to truthfully reveal his type. These incentives, in the
form of an informational rent, are a function of the disclosure policy adopted by the principal.
We show that when the sign of the single crossing condition in the agent’s preferences is the
same for upstream and downstream decisions, the increase in the rent the upstream principal
must leave to the agent when she discloses information always offsets both the rent shifting and
the information trade effects. As a consequence, when the upstream principal is not personally
interested in downstream decisions, there is no advantage in disclosing information and the optimal
policy consists in committing to full privacy.

We next investigate in which environments disclosure can be profitable for the upstream prin-
cipal. As a converse to the previous result, we prove that when any of the above three conditions is
relaxed, there exist preferences for which disclosure is strictly optimal for the upstream principal,
even in the least favorable case where she is not able to make the downstream principal pay for



4 G. Calzolari and A. Pavan

the information she receives (that is, in the absence of any information trade effect). We examine
separately the determinants for the disclosure of exogenous information and the determinants for
the disclosure of endogenous information. To this aim, we first consider environments where the
agent and the downstream principal’s preferences are separable, so that disclosure is uniquely about
the agent’s exogenous type. We show that when the upstream principal is personally interested
in the decisions of the downstream principal, she may well accept to pay the incentive costs of
disclosure if this leads to more favorable outcomes in downstream contracting. We then relax the
assumption of constant sign of the single crossing condition and show that when the decisions of the
two principals are horizontally differentiated in the agent’s preferences so that a higher valuation
for the upstream decision signals a low valuation for the downstream, disclosing information does
not necessarily increase the rent the upstream principal must leave to the agent; it may actually
help reducing it. Indeed, by increasing the rent in the downstream relationship for those types that
value the upstream decision the least, disclosure creates useful countervailing incentives which help
reducing the payoff differential across types which in turn allows the upstream principal to extract
more surplus from the agent.

Finally, in the last part of the paper, we relax the separability assumption and consider en-
vironments where the downstream principal is interested in receiving information about upstream
decisions. To isolate disclosure of endogenous information from disclosure of exogenous information,
we assume the agent’s type does not influence the marginal surplus in the downstream relationship,
so that disclosure is uniquely about upstream decisions and is motivated by the nonseparability of
the agent’s preferences. We show that by introducing sufficient uncertainty in upstream contract-
ing (for example through lotteries, mixed strategies, or simply by taking different decisions with
different types), the upstream principal may create a rent for the agent vis a vis the downstream
principal. However, since lotteries on upstream decisions are costly for they induce inefficient
trade, the optimal mechanism may also require the adoption of a policy that discloses information
about upstream decisions to the downstream principal. We show that the strategy of combining
endogenous uncertainty with disclosure may pay both when the decisions of the two principals are
complements as well as substitutes in the agent’s preferences.

For each environment discussed above, we also examine the effects of disclosure on individual
payoffs and on total welfare, defined as the sum of expected utilities. We compare the equilibrium
contracts when the upstream principal is not allowed, or able, to disclose information with the
contracts that are offered in equilibrium when disclosure is possible. We show that, perhaps contrary
to what one might have expected, disclosure need not harm the agent, it may actually increase his
surplus in the two relationships. The effect of disclosure on welfare, is however in general ambiguous.
By reducing the distortions in the downstream relationship that are due to the initial asymmetry
of information, disclosure of exogenous information tends to increase efficiency in downstream
contracting. At the same time, it may introduce novel distortions on upstream decisions required
by incentive compatibility, that reduce efficiency in the upstream relationship. A similar result holds
for disclosure of endogenous information: in this case, changes in upstream decisions introduced by
the possibility to sustain downstream rents affect not only the surplus in the upstream relationship
but also the value the agent and the downstream principal attach to downstream contracting.



Privacy in Sequential Contracting 5

Outline. The rest of the paper is organized as follows: Section 1.1 relates the paper to
the literature; Section 2 describes the sequential contracting game and illustrates how the optimal
policies can be obtained through a mechanism design approach; Section 3 contains the main theorem
and analyses the possible determinants for information disclosure; Section 4 concludes. Technical
proofs are confined to the Appendix.

1.1 Related Literature

This paper is related to a few lines of research in contract theory and industrial organization with
asymmetric information.

Information sharing and certification. Strategic information sharing among firms has been
examined in the literature of oligopolistic competition (see, for example Raith, 1998, for a survey)
and in the financial intermediation literature (Padilla and Pagano, 1998, and Pagano and Jappelli,
1993, among others). In these papers, the informed firms can decide to share information with
rivals before competing. Conversely, in our model upstream principals are initially uninformed,
learn information by contracting with the agent, and also create new information by undertaking
decisions that are relevant to downstream principals. Optimal disclosure policies have been analyzed
also by Lizzeri (1999) in a model where certification intermediaries possess a technology to test the
quality of the product of a seller and commit on what to disclose to competitive buyers. In this
paper, we assume the only way a principal may learn the agent’s private information is through a
screening mechanism.

Consumers’ privacy. A recent literature on consumers’ privacy considers environments where
sellers have the possibility to use information about individual purchase histories for product cus-
tomization and price discrimination (Acquisti and Varian, 2002, Dodds, 2002, and Taylor, 2003a,b).
Contrary to our paper, this literature however does not endogenize the choice of the disclosure pol-
icy.

Auctions followed by downstream strategic interactions. Informational linkages across
markets have been studied also in the literature on auctions followed by resale or product market
competition. Haile (1999) examines bidders’ incentives to signal information to the secondary mar-
ket in auctions followed by resale. Katzman and Rhodes-Kropf (2002) and Zhong (2002) study the
effect of different bid announcement policies on the seller’s expected revenue in auctions followed
by Bertrand and Cournot competition. Calzolari and Pavan (2003) and Zheng (2002) study op-
timal auctions with resale and derive the monopolist’s revenue-maximizing selling procedure and
disclosure policy.

Sequential common agency. Sequential common agency models have been analyzed by Baron
(1985), Bergman and Välimäki (2004), Martimort (1999), and Prat and Rustichini (1998). In these
works, principals sequentially offer their contracts but decisions are taken only after the agent has
received all proposals. On the contrary, in this paper the agent first contracts with an upstream
principal, reveals exogenous information, takes a secret payoff relevant decision, and then enters
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into a new bilateral relationship with a second principal. This timing is more suitable to examine
the design of optimal disclosure policies from the upstream principal’s viewpoint.

Contracting with externalities. Segal (1999), and Segal and Whinston (2003) provide a general
and unifying framework for contracting with direct multilateral externalities and show how they
can result in inefficiencies in the equilibrium contracts. Martimort and Stole (2003) also consider
the role of direct externalities in a simultaneous common agency game. In this paper, we combine
direct externalities with informational externalities and show how they are optimally fashioned
through the design of disclosure policies.

2 The Contracting Environment

2.1 Model Description

Players. A single agent, A, sequentially contracts with two principals, P1 and P2.2 In what follows
we will often find it convenient to think of P1 and P2 as two differentiated sellers.

Allocations and Preferences. Each principal contracts with A over a decision xi ∈ Xi and a
transfer ti ∈ Ti ≡ R from A to Pi. The vector x ≡ (x1, x2) ∈ X ≡X1 ×X2 will denote a profile
of decisions for the two principals. The agent’s preferences are represented by the payoff function
UA = vA(x, θ)− t1 − t2, whereas the two principals’ preferences by Ui = vi(x, θ) + ti, for i = 1, 2.
The variable θ ∈ Θ constitutes the agent’s exogenous private information. We will assume that Xi

and Θ are finite sets with Xi = {0, 1} and Θ ≡ ©θ, θª . xi = 0 will denote the "status quo" i.e.
xi = 0 in the absence of any contract between A and Pi, whereas xi = 1 the decision to trade. The
two principals are assumed to share a common prior Pr(θ) = p = 1−Pr(θ). To save on notation, we
will let ∆θ ≡ θ − θ > 0, ∆θvi(x, θ) ≡ vi(x, θ)− vi(x, θ), ∆x1vi(x, θ) ≡ vi(1, x2, θ)− vi(0, x2, θ), and
similarly for ∆x2vi(x, θ) and ∆θ[∆x1vi(x, θ)]. Finally, we assume vA(x, θ) = v1(x, θ) = v2(x, θ) = 0
for any θ ∈ Θ if x =(0, 0).

That Θ and Xi are finite sets simplifies the description of the stochastic mechanisms offered
by the two principals. That they contain two elements is used only when we solve for the optimal
lotteries. Note that our main result does not depend on the finiteness of Θ and Xi: as we show
in the Appendix, Theorem 1 extends to environments where θ is continuously distributed over an
interval Θ = [θ, θ] as well as to X1 = X2 = R+.

Contracts and Privacy Policies. Each principal offers the agent a mechanism (hereafter also
referred to as a contract). A mechanism φ2 ∈ Φ2 for P2 consists of a message space M2 along
with a mapping from M2 onto X2 and T2: formally, φ2 :M2 7→ X2 × T2. Let x2(m2) ∈ X2, and
t2(m2) ∈ T2 denote respectively the decision and the transfer associated with message m2.

3 On her
part, P1 offers A a mechanism φ1 ∈ Φ1 that is characterized by a message spaceM1, a set of signals

2The model can also be read as one in which there is a continuum of agents with independent types, provided there
are no direct externalities among the agents and the principals’ payoffs are additive in the trades with the different
agents. See, for example, Taylor (2003a).

3Note that in this environment, P2 never gains by offering a stochastic mechanism.
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S that P1 will disclose to P2, and a mapping φ1 :M1 7→ ∆(X1 × S) × T1. δ1(m1) ∈ ∆(X1 × S)
and t1(m1) ∈ T1 stand for the joint lottery over X1 × S and the expected transfer associated with
message m1 ∈ M1. With the standard abuse of notation in mechanism design, δ1(x1, s|m1) will
denote the conditional probability of decision x1 and signal s, given m1. The mechanism φ1 embeds
a disclosure policy d : M1 → 4(S). When the agent chooses message m1, P1 discloses signal s
to P2 with probability d(s|m1) =

P
x1∈X1

δ1(x1, s|m1). We do not assign any specific meaning to
the set S, but we assume it is sufficiently rich to generate any desired system of posterior beliefs
of P2: as we show below, since Θ and X1 are finite, it will suffice to treat S also as a finite set.
This abstract representation of information transmission between the two contractual relationships
allows to replicate fairly general disclosure policies without imposing a priori restrictions. Note that
the mechanism φ1 is (possibly) stochastic for two reasons: First, P1 may want to create uncertainty
about the decision x1 in order to fashion the contract offered by P2; second, it may be in the
interest of P1 not to reveal to P2 all the information disclosed in the upstream relationship. In
other words, P1 may find it optimal to disclose to P2 only a noisy signal of (θ, x1).4 P1 is not
exogenously compelled to release any particular information, so that she can select the disclosure
policy she wants.5

We assume each principal can perfectly commit to her mechanism, which also implies that P1
can credibly commit to the disclosure policy of her choosing. With this assumption we rule out two
possible scenarios. In the first, P1 discloses to P2 more information than allowed by the contract φ1.
In the second, P1 announces to P2 a disclosure policy d, but then secretly offers A a side contract
characterized by a different policy. As standard in common agency games, we also assume each
principal cannot contract over the decisions of the other principal.

Finally, we denote with τ(φ1) the price P2 pays to observe the signals disclosed by φ1. We
want τ(φ1) to be the price for information and not for the distribution over X1. To this aim, we
assume τ(φ1) is contracted after φ1 has been executed, so that P1 can not threat P2 to take different
decisions in case she does not pay τ . Instead of modelling explicitly a bargaining game between
P1 and P2, for the scope of our analysis, it will suffice to define a set of reasonable rational prices
that can be the result of possible bargaining games. We do it in the following way. Let EU2 (φ1)
be the expected payoff for P2 in the continuation game where she observes the signals s disclosed
by φ1 and EUND

2 (φ1) in the continuation game in which she does not. We define the set of rational
prices as τ(φ1) = γ[EU2(φ1)− EUND

2 (φ1)] for γ ∈ [0, 1] . The parameter γ captures the fraction of
the value P2 attaches to the information disclosed by φ1 that can be appropriated by P1 through
the price τ(φ1). Clearly, τ(φ1) = 0 for any γ if φ1 does not disclose any information.

Timing: a sequential contracting game
- At t = 0, A privately learns θ.
- At t = 1, P1 commits to a public mechanism φ1 ∈ Φ1. If A rejects φ1, the game ends and all
players are left with their reservation payoffs that are normalized to zero. If, on the contrary, A

4Because of quasi-linearity, P2 is never interested in learning t1.
5 If P1 were obliged to disclose m1, she might find it optimal to induce A to randomize overM1 (see Bester and

Strausz, 2001, and Laffont and Tirole 1990, for dynamic models where a principal lacking of commitment for future
decisions induces the agent to randomize in order to reduce the information revealed in the early contracting stages).
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accepts φ1, he chooses a message m1, pays an expected transfer t1(m1), a decision x1 ∈ X1 is taken
with probability δ1(x1|m1) =

P
s∈S δ1(x1, s|m1), and a signal s ∈ S is selected with probability

d(s|m1) =
P

x1∈X1
δ1(x1, s|m1). The realization of the joint lottery δ1(m1) is commonly observed

by A and P1.

- At t = 2, P2 pays τ(φ1), receives information s from P1 and offers A her own mechanism φ2 ∈ Φ2.
If A rejects φ2, the game is over. Otherwise, A reports a message m2 which induces a decision
x2(m2) and a transfer t2(m2).

That it is optimal for P1 to make her mechanism public is proved in Pavan and Calzolari
(2003): they show that any outcome of a mixed strategy equilibrium where P1 randomizes over
different mechanisms and discloses the realizations of the mixed strategy only to the agent can
be replicated through a stochastic public mechanism which is disclosed also to P2, but whose
realization (the extended type discussed in the next section) remains the agent’s private information.
It is important to note that the fact that φ1 is public implies that P2 can observe the mapping
φ1 :M1 7→ ∆(X1 × S)× T1, but not m1 and x1.

That the game ends after A rejects φ1 is clearly not without loss of generality. However,
note that in a game where A can contract with P2 after rejecting φ1, there exist equilibria where
P1 informs P2 about the agent’s decision to reject φ1, such that all types obtain zero surplus
with P2 out-of-equilibrium. These equilibria also satisfy forward induction refinements such as the
intuitive criterion of Cho and Kreps (1987). Instead of relying on equilibrium selection arguments
to determine A’s outside option with P1, given the focus of the analysis, we prefer to assume it is
exogenously fixed to zero.

Strategies and equilibrium
The game described above is a sequential version of the simultaneous common agency games

with adverse selection examined in Martimort (1992), Martimort and Stole (2002, 2003), and
Stole (1991). A strategy for P1 is simply the choice of a mechanism φ1 ∈ Φ1. For P2, a strategy
φ2(φ1, s) is a mapping from φ1 and s into the set of feasible contracts Φ2.6 The agent’s strategy,
φA = (φ

1
A, φ

2
A), specifies the reports to each principal as a function of the agent’s information set, i.e.

m1 = φ1A(θ, φ1), and m2 = φ2A(θ, φ1,m1, x1, t1, s, φ2). Because of their appeal in most applications,
we will limit attention to Markov strategies in which the agent’s behavior with P2 depends only on
the mechanism φ2 and the payoff-relevant component of the history h2 ≡ (θ, φ1,m1, x1, t1, s, φ2);
i.e. we restrict attention to strategies such that m2 = φ2A(θ, x1, t1, φ2).

A strategy profile φ = (φ1, φ2, φA) is a perfect Bayesian equilibrium if and only if: each prin-
cipal selects a mechanism that is sequentially optimal given the agent’s and the other principal’s
strategies; for each signal s on the equilibrium path, P2 updates her beliefs using Bayes’ rule; A
announces only payoff-maximizing messages.

6Although φ2 depends on φ1, the feasibility of the decisions contemplated in φ2 does not depend on the particular
decision x1. This is a restriction. Calzolari and Pavan (2003), for example, consider the design of optimal disclosure
policies for an auctioneer that expects her buyers to resell in a secondary market. As resale can take place only if a
buyer received the good in the primary market, the feasibility of an allocation in the secondary market depends on
the decisions taken in the primary market, so that the above assumption is clearly violated in auctions followed by
resale.



Privacy in Sequential Contracting 9

2.2 Contracts Design

In games where agents contract with multiple principals, using the (standard version of) the Reve-
lation Principle to construct equilibria is not without loss of generality [Epstein and Peters (1999),
Martimort and Stole (2002), and Peters (2001)]. Among the possible solutions that have been
recently proposed in the literature, here we follow Pavan and Calzolari (2003). They show that
the entire equilibrium set of any common agency game can be characterized by restricting atten-
tion to Markovian direct mechanisms in which the message space Mi = Θ

E

i coincides with the
extended type space and it includes only payoff-relevant variables. In the case competition among
the principals is sequential, preferences are quasi-linear, and the agent follows Markov strategies,
the extended type space reduces to Θ

E

1 ≡ Θ and Θ
E

2 ≡ Θ×X1.
Consider the extended type θE2 = (θ, x1). Let vA

¡
x2, θ

E
2

¢
be the value A attaches to x2 when

he has type θ and decision x1 has been taken in the upstream relationship, i.e. vA
¡
x2, θ

E
2

¢ ≡
vA(x1, x2, θ). Similarly, v2

¡
x2, θ

E
2

¢ ≡ v2(x1, x2, θ). Then for any s ∈ S, we let7

U2A(θ
E
2 ; s) ≡ vA

¡
x2(θ

E
2 ; s), θ

E
2

¢− vA
¡
0, θE2

¢− t2(θ
E
2 ; s)

denote the surplus A expects from P2 when he truthfully reports his extended type θE2 = (θ, x1),
and

U2A(θ
E
2 ,
bθE2 ; s) ≡ vA(x2(bθE2 ; s), θE2 )− vA

¡
0, θE2

¢− t2(bθE2 ; s)
the corresponding payoff when he announces bθE2 6= θE2 . Furthermore, let

S (d;φ1) ≡ {s : d(s|θ) > 0 for some θ ∈ Θ}

denote the set of signals in the range of the disclosure policy d induced by the mechanism φ1. For
any truthful mechanism φ1 and signal s ∈ S (d;φ1), P2’s posterior beliefs about θ

E
2 = (θ, x1) will

be denoted by

µ(θE2 ; s) ≡ Pr((θ, x1)|s) =
δ1(x1, s|θ) Pr(θ)P

θ∈Θ
P

x1∈X1
[δ1(x1, s|θ)] Pr(θ) .

An optimal mechanism for P2, φ2(s) = (x2(θ
E
2 ; s), t2(θ

E
2 ; s)), then solves the following program

P2(s) :



max
φ2∈Φ2

P
θE2 ∈ΘE

2

£
v2
¡
x2(θ

E
2 ; s), θ

E
2

¢
+ t2(θ

E
2 ; s)

¤
µ(θE2 ; s)

such that for any θE2 and bθE2 ∈ ΘE

2

U2A(θ
E
2 ; s) ≥ 0, (IR2)

U2A(θ
E
2 ; s) ≥ U2A(θ

E
2 ,
bθE2 ; s). (IC2)

The individual rationality constraints (IR2) guarantee that A accepts φ2, while the incentive com-
patibility constraints (IC2) that he has the correct incentives to truthfully announce his extended

7To simplify the notation, in what follows we will omit the dependence of φ2(φ1, s) = (x2(θ
E
2 ; s, φ1), t2(θ

E
2 ; s, φ1))

on φ1.
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type. Note that U2A(θ
E
2 ; s) is defined as the additional surplus A obtains from contracting with P2;

that is, his total surplus, net of the payoff from the interaction with P1. Also, note that we assume
there is no way A can credibly disclose (x1, t1) to P2 so that the latter has to give him incentives
for truthful information revelation.

At t = 1, P1 designs a mechanism φ1 and a reaction φ2(s) that solve

P1 :



max
φ1∈Φ1

φ2(s)∈Φ2

P
θ∈Θ

( P
x1∈X1

P
s∈S

£
v1(x1, x2(θ

E
2 ; s), θ)

¤
δ1(x1, s|θ) + t1(θ)

)
Pr(θ) + τ(φ1)

subject to
UA (θ;φ1) ≡

P
x1∈X1

P
s∈S

£
vA (x1, 0, θ) + U2A(θ

E
2 ; s)

¤
δ1(x1, s|θ)− t1(θ) ≥ 0, for any θ ∈ Θ, (IR1)

UA (θ;φ1) ≥
P

x1∈X1

P
s∈S

£
vA (x1, 0, θ) + U2A(θ

E
2 ; s)

¤
δ1(x1, s|θ̂)− t1(θ̂), for any θ and bθ ∈ Θ, (IC1)

φ2(s) solves P2(s) (SR)

In addition to standard individual rationality and incentive compatibility constraints for the agent,
the (SR) constraint in P1 guarantees the sequential rationality of P2’s reaction φ2(s). Note that
treating φ2(s) as a choice variable in P1 amounts to selecting among all possible equilibria the one
which is most favorable to P1. This selection is clearly arbitrary, but consistent with standard
mechanism design analysis: we want to examine the properties of upstream and downstream deci-
sions which maximize P1’s expected payoff under minimal sequential rationality constraints for the
agent [(IR1) and (IC1)] and for the downstream principal [(SR)] – For similar selection arguments
in dynamic contracting with a single principal, see Laffont and Tirole (1990).

3 Optimal Disclosure Policies

In this section we characterize the solution to P1 and discuss its implications in terms of disclosure
policies. Before illustrating the properties of the optimal mechanisms, we find it useful to introduce
some formal definitions. We start with the notion of disclosure and of optimal mechanisms which
induce it.

Definition 1 .
P1’s mechanism discloses information if and only if it assigns positive measure to signals that

lead to different posterior beliefs over ΘE
2 : Formally, there exist signals sl ∈ S (d;φ1) and sm ∈

S (d;φ1) , with sl 6= sm, such that µ(θE2 ; sl) 6= µ(θE2 ; sm) for some θ
E
2 ∈ ΘE

2 .
Information disclosure is considered optimal for P1 if and only if there exists a mechanism φ1

that discloses information and solves P1, and there are no other solutions to P1 that induce no
disclosure.

Next, we define the properties of individual preferences that will play a role for disclosure.

Definition 2 .
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Independence. Player i’s preferences are independent of xj if vi(xi, xj , θ) = vi(xi, θ).
(Additive) Separability. Player i’s preferences are separable in x1 and x2 if vi(x1, x2, θ) =

v1i (x1, θ) + v2i (x2, θ).
Sign of Single Crossing Condition. The single crossing condition in the agent’s preferences

has the same sign for x1 and x2 if a higher (lower) θ indicates a higher (lower) valuation for both
x1 and x2, i.e. sign {∆θ[∆x1vA(x, θ)]} = sign {∆θ[∆x2vA(x, θ)]} for any x1 and x2.

We are now ready to state the main result.

Theorem 1 .
Part (i). Assume the following hold: (a) P1’s preferences are independent of x2, (b) the sign

of the single crossing condition in the agent’s preferences is the same for upstream and downstream
decisions, (c) P2 and A’s preferences are separable. Then, no disclosure is optimal for P1 for any
rational price τ(φ1) that P2 is willing to pay to receive information from P1.

Part (ii). When any of the conditions in (i) is violated, there exist preferences for which
disclosure is optimal for P1, even if she does not sell information to P2, that is even if τ(φ1) = 0
for any φ1.

Condition (a) implies that P1 is not personally affected by x2 and condition (b) that the agent’s
private information is of a "vertical" form; without loss of generality, we assume the sign of the
single crossing condition is positive in either relationship. When preferences are separable and
Xi = {0, 1}, this is equivalent of saying that the values v1A(1, θ) and v2A(1, θ) the agent attaches to
the products, or services, of the two principals are both increasing in θ.8 Condition (c) implies the
reaction φ2(s) =

¡
x2(θ; s), U

2
A(θ; s)

¢
does not depend on x1. It follows that under (a)-(c), the only

benefits from influencing downstream decisions by disclosing information about θ come from (i) a
rent shifting opportunity, namely the possibility to induce P2 to leave A a larger rent and then
appropriate (part of) it through the transfer t1, and/or (ii) an information trade effect, i.e. the
possibility to make P2 pay a price τ(φ1) for the information she receives about θ.

LetW2(x2, θ) ≡ v22(x2, θ)+v
2
A(x2, θ) denote the downstream surplus, and φ

ND
2 ≡ (xND

2 (θ), U2ND
A (θ))

the mechanism P2 offers in case she does not receive information from P1.When preferences in the
downstream relationship are separable, φND

2 does not depend on φ1. As illustrated in the Appendix,
the proof for this result consists in showing that for any individually rational and incentive compat-
ible mechanism φ1 — with reaction φ2(s) — there exists another individually rational and incentive
compatible mechanism φND

1 — with reaction φND
2 — which does not disclose information, it induces

the same distribution over X1, and such that9

EU1(φ1)− EU1(φND
1 ) = (1− γ)

P
θ∈Θ

·P
s∈S

U2A(θ; s)d(s|θ)− U2ND
A (θ)

¸
Pr(θ)+

+γ
P
θ∈Θ

·P
s∈S

W2(x2(θ; s), θ)d(s|θ)−W2(x
ND
2 (θ), θ)

¸
Pr(θ)+

− P
θ∈Θ

£
UA (θ;φ1)− UA

¡
θ;φND

1

¢¤
Pr(θ) ≤ 0.

(1)

8This follows from the fact that v1i (0, θ) = v2i (0, θ) = 0.
9To compact notation, we omit the dependence of EU1(φ1) and UA (θ;φ1) on φ2.
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Clearly, when γ = 0, the information trade effect is absent, and the only benefit from disclosure
must come from the rent shifting effect, which corresponds to the first term in (1). Conversely,
when γ = 1, the rent shifting motivation vanishes since any additional dollar P1 can extract from A
for the rent he expects from downstream contracting must be deducted from the price τ(φ1) that
can be charged to P2. In this case, the benefit from disclosure must come from the possibility to
increase efficiency in the downstream relationship, as indicated in the second term in (1). Both
the rent shifting and the information trade effects might well be positive. However, disclosure also
affects the rents P1 must leave to the agent in order to induce him to truthfully reveal his type, as
indicated in the last term in (1). Under (b) and (c), if φ1 is optimal, then necessarily UA (θ;φ1) = 0
and

UA

¡
θ;φ1

¢
= ∆θv

1
A(1, θ)δ1(1|θ) +

X
s∈S

U2A(θ, s)d(s|θ) ≥ 0,

where ∆θv
1
A(1, θ) = v1A(1, θ)− v1A(1, θ). Among all mechanisms which induce the same distribution

over X1 as φ1 without disclosing information, consider a mechanism such that UA

¡
θ;φND

1

¢
= 0

and
UA

¡
θ;φND

1

¢
= ∆θv

1
A(1, θ)δ

ND
1 (1|θ) + U2ND

A (θ).

It is possible to show that if φ1 is individually rational and incentive compatible, so is φND
1 .

Furthermore,P
θ∈Θ

£
UA (θ;φ1)− UA

¡
θ;φND

1

¢¤
Pr(θ) = p

£
UA

¡
θ;φ1

¢− UA

¡
θ;φND

1

¢¤
= p

·P
s∈S

U2A(θ; s)d(s|θ)− U2ND
A (θ)

¸
.

(2)

When (b) and (c) hold, (2) is positive and thus disclosure increases the expected rent P1 must leave
to A. What is more, this third effect always dominates the first two, making information disclosure
undesirable from P1’s viewpoint. To see this, consider first γ = 0, so that there is no information
trade effect, and suppose φ1 embeds a privacy policy d(s|θ) which discloses only two signals, s1 and
s2, where signal s1 is more informative of type θ̄ and s2 of type θ; formally, let d(s1|θ̄) = d(s1|θ)+ε
and d(s2|θ̄) = d(s2|θ)− ε. Then, under (b), P2 leaves no surplus to θ and a rent to θ̄ equal to

U2A(θ̄; s) = ∆θv
2
A(x2(θ; s), θ) (3)

which is increasing in the posterior odds µ(θ; s)/µ(θ; s) and hence in d(s|θ)/d(s|θ), so that10X
s∈S

U2A(θ̄; s)d(s|θ̄)−
X
s∈S

U2A(θ̄; s)d(s|θ) =
£
U2A(θ̄; s1)− U2A(θ̄; s2)

¤
ε ≤ 0.

This result clearly generalizes to disclosure policies d(s|θ) with more than two signals: The most
profitable signals for A, i.e. the signals that lead to downstream rents for θ, are always disclosed

10That U2
A(θ̄; s) increases in µ(θ; s)/µ(θ; s) follows from the fact that x2(θ, s) solves (4), that is x2 = 1 if

µ(θ; s)W2(1, θ)− µ(θ; s)∆θv
2
A(1, θ) ≥ 0 and x2 = 0 otherwise.
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with a higher probability when A announces θ than θ̄. It follows that when γ = 0, the net effect of
disclosure on P1’s payoff is

EU1(φ1)− EU1(φND
1 ) = p

X
s∈S

U2A(θ̄; s)[d(s|θ)− d(s|θ)] ≤ 0.

Next, consider the information trade effect (γ = 1), i.e. the possibility to increase τ(φ1) by reducing
the distortions in downstream contracting which are due to the asymmetry of information. In any
optimal downstream mechanism, the decisions x2(θ; s) for the high type are never distorted and are
independent of s, whereas the decisions for the low type solve the efficiency versus rent extraction
trade off

x2(θ; s) = arg max
x2∈X2

©
µ(θ; s)W2(x2, θ)− µ(θ; s)∆θv

2
A(x2, θ)

ª
. (4)

It follows that when γ = 1,

EU1(φ1)− EU1(φND
1 ) =

(1− p)

·P
s∈S

W2(x2(θ; s), θ)d(s|θ)−W2(x
ND
2 (θ), θ)

¸
− p

·P
s∈S

U2A(θ; s)d(s|θ)− U2ND
A (θ)

¸
.

Using U2A(θ̄; s) = ∆θv
2
A(x2(θ; s), θ) and U2ND

A (θ) = ∆θv
2
A(x

ND
2 (θ), θ), the above reduces toP

s∈S
[(1− p)W2(x2(θ; s), θ)− p∆θv

2
A(x2(θ; s), θ)]d(s|θ)+

− £(1− p)W2(x
ND
2 (θ), θ)− p∆θv

2
A(x

ND
2 (θ), θ)

¤
which is negative since in the absence of disclosure P2 chooses a decision

xND
2 (θ) = arg max

x2∈X2

©
(1− p)W2(x2, θ)− p∆θv

2
A(x2, θ)

ª
.

We thus conclude that under (a)-(c), disclosure is never optimal for P1: for any mechanism φ1
that discloses information, there exists another mechanism φND

1 that induces the same distribution
over X1 without disclosure, such that EU1(φND

1 ) ≥ EU1(φ1). This result does not depend on the
discreteness of Θ, X1 and X2. As we show in the Appendix, Theorem 1 extends to environments
where θ is continuously distributed over [θ, θ] and Xi = R+ for i = 1, 2, under the usual addi-
tional assumptions for the continuous case which guarantee that in the canonical single mechanism
designer problem, the optimal policies xi(θ) are deterministic with no bunching.

It is interesting to compare the result in Theorem 1-part (i) with Baron and Besanko (1984).
They consider a dynamic single-principal single-agent relationship and show that when preferences
are additive separable and type is constant over time, the optimal long term contract under full
commitment consists in a sequence of static optimal contracts. Although at a superficial look, the
two results may appear similar, they are substantially different. First, in Baron and Besanko, the
principal maximizes the intertemporal payoff v1(·) + v2(·), whereas in our setting P1 maximizes
only v1(·). Second, even if P1 were to maximize the joint surplus, she would not offer the static
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optimal contracts. Indeed, this would be the case if the payoff of the downstream principal were
not only separable but also independent of x1, as it is in Baron and Besanko. When instead it
is only separable, as in Theorem 1, the contract that maximizes the two principals’ joint surplus
v1(x1, θ) + v12(x1, θ) + v12(x2, θ) is different than the sequence of independent contracts that are
offered in equilibrium when P1 does not disclose information to P2.11

Finally, note that part (ii) in Theorem 1 provides a converse to part (i): it shows that when
any of the three conditions in (i) is violated, disclosure may be optimal for P1 even in the least
favorable case where τ(φ1) = 0. This in turn explains the choice on the above conditions as possible
determinants for information disclosure in multiple principals models. The proof follows from the
results in the rest of this section where we relax each condition separately.

3.1 Disclosure of Exogenous Information

In this section we consider environments where the decisions in the downstream relationship are
not sensitive to the allocation determined in the upstream relationship. As a consequence, P2 is
interested in receiving information about x1 only if this is indirectly informative about θ.

Condition 1 The agent’s preferences are separable: vA(x1, x2, θ) = a (θ)x1 + b (θ)x2, with ∆b ≡
b(θ)− b(θ) > 0; P2’s preferences are independent of x1: v2(x1, x2, θ) = m2x2.

That the surplus in the downstream relationship depends on θ only through its effect on A’s
preferences and that P2’s payoff is independent of x1 shortens the exposition without any serious
effect on the results.12 To make P2 interested in receiving information about θ, we also assume that
m2 + b (θ) ≥ 0. That is, under complete information, contracting in the downstream relationship
generates positive surplus for any θ.

To save on notation, in what follows we let a ≡ a(θ), a ≡ a(θ), b̄ ≡ b(θ), and b ≡ b(θ). With
preferences as in Condition 1, the optimal contract φ2(s) assigns the same allocation to the two
extended types θE2 = (θ, 1) and θE2 = (θ, 0). Furthermore, (IR2) binds for θ = θ and (IC2) for
θ = θ. The optimal contract φ2(s) thus consists in a simple take-it-or-leave-it offer at a price

t2(s) =

½
b̄ if

¡
b̄+m2

¢
µ(θ̄; s) > b+m2,

b if
¡
b̄+m2

¢
µ(θ̄; s) ≤ b+m2,

where µ(θ̄; s) = Pr(θ̄|s) = µ((θ̄, 1); s)+µ((θ̄, 0); s). As a result, P1 needs to disclose only two signals,
s1, and s2, such that t2(s1) = b, and t2(s2) = b.13 Hence, signal s1 stands for any information that

11Under assumptions (a)-(c) these contracts correspond to the long run contract that a single principal with payoff
v1(x1, θ) + v12(x2, θ) would offer in Baron and Besanko. Indeed, P1 does not internalize the externality of x1 on x2.
12First note that adding a term q2 (θ)x1 in P2’s preferences does not affect the downstream decisions. Second, as

in standard screening models, letting m2 depend on θ does not add much to the analysis since the virtual surplus for
the P2 −A relationship already depends on θ through its effect on A’s payoff.
13 It is immediate to prove that for any mechanism φ1 that discloses more than two signals, there exists another

mechanism φ0 that discloses at most two signals which is payoff equivalent for all players.
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induces P2 to offer a high price b̄, whereas s2 a low price, b. From Bayes rule, this is compatible
with P2’s sequential rationality, if and only if φ1 satisfies the following constraints

d(s1|θ) ≥ Hd(s1|θ), (SR1)

d(s2|θ) ≤ Hd(s2|θ), (SR2)
(5)

where H ≡
³
1−p
p

´³
m2+b
∆b

´
. Given s1, trade in the downstream relationship occurs only if θ = θ and

A receives zero surplus, whereas, given s2, trade occurs with both types, and θ enjoys a downstream
informational rent equal to ∆b. When H < 1 — equivalently p

¡
b̄+m2

¢
> b +m2 — the severity

of the adverse selection problem is such that P2 asks a high price that leaves no surplus to the
agent, if she receives no information from P1. When this is the case, we will say that P2’s prior
beliefs are unfavorable to A. On the contrary, P2’s beliefs are favorable when H ≥ 1. Note that
when beliefs are unfavorable, (SR1) is implied by (SR2) and no disclosure is formally equivalent
to releasing only signal s1, whereas the opposite is true with favorable beliefs in which case no
disclosure corresponds to releasing only signal s2.

3.1.1 Direct Externalities

Suppose now P1 is personally affected by x2; we want to show that when this is the case she
may find it optimal to disclose information in order to fashion the decisions that will be taken
in the downstream relationship, even if this comes at the cost of a higher rent for the agent. To
illustrate, we assume the sign of the single crossing condition in the agent’s preferences is the same
for upstream and downstream decisions in which case A’s valuations for x1 and x2 are positively
correlated. This guarantees that disclosure is costly for P1 and hence, when optimal, it is necessarily
motivated by the direct externality of x2 on U1.

Condition 2 P1 is personally interested in x2 : v1(x1, x2, θ) = m1x1 + ex2. The sign of the single
crossing condition in the agent’s preferences is the same for upstream and downstream decisions:
sign(∆a) = sign(∆b).

The externality e can be either positive or negative.14 We also assume that there is always
value from contracting in the upstream relationship, that is m1 + a(θ) ≥ 0 for any θ.

Under Conditions (1) and (2), the surplus A expects from the two contractual relationships
given φ1 is thus

UA(θ) = δ1(1|θ)ā+ d(s2|θ)∆b− t1(θ),
UA(θ) = δ1(1|θ)a− t1(θ),

As standard, at the optimum constraints (IR1) and (IC1) bind, and thus P1’s optimal contract
maximizes

EU1 = pδ1(1|θ) (m1 + ā) + (1− p) δ1(1|θ)
³
m1 + a− p

1−p∆a
´
+

+ pe+ (1− p) d(s2|θ)e− p
£
d(s2|θ)− d(s2|θ)

¤
∆b

14Assuming marginal effects of x2 on x1 is not needed to illustrate the role of externalities on disclosure. A full
fledged analysis with marginal effects is available upon request.
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subject to the constraints£
δ1(1|θ)− δ1(1|θ)

¤
∆a ≥ £d(s2|θ)− d(s2|θ)

¤
∆b (IC1)

d(s1|θ) ≥ Hd(s1|θ), (SR1)

d(s2|θ) ≤ Hd(s2|θ). (SR2)

Note that since preferences in the the downstream relationship are separable and there are no
marginal externalities of x2 on v1(x1, x2, θ) + v1A(x1, θ), the program for the optimal upstream
mechanism can be written by decomposing the joint lottery δ1(x1, s|θ) into a disclosure policy d(s|θ)
and a trade policy δ1(1|θ), where d(s|θ) and δ1(1|θ) can be treated as independent distributions.
This also implies that δ1(1|θ) can either be read as the probability of trade, or as the level of
trade, with δ1(1|θ) ∈ [0, 1] . As we will see in the next section, things are different with non
separable preferences, for then the joint distribution over X1 and S clearly matters in determining
the surplus A and P1 expect from downstream contracting. Also note that EU1 is the total joint
surplus of P1 and A, net of the rent UA(θ) = δ1(1|θ)∆a + d(s2|θ)∆b that P1 must leave to θ to
induce truthful information revelation. As for the externality, θ always trades with P2, whereas θ
trades if and only if signal s2 is disclosed: it follows that the expected externality of x2 on P1 is
equal to pe+ (1− p) d(s2|θ)e. Since EU1 is increasing in d(s2|θ) and since a higher d(s2|θ) relaxes
(IC1), it is always optimal for P1 to maximize d(s2|θ), whose upper bound is given by (SR2) when
beliefs are unfavorable and by (SR1) when they are favorable. Finally, note that constraint (IC1) is
an "adjusted" monotonicity condition which reduces to the standard weak monotonicity condition
δ1(1|θ) ≥ δ1(1|θ) when no information is disclosed. On the contrary, when P1 discloses information,
monotonicity becomes strict for it requires δ1(1|θ) < δ1(1|θ). It follows that there are two possible
costs associated with disclosure. The first is the extra rent

£
d(s2|θ)− d(s2|θ)

¤
∆b that P1 must

leave to θ, which comes from the fact that the most favorable signal for θ, s2, is sent with a higher
probability when A reports bθ = θ than bθ = θ. The second is the reduction in the upstream level of
trade with θ required by (IC1). However, note that while it is always optimal for P1 to trade with
the high type, trading with the low type is desirable only if m1+ a− p∆a/(1− p) ≥ 0, that is only
if the "virtual surplus" for θ is positive.

We shall now derive the conditions that lead to the optimality of information disclosure. Con-
sider first the case where P2’s prior beliefs are unfavorable to A so that SR2 binds and hence the
extra rent that P1 must leave to θ when she discloses information becomes (1 − H)d(s2|θ)∆b. If
m1 + a − p∆a/(1 − p) ≤ 0, P1 never wants to trade with θ and thus a necessary and sufficient
condition for disclosure is that

(1− p)e ≥ p(1−H)∆b, (6)

where the left hand side is the marginal externality generated by an increase in d(s2|θ), whereas the
right hand side is the marginal increase in the rent for θ. When insteadm1+a−p∆a/(1−p) > 0, the
marginal cost of d(s2|θ) also takes into account the reduction in the level of trade with θ imposed by
the (IC1) constraint, which, using SR2 and δ

∗
1(1|θ) = 1, reduces to δ1(1|θ) ≤ 1− (1−H)∆b

∆ad(s2|θ).
It follows that in this case disclosure is optimal for P1 if and only if

(1− p)e ≥ p(1−H)∆b+ (1− p)(1−H)
∆b

∆a
[m1 + a− p

1− p
∆a]. (7)
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Combining (6) with (7), we conclude that a necessary and sufficient condition for the optimality of
disclosure when P2’s prior beliefs are unfavorable is that

e > E ≡ max
½
m1 + a;

p

1− p
∆a

¾
(1−H)

∆b

∆a
> 0.

Things are symmetrically opposite with favorable beliefs, i.e. when P2 is expected to trade with
either type if she learns nothing about θ. In this case, disclosure is optimal only when P1 has
strong incentives to reduce the level of trade in the downstream relationship, which occurs for large
negative externalities.

We summarize these results in the following Proposition [the formal proof in the Appendix also
contains the complete characterization of the optimal contracts for all parameters configurations].

Proposition 1 Assume preferences are defined by conditions (1) and (2).
When P2’s prior beliefs are unfavorable to A, information disclosure is optimal for P1 for suffi-

ciently large positive externalities; that is, if and only if e > E ≡ max
n
m1 + a; p

1−p∆a
o

∆b
∆a (1−H) >

0.

When P2’s prior beliefs are favorable, disclosure is optimal for sufficiently small negative
externalities, i.e. if and only if e < E ≤ 0.

As for the structure of the optimal contract with disclosure, consider first the case of unfavorable
beliefs. When ∆b(1 − H)/∆a ≤ 1, P1 discloses signal s2 with probability one when θ = θ, thus
maximizing the positive effect of the externality. Hence, the optimal disclosure policy is d∗(s2|θ) = 1
and d∗(s2|θ) = H < 1, whereas the optimal level of trade with θ is δ∗1(1|θ) = 0 if m1+a−p∆a/(1−
p) < 0, whilst δ∗1(1|θ) = 1 − ∆b(1 − H)/∆a otherwise, where the upper bound on δ1(1|θ) comes
from (IC1). When instead ∆b(1−H)/∆a > 1, the rent that P1 must leave to θ when d(s2|θ) = 1 is
so high that it is impossible to prevent θ from mimicking the high type, as indicated by the (IC1)
constraint: δ1(1|θ) ≤ 1− (1−H)∆b

∆ad(s2|θ). In this case, to maximize d(s2|θ), P1 never trades with
θ and the optimal disclosure policy is thus d∗(s2|θ) = ∆a

∆b(1−H) < 1 and d∗(s2|θ) = ∆aH
∆b(1−H) < 1.

Note that in either case, P1 never fully informs P2 about θ. Indeed, full disclosure is always costly
(in terms of rent for θ and forgone trade with θ) and is either unnecessary to induce the desired
level of trade in the downstream relationship (when d∗(s2|θ) = 1), or incentive incompatible (when
∆b(1−H)/∆a > 1).

Next, consider favorable beliefs (i.e. H > 1) and assume large negative externalities. Recall
that in this case disclosure is formally equivalent to releasing signal s1. At the optimum, (SR1)
binds — that is d(s1|θ) = Hd(s1|θ) — (SR2) is implied by (SR1), and (IC1) reduces to δ1(1|θ) ≤
1−(H − 1) ∆b

∆ad(s1|θ), with d(s1|θ) ≤ 1/H.When (H−1)∆b
∆a

¡
1
H

¢ ≥ 1, to minimize the negative effect
of the externality without violating (IC1), P1 must trade only with θ and the optimal disclosure
policy is d∗(s1|θ) = ∆a

(H−1)∆b < 1 and d∗(s1|θ) = ∆aH
(H−1)∆b ≤ 1. When instead (H − 1)∆b

∆a

¡
1
H

¢
< 1,

the optimal disclosure policy is d∗(s1|θ) = 1 and d∗(s1|θ) = 1/H, whereas the optimal level of trade
depends on the sign of the "virtual surplus" m1 + a − p∆a/(1 − p). If this is negative, P1 never
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trades with θ, whereas if it is positive, then δ∗1(1|θ) = 1 − [∆b (H − 1)] / (∆aH) where the upper
bound on δ1(1|θ) is determined by (IC1).

Using the properties of the optimal contracts, we now turn attention to the effects of disclosure
on individual payoffs. We compare the three players’ payoffs under the optimal contracts described
above with those under the contracts that would be offered in case P1 were not allowed, or able,
to disclose information. Because preferences are separable in the downstream relationship, these
contracts simply consist in a take-it-or-leave-it offer at price t1 = a if m1 + a− p

1−p∆a ≥ 0 and at
price t1 = a otherwise.

Corollary 1 Assume preferences are defined by Conditions (1) and (2).
When P2’s prior beliefs are unfavorable to A, disclosure leads to a Pareto-improvement: P1

and A are strictly better off, whereas P2 is indifferent.
When P2’s prior beliefs are favorable, disclosure makes A worse off, P1 better off, and leaves

P2 indifferent. The effect of disclosure on total welfare is positive for large negative externalities
and negative otherwise.

To see why P2 is not affected by disclosure, suppose beliefs are unfavorable. Under any of the
optimal contracts offered by P1, constraint (SR2) always binds, whereas constraint (SR1) is slack.
This means that for s = s1, P2 strictly prefers to offer the same contract she would offer if she
did not receive any information (t2 = b), whereas for s = s2, she is just indifferent between setting
t2 = b and t2 = b. Furthermore, since P2’s preferences are independent of x1, P2 is not affected by
changes in the distribution over X1 that may be introduced when P1 discloses information. As a
consequence, P2 is just as well off as in the absence of disclosure. A symmetric argument holds for
favorable beliefs.

Next, consider the effect of disclosure on A and recall that the low type never gets any surplus,
whereas the expected payoff for the high type is U∗A(θ) = δ∗1(1|θ)∆a + d∗(s2|θ)∆b. Assume first
unfavorable beliefs. If m1 + a − p

1−p∆a < 0, A clearly benefits from disclosure for he expects
no surplus in the absence of information transmission. If instead m1 + a − p

1−p∆a > 0, then

U∗A(θ) depends on whether at the optimum (IC1) binds or not, as indicated above. When it
binds, δ∗1(1|θ) = 0, d∗(s2|θ) = ∆a

∆b(1−H) and thus U
∗
A(θ) =

∆a
(1−H) ; when it does not, δ

∗
1(1|θ) =

1−∆b(1−H)/∆a, d∗(s2|θ) = 1, and U∗A(θ) = ∆a+∆bH. In either case, U∗A(θ) > ∆a and hence
A strictly benefits from disclosure.

Things are different with favorable beliefs. In this case, P1 induces P2 to set a higher price
(t2 = b instead of t2 = b) with positive probability and reduces the level of trade with the low
type to satisfy (IC1). As a consequence, A always suffers from disclosure. The effect on total
welfare then depends on how strong the externality is. For moderate values, the negative effect
on A prevails, and hence welfare decreases with disclosure, whereas the opposite is true for large
(negative) externalities.
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3.1.2 Horizontal Differentiation and Countervailing Incentives

We now turn attention to environments where the agent has horizontally differentiated preferences
for the decisions of the two principals, that is where his valuations for x1 and x2 are (perfectly)
negatively correlated. We continue to assume that preferences in the downstream relationship are
as in Condition 1, but now let∆a < 0. In this case, A faces countervailing incentives when reporting
his type to P1 : By announcing θ̄, A reveals he has a higher valuation for x2, but a lower valuation
for x1.15 When this is the case, P1 may benefit from the possibility to disclose information to P2,
even in the absence of direct externalities. To illustrate, we assume

Condition 3 P1’s preferences are independent of x2: v1(x1, x2, θ) = m1x1; the single crossing
condition in the agent’s preferences has opposite sign for x1 and x2: sign(∆a) = −sign(∆b).

Under Conditions 1 and 3, P1’s optimal mechanism maximizes

EU1 = p
©
δ1(1|θ)(m1 + a) + d(s2|θ)∆b− UA(θ)

ª
+ (1− p) {δ1(1|θ)(m1 + a)− UA(θ)}

subject to the participation constraints UA(θ) ≥ 0, UA(θ) ≥ 0, the incentive compatibility con-
straints

UA(θ) ≥ UA(θ) + d(s2|θ)∆b− δ1(1|θ) |∆a| , (IC1)

UA(θ) ≥ UA(θ)− d(s2|θ)∆b+ δ1(1|θ) |∆a| , (IC1)

and P2’s sequential rationality constraints

d(s1|θ) ≥ Hd(s1|θ), (SR1)

d(s2|θ) ≤ Hd(s2|θ), (SR2)

with H ≡
³
1−p
p

´³
m2+b
∆b

´
. Note that θ continues to obtain ∆b more than θ when P2 receives signal

s2, which, conditional on announcing bθ = θ, occurs with probability d(s2|θ). On the other hand, θ
has now a lower valuation than θ for x1 and thus obtains |∆a| less than the latter from trading with
P1, which occurs with probability δ1(1|θ). It follows that when A’s private information has opposite
effects on his valuations for x1 and x2, it is not possible to determine a priori which (IR1) and
(IC1) constraints bind since this depends on which of the two countervailing incentives dominates.
Nevertheless, at least one (IR1) and one (IC1) constraint must bind in any optimal mechanism
and trade with θ always occurs with probability one, i.e. δ∗1(1|θ) = 1.

As for the optimal disclosure policy, when P2’s prior beliefs are favorable to A (i.e. H > 1) so
that P2 is expected to set t2 = b in the event she receives no information from P1, no disclosure
is always optimal, for having P2 making an offer at a low price increases the value θ attaches
to upstream contracting and may even help reducing the rent for θ. To see this, consider first
|∆a| ≥ ∆b, in which case the binding constraints are (IR1) and (IC1) (the formal proof is in the
Appendix). Since EU1 is increasing in d(s2|θ), and since UA(θ) is decreasing in d(s2|θ), at the
15For example, vA(x1, x2, θ) = (1− θ)x1 + θx2. See Mezzetti (1997) for an analysis of countervailing incentives in

(simultaneous) common agency games with similar preferences.
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optimum necessarily d∗(s2|θ) = d∗(s2|θ) = 1, that is P1 does not disclose any information to P2.
As for the optimal level of trade with θ, δ∗(1|θ) = 1 if m1 + a − 1−p

p |∆a| ≥ 0 and δ∗(1|θ) = ∆b
|∆a|

otherwise. In the first case, the low type enjoys a rent equal to U∗A(θ) = |∆a|−∆b, whereas in the
second P1 appropriates all surplus from both types. When instead |∆a| < ∆b, and hence (IR1)
and (IC1) bind, reducing d(s2|θ) may help containing UA(θ), but comes at the cost of reducing the
probability P2 offers a low price to θ. Since P2’s sequential rationality requires d(s2|θ) ≤ d(s2|θ),
the net effect of a reduction in d(s2|θ) on EU1 is negative so that P1 is again better off setting
d∗(s2|θ) = d∗(s2|θ) = 1, and leaving a rent to θ equal to U∗A(θ) = ∆b − |∆a|. Moreover, since in
this case δ(1|θ) has no bite on the rent for UA(θ), at the optimum, δ∗(1|θ) = 1, that is, trade occurs
with both types with probability one.

Consider next the case where P2’s prior beliefs are unfavorable (i.e. H > 1). In the absence of
information disclosure, the optimal mechanism simply consists in trading with either type at a low
price t1 = a if m1 + a− 1−p

p |∆a| ≥ 0 and only with the low type at a high price t1 = a otherwise.
In this second case, disclosure is always optimal for P1: By sending signal s2 with probability
d∗(s2|θ) = min

n
1, |∆a|

∆b

o
when A reports a low type and with probability d∗(s2|θ) = Hd(s2|θ)

when he reports a high type, P1 can fully appropriate the surplus d∗(s2|θ)∆b that θ expects from
downstream contracting without leaving A any rent. Also note that when ∆b > |∆a| , it never
pays to increase d(s2|θ) above |∆a|

∆b since above this threshold there are no countervailing incentives
and hence at the margin P1 would also have to increase UA(θ) by ∆b with a negative net effect
of (H − 1)∆b on EU1. On the other hand, disclosure allows P1 to increase the level of trade with
θ to δ∗1(1|θ) = ∆b

|∆a|d
∗(s2|θ) > 0, without increasing the rent for θ. Increasing δ1(1|θ) above this

threshold would require to increase UA(θ) by |∆a| with a total negative effect of m1+ a− 1−p
p |∆a|

on EU1.
Things are more complicated when m1 + a − 1−p

p |∆a| ≥ 0, for disclosure may then come at
the expenses of a reduction in the level of trade with θ, which is now costly for P1. Indeed, using
(SR2) and δ∗1(1|θ) = 1, note that (IC1) and (IC1) require that

δ1(1|θ) ≤ 1− (1−H)
∆b

|∆a|d(s2|θ). (8)

Because EU1 is now increasing in δ1(1|θ), for any d(s2|θ) ≤ |∆a|
(1−H)∆b , it is always optimal to

maximize δ1(1|θ) whose upper bound is given by (8). Using (8) and (IC1), we also have that
for any d(s2|θ) ≤ |∆a|

∆b , U
∗
A(θ) = 0 and U∗A(θ) = |∆a| − d(s2|θ)∆b ≥ 0. It follows that for any

d(s2|θ) ≤ |∆a|
∆b , the marginal effect of d(s2|θ) on EU1 is now given by

p

½
H∆b− (1−H)

∆b

|∆a|(m1 + a)

¾
+ (1− p)∆b

where the first term combines the marginal increase in the downstream surplus for θ, H∆b, with
the marginal reduction in the upstream surplus due to the contraction in the level of trade with



Privacy in Sequential Contracting 21

θ, whereas the second term is the marginal reduction of the rent for the low type. It follows that
disclosure is optimal for P1 if and only if

m1 + a− 1− p

p
|∆a| ≤ H |∆a|

p (1−H)
. (9)

Note that raising d(s2|θ) above |∆a|
∆b never pays since in this case P1 should also increase UA(θ) by

∆b, as indicated in (IC1), without being able to further reduce UA(θ): the net effect of disclosing

signal s2 with probability d(s2|θ) > |∆a|
∆b is thus equal to p

n
H∆b− (1−H) ∆b

|∆a|(m1 + a)−∆b
o

which is clearly negative. Hence, when (9) holds, the optimal disclosure policy is again d∗(s2|θ) =
min

n
1, |∆a|

∆b

o
, and d∗(s2|θ) = Hd∗(s2|θ), whereas the optimal level of trade between P1 and θ is

determined by (8).
We summarize the above results in the following

Proposition 2 Assume preferences are defined by Conditions (1) and (3). Information disclosure
is optimal for P1 if and only if P2’s prior beliefs are unfavorable to A andm1+a− 1−pp |∆a| ≤ H|∆a|

p(1−H) .

Contrary to the case of externalities, the motivation for information disclosure examined in
this section is merely the possibility to benefit from the rent shifting effect. That is, P1 discloses
information to induce P2 to lower her price so that θ can enjoy a positive downstream informational
rent. This policy never pays when A’s valuations for x1 and x2 are positively correlated, for
any increase in downstream surplus is more than compensated by the increase in UA(θ) required
to induce A to truthfully reveal his type. In contrast, when the two decisions are horizontally
differentiated in the agent’s preferences so that A faces countervailing incentives when reporting
his type to P1, it is possible for the upstream principal to fully appropriate the surplus θ expects
from downstream contracting without leaving θ any informational rent. The only cost associated
with disclosure is then the reduction in the level of trade with θ required by incentive compatibility.
It follows that, when the "virtual" surplus from trading with the high typem1+a− 1−pp |∆a| is small,
disclosure is always optimal for P1. Note that disclosure is however only partial, since perfectly
informing P2 about the agent’s type would allow the latter to extract all surplus from A and is
therefore never optimal for P1.

Consider next the effect of disclosure on individual payoffs and on welfare. Under the optimal
disclosure policy, P2 is indifferent between offering the same price she would offer without infor-
mation from P1 and lowering the price in case she observes s2. Furthermore, P2 is not personally
interested in the upstream decision so that she is not affected by possible changes in the distribution
over X1. As a consequence, under Conditions (1) and (3), P2 is not affected by disclosure. As for
the agent, when m1 + a− 1−p

p |∆a| < 0, A obtains the same payoff as when P1 is not allowed/able

to disclose information, that is U∗A(θ) = 0 for any θ.When instead m1+a− 1−p
p |∆a| ≥ 0, disclosure

reduces the rent of the low type from |∆a| to
U∗A(θ) = −d∗(s2|θ)∆b+ δ∗1(1|θ) |∆a| = |∆a|− d∗(s2|θ)∆b < |∆a|
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without affecting that of the high type and therefore makes A strictly worse off. In terms of total
welfare, whenm1+a− 1−p

p |∆a| < 0, disclosure boosts efficiency in either relationships by increasing
the level of trade and thus increases welfare. In contrast, when m1 + a− 1−p

p |∆a| ≥ 0, disclosure
increases the level of trade in the downstream relationship, but reduces that in the upstream, with
a net effect on welfare

∆W = −p[1− δ∗1(1|θ)](m1 + a) + (1− p)(m2 + b)d∗(s2|θ)

which is positive if and only if m1 + a ≤ H|∆a|
1−H , that is if and only if the value of trading between

θ and P1 is sufficiently small.16 We conclude that

Corollary 2 When preferences are defined by Conditions (1) and (3), the possibility for P1 to

disclose information increases welfare if and only if m1 + a ≤ max
n
1−p
p |∆a| ; H|∆a|

1−H
o
. P1 strictly

benefits from disclosure, P2 is indifferent, and A is indifferent if m1 + a− 1−p
p |∆a| < 0 and worse

off otherwise.

3.2 Disclosure of Endogenous Information

In the rest of the section we consider situations where the agent’s marginal utility in the downstream
relationship depends on upstream decisions, such as in the case of a buyer whose valuation for a
downstream product or service depends on the products and services purchased from upstream
sellers, or a worker whose ability to perform a task in the downstream relationship depends on the
activities done in the past while working for an upstream principal.

To isolate the effects associated with the disclosure of endogenous information — i.e. information
about upstream decisions — from those associated with the disclosure of exogenous information, we
assume the surplus in the downstream relationship depends on x1, but not on θ. Furthermore,
we rule out direct externalities between the two principals, so that disclosure, when optimal, is
motivated uniquely by the non separability of the agent’s preferences for the two decisions.

Condition 4 The agent’s preferences are not separable in x1 and x2: vA(x1, x2, θ) = a (θ)x1 +
bx2 + gx1x2, with ∆a ≡ a

¡
θ̄
¢− a (θ) ≥ 0. The two principals have preferences vi(x1, x2, θ) = mixi

for i = 1, 2.

The decisions x1 and x2 are complements if g > 0 and substitutes if g < 0. To make things
interesting, we assume trade always generates positive surplus in either relationship, that is m1 +
a (θ) ≥ 0 for any θ, m2 + b ≥ 0, and m2 + b + g > 0.17 With preferences as in Condition 4, the
optimal mechanism φ2(s) assigns the same allocation to the two extended types θ

E
2 =

¡
x1, θ̄

¢
and

θE2 = (x1, θ) , for any x1. Furthermore, with complements, (IR2) binds for x1 = 0 and (IC2) for

16The threshold onm1+a is obtained by substituting δ∗1(1|θ) = 1−(1−H) ∆b
|∆a|d

∗(s2|θ) and (1−p)(m2+b) = pH∆b.
17This also guarantees that P2 is indeed interested in receiving information about x1.
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x1 = 1 and thus the optimal contract φ2(s) consists in a take-it-or-leave-it offer at a price

tcom2 (s) =

½
b+ g if (m2 + b+ g)µ (1; s) > m2 + b,
b if (m2 + b+ g)µ (1; s) ≤ m2 + b,

where µ (1; s) = µ((1, θ) ; s) + µ(
¡
1, θ̄
¢
; s) denotes P2’s posterior beliefs that trade occurred in the

upstream relationship.
Conversely, when x1 and x2 are substitutes, (IR2) binds for x1 = 1, and (IC2) binds for x1 = 0,

so that the optimal price is

tsub2 (s) =

½
b if (m2 + b)µ (0; s) > m2 + b+ g,
b+ g if (m2 + b)µ (0; s) ≤ m2 + b+ g,

with µ (0; s) = 1− µ (1; s). That is, in the case of complements, P2 asks a low price if she believes
it is unlikely that A traded with P1, whereas with substitutes if she believes trade occurred with
high probability. It follows that to create the desired informational linkage with the downstream
relationship, P1 needs to disclose only two signals, s1, and s2, such that

t2(s1) = b+ gI(g > 0), (SR1)
t2(s2) = b+ gI(g < 0), (SR2)

(10)

where I(g > 0) is the indicator function assuming value one if g > 0 and zero otherwise. As in the
previous section, signal s1 stands for information that induces P2 to set a high price, whereas signal
s2 a low price. Note that, contrary to the case where disclosure is about exogenous preferences, the
mechanism φ1 is now itself informative about x1. However, to be consistent with Definition 1, in
what follows we will say that P1 discloses information to P2 only when the optimal mechanism φ1
requires a privacy policy d(s|θ) that assigns positive measure to both signals s1 and s2. Finally, note
that in this simple model, if the two goods are neither complements nor substitutes, i.e. g = 0, the
two contractual relationships are completely unrelated and thus information disclosure is irrelevant.

3.2.1 The complements case

Under Condition 4, A obtains a rent g with P2 only when he trades with P1 in the upstream
relationship and P2 receives signal s2. It follows that the surplus A expects from the two contractual
relationships given φ1 is

UA(θ) = δ1(1, s1|θ)ā+ δ1(1, s2|θ)(ā+ g)− t1(θ),
UA(θ) = δ1(1, s1|θ)a+ δ1(1, s2|θ)(a+ g)− t1(θ).

At the optimum, constraints (IR1) and (IC1) bind, so that P1’s optimal contract maximizes

EU1 = pδ1(1, s1|θ) (m1 + ā) + (1− p)δ1(1, s1|θ)
µ
m1 + a− p

1− p
∆a

¶
+

+pδ1(1, s2|θ) (m1 + ā+ g) + (1− p)δ1(1, s2|θ)
µ
m1 + a− p

1− p
∆a+ g

¶
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subject to the following constraints

δ1(1, s1|θ) + δ1(1, s2|θ) ≥ δ1(1, s1|θ) + δ1(1, s2|θ), (IC1)

g[pδ1(1, s1|θ) + (1− p) δ1(1, s1|θ)] ≥ (m2 + b)
£
pδ1(0, s1|θ) + (1− p) δ1(0, s1|θ)

¤
, (SR1)

g[pδ1(1, s2|θ) + (1− p) δ1(1, s2|θ)] ≤ (m2 + b)
£
pδ1(0, s2|θ) + (1− p) δ1(0, s2|θ)

¤
. (SR2)

As with exogenous information, EU1 is the joint surplus that P1 and A expect from the two
contractual relationships, net of the rent that P1 must leave to A to induce truthtelling. However,
in contrast with the previous section, since A and P1 share the same information about x1 and the
value A attaches to x2, P1 can appropriate all surplus A expects from downstream contracting. It
follows that with endogenous information, disclosure does not induce the same negative incentives
discussed in Theorem 1. Indeed, the rent A obtains with P1 is uniquely determined by the upstream
level of trade, is independent of the disclosure policy selected by P1, and is the same as in the
absence of downstream contracting, i.e. UA(θ) = δ1(1|θ)∆a and UA(θ) = 0. This also implies that
constraint (IC1) is the standard monotonicity condition on the level of trade, and never binds at
the optimum. The remaining constraints, (SR1) and (SR2), are simple rewriting of the sequential
rationality constraints as in (10) using Bayes rule. Note that to maximize the probability P2 offers a
low price when x1 = 1, that is to maximize pδ1(1, s2|θ)+ (1− p) δ1(1, s2|θ), P1 sends signal s2 with
probability one when x1 = 0. Signal s1 is then perfectly informative of the decision to trade and
hence constraint (SR1) never binds and can be neglected. The optimal disclosure policy with the
corresponding downstream price can then be qualitatively represented by the following diagram:

x1 = 1 −→ s1 → t2 = b+ g
&

x1 = 0 −→ s2 → t2 = b

Also note that contrary to the case of exogenous information, the disclosure policy d(s|θ) and the
trade policy δ1(1|θ) can not be treated as independent distributions, for the correlation between x1
and s is exactly what determines the surplus A and P1 expect from downstream contracting.

We now discuss the optimal mechanism φ∗1 and derive conditions under which P1 strictly
benefits from disclosure. Consider first m1+ a− p

1−p∆a ≥ m2 + b. In this case, P1 finds it optimal
to trade with both types with probability one, even if this implies A will not enjoy any rent with P2.
Indeed, from (SR2), the maximal surplus that P1 can appropriate from downstream contracting
is always bounded from above by (m2 + b) Pr (0, s2), where Pr (0, s2) is the total probability that
trade does not occur in the upstream relationship.18 It follows that when m1+a− p

1−p∆a ≥ m2+b,
the "virtual" surplus P1 can generate by trading with either type is higher than the downstream
surplus she can appropriate by not trading and inducing an informational rent in the downstream
relationship and hence the optimal mechanism is δ∗1(1, s1|θ) = δ∗1(1, s1|θ) = 1, which involves no
disclosure.

When instead m2 + b > m1 + a − p
1−p∆a, P1 finds it profitable to sacrifice trade with the

low type to give A a positive expected rent in the downstream relationship. The properties of the

18Recall that no trade is always associated with signal s2.
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optimal mechanism then depend on P2’s willingness to ask a low price in the event P1 trades only
with the high type. From (SR2), if δ∗1(1, s2|θ) = δ∗1(0, s2|θ) = 1, P2 finds it optimal to ask t2 = b
if and only if gp ≤ (m2 + b) (1− p) , that is if and only if the complementarity is not too large.
Assume this is the case. Then, if m1 + a− p

1−p∆a+ g ≤ 0, P1 never trades with θ, for even if P2
is expected to ask a low price, the extra rent P1 must leave to θ when she trades with θ more than
compensates for the surplus P1 can extract from the low type. The optimal mechanism is then
simply δ∗1(1, s2|θ) = δ∗1(0, s2|θ) = 1. When, instead, m1 + a − p

1−p∆a + ġ > 0, P1 finds it optimal
to trade also with the low type in case P2 offers him a low price. However, this occurs only if trade
in the upstream relationship is uncertain. Furthermore, since it is always more profitable to trade
with θ than with θ, at the optimum, P1 trades with probability one with θ and with probability
δ∗1(1, s2|θ) = [(m2 + b) (1− p)− gp] / [(1− p) (m2 + b+ 1)] with θ, where δ∗1(1, s2|θ) guarantees that
P2 is indeed willing to ask a low price. Trade is thus stochastic, but the optimal contract does not
require information disclosure.19

Things are more difficult for P1 when gp > (m2 + b) (1− p), i.e. when P2 is expected to ask
a high price in the event P1 trades with certainty with θ and with probability zero with θ. In
this case, P1 has two options. The first is to sacrifice trade also with θ and guarantee that P2
will ask a low price with certainty. The second is to trade with probability one with the high
type, and use the disclosure policy to induce a low price in the downstream relationship with
probability positive but less than one. When m1 + ā ≤ m2 + b, the cost of scarifying trade with
θ is low and hence P1 maximizes the downstream informational rent by setting δ∗1(0, s2|θ) = 1
and δ∗1(1, s2|θ) = (m2 + b) / [p (m2 + b+ g)] = 1 − δ∗1(0, s2|θ).20 The optimal mechanism is again
stochastic and it involves no disclosure. When, instead, m1 + ā > m2 + b, the cost of scarifying
trade with θ is high and hence P1 prefers to induce a downstream rent only by releasing a noisy
signal of the upstream decision to trade. The optimal mechanism is then δ∗1(0, s2|θ) = 1 and
δ∗1(1, s2|θ) = (1− p) (m2+ b)/(gp) = 1− δ∗1(1, s1|θ). Note that trade is deterministic, but uncertain
to P2, for it is a function of the agent’s exogenous type.

We summarize the above results in the following

Proposition 3 Assume preferences are defined by Condition (4) and x1 and x2 are complements.
Information disclosure is optimal for P1 if and only if (i) m1 + a− p

1−p∆a < m2 + b < m1 + ā and
(ii) g > (m2 + b) (1− p) /p.

When preferences are as in Condition (4), P1 trades off the surplus she can appropriate by
trading with A with the surplus she can appropriate by forgoing trade to induce an informational
rent in the downstream relationship. Under Condition (i) in Proposition (3), the value of trading
with the high type is higher than the value of creating a downstream rent, whereas the opposite is
true for the low type. Hence, at the optimum, P1 trades with certainty with θ and with probability

19The value for δ∗1(1, s2|θ) comes from (SR2) substituting δ∗1(1, s2|θ) = 1, and δ∗1(1, s2|θ) = 1− δ∗1(0, s2|θ).
20Recall that we are considering the case m1 + a − p

1−p∆a < m2 + b so that at the optimum P1 never trades

with θ, that is δ∗1(0, s2|θ) = 1. The value of δ∗1(1, s2|θ) is then determiend by (SR2) using the feasibility constraint
δ∗1(1, s2|θ) = 1− δ∗1(1, s1|θ)− δ∗1(0, s2|θ).
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zero with θ. On the other hand, under Condition (ii), this trade pattern is not sufficient to induce
P2 to ask a low price. It thus becomes optimal for P1 to adopt a noisy disclosure policy which
discloses signal s2 with certainty when A does not trade (that is, when θ = θ) and with probability
d∗(s2|θ) = δ∗1(1, s2|θ) < 1 when he trades (that is, when θ = θ). By choosing δ∗1(1, s2|θ) sufficiently
low, P1 then induces P2 to leave θ a rent with positive probability which is in turn fully appropriated
by P1 through the price she charges for upstream contracting.

The reason why disclosure can be optimal when preferences are not separable is that it allows
P1 to exert influence on downstream contracting without relying exclusively on upstream decisions.
In this simple model, to induce a low downstream price without disclosing information P1 would
need to trade only with the high type with probability less than one. Disclosure allows P1 to
increase the level of trade in the upstream relationship still inducing a low downstream price with
positive probability.

We now turn attention to the effects of disclosure on individual payoffs and total welfare. To
this aim, consider the contracts that P1 would offer if disclosure were not possible. Under the
conditions in Proposition (3), among all contracts that induce P2 to ask a high price, the optimal
one consists in trading with both types at price t1 = a if m1 + a− p

1−p∆a ≥ 0, and with the high
type only at price t1 = a otherwise. On the other hand, as we formally prove in the Appendix,
among all contracts that induce P2 to ask a low price, the optimal one is such that P1 trades only
with θ with probability (m2 + b) / [p (m2 + b+ g)] . Comparing the payoff for P1 under these two
contracts, we obtain that when m1 + a − p

1−p∆a > 0 and g < ∆a(m2 + b)/ (m1 + a−m2 − b),
P1 would find it optimal to trade with either type with certainty if disclosure were not possible.
Clearly, in this case, disclosure benefits P1 but negatively affects A and P2: by reducing the level
of trade with the low type, P1 decreases the rent for θ and also the surplus P2 can extract from θ.
Furthermore, since it is always efficient to trade in either relationship, disclosure also reduces total
welfare.

In all other cases, disclosure leads to a Pareto improvement since it does not affect the level of
trade with θ — and thus the surplus A obtains from the two relationships — and it either increases
or leaves unchanged the level of trade with θ. As for P2, she clearly benefits from disclosure in
case it boosts trade in the upstream relationship, whereas she is indifferent otherwise. To see this,
note that under the optimal contract with disclosure, P2 is indifferent between asking a low and a
high price when she receives signal s2 and strictly prefers a high price when she observes s1. On
the other hand, if P1 were to trade only with θ without disclosing information, P2 would offer a
high price with certainty. It follows that when disclosure does not affect the marginal distribution
over X1, P2’s expected payoff is the same as without disclosure. Finally, since P1 discloses signal
s2 with probability one when she does not trade with A (that is when A is a low type), she makes
trade occur with certainty in the downstream relationship and hence also increases downstream
efficiency.

We conclude that

Corollary 3 When preferences are defined by Condition (4) and x1 and x2 are complements,
the possibility for P1 to disclose information makes P2 and A worse off and reduces welfare if
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m1+ a− p
1−p∆a ≥ 0 and g ≥ ∆a(m2+ b)/ (m1 + a−m2 − b). It leads to a Pareto improvement in

all other cases.

3.2.2 The substitutes case

Consider finally an environment where x1 and x2 are substitutes in the agent’s preferences, in
which case A obtains a positive surplus with P2 only if he does not trade with P1, and P2, believing
that trade occurred in the upstream relationship with sufficiently high probability, asks a low price
t2 = b + g. Substituting UA(θ) = [δ1(1, s1|θ) + δ1(1, s2|θ)]∆a and UA(θ) = 0 into P1’s payoff, we
have that the optimal contract maximizes

EU1 = p[δ1(1, s1|θ) + δ1(1, s2|θ)] (m1 + ā) + pδ1(0, s2|θ) |g|+
+(1− p) [δ1(1, s1|θ) + δ1(1, s2|θ)]

µ
m1 + a− p

1− p
∆a

¶
+ (1− p)δ1(0, s2|θ) |g|

subject to the following constraints

δ1(1, s1|θ) + δ1(1, s2|θ) ≥ δ1(1, s1|θ) + δ1(1, s2|θ), (IC1)

|g| £pδ1(0, s1|θ) + (1− p) δ1(0, s1|θ)
¤ ≥ (m2 + b+ g)

£
pδ1(1, s1|θ) + (1− p) δ1(1, s1|θ)

¤
, (SR1)

|g| £pδ1(0, s2|θ) + (1− p) δ1(0, s2|θ)
¤ ≤ (m2 + b+ g)

£
pδ1(1, s2|θ) + (1− p) δ1(1, s2|θ)

¤
. (SR2)

Note that, conditional on trading, the information P1 discloses to P2 does not have any direct effect
on the surplus A expects from downstream contracting. However, as indicated in (SR2) , disclosing
signal s2 with probability one when trade occurs maximizes the possibility of sending signal s2 also
when trade occurs and hence maximizes the informational rent A obtains with P2. It follows that
at the optimum δ∗1(1, s1|θ) = 0 for any θ, which also implies that constraint (SR1) never binds.
The optimal disclosure policy can then be qualitatively represented by the following diagram:

x1 = 1 −→ s2 −→ t2 = b+ g < b
%

x1 = 0 −→ s1 −→ t2 = b

Also note that since the "virtual" surplus m1+a− p∆a/(1− p) that can be generated by trading
with the low type is lower than that with the high type, m1+ ā, it is always more profitable for P1
to sacrifice trade with θ before reducing the level of trade with θ. This also suggests that constraint
(IC1) will not bind and hence it will be neglected.

The optimal contract is then obtained by comparing the "virtual" surplus P1 can appropriate
by trading with either type with that she can obtain by not trading and making P2 offer a low
price. Clearly, when |g| ≤ m1 + a − p

1−p∆a, the rent A obtains with P2 is so small that it never
pays to sacrifice trade in the upstream relationship and hence the optimal contract is δ∗1(1, s2|θ) =
δ∗1(1, s2|θ) = 1. On the contrary, whenm1+a− p

1−p∆a < |g|, P1 finds it optimal to reduce the level of
trade with θ so as to induce P2 to leave him an informational rent. As with complements, the optimal
mechanism then depends on the price P2 is expected to ask in case trade in the upstream relationship
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occurs if and only if A is a high type. Given this trade policy, when |g| (1− p) ≤ (m2 + b + g)p,
or equivalently |g| ≤ (m2 + b)p, P2 asks a low price. In this case, the optimal contract for P1 is
δ∗1(0, s2|θ) = 1 and δ∗1(1, s2|θ) = 1 if |g| ≤ m1 + ā, that is when the value of the downstream rent
is lower than the surplus of trading with θ. If instead |g| > m1 + ā, then it becomes attractive for
P1 to let also the high type enjoy a downstream rent with positive probability and the optimal
mechanism is thus

δ∗1(0, s2|θ) = 1,

δ∗1(1, s2|θ) = |g| /[(m2 + b)p] = 1− δ∗1(0, s2|θ).
Next consider (m2 + b)p < |g| ≤ m2 + b, in which case P1 needs to trade with positive probability
also with θ if she wants to induce a low price in the downstream relationship.21 Constraint (SR2)
then necessarily binds and hence for m1 + a− p

1−p∆a+m2 + b+ g > 0 the optimal mechanism is

δ∗1(1, s2|θ) = 1,

δ∗1(1, s2|θ) = [|g|− p(m2 + b)] / [(1− p) (m2 + b)] = 1− δ∗1(0, s2|θ).
When, instead, m1 + a − p

1−p∆a +m2 + b + g < 0, which is possible only if the "virtual" surplus

m1 + a − p
1−p∆a < 0, the rent P1 must leave to θ in case she trades with θ is so high that it

never pays to trade with the low type, even accounting for the fact that trading increases the
surplus P1 can appropriate from P2. When this is the case, P1 trades only with θ and adopts a
disclosure policy which sends signal s2 with certainty when x1 = 1 (that is, when θ = θ) and with
probability d∗(s2|θ) = p(m2 + b + g)/ [(1− p) |g|] when x1 = 0 (that is, when θ = θ). As with
complements, information disclosure allows P1 to choose a more profitable trade pattern in the
upstream relationship and at the same time fashion (albeit imperfectly) the result of downstream
contracting.

We summarize the conditions under which disclosure is optimal in this simple model in the
following proposition.

Proposition 4 Assume preferences are defined by Condition (4) and x1 and x2 are substitutes.
Information disclosure is optimal for P1 if and only if (i) p(m2 + b) < |g| ≤ m2 + b and (ii)
m1 + a− p

1−p∆a+m2 + b+ g < 0.

That P1 finds it optimal to disclose information only when the substitutability between the
two goods |g| ≤ m2 + b follows directly from the fact that if |g| > m2 + b, then P2 never accepts
to trade at a price t2 = b+ g and thus disclosure is irrelevant. To understand why P1 then strictly
benefits from the possibility to release information when the other conditions in Proposition 4 hold,
consider the optimal contracts P1 would offer in case information disclosure were not possible.
Among all contracts that induce P2 to set a high price, the one that maximizes P1’s payoff consists
in trading only with θ at price t1 = a and gives an expected payoff equal to p (m1 + ā) .22 In

21When |g| > m2 + b, P2 always asks a high price t2 = b, whatever her beliefs about x1.
22Recall that (ii) implies m1 + a− p

1−p∆a < 0.
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contrast, with information disclosure, P1 can sustain the same level of trade in the upstream
relationship, and at the same time induce P2 to leave θ a downstream rent with positive probability.
Disclosure thus trivially improves upon this contract. If instead P1 were to induce a low price in the
downstream relationship without disclosing information, she would have to trade with sufficiently
high probability also with θ for otherwise, under Condition (i) in Proposition 4, P2 would ask a high
price. Since it is always more profitable to trade with the high type than with the low type, among
all contracts that induce a low price in the downstream relationship, the optimal one is such that
P1 trades with certainty with θ and with probability δ(1|θ) = [|g|− p(m2 + b)] / [(1− p) (m2 + b)]
with θ, where δ(1|θ) is the minimal level of trade necessary to induce t2 = b + g, as indicated in
(SR2). With respect to this contract, the optimal one with disclosure gives θ a lower rent with
P2, but allows P1 to extract more surplus from θ by limiting the informational rent she must leave
to the latter to induce truthful information revelation. Under Condition (ii), this second effect
dominates and hence at the optimum P1 trades only with the high type and uses the disclosure
policy to induce P2 to leave θ a rent with positive probability.

We now turn to the effects of disclosure on individual payoffs.

Corollary 4 Assume preferences are defined by Condition (4) and x1 and x2 are substitutes. The
possibility for P1 to disclose information leads to a Pareto improvement if m1 + a − p

1−p∆a ≤
|g|(m2+b+g)
p(m2+b)−|g| . Otherwise, A is worse off, P1 and P2 better off, and disclosure is welfare increasing
(decreasing) if and only if |g| ≥ (<) m1 + a.

When m1 + a − p
1−p∆a ≤ |g|(m2+b+g)

p(m2+b)−|g| , without disclosure, P1 would trade only with the high
type at a price t1 = a which in turn would induce P2 to ask a high price t2 = b. In this case,
disclosure is clearly welfare enhancing, for it does not affect the marginal distribution over X1, but
it increases the level of trade in the downstream relationship by reducing the distortions that are
due to the endogenous asymmetry of information between A and P2.What is more, disclosure leads
to a Pareto improvement: A and P2 obtain exactly the same payoff as without disclosure, whereas
P1 is strictly better off. That A is indifferent follows from the fact that with either contract, P1
trades only with the high type and hence A does not obtain any informational rent. That P2 is
not affected by disclosure follows from the fact that P1 does not change the level of trade in the
upstream relationship and from the fact that the optimal disclosure policy makes P2 just indifferent
between asking a high price with probability one — as in the absence of disclosure — or reducing the
price conditional on s2.

On the contrary, whenm1+a− p
1−p∆a >

|g|(m2+b+g)
p(m2+b)−|g| , the optimal mechanism without disclosure

is such that P1 trades also with θ with probability [|g|− p(m2 + b)] / [(1− p) (m2 + b)] and induces
P2 to ask a low price with certainty. In this case, A strictly suffers from disclosure since by reducing
the level of trade with θ, P1 also reduces the rent for θ. On the other hand, P2 benefits from the
reduction in the level of trade in the upstream relationship — which in the case of substitutes
reduces the agent’s valuation for x2 — and thus is strictly better off under disclosure. Finally,
for the effect of disclosure on total welfare, note that disclosure reduces the level of trade in the
upstream relationship, without affecting the level of trade in the downstream relationship. This in
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turn is welfare increasing if and only if |g| ≥ m1 + a, i.e. if and only if it is efficient not to trade
with θ in the upstream relationship.

4 Concluding Remarks

This paper has considered the dynamic interaction between two principals who sequentially contract
with the same agent. The focus of the analysis has been the study of disclosure policies that
optimally control for the exchange of information between the two bilateral relationships. We have
shown that the optimal policy from the viewpoint of an upstream principal who can perfectly
commit to any mechanism of her choosing consists in keeping all information secret when (a) the
upstream principal is not personally interested in the decisions of the downstream principal, (b)
the sign of the single crossing condition in the agent’s preferences is the same for upstream and
downstream decisions and (c) the marginal surplus in the downstream relationship is independent
of upstream decisions. This result is robust to the possibility for the upstream principal to sell
information to the downstream principal. On the contrary, when any of these conditions is violated,
there exist preferences for which the upstream principal finds it strictly optimal to disclose a noisy
signal of the agent’s exogenous type and/or upstream contractual decisions, even if she can not
make the downstream principal pay for the information she receives. We have also shown that the
possibility to disclose information need not necessarily harm the agent and may boost efficiency and
lead to a Pareto improvement when it reduces the asymmetry of information in the downstream
relationship and increases trade in the upstream.

In order to highlight the various effects at play, we have examined the determinants for the
disclosure of exogenous and endogenous information separately. Furthermore, the results have been
derived assuming the upstream principal can perfectly commit to whatever policy she chooses. The
design of optimal privacy policies in specific environments where disclosure may be driven by a
combination of the different determinants discussed above represents an interesting line for future
research. Similarly, relaxing the assumption of full commitment may deliver more insights on
the welfare effects of disclosure and on the desirability of regulatory intervention in the adoption
of privacy-protecting policies. Despite the limits of the model, we expect the strategic effects
highlighted in the analysis, as well as the motivations for disclosure discussed in the paper, to play
an important role also in the study of more complex environments.
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5 Appendix

Proof of Theorem 1 — Part (i). Under conditions (a) and (c), P1, P2 and A ’s preferences can
be written as

v1 (x1, x2, θ) = v1 (x1, θ) ,
v2 (x1, x2, θ) = v12 (x1, θ) + v22 (x2, θ) ,
vA (x1, x2, θ) = v1A (x1, θ) + v2A (x2, θ) ,

(11)

with v1 (0, θ) = vji (0, θ) = 0 for j = 1, 2, and i = 2, A. Define W1(x1, θ) ≡ v1(x1, θ) + v1A (x1, θ) and
W2(x2, θ) ≡ v22(x2, θ) + v2A(x2, θ).

The proof proceeds in four steps.
Step 1. If P2 and A’s preferences are separable, then without loss of generality the reaction

φ2(s) is independent of x1 so that x2(θ
E
2 ; s) = x2(eθE2 ; s) and U2A(θ

E
2 ; s) = U2A(

eθE2 ; s) for any two
extended types θE2 = (θ, x1) and eθE2 = (eθ, ex1) such that θ = eθ. Indeed, when this is not true,
there always exists another reaction φ02(s) that is payoff-equivalent for all players and which is
independent of x1. It follows that to characterize the optimal mechanism for P1, one can restrict
attention to downstream mechanisms φ2(s) = (x2(θ; s), U

2
A(θ; s)). This also implies that when P2

does not receive information from P1, her optimal mechanism is independent of φ1 and will be
denoted by φND

2 = (xND
2 (θ), U2ND

A (θ)). Also note that when W2(1, θ) = 0 for one of the two types,
information disclosure is irrelevant since P2 always contracts only with one type, whatever her
posterior beliefs about θ. In this case the result trivially holds. In what follows, we thus assume
W2(1, θ) > 0 for any θ. When the sign of the single crossing condition in the agent’s preferences is
positive, (IC2) and (IR2) constraints bind so that

U2A(θ; s) = U2ND
A (θ) = 0, U2A(θ; s) = ∆θv

2
A(x2(θ; s), θ), U2ND

A (θ) = ∆θv
2
A(x

ND
2 (θ), θ). (12)

Furthermore,
¡
IR2

¢
are always satisfied, whereas (IC2) reduce to

x2(θ; s) ≥ x2(θ; s), xND
2 (θ) ≥ xND

2 (θ).

It follows that at the optimum

x2(θ; s) = xND
2 (θ) = argmaxx2∈X2

©
W2(x2, θ)

ª
= 1,

x2(θ; s) = argmaxx2∈X2

©
µ(θ; s)W2(x2, θ)− µ(θ; s)∆θv

2
A(x2, θ)

ª
,

xND
2 (θ) = argmaxx2∈X2

©
(1− p)W2(x2, θ)− p∆θv

2
A(x2, θ)

ª
,

(13)

which also implies that (IC2) never bind.
Step 2. Using τ(φ1) = γ

£
EU2(φ1)− EUND

2 (φ1)
¤
, we have that for any individually rational

and incentive compatible mechanism φ1 — with downstream reaction φ2(s)

EU1(φ1) =
P
θ∈Θ

½
W1(1, θ)δ1(1|θ) +

P
s∈S

U2A(θ; s)d(s|θ)− UA (θ;φ1)

¾
Pr(θ)+

+γ
£
EU2(φ1)− EUND

2 (φ1)
¤
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with

EU2(φ1) =
X
θ∈Θ

(X
s∈S

£
W2(x2(θ; s), θ)− U2A(θ; s)

¤
d(s|θ) + v12 (1, θ) δ1(1|θ)

)
Pr(θ),

EUND
2 (φ1) =

X
θ∈Θ

©
W2(x

ND
2 (θ), θ)− U2ND

A (θ) + v12 (1, θ) δ1(1|θ)
ª
Pr(θ).

Suppose φ1 is optimal so that it solves P1; then (IC1) and (IR1) necessarily bind,
¡
IR1

¢
is slack

and
UA (θ;φ1) = 0,

UA

¡
θ;φ1

¢
= ∆θv

1
A(1, θ)δ1(1|θ) +

P
s∈S

U2A(θ; s)d(s|θ),
∆θv

1
A(1, θ)[δ1(1|θ)− δ1(1|θ)] +

P
s∈S

U2A(θ; s)[d(s|θ)− d(s|θ)] ≥ 0. (IC1)

(14)

Step 3. Now, let φND
1 be another mechanism that does not disclose information, it induces

the same distribution over X1 as φ1 — i.e. such that δ
ND
1 (1|θ) = δ1(1|θ) =

P
s∈S

δ1(1, s|θ) for any θ —
and such that

UA

¡
θ;φND

1

¢
= 0, UA

¡
θ;φND

1

¢
= ∆θv

1
A(1, θ)δ

ND
1 (1|θ) + U2ND

A (θ). (15)

Under (b), the mechanism φND
1 — with associated reaction φND

2 — is also individually rational and
incentive compatible provided that δND

1 (1|θ) ≥ δND
1 (1|θ). We then have that

EU1(φND
1 ) =

X
θ∈Θ

©
W1(1, θ)δ

ND
1 (1|θ) + U2ND

A (θ)− UA

¡
θ;φND

1

¢ª
Pr(θ)

and thus

EU1(φ1)− EU1(φND
1 ) = (1− γ)

P
θ∈Θ

·P
s∈S

U2A(θ; s)d(s|θ)− U2ND
A (θ)

¸
Pr(θ)+

+γ
P
θ∈Θ

·P
s∈S

W2(x2(θ; s), θ)d(s|θ)−W2(x
ND
2 (θ), θ)

¸
Pr(θ)+

− P
θ∈Θ

©
UA (θ;φ1)− UA

¡
θ;φND

1

¢ª
Pr(θ).

(16)

Using (12), (14) and (15), (16) reduces to

EU1(φ1)− EU1(φND
1 ) = (1− γ) p

·P
s∈S

U2A(θ; s)d(s|θ)−
P
s∈S

U2A(θ; s)d(s|θ)
¸
+

+γ
P
s∈S

£
(1− p)W2(x2(θ; s), θ)− p∆θv

2
A(x2(θ; s), θ)

¤
d(s|θ)+

−γ £(1− p)W2(x
ND
2 (θ), θ)− p∆θv

2
A(x

ND
2 (θ), θ)

¤
.

(17)
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Step 4. To prove EU1(φ1) ≤ EU1(φND
1 ), consider first the last two terms in (17). From (13),

the difference between these two terms is never positive. Next, consider the first term in (17). From
(13), we have that U2A(θ; s) is increasing in the posterior odds

µ(θ;s)

µ(θ;s)
and hence in d(s|θ)

d(s|θ) . ThatX
s∈S

U2A(θ; s)d(s|θ) ≥
X
s∈S

U2A(θ; s)d(s|θ) (18)

then follows from standard Representation Theorems (see, for example, Milgrom, (1981) — Propo-
sition 1). To see this, it suffices to relabel the signals so that all s ∈ R, with s1 < s2 < ... < sN , and
d(s1|θ)
d(s1|θ) <

d(s2|θ)
d(s2|θ) < ... < d(sN |θ)

d(sN |θ) . It follows that U
2
A(θ; s) is increasing in s. The inequality in (18) is

then satisfied if and only if d(s|θ)/d(s|θ) is increasing in s, which holds by construction. This also
implies that if (IC1) is satisfied in φ1, then δND

1 (1|θ) ≥ δND
1 (1|θ) and hence (IC1) is satisfied also

in φND
1 . We can conclude that for any mechanism φ1 that solves P1, there always exists another

mechanism φND
1 that also solves P1 and which does not disclose information. This completes the

proof of part (i) in the theorem. The proof for part (ii) follows from Propositions 1, 2, 3, and 4.

Proof of Theorem 1 — Part (i): Continuum of types and decisions.
Assume now θ ∈ Θ ≡ [θ, θ], with absolutely continuous log-concave cumulative distribution

function F (θ) with density f(θ) strictly positive over Θ. Furthermore, assume X1 = X2 = R+
and let viA (xi, θ), v1 (x1, θ) and v22 (x2, θ) be thrice continuously differentiable with

∂2v1(x1,θ)
∂x21

< 0,

∂2v1(x1,θ)
∂x1∂θ

≥ 0, ∂2v22(x2,θ)

∂x22
< 0,

∂2v22(x2,θ)
∂θ∂x2

≥ 0, ∂viA(xi,θ)
∂θ > 0,

∂2viA(xi,θ)

∂x2i
< 0, ∂2viA(xi,θ)

∂xi∂θ
≥ 0, ∂3viA(xi,θ)

∂θ∂x2i
≥

0, and ∂3viA(xi,θ)

∂θ2∂xi
≤ 0, for i = 1, 2. The above conditions are standard in the continuous case (see

Fudenberg and Tirole, 1991, Chapter 7) and guarantee that a single mechanism designer would
optimally choose two deterministic policies xi(θ) with no bunching.

Let d(s|θ) denote a probability measure over S and δ1(x1|θ) a probability measure over X1,
with S ⊆ R.

In what follows, we prove the result for the case γ = 1: note that if disclosure is not optimal
when γ = 1, it is also not optimal for any γ < 1.

As with discrete types, since P2 and A’s preferences are separable, the reaction φ2(s) is indepen-
dent of x1, and will be denoted by φ2(s) = (x2(θ; s), U

2
A(θ; s)). Similarly, φ

ND
2 = (xND

2 (θ), U2ND
A (θ))

will denote the mechanism P2 offers in case she does not receive any information from P1. Given
φ1, P2’s expected pay-off, respectively when she observes and when she does not observe the signals
s is thus

EU2(φ1) =
Z
Θ


Z
S

£
W2(x2(θ; s), θ)− U2A(θ; s)

¤
dd(s|θ) +

Z
X1

v12 (x1, θ)dδ1(x1|θ)
dF (θ),

EUND
2 (φ1) =

Z
Θ

W2(x
ND
2 (θ), θ))− U2ND

A (θ) +

Z
X1

v12 (x1, θ)dδ1(x1|θ)
dF (θ).



36 G. Calzolari and A. Pavan

It follows that, given any individually rational and incentive compatible upstream mechanism φ1 —
with associated downstream reaction φ2(s) — P1’s expected payoff is

EU1(φ1) =

Z
Θ


Z
X1

W1(x1, θ)dδ1(x1|θ) +
Z
S

U2A(θ; s)dd(s|θ)− UA (θ;φ1)

dF (θ) + (19)

+EU2(φ1)− EUND
2 (φ1)

=

Z
Θ


Z
X1

W1(x1, θ)dδ1(x1|θ) +
Z
S

W2(x2(θ; s), θ)dd(s|θ)− UA (θ;φ1)

dF (θ) +
−
Z
Θ

©
W2(x

ND
2 (θ), θ))− U2ND

A (θ)
ª
dF (θ)

where
UA (θ;φ1) =

R
X1

v1A (x1, θ)dδ1(x1|θ) +
R
S

U2A(θ, s)dd(s|θ)− t1(θ),

U2A(θ; s) = v2A (x2(θ; s), θ)− t2(θ; s).

The optimal mechanism for P1 maximizes (19) subject to individual rationality and incentive com-
patibility constraints for A, as well as sequential rationality constraints for P2, as in P1 in the main
text. Let the value of this program be denoted by EU1(φ∗1).

Now suppose P1 could control directly x2 and t2 and could commit to them at t = 1. That
is, suppose P1 could offer A a fictitious mechanism eφ1 = (eδ1(x1|θ), ed(s|θ), ex2(θ; s), UA(θ; eφ1)) such
that A reports his type only at t = 1, and on the basis of the report θ, P1 selects a lottery eδ1(x1|θ),
a disclosure policy ed(s|θ), a downstream decision ex2(θ; s) and a total rent UA(θ; eφ1). Note that
the combination of the disclosure policy ed(s|θ) with the policy ex2(θ; s) induces a lottery over X2.
Hence, think of eφ1 as a stochastic mechanism that for each θ specifies a lottery over X1, a lottery
over X2 and a rent UA(θ; eφ1). Suppose also that P1 wishes to maximize (19) subject to individual
rationality and incentive compatibility constraints. Under the assumptions discussed above, it is
well known that the mechanism eφ1 which maximizes (19) is deterministic and is characterized by
two monotonic (increasing) policies ex1(θ) and ex2(θ). Let the value of this fictitious program be

EU1(eφ1) =

Z
Θ

n
W1(ex1(θ), θ) +W2(ex2(θ), θ)− UA(θ; eφ1)odF (θ) +

−
Z
Θ

©
W2(x

ND
2 (θ), θ))− U2ND

A (θ)
ª
dF (θ).

Then clearly EU1(eφ1) ≥ EU1(φ∗1). In other words, EU1(eφ1) is an upper bound on the payoff for P1.
We want to show that when P1 can control only upstream decisions, she can still guarantee herself
EU1(eφ1) by choosing not to disclose any information to P2 and delegating to her the choice over
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x2(θ) and t2(θ). If this is true, then no disclosure is necessarily optimal. To prove this claim, note
that eφ1 = (ex1(θ), ex2(θ), UA(θ; eφ1)) is incentive compatible if and only if

∂UA(θ; eφ1)
∂θ

=
∂v1A (ex1(θ), θ)

∂θ
+

∂v2A (ex2(θ), θ)
∂θ

and
∂v1A (ex1(θ), θ)

∂θ∂x1

∂ex1(θ)
∂θ

+
∂v1A (ex2(θ), θ)

∂θ∂x2

∂ex2(θ)
∂θ

≥ 0 (20)

almost everywhere23. This implies that

UA(θ; eφ1) = UA(θ; eφ1) + θZ
θ

∂v1A (ex1(z), z)
∂z

dz +

θZ
θ

∂v2A (ex2(z), z)
∂z

dz.

At the optimum, UA(θ; eφ1) = 0, in which case individual rationality constraints are also satisfied.
Integrating by parts we then have that ex1(θ) and ex2(θ) maximizeZ
Θ

½
W1(ex1(θ), θ)− 1− F (θ)

f(θ)

∂v1A (ex1(θ), θ)
∂θ

¾
dF (θ)+

Z
Θ

½
W2(ex2(θ), θ)− 1− F (θ)

f(θ)

∂v2A (ex2(θ), θ)
∂θ

¾
dF (θ)

(21)
subject to (20). Log-concavity of F (θ), along with the assumptions on preferences discussed above,
guarantees that the schedules ex1(θ) and ex2(θ) that maximize (21) point-wise are increasing in θ in
which case (20) is satisfied and does not bind.

Note that in the absence of information disclosure P2 would offer A a mechanism φND
2 =

(xND
2 (θ), U2ND

A (θ)) such that xND
2 (θ) maximizes the "virtual" surplus W2(x2, θ)− 1−F (θ)

f(θ)
∂v2A(x2,θ)

∂θ

pointwise and U2ND
A (θ) =

θR
θ

∂v2A(x
ND
2 (z),z)
∂z dz. That is, ex2(θ) = xND

2 (θ). It follows that even if

P1 controls only x1(θ), she can always guarantee herself EU1(eφ1) by offering A a deterministic

mechanism such that x1(θ) = ex1(θ) and t1(θ) = v1A (x1(θ), θ)−
θR
θ

∂v1A(x1(z),z)
∂z dz and committing not

to disclose any information to P2. This proves the result.

Proof of Proposition 1. In the following, we prove that disclosure is optimal when H < 1
(respectively, H ≥ 1) if and only if e > E (respectively, e ≤ E). We do so by deriving the optimal
disclosure policy d(s|θ) and the optimal level of trade δ1(1|θ) for all possible cases.

Recall from the main text that φ∗1 maximizes

EU1 = pδ1(1|θ) (m1 + ā) + (1− p) δ1(1|θ)
³
m1 + a− p

1−p∆a
´
+

+ pe+ (1− p) d(s2|θ)e− p
£
d(s2|θ)− d(s2|θ)

¤
∆b

23We omit the qualification almost everywhere henceforth.
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subject to the constraints£
δ1(1|θ)− δ1(1|θ)

¤
∆a ≥ £d(s2|θ)− d(s2|θ)

¤
∆b, (IC1)

d(s1|θ) ≥ Hd(s1|θ), (SR1)

d(s2|θ) ≤ Hd(s2|θ). (SR2)

First, note that (SR1) and (SR2) cannot be both slack. If this were the case, P1 could reduce d(s1|θ)
and increase d(s2|θ), enhancing her payoff and relaxing (IC1). Second, using d(s1|θ) = 1− d(s2|θ),
constraint (SR1) can be rewritten as

d(s2|θ) ≤ Hd(s2|θ) + 1−H. (SR1)

When H < 1, if (SR2) is satisfied, so is (SR1), whereas when H ≥ 1, (SR1) implies (SR2). Since
at least one of these two constraints must bind, it follows that for H < 1, (SR2) binds and (SR1)
is slack, whereas the opposite is true for H ≥ 1.

Also note that by maximizing δ1(1|θ), P1 maximizes the objective function without violating
any of the constraints. Hence, at the optimum, trade occurs with probability one when θ = θ, i.e.
δ∗1(1|θ) = 1.

Unfavorable beliefs: H < 1. Substituting (SR2), that is d(s2|θ) = Hd(s2|θ), the program
reduces to

PUnf
1 :


max p (m1 + ā) + (1− p) δ1(1|θ)

³
m1 + a− p

1−p∆a
´
+

+ pe+ d(s2|θ) [(1− p) e− p (1−H)∆b]
subject to
[1− δ1(1|θ)]∆a ≥ d(s2|θ) (1−H)∆b. (IC1)

First, assume m1 + a − p
1−p∆a < 0 so that the optimal level of trade with θ is δ∗1(1|θ) = 0. If

(1− p) e < p (1−H)∆b, the optimal policy is no disclosure, that is d∗(s1|θ) = 1 for any θ. If
instead (1− p) e ≥ p (1−H)∆b, then for ∆b

∆a (1−H) ≤ 1, it is optimal to set d∗(s2|θ) = 1 and
d∗(s2|θ) = H, whereas for ∆b

∆a (1−H) > 1, (IC1) is binding and the optimal disclosure policy is
d∗(s2|θ) = ∆a

∆b(1−H) and d∗(s2|θ) = ∆aH
∆b(1−H) .

Next, assume m1 + a− p
1−p∆a ≥ 0. If (1− p) e < p (1−H)∆b, then the optimal level of trade

with θ is δ∗1(1|θ) = 1 and no disclosure is again optimal. If on the contrary (1− p) e ≥ p (1−H)∆b,
then (IC1) binds, for otherwise P1 could increase her expected payoff by increasing d(s2|θ) and/or
δ1(1|θ). Substituting δ1(1|θ) = 1− d(s2|θ)∆b

∆a (1−H) into the objective function in PUnf
1 gives

EU1 = p (m1 + ā+ e) + (1− p)

µ
m1 + a− p

1− p
∆a

¶
+ (1− p)d(s2|θ) (e−E)

where

E = p
1−p (1−H)∆b+ ∆b

∆a

³
m1 + a− p

1−p∆a
´
(1−H) = ∆b

∆a (1−H) (m1 + a).
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Note that E ≥ p
1−p(1 −H)∆b when m1 + a − p

1−p∆a ≥ 0. Hence, if e ≤ E, then δ∗1(1|θ) = 1 and
d∗(s1|θ) = 1 for any θ. On the contrary, when e > E, P1 maximizes d(s2|θ) under the constraint
δ1(1|θ) ≥ 0, i.e. d(s2|θ) ≤ ∆a

∆b(1−H) . For
∆a

∆b(1−H) ≥ 1, then d∗(s2|θ) = 1, d∗(s2|θ) = H, and

δ∗1(1|θ) = 1− ∆b
∆a (1−H). On the contrary, for ∆a

∆b(1−H) < 1, it is optimal to set d
∗(s2|θ) = ∆a

∆b(1−H)
d∗(s2|θ) = ∆aH

∆b(1−H) and δ∗1(1|θ) = 0.
We conclude that when P2’s prior beliefs are unfavorable, disclosure is optimal if and only if

e > E ≡ max
½
m1 + a;

p

1− p
∆a

¾
∆b

∆a
(1−H) .

Favorable beliefs: H ≥ 1. Using d(s1|θ) = Hd(s1|θ) and d(s2|θ) = 1− d(s1|θ) gives

PFav
1 :


max p (m1 + ā) + (1− p) δ1(1|θ)

³
m1 + a− p

1−p∆a
´
+

+ e− d(s1|θ) [(1− p) e− p (1−H)∆b]
subject to
[1− δ1(1|θ)]∆a ≥ (H − 1)∆bd(s1|θ) (IC1)

The proof follows the same steps as for unfavorable beliefs.
Assume first m1 + a − p

1−p∆a < 0 so that δ∗1(1|θ) = 0. When (1− p) e ≥ p (1−H)∆b, the
optimal policy is no disclosure, that is d∗(s1|θ) = 0 for any θ. On the contrary, if (1− p) e <
p (1−H)∆b, then EU1(φ1) is increasing in d(s1|θ) and therefore for ∆aH

∆b(H−1) ≥ 1, d∗(s1|θ) = 1/H
and d∗(s1|θ) = 1 (where the upper bound on d∗(s1|θ) comes from SR1) whereas for ∆aH

∆b(H−1) < 1,

(IC1) binds and thus d
∗(s1|θ) = ∆a

∆b(H−1) and d∗(s1|θ) = ∆aH
∆b(H−1) .

Next, assumem1+a− p
1−p∆a ≥ 0. If (1− p) e ≥ p (1−H)∆b, then δ∗1(1|θ) = 1 and d∗(s1|θ) = 0

for any θ. If on the contrary (1− p) e < p (1−H)∆b, then (IC1) binds, for otherwise P1 could
increase her expected payoff by increasing d(s1|θ) and / or δ1(1|θ). Substituting for δ1(1|θ) into
the objective function in PFav

1 gives

EU1 = p (m1 + ā) + (1− p)

µ
m1 + a− p

1− p
∆a

¶
+ e− (1− p)d(s1|θ) (e−E)

Hence, if e > E, then again δ∗1(1|θ) = 1 and d∗(s1|θ) = 0 for any θ. On the contrary, when e ≤ E

and ∆aH
∆b(H−1) ≥ 1, then d∗(s1|θ) = 1/H, d∗(s1|θ) = 1 and δ∗1(1|θ) = 1− ∆b(H−1)

∆aH . On the contrary,

for ∆aH
∆b(H−1) < 1, d

∗(s1|θ) = ∆a
∆b(H−1) , d

∗(s1|θ) = ∆aH
∆b(1−H) and δ∗1(1|θ) = 0.

Summarizing, disclosure is optimal when H ≥ 1 if and only if e < E.

Proof of Proposition 2.
The proof identifies conditions for the optimality of disclosure and constructs the optimal

mechanism for all possible parameters’ configurations. From the main text, φ∗1 maximizes

EU1 = p
©
δ1(1|θ)(m1 + a) + d(s2|θ)∆b− UA(θ)

ª
+ (1− p) {δ1(1|θ)(m1 + a)− UA(θ)}
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subject to the constraints

UA(θ) ≥ 0, (IR1)
UA(θ) ≥ 0, (IR1)

UA(θ) ≥ UA(θ) + d(s2|θ)∆b− δ1(1|θ) |∆a| , (IC1)

UA(θ) ≥ UA(θ)− d(s2|θ)∆b+ δ1(1|θ) |∆a| , (IC1)

d(s1|θ) ≥ Hd(s1|θ), (SR1)

d(s2|θ) ≤ Hd(s2|θ). (SR2)

First, note that in any optimal contract, δ∗1(1|θ) = 1, for otherwise P1 could increase δ1(1|θ)
increasing the objective function without violating any of the constraints. Second, note that (SR1)
always binds and (SR2) is slack when H ≥ 1, whereas the opposite is true when H < 1 (the
argument is identical to that in the proof of Proposition 1).

Favorable beliefs. From (SR1), d(s2|θ) = 1 − H + Hd(s2|θ). Suppose that d(s2|θ) < 1.
Then by reducing d(s1|θ) to zero and increasing UA(θ) by ∆bd(s1|θ), P1 increases her payoff,
without violating any of the constraints. Hence, d∗(s2|θ) = d∗(s2|θ) = 1, that is no disclosure
is always optimal. When ∆b > |∆a| , the optimal contract is such that U∗A(θ) = ∆b − |∆a| ,
U∗A(θ) = 0, and δ∗1(1|θ) = 1. When instead |∆a| ≥ ∆b, then δ∗1(1|θ) = ∆b

|∆a| and U∗A(θ) = U∗A(θ) = 0
ifm1+a− 1−pp |∆a| < 0; if on the contrarym1+a− 1−pp |∆a| ≥ 0, then U∗A(θ) = 0, U∗A(θ) = |∆a|−∆b
and δ∗1(1|θ) = 1.

Unfavorable beliefs. First, observe that at the optimum (IC1) must be saturated. Indeed,
if this were not true, then necessarily UA(θ) = 0 and δ1(1|θ) = 1, for otherwise P1 could reduce
UA(θ) and/or increase δ1(1|θ) enhancing her payoff. But then from (IC1) and (IC1), 0 ≥ UA(θ)−
d(s2|θ)∆b + |∆a| ≥ [d(s2|θ) − d(s2|θ)]∆b, which is consistent with d(s2|θ) ≥ d(s2|θ) only if no
information is disclosed — that is d(s2|θ) = d(s2|θ) — and UA(θ) − d(s2|θ)∆b + |∆a| = 0, in which
case (IC1) is saturated. Next, we establish that U

∗
A(θ) = 0. Again, suppose this is not true. Then,

necessarily UA(θ) = 0, for otherwise P1 could reduce both rents by the same amount. Using the
result that (IC1) necessarily binds, we have that UA(θ) = d(s2|θ)∆b − δ1(1|θ) |∆a| . Replacing
UA(θ) and UA(θ) into E [U1] , gives

EU1 = p
©
δ1(1|θ)(m1 + a) + δ1(1|θ) |∆a|

ª
+ (1− p) {m1 + a}

which is increasing in δ1(1|θ). But then δ1(1|θ) = min
n
d(s2|θ)H ∆b

|∆a| ; 1− (1−H)d(s2|θ) ∆b
|∆a|

o
,

where the upper bound comes from (IR1) and (IC1), substituting UA(θ) and UA(θ) and using

(SR2), that is d(s2|θ) = Hd(s2|θ). If ∆b ≤ |∆a| , min
n
d(s2|θ)H ∆b

|∆a| ; 1− (1−H)d(s2|θ) ∆b
|∆a|

o
=

d(s2|θ)H ∆b
|∆a| for all d(s2|θ) and thus δ1(1|θ) = d(s2|θ)H ∆b

|∆a| , which implies that UA(θ) = 0. If

instead ∆b > |∆a| , then δ1(1|θ) is maximized at d(s2|θ) = |∆a|
∆b , and again UA(θ) = 0. Substituting
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UA(θ) and UA(θ) from (IR1) and (IC1) and using (SR2), the program for φ∗1 reduces to

bPHD
1 :


max
φ1∈Φ1

pδ1(1|θ)(m1 + a− 1−p
p |∆a|) + (1− p) (m1 + a) + d(s2|θ)H∆b

subject to
δ1(1|θ) ≥ d(s2|θ)H ∆b

|∆a| , (IR1)

δ1(1|θ) ≤ 1− d(s2|θ) ∆b
|∆a|(1−H). (IC1)

If m1+a− 1−p
p |∆a| < 0, (IR1) binds. Replacing δ∗1(1|θ) = d(s2|θ)H ∆b

|∆a| into the objective function

in bPHD
1 gives

EU1 = d(s2|θ)H∆b
·
1 +

p

|∆a|(m1 + a− 1− p

p
|∆a|)

¸
+ (1− p) (m1 + a) ,

which is increasing in d(s2|θ) and maximized by setting d∗(s2|θ) = min
n
1, |∆a|

∆b

o
, where the upper

bound comes from (IC1). Hence, any mechanism such that d∗(s2|θ) = min
n
1, |∆a|

∆b

o
, d∗(s2|θ) =

Hd∗(s2|θ), δ∗1(1|θ) = 1, and δ∗1(1|θ) = H ∆b
|∆a|d

∗(s2|θ) is optimal.
If on the contrary, m1 + a− 1−p

p |∆a| ≥ 0, then (IC1) binds, in which case P1’s payoff reduces
to

EU1 =
n
−p
³
m1 + a− 1−p

p |∆a|
´

∆b
|∆a| (1−H) +H∆b

o
d(s2|θ)+

+p
³
m1 + a− 1−p

p |∆a|
´
+ (1− p)(m1 + a).

Form1+a− 1−pp |∆a| ≤ H|∆a|
p(1−H) , EU1 is again increasing in d(s2|θ) and thus d∗(s2|θ) = min

n
1, |∆a|

∆b

o
.

In this case, the optimal mechanism is: d∗(s2|θ) = min
n
1, |∆a|

∆b

o
, d∗(s2|θ) = Hd∗(s2|θ), δ∗1(1|θ) =

1, and δ∗1(1|θ) = 1− (1−H) ∆b
|∆a|d

∗(s2|θ).
Finally, if m1 + a− 1−p

p |∆a| > H|∆a|
p(1−H) , then EU1 is decreasing in d(s2|θ) and thus d∗(s2|θ) =

d∗(s2|θ) = 0 and δ∗1(1|θ) = δ∗1(1|θ) = 1.
We conclude that disclosure occurs if and only if beliefs are unfavorable andm1+a− 1−p

p |∆a| ≤
H|∆a|
p(1−H) .

Proof of Proposition 3.
The optimal mechanism φ∗1 maximizes

EU1 = pδ1(1, s1|θ) (m1 + ā) + (1− p)δ1(1, s1|θ)
µ
m1 + a− p

1− p
∆a

¶
+

+pδ1(1, s2|θ) (m1 + ā+ g) + (1− p)δ1(1, s2|θ)
µ
m1 + a− p

1− p
∆a+ g

¶
subject to

δ1(1, s1|θ) + δ1(1, s2|θ) ≥ δ1(1, s1|θ) + δ1(1, s2|θ), (IC1)

g[pδ1(1, s1|θ) + (1− p) δ1(1, s1|θ)] ≥ (m2 + b)
£
pδ1(0, s1|θ) + (1− p) δ1(0, s1|θ)

¤
, (SR1)

g[pδ1(1, s2|θ) + (1− p) δ1(1, s2|θ)] ≤ (m2 + b)
£
pδ1(0, s2|θ) + (1− p) δ1(0, s2|θ)

¤
. (SR2)
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At the optimum, (SR1) never binds and thus can be neglected. Indeed, δ∗1(0, s1|θ) = 0 for any θ is
always optimal, for reducing δ1(0, s1|θ) and increasing δ1(0, s2|θ) relaxes (SR1) and (SR2) without
affecting EU1. Constraint (IC1) can also be ignored as it is always satisfied at the optimum.

Next, observe that the maximal expected surplus that P1 can appropriate from P2 by reducing
the level of trade in the upstream relationship and disclosing signal s2 instead of s1 is bounded
from above by the right hand side in (SR2). On the other hand, the cost of creating a downstream
rent is the surplus that P1 must forgo in the upstream relationship when she does not trade. It
follows that when m1 + a− p

1−p∆a ≥ m2 + b,

pδ1(0, s2|θ) (m1 + ā) + (1− p) δ1(0, s2|θ)
µ
m1 + a− p

1− p
∆a

¶
>

£
pδ1(0, s2|θ) + (1− p) δ1(0, s2|θ)

¤
(m2 + b)

> g[pδ1(1, s2|θ) + (1− p) δ1(1, s2|θ)]

and hence δ∗1(1, s1|θ) = 1 for any θ is always optimal. On the contrary, when m1 + a − p
1−p∆a <

m2 + b, then necessarily δ∗1(1, s1|θ) = 0, for otherwise P1 could transfer an ε probability from
δ1(1, s1|θ) to δ1(0, s2|θ) and then increase δ1(1, s2|θ) by ε(m2+b)

g and reduce δ1(1, s1|θ) by the same
amount, enhancing her payoff, without violating (SR2).

Suppose first −g ≤ m1 + a − p
1−p∆a ≤ m2 + b, in which case (SR2) always binds, for the

unconstrained solution is δ∗1(1, s2|θ) = δ∗1(1, s2|θ) = 1. Note that, if δ∗1(0, s2|θ) < 1, then necessarily
δ∗1(1, s2|θ) = 1, since otherwise P1 could transfer an ε probability from δ1(0, s2|θ) to δ1(1, s2|θ) and
a p
1−pε probability from δ1(1, s2|θ) to δ1(0, s2|θ), increasing EU1 and preserving (SR2). This also

implies that for pg ≤ (1− p) (m2 + b), P1 trades with both types and hence δ∗1(1, s2|θ) = 1 and

δ∗1(1, s2|θ) =
(1− p) (m2 + b)− pg

(1− p) [m2 + b+ g]
= 1− δ∗1(0, s2|θ),

whereas for pg > (1− p) (m2 + b), necessarily δ∗1(0, s2|θ) = 1 and δ∗1(1, s2|θ) < 1. The optimal
mechanism in this case depends on the comparison between m1+ ā and m2+ b. If m1+ ā > m2+ b,
then δ∗1(0, s2|θ) = 0. To see this, note that by reducing δ1(0, s2|θ) and δ1(1, s2|θ), respectively by
ε and ε(m2+b)

g , and by increasing δ1(1, s1|θ) by ε
h
(m2+b)

g + 1
i
, P1 enhances EU1, without violating

(SR2). It follows that for m1 + ā > m2 + b,

δ∗1(1, s2|θ) =
(1− p) (m2 + b)

pg
= 1− δ∗1(1, s1|θ),

where the upper bound on δ∗1(1, s2|θ) comes from (SR2). By the same argument, if m1+ ā ≤ m2+b,
then δ∗1(1, s1|θ) = 0 and

δ∗1(1, s2|θ) =
m2 + b

p[m2 + b+ g]
= 1− δ∗1(0, s2|θ).
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Finally, considerm1+a− p
1−p∆a ≤ −g. In this case, δ∗1(0, s2|θ) = 1 is always optimal. Following

the same steps as in the previous case, when pg ≤ (1− p) (m2 + b), then δ∗1(1, s2|θ) = 1, whereas
for pg > (1− p) (m2 + b),

δ∗1(1, s2|θ) =
(

(1−p)(m2+b)
pg = 1− δ∗1(1, s1|θ) if m1 + ā > m2 + b

m2+b
p[m2+b+g]

= 1− δ∗1(0, s2|θ) otherwise.

From the above results, we conclude that disclosure is optimal if and only if (i)m1+a− p
1−p∆a <

m2 + b < m1 + ā, and (ii) pg > (1− p) (m2 + b).

Proof of Corollary 3. The proof derives the optimal contract P1 would offer under Condi-
tions (i) and (ii) of Proposition 3, were she unable or prohibited to disclose information to P2. The
analysis of the effects of disclosure on welfare is in the main text.

Among all contracts that induce P2 to set a high price t2 = b+ g, the maximal payoff for P1 is
clearly achieved by trading with both types at price t1 = a if m1 + a − p

1−p∆a ≥ 0, and with the
high type only at price t1 = a otherwise. In contrast, the optimal contract that induces P2 to ask
a low price t2 = b solves

PND
1 :


max pδ1(1|θ) (m1 + ā+ g) + (1− p) δ1(1|θ)

³
m1 + a− p

1−p∆a+ g
´

subject to
δ1(1|θ) ≥ δ1(1|θ), (IC1)

g
£
pδ1(1|θ) + (1− p) δ1(1|θ)

¤ ≤ (m2 + b)
£
p
¡
1− δ1(1|θ)

¢
+ (1− p) (1− δ1(1|θ))

¤
, (SR2)

where constraint (SR2) guarantees that t2 = b is indeed sequentially rational for P2. Under Con-
dition (ii), that is for pg > (1− p) (m2 + b), constraint (SR2) always binds, whatever the sign of
m1 + a − p

1−p∆a + g. Using (SR2), we have that E [U1] is maximized at δ1(1|θ) = m2+b
p(m2+b+g)

and

δ1(1|θ) = 0 and yields EU1 = p(m2+b)(m1+ā+g)
p(m2+b+g)

. The optimal contract is obtained by comparing
this payoff with that associated with the contract that induces a high downstream price. When
m1+a− p

1−p∆a ≥ 0, (m2+b)(m1+ā+g)
m2+b+g

≥ p(m1+ ā) if and only if g ≤ ∆a(m2+b)/ [m1 + a−m2 − b] ,

whereas for m1 + a− p
1−p∆a < 0,

(m2+b)(m1+ā+g)
m2+b+g

≥ m1 + a if and only if g ≤ (1−p)(m2+b)(m1+a)
p(m1+a)−m2−b .

Proof of Proposition 4.
The optimal contract maximizes

EU1 = p[δ1(1, s1|θ) + δ1(1, s2|θ)] (m1 + ā) + pδ1(0, s2|θ) |g|
(1− p) [δ1(1, s1|θ) + δ1(1, s2|θ)]

µ
m1 + a− p

1− p
∆a

¶
+

+(1− p)δ1(0, s2|θ) |g|
subject to

δ1(1, s1|θ) + δ1(1, s2|θ) ≥ δ1(1, s1|θ) + δ1(1, s2|θ), (IC1)

|g| £pδ1(0, s1|θ) + (1− p) δ1(0, s1|θ)
¤ ≥ (m2 + b+ g)

£
pδ1(1, s1|θ) + (1− p) δ1(1, s1|θ)

¤
, (SR1)

|g| £pδ1(0, s2|θ) + (1− p) δ1(0, s2|θ)
¤ ≤ (m2 + b+ g)

£
pδ1(1, s2|θ) + (1− p) δ1(1, s2|θ)

¤
. (SR2)
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At the optimum, δ∗1(1, s1|θ) = 0 for any θ. Indeed, by reducing δ1(1, s1|θ) and increasing δ1(1, s2|θ),
P1 relaxes (SR1) and (SR2) with no effect on (IC1) and the objective function. It follows that
constraint (SR1) can be neglected. Constraint (IC1) will also be ignored as it never binds at the
optimum. Also, in all cases, δ∗1(0, s1|θ) = 0, for otherwise P1 could reduce δ1(0, s1|θ) and increase
δ1(1, s2|θ) relaxing (SR2) and (IC1) and enhancing EU1.

If |g| ≤ m1 + a− p
1−p∆a, the solution is simply δ

∗
1(1, s2|θ) = δ∗1(1, s2|θ) = 1.

If, instead, m1 + a − p
1−p∆a ≤ |g| ≤ m1 + ā, then the unconstrained solution is δ∗1(1, s2|θ) =

δ∗1(0, s2|θ) = 1, which satisfies (SR2) if and only if |g| (1 − p) ≤ (m2 + b + g)p, or equivalently
|g| ≤ p(m2 + b). If on the contrary p(m2 + b) < |g| ≤ (m2 + b), then constraint (SR2) binds and
hence δ1(0, s2|θ) < 1. The optimal mechanism then depends on the sign ofm1+a− p

1−p∆a+m2+b+g.

Suppose it is positive; then δ∗1(0, s1|θ) = 0, in which case δ∗1(1, s2|θ) = |g|−p(m2+b)
(1−p)(m2+b)

and δ∗1(0, s2|θ) =
1−δ∗1(1, s2|θ) are determined directly from (SR2) . Indeed, by reducing δ∗1(0, s1|θ) by (1+ m2+b+g

|g| )ε

and increasing δ1(1, s2|θ) and δ1(0, s2|θ), respectively by ε and m2+b+g
|g| ε, P1 increases EU1 preserving

(SR2) . By a similar argument, if m1+a− p
1−p∆a+m2+ b+g < 0, then necessarily δ∗1(1, s2|θ) = 0,

in which case δ∗1(0, s2|θ) = p(m2+b+g)
(1−p)|g| is determined from (SR2) and δ∗1(0, s1|θ) = 1− δ∗1(0, s2|θ).

Finally, if |g| > m1+ ā, then (SR2) always binds, for the unconstrained solution is δ∗1(0, s2|θ) =
δ∗1(0, s2|θ) = 1. Note that if δ1(0, s2|θ) > 0, then necessarily δ1(0, s2|θ) = 1. Otherwise, P1 could
transfer an ε probability from δ1(0, s2|θ) to δ1(1, s2|θ) and p

1−pε probability from either δ1(1, s2|θ) or
δ1(0, s1|θ) to δ1(0, s2|θ) increasing EU1 without violating (SR2) . It follows that for |g| ≤ p(m2+ b),
P1 maximizes her payoff by setting

δ∗1(0, s2|θ) = 1,

δ∗1(1, s2|θ) = |g| /[(m2 + b)p] = 1− δ∗1(0, s2|θ),

whereas for |g| > p(m2 + b), necessarily δ∗1(1, s2|θ) = 1, in which case the solution coincides with
that for the case m1 + a− p

1−p∆a ≤ |g| ≤ m1 + ā.

We conclude that disclosure is optimal if and only if (i) p(m2 + b) < |g| ≤ m2 + b and (ii)
m1 + a− p

1−p∆a+m2 + b+ g < 0.

Proof of Corollary 4. In what follows, we construct the optimal contract for P1 under
Conditions (i) and (ii) of Proposition 4, in case P1 is unable or prohibited to disclose information
to P2. The analysis of the effects of disclosure on welfare and individual payoffs is in the main text.

Note that under Condition (ii), m1 + a − p
1−p∆a < 0, which in turn implies that among all

contracts that induces a high downstream price the optimal one is δ1(1|θ) = 1 and δ1(0|θ) = 1. In
contrast, among all contract that induces a low price, the one that maximizes P1’s payoff solves

PND
1 :


max p

©
δ1(1|θ) (m1 + ā) + δ1(0|θ) |g|

ª
+ (1− p)

n
δ1(1|θ)

³
m1 + a− p

1−p∆a
´
+ δ1(0|θ) |g|

o
subject to
δ1(1|θ) ≥ δ1(1|θ),
|g| £pδ1(0|θ) + (1− p) δ1(0|θ)

¤ ≤ (m2 + b+ g)
£
pδ1(1|θ) + (1− p) δ1(1|θ)

¤
,
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where (SR2) necessarily binds at the solution. Using the two feasibility constraints δ1(0|θ) =
1− δ1(1|θ) and δ1(0|θ) = 1− δ1(1|θ), constraint (SR2) reduces to

δ1(1|θ) = |g|
(1− p) (m2 + b)

− p

1− p
δ1(1|θ).

Constraint (IC1) then requires that δ1(1|θ) ≥ |g|
m2+b

and the objective function is increasing in

δ1(1|θ). Hence, the solution to PND
1 is δ1(1|θ) = 1 and δ1(1|θ) = |g|−p(m2+b)

(1−p)(m2+b)
.

Comparing the payoff for P1 under the above two contracts, we have that the optimal mecha-
nism in case P1 does not disclose information induces a low price if and only if

|g|− p(m2 + b)

(1− p) (m2 + b)

µ
m1 + a− p

1− p
∆a

¶
+ |g|

·
1− |g|− p(m2 + b)

(1− p) (m2 + b)

¸
≤ 0

or equivalently m1 + a− p
1−p∆a ≤ |g|(m2+b+g)

p(m2+b)−|g| .


