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Abstract

We propose a framework for reconciling frequentist and subjectivist
views of probability. In an environment with repeated trials we show
that beliefs about the possible states of nature can be represented by
probabilities. Second, these probabilities will correspond to long run
frequencies. In particular they will be naively calibrated. Third, the
actions chosen in each trial will be the ones that maximize expected
utility on that trial. The expectation is with respect to the probabilities

used to represent beliefs.

1 Introduction

There are many different interpretations of what a probability is, but only
two command significant attention. The more venerable, called frequen-
tist, holds that a probability is a long run frequency. The younger, called

subjectivist, contends it is a matter of personal opinion or a manifestation
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of ones preferences. Each claims a celebrated champion Fisher for the fre-
quentist’s, Savage for the subjectivists. Neither, it seems, reconcilable with
the other.

The subjectivist perspective is perhaps the dominant one amongst schol-
ars, but it is the frequentist view that plays in classroom and schoolbook.
How can two such very different opinions of probability co-exist?

The frequentist view has the advantage that frequencies naturally satisfy
the laws of probability. Nevertheless, it is not clear that anything resembling
the repeated independent trials under identical conditions that are required
to obtain such a frequency exist. Even if it did, the frequentist school, must,
by definition, be silent about the uncertainty associated with a single trial.

Subjectivist’s are not bound to the procrustean bed of infinitely repeated
trials. However, it is not obvious that ones beliefs about the underlying un-
certainty are best or even naturally modeled by probabilities. If probabilities
are merely a device for representing personal preferences, then, there is no
reason at all to expect them to coincide with frequencies of any kind.

In this paper we propose a framework for reconciling the two distinct
schools of thought. We consider an environment with repeated but not
necessarily identical trials. In each trial a subject must make a choice whose
payoff depends on that choice as well as the realized state of nature. The
subject has a preference for high (undiscounted) total payoffs. The subject’s
choices in each round are consistent with both their preferences as well as
their beliefs about which states will be realized. Our first result is that the
subject’s beliefs about the possible states of nature can be represented by
probabilities.

Second, these probabilities will have the property of being calibrated.
Calibration is a measure of the closeness between a sequence of probability

forecasts of an event and the events observed frequency. It accommodates



the fact that the specified probability of the event may change from period
to period. This would happen, for example, if the underlying distribution
generating the event is not stationary.

An informal explanation of calibration might go something like this.
Suppose each night we predict the chance of rain for the next day, say
we announce a probability p of rain. On the subsequence of days that we
made a forecast of p, compute the fraction of times it actually rained. Call
this fraction p(p). An obvious measure of the biasedness of our forecast is
p(p) — p. Calibration, requires, roughly, that p(p) —p be 0 for all p. That is
the forecasts made are unbiased. The notion can be formalized in a number
of different ways and we offer one later. Strengthenings of the calibration
notion are described by Kalai, Lehrer and Smorodinsky [6].

Our third result shows that the choices made in each trial will be the
ones that maximize expected utility on that trial. The expectation is with
respect to the probabilities used to represent beliefs.

Our fourth result can be viewed as a justification of the notion of cali-
bration itself. One reason for why probabilistic beliefs should be calibrated
is offered by Schervish [9]. He shows that a forecast that is not calibrated
can be ‘rounded’ into a calibrated forecast without losing any of the discrim-
inatory power of the original. Now consider the payoffs that are obtained if
one chooses at each period the action that maximizes payoffs with respect
to the uncalibrated forecast. Compare this with the same for the calibrated
counterpart. The time average of the payoffs generated by using the original
forecast will be no larger than those those generated by its calibrated coun-
terpart. Schervish notes however that the argument leaves something to be

desired.! The calibrated counterpart is constructed after the fact, that is

!See Seidenfeld [10] as well.



after the original forecast and realization are known.

Dawid [2] establishes that calibration is a consequence of the Bayesian
perspective.? Specifically, the posterior forecasts of a coherent Bayesian
must be calibrated with respect to all sequences except those that occur
with probability zero. The underlying measure is the one generated by
the prior of the Bayesian forecaster. Thus the Bayesian forecaster will be
calibrated but not on things that are deemed impossible by her philosophy!

In this paper we show that if a decision maker chooses in each period
actions that maximize their expected utility and satisfy one other condition,
called local optimality, then the probabilities used must be calibrated. The
additional condition, local optimality, is our formulation of the idea that the
decision maker has a preference for high aggregate utilities.

The next section introduces the set up and notation. A subsequent
section provides the relevant mathematical arguments to support our claims.

The last section is devoted to a discussion of the results.

2 The Set Up

There is a finite state space S, each of whose states is indexed by the integers
{1,2,3,...,n}. The decision makers beliefs will be modeled by a finite set
B = {1,2,3,...,bmar}. Call this the belief set of the decision maker.3
A bundle of lotteries is a finite set of lotteries defined over S. It can be
represented by a m X n matrix, L, where m is the number of lotteries in the

bundle and the {ij}** entry, call it L;;, is the utility to the decision maker

2 Apparently much the same result was established by J. W. Pratt in an unpublished

paper. This is mentioned in [10].
3The restriction to a finite state space and belief set, is for convenience only. The

results can be extended to more general state and belief sets. The reader is referred to a

companion paper, [5] for details.



from choosing lottery i in state j. So as to distinguish between an individual
lottery and a bundle of lotteries we refer to an individual lottery as a ticket.
Thus each row of L is a ticket and each column corresponds to a state of
nature.

A selection rule is a function, f, that associates with each bundle L
and each belief in B a unique ticket that should be selected from L. So,
if L is an m X n matrix representing a bundle, and b € B, then f(L,b) is
the index of one of the rows of L. A decision maker using selection rule f
when faced with a choice from L first decides which belief in B is salient
and then uses f to make a choice. Notice we do not specify how the decision
maker decides what is a salient belief or how these will be modified with
experience. We require that salience be a quality independent of L as well
as the selection rule used. In other words, the beliefs are about states of S

alone.

2.1 Local Optimality

In subjectivist developments it is common to specify the value that an ac-
ceptable selection rule must have for certain bundle and belief combinations.
Ramsey [7], for example, has his ethically neutral propositions, de Finetti
[3] his dutch book and Savage [8] his sure thing. We avoid doing this for
two reasons. First, we wish to say as little as possible about the nature
of the beliefs held by the decision maker. Second, in an environment with
repeated trials what matters is the aggregate outcome of all choices made
rather than any one choice. Instead we assume that our decision maker has
a preference for selection rules that generate high aggregate utilities. This
is made precise below.

Suppose at each time t, our decision maker must choose one ticket from



L and then obtains the relevant payoff. Let Ly st) ¢ denote the utility
achieved by this choice if belief b; € B is salient and state s; € S is realized
in time t. We assume the decision maker has a preference for selection rules

f that maximize the (undiscounted) time average of utilities, i.e:

i et L) st

T00 T ’
In fact the limit above could be replaced with limsup and nothing in the
sequel is affected. Call such a rule globally optimal. Since neither we nor
the decision maker knows what a globally optimal selection rule is, we settle
for something weaker that we call local optimality.

Two distinct selection rules, f and g are said to be neighbors of each
other if there is exactly one belief k¥ € B and bundle M such that f(L,r) =
g(L,r) for all (L,7) # (M, k). Selection rule f is locally optimal with
respect to a realization of states if for all neighboring selection rules g and
all bundles L defined over S we have

lim inf ZLl(Lf (Lt),st — Lg(r,p0),st)

> 0.
T—o0 T 20

The set of neighbors of a selection rule f is quite limited. It consists only of
those rules that differ from f in one place. Thus local optimality is a mild
condition. Notice that any globally optimal selection rule must be locally

optimal.

2.2 Naive Calibration

The formalization of calibration we use is called naive calibration in [6].
To define it let X; be a 0-1 vector in RIS! that indicates which state in S was
realized at time ¢. So, if state j was realized, then X; ;, the 4t of component

of X, is 1 and the rest are all zero.



Let p; be a probability forecast of X; (made of course, before X; is
realized). It is a vector whose 4t component is a forecast of the probability
that state j € S will be realized in period t. Denote by N(p,t) the number
of periods up to the t-th that a vector of forecasts equal to p was generated.
Let p(p,j,t) be the fraction of these periods for which state j € S was

realized, i.e.,

, 0 if N(p,t) =0
p(p’J’t):{ Xs.

t Ipsz 1
s=1 NGB otherwise

The probability forecast is said to be naively calibrated with respect

to the sequence of realized states if:

. . N(p,T
Am 30 3 (o0 T) - py)? (T )0,
JES {ppt=pt<T}

The term

Z Z (p(p,3,T) —pj)QM

J€S {ppe=pt<T}
is sometimes called the calibration component of the Brier score. See Blat-

tenberger and Lad [1] for an exposition.

3 The Main Result

For each ticket 7 in L let Q" be the set of probability vectors p over S such
that

> pile; 2> piLi;

Jjes J
for all tickets ¢ # r. The diameter of Q" will be the diameter of the smallest
sphere to circumscribe Q. Denote the diameter of each Q" by diam(Q")
and let diam(L) = max, diam(Q").



Theorem 1 Let {s;};>1 be a sequence of realized states and {b:}1>1 the
associated sequence of salient beliefs. Suppose the selection rule f is locally
optimal on this sequence. Then there is a function c that associates with

each b € B a probability vector over S such that

F(L,b) = argmax »_ c;(b)Ly;
1 J_——l

for all b that are salient for a non-vanishing fraction of times and

Hm Y Y (o D) - ) BT < (9/4)diam(L)

F€S {p:c(bs)=p,t<T}
Proof
Consider all the times up to T that belief b was salient, i.e., {t < T : b; = b}.
Let n(b,T) = |{t < T : by = b}|. Let r be the unique ticket such that
f(L,b) = r. Without loss of generality we may assume that n(b, 1) /T does
not vanish as T — o0o. By local optimality we may assume that r is not
dominated by any other lottery in L.

Let
R e
n(b, T)

where X; is a 0-1 vector in R!S| that indicates which state in S was realized
at time ¢. So, if state j was realized, the j** of component of X; is 1 and the
rest are all zero. Let A? be the set of accumulation points of the sequence
{p®(t)}. We claim that A® C Q". Suppose not. Then there is a point ¢ € A
such that ¢ € Q". Let B(q) be an € ball around ¢. For € sufficiently small,

B:(q) N Q" = { and there is a ticket k such that

> piLi; > Y il

j€S jES

for all p € B.(q).



Let g be the selection rule that is identical to f except when f picks
r, it picks k. Consider any ' € {t : p°(t) € Be(q)}. The fact that g is an
accumulation point of the sequence {p®(¢)} implies that there are an infinite
number of such ¢’s. Then

Cic Ly p,st — Lol _ Lesee=by [Lyst — Lig,st]
¥ t/

= > P2 [Lrj — Liy] < 0.
jES

Since there are an infinite number of such t'’s, this violates the local opti-
mality of f. Thus we may assume that A c Q.

For each Q" let ¢" be any point in Q" such that d(¢",q) <
all ¢ € Q" where d is Euclidean distance. Define ¢(b;) = ¢" if f(L,b:) = r.

For beliefs b that were salient for a vanishing proportion of times, choose

———dm";(Qr) for

c(b) arbitrarily. The first part of the theorem is obvious given the definition
of ¢(b). We now prove the second.

Now

oo > (e T)- pJ)QNp’T) S S (p(e",5,T)— q])QJ—V——(q—ﬂ-
T

JES {p:c(bs)=p,t<T} jesSreS

Notice that n(b,T) = N(q¢",T) and p(¢",5,T) = pg-(T) for the b € B such
that f(L,b) =r. Thus

Z Z(P(qr,j, - q;) ZN(q 7 Z Z(p; qu(L,b))Qn(lzl,jT)‘

jeSres jeSbeB
Also,
Lpyon(b,T n(b, T
5 S @) - /e - 5 0T i), g1y
jeESbeB beB

In the last summation we can ignore terms that correspond to b’s salient for

a vanishing proportion of times.



By the triangle inequality
d(p?(T), g/ T < d(p*(T), q) + d(g, ¢’ )

for any q € A®. Since A° is the set of accumulation points of the sequence

{p*(T)} there is a T sufficiently large we can always choose q € A® such that

d(p(T), q) < diam(Q7 L),

Hence
d(p(T), ¢! &Y) < (3/2)diam(QED).
Thus
Z n(?T) d(pb(T),qf(L,b))2 < Z ﬁ(—l;,i)(9/4)diam(Qf(L’b))2,
beB beB

The last term is of course< (9/4)diam(L)2.0

The first part of Theorem 1 says little more than that any sequence of
choices (under mild consistency conditions) can be supported by appropriate
probabilities. The content of Theorem 1 is that these probabilities can
be chosen so as to approximate, in some sense, the realized frequencies.
The next theorem shows what happens when we exploit the fact that local
optimality must hold for allbundles defined over the state space S. The basic
idea is to choose a bundle L with the property that diam(L) is arbitrarily

small.

Theorem 2 Let {s:}:>1 be a sequence of realized states and {b;}1>1 the
associated sequence of salient beliefs. Suppose the selection rule f is locally
optimal on this sequence. Then there is a function c that associates with
each b € B a probability vector over S such that
n
f(L,b) = arg mia,xZCj(b)Lij

j=1
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for all bundles L defined over S and beliefs b that are salient for a non-

vanishingly small proportion of times. Furthermore

: , N, T
dm > 3 (o4, T) - py)” 21)=0
JES {p:c(by)=p,t<T}

Proof
Let {L'} be a sequence of bundles over S. The it" bundle has at least
one more ticket than the ¢ — 1 first bundle. For each L? let Q7 be the set
of probability vectors over S for which ticket r in L* has largest expected
payoff. Call the sequence {L'} decreasing if for any € > 0, there is an i
sufficiently large such that diam(L?) < .4

For each Q7 let ¢" (i) be the point in Q] such that d(¢"(7), q) < diam(QY)/2
for all ¢ € Q). Define c'(b) = ¢"(i) if f(L*,b) = r. By Theorem 1 it follows
that for T sufficiently large

Z Z (p(pa.77 T) _p])QN(Z;—:T) <e.

J€S {p:ci(by)=p,t<T}

Let ¢(b) be an element of the set of limit points of the sequence {c*(b)}i>1.
For any e > 0 there is an i sufficiently large such that d(c(b), c'(b)) < € and
c(b) € QT where ct(b) = ¢"(i). By the triangle inequality it follows that for
any probability vector p over S

d(c(b),p) < e+ d(ci(b)a p)-

Squaring both sides and using the fact that d(z,y) < 2 for any two proba-

bility vectors x and y we get

d(c(b), p)? < 5e + d(cH(b), p)*.

4Existence of such is easy but tedious to establish. A proof is available upon request.

11



Now

S Y ean @D s FeDge e
T T

JES {p:c(be)=p,t<T} {p:c(b:)=p,t<T}

But the right hand side of the above is bounded above by
: N T
<5+ Y (i D) -p B <
JES {p:ci(bs)=p,t<T}
Thus we may conclude that
: : N, T
Th_rgoz Z (P(p,],T)—Pj)z—(T—) =0.
JES {p:c(be)=pt<T}
Now suppose there is a bundle M, belief a and tickets k and h such that
n
k=f(M,a)# argmaxz cj(a)M;; = h.
1

=1

Let g be the selection procedure such that
g(M,b) = f(M,b)Vbe B\ a

and g(M,a) = h otherwise. By local optimality of f we have for T suffi-
ciently large that

St My pt),st — Mg(arpt), st

T | - Zp?(T)[Mkj — My;] > 0.

j€S

Since c(a) is a calibrated forecast it follows that limy_.. p*(T) = c(a).
Hence for T sufficiently large it follows by local optimality and calibration

that

> ¢j(a)[My; — Mg} > 0
JjES
a contradiction.O

Theorem 2 shows that given local optimality one can represent B using

probabilities that are naively calibrated. This does not preclude probability

12



representations that are not naively calibrated. However, if we insist on
local optimality and expected utility maximization, then the only probability
representation consistent with these desiderata are those that are naively

calibrated.

Theorem 3 Let c be a function that associates with each b € B a probability
vector of S. Let f be the selection rule defined as follows:
f(L,b) = arg max Z ¢;(b)Ly;.
j=1
Suppose f is locally optimal on the sequence {si}i>1 of realized states. If
{bs}¢>1 is the associated sequence of salient beliefs then c(bt) is naively cal-

tbrated.

Proof
Suppose not. Then there is a belief h salient for a non-vanishing proportion

of times such that

Z[p(c(h),j,T) - cj(h)]2 <e

jes
for some positive € and infinitely many 7. Fix one such T. Notice that c(h)
and p(c(h),j,T) are distinct points and so can be separated by a hyper-

plane.

Let T(h) ={t <T :b;=h}. Let r = f(L,h) and
k = argmax »_ p(c(h), j, T)Ls;.
Y jes
Define g to be the selection rule such that

g(L,b) = f(L,b) Vb€ B\ h

and

g(L,h) =k

13



otherwise.

We now construct a lottery bundle M over S consisting of two tickets
such that

Z[Mu — Majlci(h) >0
jes
and
> [Ma; — Myjlp(c(h), 5, T) > 0.
jes
This can be done by choosing M;. — Mz, to be any one of the hyper-planes
that separates c(h) from p(c(h), 5, T).

Observe that f(M,h) =1 and g(M,h) = 2. Then
St IMparpty,st — My(arpt),st] _ Yter(ny M1t — Ma st

T T
=3 ple(h), 5, T)[My; — Ma;] < 0
jE€S

which contradicts the local optimality of f.00

4 Discussion

The analysis above is predicated on the assumption that the decision maker
cares about making choices that generate high total utility. An evolutionary
argument can be offered to justify this, we don’t. Our point is that if one
accepts this then the requirement of local optimality is not unreasonable.
From this it follows that any way of representing beliefs, intervals, propensi-
ties, words, images can be interpreted as probabilities. If the decision maker
acts as if her beliefs about states are probabilistic it is not a giant leap to
assert that her beliefs are probabilities. In this light the subjectivist view
is very natural. So is the frequentist view, but not so directly—it relies
on how calibration works. The idea behind calibration is to break an arbi-

trary sequence of events up into a collection of subsequences. Most of the

14



subsequences (at least those that continue long enough and happen often
enough) have limiting frequencies. These are exactly the sequences that the
frequentist view requires to define probabilities. The only difference is that
the subjectivist’s would focus on cross sectional issues (consistency, dutch
books, etc) while frequentist’s would focus on long-run issues (limiting fre-

quency, CLT, Law of large numbers, etc).
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