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Abstract

We propose a simple theoretical model of supervised learning that is potentially
useful to interpret a number of empirical phenomena. The model captures a basic trade-
off between sheltering the child from the consequences of his mistakes, and allowing
him to learn from experience. We characterize the optimal parenting policy and its
comparative-statics properties. We then show that key features of the optimal policy
can be useful to interpret provocative findings from behavioral genetics.

1 Introduction

Humans spend a substantial fraction of their lifetimes learning how to become productive
members of society. In modern advanced economies, as much as a third of the population
only becomes productive after spending more than a quarter of its lifetime in some learning
activity [50]. Furthermore, data from modern hunter-gatherer societies (see for instance
Robson et al. [57]) suggests that protracted learning has been a common feature of human
societies throughout history.

Learning has been exhaustively investigated in theoretical models by economists, statis-
ticians, and psychologists.1 However, these studies typically abstract from the fact that
learning takes place under the supervision of parents, caregivers, teachers, advisors, and
other experts for a considerable fraction of an individual’s life. The economics literature
has developed several models of investment in child quality, starting at least with Becker
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[7]). Moreover, an enormous literature in developmental psychology addresses the effects of
parental care on the development of children.2 Yet, formal modeling of supervised learning,
i.e. the relation between parental behavior and its effects on children’s learning processes,
is almost absent. This is the focus of the present paper.

We develop a simple theoretical model of supervised learning that is potentially useful to
address a number of empirical phenomena. The model captures a basic trade-off between
sheltering the child from the consequences of his mistakes, and allowing him to learn
from experience. We characterize the optimal parenting policy and its comparative-statics
properties; we then argue that key features of the optimal policy may be useful to interpret
provocative findings from behavioral genetics [19, 52, 56]. Before we discuss the details, we
emphasize that we view this model as a first step: we acknowledge its limitations in Section
1.2. In followup work, we plan to develop complementary approaches to study additional
phenomena; some of these approaches are discussed in Section 6.

1.1 Motivation

Parental care is essential for the survival of infants and young children; indeed, this is the
case for all mammals and many other animal species. However, there are vast differences
in ‘parenting strategies’ across human societies. The structure of human families and the
relation of parents to their children has significantly evolved through the course of human
evolution.3 Even in present-day societies, anthropologists have documented considerable
heterogeneity in the way parents interact with their children.4 Developmental psychologists
have also provided a classification of parenting styles for Western societies.5 Finally, as

2It is impossible to be exhaustive in providing references. See Shonkoff and Deborah Phillips eds. [62]

for a recent overview of the field with respect to early childhood development.
3See Lancaster and Lancaster [49] for a discussion of the very different parent/child relation that must

have existed in hunter-gatherer societies relative to that in societies based on agriculture, and to that of

modern parents.
4For example, Lamport-Commons and Miller [48], and Richman et al. [55] describe parental practices

among the Gusii Kenyians and Highland Mayans, and highlight stark differences as compared to behavior

in the typical Western family. Blurton-Jones [18] describes studies of two populations of foragers of the

sub-Saharan savanna: the !Kung and the Hadza. He documents that the former appear to adopt a much

more protective and close relation with their infants as compared to the latter. Interestingly, this author

suggests that this difference in parenting styles may be partly related to the harsher conditions of the land

inhabited by the !Kung, and that this also leads to large differences in fertility between the !Kung and the

Hadza.
5For instance, authoritative parenting, which is characterized by high levels of warmth, support and

control is thought to be more effective than either authoritarian (which lacks warmth) or permissive (which

lacks control) styles of parenting. See for instance the seminal study by Baumrind [5], and also Collins et

al. [28] and Demo and Cox [31] for reviews of this literature.
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regards mammals and other animals, there is an enormous amount of cross-species variation
in the degree to which parents invest resources in their young.6

The literature on the consequences of parenting is virtually unanimous in recognizing
that parental support is essential for functional development in extreme situations. Har-
low and coauthors7 separated infant monkeys from their mothers; these subjects developed
severe emotional and cognitive problems. The discovery of children in Romanian orphan-
ages, who were raised with very little human contact, provided a tragic counterpart to
these studies, leading to similar conclusions. These children were in the third to tenth
percentile for physical growth, and “grossly delayed” in motor and mental development.8

However, views on the impact of differences within the ‘normal’ range of variation in
parenting are sharply divided. A sizable literature across the social sciences argues that
these differences can have important effects. Specifically, socialization researchers provide
numerous studies that attempt to relate variation in parenting styles with measures of
adjustment.9

The literature associated with behavioral genetics reaches a different conclusion.10 The
starting point of this literature is a criticism of much of socialization research for fail-
ing to recognize that the correlations between parenting styles and children’s outcomes
could be due to the shared genes between parents and their biological children. Behavioral
geneticists then attempt to isolate the effects of the genes through two complementary
approaches. The more direct one is to compare twins raised together by their biological
parents with twins raised apart by different adoptive families.11 One of the problems with
this approach is the limited number of twins raised apart. The other approach is to com-
pare outcomes for children with varying degrees of genetic and environmental relatedness
and employ statistical techniques to estimate the percentage of variation in personality
traits that is explained by genetic factors. The findings of this literature paint a very
different picture of the effects of parents. For instance, behavioral genetics studies con-
sistently find that twins reared together are just as similar as twins reared apart. In fact,
some studies even find that twins reared together are less similar than twins reared apart.
More generally, this literature argues that, once one controls for genetic factors, the im-
pact of traditional measures of family environment on most personality traits is greatly

6See for example Clutton-Brock [27].
7See for instance Griffin and Harlow [39] and Harlow and Zimmerman [40].
8For an interesting analysis of these children, see Chisholm [26].
9For a survey, see for instance Collins et al. [28] and Demo and Cox [31].

10For an overview of this literature, see Plomin et al. [53] or Reiss et al [54]. Some of the findings of this

literature have been popularized by Harris [42], [43], Pinker [51] and Ridley [56].
11There are several parallel projects that gather information on this front. The first, large-scale project

of this kind was the Minnesota twin study: see Bouchard et al. [19].
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diminished. This broad conclusion is subject to two qualifications: first, there is evidence
that improvements in the family environment has positive effects on children’s cognitive
ability, if one restricts attention to families of low socioeconomic status (Turkheimer et al.
[66]). Second, and of more immediate relevance to the present paper, recent studies sug-
gest the intriguing possibility that parental intervention may actually respond to specific,
genetically-determined traits of the child, and thus reinforce or attenuate them (Reiss et
al [54]). Thus, family environment may have significant effects, even though its impact is
“genetically mediated.”

The behavioral-genetics literature typically focuses on personality traits and measures
of cognitive achievements, and does not explore outcomes such as educational attainment
or earnings. In the economics literature, the degree to which a child’s home environment
supports learning (as measured e.g. by how often the mother reads to her child, or whether
she helps him learn numbers) has been shown in some studies to have significant effects on
cognitive achievement.12 Recent contributions by Sacerdote [60, 61], Bjorklund, Lindahl
and Plug [16] and others are methodologically closer to the behavioral-genetics literature.
For instance, Sacerdote [61] analyzes a sample of Korean children randomly assigned to
American adoptive families; he finds that maternal education has a significant positive
effect on the educational attainment of adopted children, but a much larger effect on
that of biological children. Bjorklund et al. [16] analyze Swedish adoption data and report
significant effects for both adoptive and biological parents. Moreover, they find evidence for
a positive interaction effect between postbirth environment (nurture) and prebirth factors
(nature): as we discuss in Sec. 3, this is consistent with our approach.

In our model of supervised learning, parents can potentially exert a significant influence
on childrens’ learning outcomes. However, key features of the optimal parenting policy have
a number of empirical implications that can be related to the behavioral-genetics literature
and data. For instance, while parenting does have an effect on learning outcomes, plausible
assumptions lead to twins reared together being just as similar, or even less similar, on
average, than twins reared apart. This and other findings are further discussed in Sec. 3.

The following subsection fleshes out the details of our approach, and formalizes our
notion of “supervision.”

12See e.g. Carneiro, Heckman, and Masterov [24] and Todd and Wolpin [65]. Also, a sizable literature

investigates the effects of maternal employment on children’s cognitive achievement. Results are mixed:

some find that employment is detrimental (Baydar and Brooks-Gunn, [6]; Desai et. al. [32]; Belsky and

Eggebeen [8], Bernal [12]), others that it is beneficial (Vandell and Ramanan [67]). See also the debate on

the effects of family size and birth order (e.g., Black, Devereux, and Salvanes) [17].
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1.2 Methodology and Summary of Results

Our model has four key features:

• There are two agents, the child and the parent. The parent is solely interested in the
child’s welfare, and is active for T periods. The child is active for L > T periods.

• In each period, the child must perform some task. The parent has better information
than the child about the correct way to perform it.

• The child learns by doing : at the end of each period, he receives a signal about the
quality of his performance. However, learning is costly : the child’s per-period payoff
is lower the worse his performance.

• The parent’s actions simultaneously modify (typically increase) the child’s per-period
payoff and distort (typically bias) the child’s signal about his performance.

As in the standard learning models we build upon, our agents are Bayesian rational
(i.e. they maximize expected utility). However, our model is set up so that the child ’s
learning problem is elementary, and its solution involves a simple adaptive rule. We are
confident that our main findings can be generalized to a suitable class of non-Bayesian-
rational adaptive learning rules. On the other hand, we realize that certain aspects of
child development, and hence parenting, are probably best understood in a setting where
computational, memory, or motor constraints (and the evolution thereof) play a central
role. A model that reflects these considerations likely requires substantial departures from
Bayesian learning. In any event, adopting a relatively “conservative” modeling approach
has two advantages: first, we can rest assured that the decision-theoretic foundations of
our basic models are sound and well-understood; second, and more importantly, insofar as
the conclusions of our analysis deviate from the predictions of standard models, we can be
sure that this can be attributed entirely to expert supervision.

Another limitation of our analysis is that we do not allow the parent to “describe”
or “demonstrate” how to perform the task at hand. We only model one communication
channel between the parent and the child, namely the former’s intervention in the latter’s
learning process. We certainly do not wish to suggest that, in actual parent-child inter-
actions, this really is the only open communication channel.13 We do not even wish to
suggest that we believe it to be the most “interesting.” Rather, the present paper focuses

13Indeed, it is well known at least since the work of Bandura and coauthors [4, 3] that children can

learn by imitating the behavior of others. Furthermore, a stream of literature in developmental psychology,

starting in part with the work of Vygotsky [68], emphasizes the “social” aspects of child development.

Similar considerations are true for animals (see e.g. Zentall and Galef [75].
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on one specific channel that, as the preceding discussion suggests, is important in a variety
of settings. Developing a model of supervised learning that incorporates more “direct”
forms of teaching as well as imitation14 is an intriguing direction for further research.

As we discussed in the previous subsection, the predictions of our model are helpful
to interpret the evidence from behavioral genetics; the reader is referred to Sec. 3 for the
specifics. We now briefly summarize other implications of our analysis.

One of the key features of our model is the tradeoff between sheltering the child and
allowing him to learn. We assume that, to some extent, allowing the child to learn means
that he must be allowed to make his own mistakes. However, mistakes are costly and the
parent wishes to protect the child from making mistakes that are too severe. We study
how this tradeoff is optimally resolved. We show that the optimal policy of the parent
partially shelters the child, implying that learning may be slowed down by the presence of
the parent, but that the child learns at a much smaller cost than if he were on his own.
We also show that the optimal policy for the parent is linear in the child’s bias at any
date. This allows us to focus on one key parameter of the model: the intensity of parental
intervention.

We then investigate the dynamics of parental intervention. We show that the intensity
of intervention displays subtle time patterns. Specifically, for relatively low discount factors,
the intensity of intervention is eventually decreasing. For high discount factors, however,
the intensity of intervention may be increasing over time.

We then look at the effects of several parameters of interest that have a natural inter-
pretation. Specifically, we study how parental intervention responds to the child’s ability
to learn, which can be captured by the child’s initial precision in our model. Our analysis
uncovers countervailing “short-run” and “long-run” effects. On one hand, a slower learner
benefits less from experience in any given time period; this induces parents to provide more
sheltering. On the other hand, loosely speaking, a slower learner requires more observa-
tions over his lifetime to correct his initial bias; this clearly makes sheltering less appealing.
As a result, for relatively low discount factors, the short-run effect prevails, and parents
intervene more intensively when children are slow learners; for high discount factors, the
opposite becomes true. We provide a similar analysis of the effects of the complexity of
the learning task, which corresponds to the variance of the environment in our model.

14See for instance Schlag [64] who provides a bounded rationality model with imitation; see also

Apesteguia et al. [1] for a treatment with theory and experiments.
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2 “Hand-Holding”

2.1 The basic model

The environment we consider extends the standard, single-person Gaussian learning model
to incorporate a stylized form of parental intervention. Familiarity and tractability are its
main advantages. We highlight the basic trade-off between sheltering and learning, and
examine the key features of the optimal parenting policy. We then discuss some interesting
comparative-statics results.

2.1.1 Setup

Agents and Horizon. The model features two agents, the child (he) and the parent (she).
The child lives for L > 1 periods, whereas the parent is active (is able to supervise the
child) for T < L periods.

Actions and Payoffs The child must perform a task in every period. The real number
M represents the correct way to perform the task on average; however, the correct way
to perform the task at time t = 1, . . . , L is represented by i.i.d. normal random variables
X1, . . . , XL: specifically, for every t,

Xt ∼ N
(
M,p−1

X

)
. (1)

For example, M might represent the general task of “walking,” or “riding a bicycle,”
disregarding adjustments for different surfaces, slopes, etc.; realizations of the r.v.’s Xt

reflect adjustments necessary when walking or biking on some specific surface encountered
at time t. See Section 2.1.3 for further discussion.

The parent’s and the child’s actions at time t are also real numbers, respectively denoted
by āt and b̄t. If, at time t, the parent chooses action āt, the child chooses action b̄t, and
the correct way to perform the task is Xt, then the child incurs a loss of

(Xt + āt − b̄t)2.

As we discuss below in greater detail, the parent knows M , the correct way to perform the
task on average, and can also anticipate the child’s choice b̄t: thus, we can think of the
parent’s action āt as a correction for the child’s average mistake. For instance, if the child
is learning to walk, and has a tendency to lean forward, āt may correspond to holding the
child’s hand or otherwise supporting him.

The parent discounts per-period losses at a rate δ ∈ (0, 1). The child’s discount factor
can also be assumed to be equal to δ for definiteness, but it actually plays no role in the
analysis: conditional on what the child observes, the child’s actions are independent of δ.
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Information and Policies. The parent knows the value of M . Moreover, he observes
each realization of Xt at the end of time t, after she and the child have acted. Thus, at the
time she chooses her action āt, her information consists of M,X1, . . . , Xt−1. Consistently
with this assumption, a policy for the parent (or, more concisely, a parenting policy) is a
tuple a = (a1, . . . , aT ) such that, for every t = 1, . . . , T , at : R×Rt−1 → R; in particular, we
assume throughout that at is a function of M,X1, . . . , Xt−1. The set of parenting policies
is denoted by A.

The child does not know M . To describe the signal observed by the child at the end of
time period t, fix a parenting policy a = (a1, . . . , aT ) ∈ A; Then, for every t = 1, . . . , T , the
child observes Xt+at(M,X1, . . . , Xt−1). We assume that the child does not observe Xt and
at(M,X1, . . . , Xt−1) separately. The next subsection elaborates on this key assumption.
For t = T + 1, . . . , L, the child observes Xt. Hence, a policy for the child is a tuple
b = (b1, . . . , bL) such that, for every t = 1, . . . , L, bt : Rt−1 → R; again, the interpretation
is that bt(·) depends upon the observations made up to time t− 1. The set of policies for
the child is denoted by B.

The child has a prior on M . Thus, from the child’s point of view, M is a random
variable: specifically,

M ∼ N
(
M0, p

−1
0

)
. (2)

Similarly, as far as the child is concerned, Eq. (1) is the conditional distribution of Xt

given M ; the child also assumes that X1, . . . , XL are conditionally independent.
All of the above is common knowledge. In particular, we assume that the parent knows

the child’s prior.15

2.1.2 Key Analytical Assumptions

The parent correctly anticipates the child’s behavior. On the other hand, we assume
that the child is not aware of the fact that the parent’s choices influence his learning
environment. Formally, he acts as if āt = 0. We think of this as an interesting polar case
that is helpful as an initial step; it captures the idea that the child mainly reacts to feedback
from his incorrect execution of the task, but does not recognize that this feedback is affected
by the parent’s intervention. We consider an alternative, “textbook equilibrium” approach
in Sec. 4.3; in particular, we show that, under natural assumptions on parameters, there
exists a Bayesian Nash equilibrium that exhibits the same qualitative features as the model
in this section. For further discussion, see Sec. 2.1.3.

15This is not particularly restrictive in this version of the model. If the parent does not know the value

of M0 but anticipates the form of the child’s policy, he can learn M0 in one period, provided he knows p0.

Otherwise, he can learn both M0 and p0 in two periods.
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As a consequence of this assumption, when the child observes Xt +at(M,X1, . . . , Xt−1)
at the end of time t, he acts as if that was actually the realization of Xt alone, and
anticipates no further parental intervention. This implies that the child behaves as if he
was facing a standard Bayesian learning problem with a quadratic penalty function:

min
(b1,...,bL)∈B

E

[
L∑

t=1

δt−1[Xt − bt(X1, . . . , Xt−1)]2
∣∣∣X1, . . . , Xt−1

]
. (3)

In such an environment, as is well known, the optimal action at time t, given the
realizations X1 = x1, . . . , Xt−1 = xt−1, is simply the conditional expectation of Xt given
all preceding realizations. Furthermore, the latter takes a particularly convenient form:

E[Xt|X1 = x1, . . . , Xt−1 = xt−1] =
p0M0 + pX

∑t−1
s=1 xs

p0 + (t− 1)pX
. (4)

However, due to the parent’s intervention, at each time s = 1, . . . , t− 1, the child observes
the quantity xs + ās, where a = (a1, . . . , aT ) ∈ A is the parent’s policy, xs is the actual
realization of Xs and ās = as(M,x1, . . . , xs−1). Our assumption implies that the child
behaves as if Xs = xs + ās for all s = 1, . . . , t− 1; hence, her optimal action at time t is

E[Xt|X1 = x1 + ā1, . . . , Xt−1 = xt−1 + āt−1] =
p0M0 + pX

∑t−1
s=1(xs + ās)

p0 + (t− 1)pX
. (5)

It is useful to introduce notation that clarifies the dependence of the child’s optimal
policy on the parent’s own policy, and simplifies the statement of our main result. Given
a parenting policy a = (a1, . . . , aT ) ∈ A, for every t = 1, . . . , L, define the random variable

Ma
t =


p0M0+pX

Pt
s=1[Xs+as(M,X1,...,Xt−1)]

p0+tpX
t ≤ T

p0M0+pX
PT

s=1[Xs+as(M,X1,...,Xt−1)]+pX
Pt

s=T+1 Xs

p0+tpX
t > T

(6)

With this notation, given a parenting policy a = (a1, . . . , aT ) ∈ A, the child’s optimal
policy (ba

1, . . . , b
a
L) ∈ B satisfies

ba
t (X1 + a1(M), . . . , Xt−1 + at−1(M,X1, . . . , Xt−1)) = Ma

t−1. (7)

Or, more concisely, if we regard each ba
t as a random variable, ba

t = Ma
t−1.

Comparing Eqs. (4) and (5) immediately shows that parental intervention distorts
the child’s learning process. On the other hand, parental intervention directly affects the
child’s per-period payoff; in particular, the expected time-t penalty conditional upon the
parent’s information has a simple “variance plus bias” representation:

E[(Xt + at −Ma
t−1)

2|X1, . . . , Xt−1,M ] = p−1
X + (M + at −Ma

t−1)
2. (8)
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Thus, Eqs. (5) and (8) reflect the basic tradeoff in this model.

The parent’s objective is to minimize the discounted expected loss to the child. Thus,
in light of the above arguments, the parent’s problem is

min
a=(a1,...,aT )∈A

E

[
T∑

t=1

δt−1(Xt + at −Ma
t−1)

2 +
L∑

t=T+1

δt−1(Xt −Ma
t−1)

2
∣∣∣M,X1, . . . , Xt−1

]
.

(9)
To further clarify, this objective function corresponds to the assumptions that the parent
(i) is rational, (ii.a) believes that the child is rational, and (ii.b) believes that the child
expects at = 0 for all t.

2.1.3 Discussion of the Assumptions

As noted in the Introduction, the models we describe are intended to capture aspects of
supervised learning-by-doing. The following two modelling assumptions and devices deserve
additional discussion.

Randomness. In the models considered here, whenever the child attempts to perform a
task, the feedback he receives (as well as the current-period outcome) is in part determined
by the realization of some random process. This is consistent with standard models of
learning: the feedback obtained at time t is viewed as a signal that is informative about
the right way to perform a task, but does not perfectly reveal it. The learning “problem”
would otherwise be trivial.16

The child’s awareness of the parent. The effects of parental intervention upon the
child’s learning process may be modeled in a variety of interesting ways. Throughout most
of this paper, we assume that the child does not draw inferences about the correct way to
perform a task from the parent’s intervention. It is worth emphasizing that this does not
necessarily imply that the child is “unaware” of the presence, or even of the actions of the
parent.

We regard this as an interesting polar case. In practice, the child may understand, at
least in part, how parental intervention is aimed at influencing his learning process. In

16Randomness may be viewed as arising out of task heterogeneity. For example, “riding a bycicle” may

be regarded as a single task, although it requires slight adjustments depending upon the type of terrain.

Consequently, a child who is learning to ride on different surfaces will receive different “signals” about

his ability to perform this task. Alternatively, randomness may arise out of trembles. In the example, a

beginning rider who falls from his bike may be unable to tell whether this happened because, say, he tried

to swerve too hard, or instead because he tried to swerve gently enough, but lost control of his bike and

ended up swerving hard. More generally, randomness may be viewed as a “reduced-form” representation

of the complexity of the learning task.
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the opposite polar case, the child “knows” the parent’s policy, and draws inferences from
it, consistently with “textbook” equilibrium analysis. As noted above, we discuss results
under the equilibrium, or “full awareness” assumption, in Sec. 4.3. The main findings
are that (1) under natural assumptions on parameters, one Bayesian equilibrium of the
game has the same qualitative features as the solution we consider here; and (2) there is a
multiplicity of equilibrium outcomes.

However, the “limited awareness” assumption we adopt for most of this paper is, in our
opinion, relevant and interesting in its own right. First, although children may partially
understand the teaching objectives of their parents, it seems unlikely that they learn mainly
by “second-guessing” them (i.e. drawing inferences from parental intervention).17 Thus,
it seems interesting to focus on effects of parental intervention on learning that are not
mediated by the child’s understanding of the parent’s long-term strategy.

Second, while from a game-theoretic point of view, “limited awareness” is inconsis-
tent with a “textbook” equilibrium approach,18 it may be problematic to justify the “full
awareness” assumption implicit in equilibrium analysis, in a way that reflects the essen-
tial features of actual supervised-learning scenarios.19 On the other hand, our analysis of
“limited awareness” is consistent spirit of the learning approach to games: we specify how
the child learns from observations, and derive behavioral implications from our learning
assumptions.20

The “full awareness”/“textbook equilibrium” approach will probably be useful when
considering variations of our model wherein the parent’s and the child’s payoffs do not
coincide. In the presence of conflicts of interest, signalling considerations are likely to be

17For instance, evidence exists to the effect that infants and young children actively and purposefully

interact with their companions; however, these exchanges seem to be largely confined to seeking their

assistance in achieving immediate goals: cf. Rogoff [58, pp. 706-708].
18To clarify, the “textbook” analysis of the model we consider would regard M as a payoff-relevant

parameter, drawn from a normal distribution with mean M0 and precision p0, which is observed only by

the parent. Strictly speaking, our limited-awareness assumption is inconsistent with the joint assumptions

of (1) Bayesian Nash equilibrium strategies and (2) a common prior on M . However, it is consistent with

Bayesian Nash equilibrium in a suitable Harsanyi type space featuring richer interactive hierarchical beliefs

(i.e. “epistemic types”: see Harsanyi [45]); in particular, it can be assumed that players’ beliefs about M

are consistent with a common prior, but their beliefs about each other’s beliefs are not.
19Continuing the analysis in the previous footnote, assuming that M is drawn from some normal dis-

tribution is merely a modeling device that reduces true incomplete information to imperfect information.

Conceptually, however, there is only one relevant, or “true” value of M . The appropriate learning model for

situations of this kind requires assuming that parent and child engage in repeated interactions, holding the

value of M fixed. But, under reasonable learning assumptions, if the child does learn the parent’s strategy,

he also ultimately learns how to perform the task.
20Furthermore, the learning and parenting policies we consider are consistent with common belief of

rationality; thus, it would be inappropriate to characterize the child’s belief as “unsophisticated.”
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essential. We propose to address these issues in future research.

No direct communication. As noted in §1.2, we do not model direct communication
between the parent and the child, because we wish to focus specifically on supervised
learning-by-doing.

One way to construct a model that incorporates both aspects of parent/child interaction
in a textbook-equilibrium setting is to assume that the parent’s objective function does
not coincide with that of the child, and introduce a round of cheap talk before supervised
learning begins. For a simple specification, continue to assume that the child’s loss at time
t is (Xt +at−bt)2, and suppose that the parent’s loss is (Xt +at +D−bt)2. The parameter
D ∈ R can be interpreted as an intrinsic difference between the child’s and the parent’s
preferred way to perform the task at hand, which is distinct from the child’s informational
bias M0 −M .

The analysis and results in this section can be easily adapted to this model; the same
is true of our characterization of textbook-equilibrium behavior in Sec. 4.3. If we now
add one round of cheap talk, the analysis of Crawford and Sobel [30] implies that full
information revelation will not obtain in equilibrium. Thus, there will be scope for both
verbal communication (cheap talk) and supervised learning.

2.1.4 Three benchmark parenting policies

Before we analyze the solution to the problem in Eq. (9), it is useful to consider three
reference, or benchmark parenting policies.

Letting Go: at = 0. This is the simplest policy. Clearly, it does not induce any bias in
the child’s learning process.

Full Sheltering: at = Ma
t−1 −M (a.k.a. “The Italian Mom”). Since the parent knows

the value of M , this policy minimizes the per-period loss at times t = 1, . . . , T : this can be
seen from Eq. (8). Intuitively, recall that the child’s choice at time t is bt = Ma

t−1, and the
loss is (Xt + at − bt): thus, by chooosing at = Ma

t−1 −M , the parent “shifts” the mean of
Xt so that it coincides with the child’s choice. In other words, the parent makes sure that
the child “gets it right” on average. Of course, this has negative consequences in terms of
learning: the child’s belief that Ma

t−1 is the mean of Xt is reinforced, no matter how close
or distant from the true mean M it may be.

The Boot Camp: at = p0+(t−1)pX

pX
(M −Ma

t−1). This policy ensures that, at the end of
time t (i.e. after observing Xt), the child’s posterior Ma

t will be equal to M on average.
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Formally, from Eq. (29),

E [Mt|X1, . . . , Xt−1,M ] = E
[
[p0 + (t− 1)pX ]Ma

t−1 + pX(Xt + at)
p0 + tpX

∣∣∣Mt−1,M

]
=

= E
[
[p0 + (t− 1)pX ]Ma

t−1 + [p0 + (t− 1)pX ](M −Ma
t−1)

p0 + tpX

∣∣∣Mt−1,M

]
= M.

Intuitively, we can think of this policy as exacerbating the loss to the child for an incorrect
choice, thereby accelerating learning.

Thus, the present framework allows for a range of qualitatively very different parenting
strategies. Moreover, the Full Sheltering and Boot Camp policies will turn out to be useful
reference points to understand the main features of the optimal solution: Full Sheltering
maximizes myopic payoffs, whereas the Boot Camp policy maximizes learning.

2.1.5 Characterization and key features of the Optimal Policy

The problem in Eq. (9) can be solved by dynamic programming. It is convenient to let pt

denote the quantity p0 + tpX for t = 0, . . . L.

Theorem 2.1 The optimal parenting policy a = (a1, . . . , aT ) ∈ A in Eq. 9 is

at = γt(Ma
t−1 −M), (10)

where γt =
1− δBt+1

pX
pt

pt−1

pt

1 + δBt+1

(
pX
pt

)2 , BT+1 =
L−T∑
τ=1

δτ−1

(
pT

pT+τ−1

)2

, Bt =
δBt+1

1 + δBt+1

(
pX
pt

)2 .

(11)
Furthermore, γt ∈ (0, 1)

The proof of this and all other results are in the Appendix. For ease of reference, the
coefficient γt is called the (time-t) intensity of intervention.

We emphasize two key features of the solution. First, optimal parental intervention is a
linear function of the child’s bias in each period; this is a consequence of the assumptions
of Gaussian uncertainty and quadratic per-period payoff.21 Second, and more interestingly,
the solution features partial sheltering : the intensity of intervention γt lies in (0, 1). This

21However, it can be conjectured that optimal intervention is increasing in the bias, albeit non-linearly,

for suitably more general specifications of per-period rewards.
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Figure 1: Intensity of intervention for different values of p0 and pX .

finding will play a crucial role in our analysis of the evidence from behavioral genetics in
Sec. 3.22

It is also useful to examine a few qualitative features of the solution. Figure 1 depicts
the intensity of intervention for a range of different parameters, summarized in Table 1.

Label Color δ p0 pX Label Color δ p0 pX

1 Red 0.9 1 0.1 4 Brown 0.99 0.1 1
2 Blue 0.9 1 1 5 Magenta 0.99 1 1
3 Green 0.9 0.1 1

Table 1: Parameters for the plots in Fig. 1. L = 100, T = 20.

22This second conclusion is largely dependent upon the assumption that δ ∈ (0, 1). This seems natural

if δ is interpreted as a discount factor; however, values of δ larger than 1 might alternatively be viewed as

reflecting the fact that, as the child grows and becomes an adult, his choices may have progressively more

serious consequences. On the other hand, even under the current assumption that δ ∈ (0, 1), the length

L− T of the non-teaching period vis-a-vis the length T of the teaching period can also reflect the relative

importance of mistakes in childhood and adult life.
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The figures indicate that γt need not be a monotonic function of t. This implies that
the intensity of intervention may initially rise, despite the fact that the child is becoming
progressively more informed.

We can gain further intuition building on the following simple result. First, observe
that the “full sheltering” and “Boot Camp” policies in the previous subsection correspond
to the following values for γt:

γFS
t = 1 and γBC

t = −pt−1

pX
. (12)

Proposition 2.2 In the setting of Theorem 2.1, for t = 1, . . . , T ,

γt = µtγ
FS
t + (1− µt)γBC

t , where µt =
Bt

δBt+1
∈ (0, 1).

That is, γt is a weighted average of a policy that maximizes learning, and one that
maximizes myopic payoffs. The weight µt reflects the relative “cost” of biases in the
current and the following periods. Specifically, the proof of Theorem 2.1 shows that the
value function of the parent at time t can be written as At + Bt(Mt−1 − M), where Bt

is the coefficient appearing in Eq. (11) and in the above Corollary. Thus, µt (and hence
γt) will be higher in periods when the “cost” of mistakes is high relative to the following
period.23

This decomposition of the intensity of intervention allows us to provide a more rigorous
account of the patterns exhibited in Fig. 1. Notice that γFS

t is constant; on the other
hand, since the child’s posterior precision pt−1 increases linearly with t, the coefficient γBC

t

becomes more and more negative.24 Thus, the actual time evolution of γt depends upon
that of µt. The following result contains the main tools for our analysis.

Proposition 2.3 In the setting of Theorem 2.1, for every T0 ∈ {1, . . . , T}:

1. δ <
(

pT0
pT0+1

)2
implies µt > µt+1 for all t = T0, . . . , T − 1.

2. There exists δ(T0) ∈ (0, 1) such that δ > δ(T0) implies µt < µt+1 for all t = T0, . . . , T−
1; furthermore, δ(t) ≤ δ(t + 1) for all t = 1, . . . , T − 1.

In other words, except possibly for the first few time periods, the weight µt (and therefore
the intensity of intervention γt) will be decreasing in t for δ high and increasing in t for δ

low. The relevant cutoffs for δ depend upon the parameters of the problem.
23It is immediate from Eq. (11) that Bt < δBt+1.
24Intuitively, the child’s posterior is less affected by experience in later periods, and therefore a more

substantial intervention is required in order to correct a given expected bias.
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To interpret, note that the impact of observations on the child’s posterior is greater
early on (see Eq. (6)), so sheltering in later periods induces a smaller bias. If δ is high, the
parent places more weight on reducing the child’s bias than on minimizing current losses,
and an (eventually) increasing level of sheltering is consistent with this. We show in the
next subsection that, for δ high, the parent will also want to provide little sheltering overall;
thus, the optimal policy will feature low and eventually increasing degree sheltering. The
brown and magenta curves in Fig. 1 exhibit these features. If, on the other hand, δ is not
too high, then the opposite intuition applies: the optimal policy will feature a relatively
high and eventually decreasing degrees of sheltering, as is the case for the red, blue and
green curves in Fig. 1.

2.1.6 Comparative Statics

Discounting and Time Horizon. Changes in δ and L have the following consequences:

Proposition 2.4 In the setting of Theorem 2.1, γt is decreasing in δ and in L.

To interpret this result, note that, as the discount factor δ increases, and/or the number
of unsupervised periods L − T increases (specifically, if L increases and T is held fixed),
learning the correct value of M becomes more important for the child. The Proposition
confirms that, in this case, the intensity of intervention γt decreases.

This conclusion may appear to be at odds with the implications of typical investment
models (parental or otherwise). As the discount factor increases, these models typically
predict higher investment, because the balance between short-run costs and long-run ben-
efits is tilted in favor of the latter. Here, the parent intervenes less intensely as δ increases,
which would seem to suggest that parental investment is lower, not higher. But notice
that less intense parental intervention translates into more costly mistakes for the child on
average, and less biased learning; so, in effect, the parent allows the child to “invest more
in learning,” even if this entails a higher short-term cost.

Slow vs. Fast Learners The precision p0 of the child’s prior can be interpreted as re-
flecting the child’s speed of learning. Refer to Eqs. (4) and (29), which characterizes
Bayesian updating of the estimated mean of Xt: if p0 is high, the child places more weight
on her prior M0 than on observations, and hence may be deemed a “slow learner” (or
“stubborn”).25 If, on the other hand, p0 is small, the opposite is true, and we may deem

25Note that the above does not imply that the child is better off if p0 is lower: for instance, if the child

happens to “be right,” i.e. if M0 = M , then being stubborn is beneficial; on the other hand, if M0 is

sufficiently different from M , being stubborn is harmful to the child. The interpretation of p0 suggested in

the text pertains to beliefs, not payoffs.
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the child a “fast learner.”
It is then interesting to ask how the child’s speed of learning influences the optimal

intensity of intervention. One effect is relatively straightforward: a slower learner benefits
less from a reduced bias, i.e. from reduced sheltering; thus, there is an incentive to provide
more sheltering, i.e. increase γt, as p0 increases. We shall call this the “inertia” effect.

There is, however, a more subtle effect, pushing in the opposite direction. A slower
learner will obviously learn slowly not just today, but also in the future; in other words, the
“cost” (continuation value) of the residual bias at the end of the current period is higher
for a slower learner. Thus, there is an incentive to provide less sheltering, i.e. decrease γt,
as p0 increases. We deem this the “continuation value” effect.

In order to help disentangle these effects, the decomposition in Proposition 2.2 is useful:

Proposition 2.5 In the setting of Theorem 2.1, µt is increasing in p0 for every t = 1, . . . , T .

Intuitively, this result suggests that parents of a slower learner place more weight on shel-
tering than on correcting the child’s bias.

However, this does not imply that γt itself is increasing in p0 for every t: indeed, the
magenta and brown curves in Fig. 1 demonstrate that this need not be the case.

While Prop. 2.5 confirms that, as p0 the intensity of intervention places more weight
on the Full Sheltering intervention profile than on the Boot Camp profile, it is also the
case that the Boot Camp intervention coefficient decreases linearly in p0. The preceding
Proposition does not indicate which of these two effects prevails.

In order to resolve this issue, we have conducted very extensive computations, exploring
a large subset of the parameter space.26 For all parameterizations of the problem, we have
verified the following two properties:

1. For every t = 1, . . . , T , there is δt ∈ [0, 1] such that ∂γt

∂p0
≥ 0 iff δ ≤ δt;

2. The cutoffs δt are increasing in t.

The interpretation is as follows. First, if δ is not too high, the “inertia” effect prevails, so
parents of slower learners shelter more. If, however, δ is high enough, then the “continuation
value” effect prevails; this is intuitive, as higher values of δ indicate that the parent cares
more about the future.

Second, the monotonicity properties of the threshold imply that, as p0 increases, either
γt increases uniformly (as e.g. for the Green and Red curves in Fig. 1), or else the curve
t 7→ γt rotates counterclockwise as p0 increases (as is the case for the Brown and Magenta

26Specifically, we considered values of L from 1 to 5, 000, any T ∈ {1, . . . , L}, and a grid size for δ, pX

and p0 of 0.01. Details of our computational approach, as well as Java code, are available upon request.
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curves in Fig. 1), and the higher-p0 curve crosses the lower-p0 curve only once. Intuitively,
this means that parents of a slower learner will provide less sheltering early on, and more
sheltering later.

Task Complexity. The variance of the per-period realization Xt is a measure of the
difficulty of learning the task under consideration. This is reflected both in the per-period
payoff function, Eq. (8), and in the fact that observations are less informative when the
variance of Xt is higher (so pX is lower): see Eq. (2).

It is easy to see from Eq. 11 that γt is unchanged if p0 is replaced with p0

pX
and pX is

set to 1. In other words, γt depends on p0 and pX only through the ratio p0

pX
.

This implies that the comparative statics for pX are exactly the reverse of the compar-
ative statics for p0 described above. Specifically, there are two effects: if the learning task
is not very complex (pX is high), then experience is valuable and hence the parent has an
incentive to provide limited sheltering. On the other hand, if the task is easy to learn, then
the child will also be able to learn it quickly later on, so providing sheltering today is not
particularly costly in terms of long-term effects. As above, if δ is not too high, the first
effect dominates and γt is decresing in pX ; and if δ is high enough, γt is increasing in pX .

3 Nature and Nurture: Interpreting evidence from behav-

ioral genetics

This section has two purposes. The more limited purpose is illustrative: we show how
even this very simple and stylized model of supervised learning generates some intriguing
empirical predictions. The more ambitious purpose is to use this specific model to inter-
pret some controversial findings from behaviorial genetics. In this respect, our analysis is
exploratory in nature: we view the results in this section as a starting point for future
research. However, we also believe that the effects that this discussion highlights are more
general and worth pointing out.

3.1 A Population Model

In order to analyze the interaction between genetic effects and parenting, we embed our
simple, two-agent supervised-learning model within a population framework where parents
and children are heterogeneous.

We continue to assume that the correct way to perform a task is represented by the
real number M . We also continue to assume that every child has a normal prior over M .
The dimension of heterogeneity we explore is the simplest one to analyze in our model:
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we assume that a distribution of prior means M0 in the population of children is given.
Formally, we now treat M0 as a random variable.

Symmetrically, we assume that parents do not observe M , and have a normal prior on
it, with mean Z0 and precision pZ0. Furthermore, a distribution of the prior mean Z0 in
the population of parents is given: thus, Z0 is also treated as a random variable.

Because M is the same for everyone in the population, the heterogeneity in priors,
and in the corresponding posteriors, has payoff consequences, and can be interpreted as a
a fitness measure: agents who are closer to the true mean, namely, those who are more
correct on average, are better off because they make better decisions.

The exact distribution of M0 and Z0 is not important. We do, however, make a few
assumptions relating the key uncertain quantities in the model.

First, to aid in the interpretation of this model, it is useful to think of the parent’s
prior beliefs N(Z0, pZ0) as coming from (1) some prior belief that the parent held when
she was born as a child, and (2) subsequent experience acquired as the parent was growing
up. We also imagine that the distribution of the beliefs held by the parent as she was born
as a child is the same as the distribution of the current child’s beliefs. We will use one
consequence of this interpetation: the variance of the parent’s “prior” mean Z0 is smaller
than the variance of M0.

We also assume that the population means of M0 and Z0 coincide with the actual,
correct way to perform the task M (i.e., M0 and Z0 are unbiased), and that children’s and
parents’ prior means are uncorrelated with the observations. Formally:

Assumption 1 The joint distribution of the random variables (M0, Z0, X1, . . . , XL) sat-

isfies the following restrictions.

1. Var [Z0] < Var [M0].

2. E [M0] = E [Z0] = M .

3. Cov [M0, Xt] = Cov [Z0, Xt] = 0.

Whenever we consider more than one parent and/or more than one child, Assumption 1
will apply to each child-parent pair and to the observations made by the child in that pair.
Observations made by different children will be assumed to be conditionally independent.

The correlations between two individuals’ prior means play a crucial role in our anal-
ysis. Specifically, these correlations reflect the genetic relatedness of the individuals under
consideration. Thus, for instance, the prior means of unrelated parents, or of parents
and adoptive children, are uncorrelated; the prior means of dizygotic twins are perfectly
correlated; and so on.
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We note that there may be some ambiguity as to the interpretation of the term ‘par-
ent.’ We typically mean some aggregate of the two parents, which reflects the extent to
which child-rearing responsibilities are shared within the family. This only matters when
quantifying the genetic relatedness of a child and his biological ‘parent.’ Obviously, a child
and his father (mother) share 50% of the genes, but it is not obvious whether the child
shares more or less than 50% of his genes with the aggregate ‘parent.’ However, we do
not need to take a stand on the precise values here; all we need is that the child have
substantial (but not perfect) genetic relatedness with his biological ‘parent.’ Of course, a
child will have zero relatedness with adoptive ‘parents’; also, there is no ambiguity in the
interpretation of relatedness for siblings.

An important feature of the linear-quadratic-Gaussian framework adopted here is that,
even if parents do not know M , the optimal policy has the same structure as in Theorem
2.1. The only difference is that, at each time t, M is replaced with its conditional expected
value at that time, given the parent’s prior mean Z0 and the realizations of the signals
X1, . . . , Xt. We summarize these facts in the following Theorem.27

Theorem 3.1 Suppose the parent does not observe M , and her prior on it is normal,

with mean Z0 and variance pZ0. Then, for t = 1, . . . , T , the optimal parenting policy is

at = γt(Mt−1 − Zt−1), where

pZt = pZ + tpX , Zt =
pZt−1Zt−1 + pXXt

pZt
,

and γt is given by Eq. (11) in Theorem 2.1. In particular, γt ∈ (0, 1).

3.2 Variance Decomposition

The simplest approach to comparing the relative weight of genetic and environmental
factors in determining a given personality trait is to decompose its variance into separate
additive terms. We briefly discuss this approach, mainly in order to introduce the standard
terminology and concepts in this literature.

The modal findings in behavioral genetics attribute approximately 50% of the variability
to genetic factors (depending on the specific trait under consideration), and the remainder
to environmental influences and measurement error. In particular, “shared” influences (i.e.
effects that are common to all siblings in a given family) appear to be small; also, while
quantitatively larger, “non-shared” environmental influences appear to have a significantly
smaller effect than genetic components.

27Since the proof is similar to that of Theorem 2.1, we only provide a sketch in the Online Appendix.
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The predictions of our model are qualitatively in line with these findings. Suppose that
the parent is only active at time t = 1, and the child is active at times t = 1 and t = 2.
From Theorem 3.1, the child’s posterior at the end of time 1 is

M1 =
p0 + γ1pX

p1
M0 +

(
pX

p1

)
[X1 − γ1Z0].

Its variance is easily computed under the Assumptions described above:

Var [M1] =
(

p0 + γ1pX

p1

)2

Var [M0] +
(

pX

p1

)2

Var [X1] + (13)

+
(

pXγ1

p1

)2

Var [Z0]− 2
p0 + γ1pX

p1

pXγ1

p1
Cov [M0, Z0] .

Purely “genetic” effects correspond to M0 in the model, whereas the parent’s prior is
a “shared environmental” effect from the point of view of the child. Finally, the signal X1

fits the description of a “non-shared environmental” effect. We defer the dicussion of the
covariance term to the next two subsections, where it plays a key role.

Qualitatively, since in the optimal parenting policy γt ∈ (0, 1), this decomposition
exhibits the main features of the evidence from behavioral genetics described above: the
child’s prior (genes) contributes most of the variance, followed by the signal (non-shared
environment) and the parent’s prior (shared environment).

3.3 A “twin experiment”

A more informative approach to evaluating genetic and environmental influences on per-
sonality traits involves studies of twins. The basic idea is to compute the correlation
between personality measures for twins reared together (by their biological parents) and
twins raised apart (by different adoptive parents). If environmental influences are the main
determinants of a trait, then twins reared together should be “more similar” (i.e. exhibit
higher correlation) than twins reared apart; in particular, this would be the case if shared
environmental influences (i.e. aspects of family relationships that affect both twins equally)
were the main determinant of the personality trait being examined.

However, behavioral genetics studies consistently find that twins reared together are
just as similar as twins reared apart (Plomin and Daniels, [52]; Bouchard et al. [19]). In
fact, some studies even find that twins reared together are less similar than twins reared
apart. This latter finding seems paradoxical: after all, if shared influences had no effect,
one would expect to find no difference at all between twins raised together or apart.

Our model can generate these patterns, but suggests an interpretation that differs from
those typically offered in the behavioral-genetics literature. We continue to consider a
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two-period environment. Consider two twins, a and b, with prior and posterior means M0i

and M1i respectively. We examine first the case of twins raised apart by adoptive parents.
Denote the prior of child i’s parent by Z0i. We assume that Z0a and Z0b are independent
and identically distributed;28 their common variance is denoted by Var [Z0]. Then, from
Theorem 3.1,

M1i =
p0 + γ1pX

p1
M0i +

(
pX

p1

)
[X1i − γ1Z0i], (14)

and we can compute the covariance between the twins’ posteriors as follows:

Cov [M1a,M1b] =
(

p0 + γ1pX

p1

)2

Cov [M0a,M0b] . (15)

Notice that there is no term involving covariances between parents and children: the as-
sumption that the twins are raised by different adoptive families implies that these covari-
ances are all zero.29

Next, consider twins raised by their biological parents; denote the parent’s prior mean
by Z0. Then each twin’s posterior can be computed as in Eq. (14) above, except that Z0i

is replaced with Z0. The covariance between the twins’ posteriors is given by

Cov [M1a,M1b] =
(

p0 + γ1pX

p1

)2

Cov [M0a,M0b] +
(

pXγ1

p1

)2

Var [Z0] (16)

− 2
p0 + γ1pX

p1

pXγ1

p1
Cov [M0a, Z0]

(we use the fact that Cov [M0a, Z0] = Cov [M0b, Z0], because twins share 100% of their
genes). It follows that the difference between the covariance for twins raised together and
for twins raised apart is(

pXγ1

p1

)2

Var [Z0]− 2
p0 + γ1pX

p1

pXγ1

p1
Cov [M0a, Z0] . (17)

Genetic considerations imply that a child’s prior is positively correlated with her par-
ent’s prior. Also, recall that, by Assumption 1, Var [M0a] > Var [Z0], which implies that
Cov [M0a, Z0] = Corr [M0a, Z0]

√
Var [M0a] Var [Z0]. Finally, recall that the optimal par-

enting policy prescribes that γt ∈ (0, 1). Taken together, these observations imply that the
difference between the covariances of the twins’ posteriors in the two scenarios is likely to

28Bouchard et al. [19] argue that this is the empirically relevant case.
29As argued by Bouchard et al. [19] and Reiss et al [54], the evidence is indeed that the twins are

randomly assigned in the population, so that these covariances can be reasonably thought to be negligible

in the data.
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be small (for instance, relative to the covariances themselves). In fact, if the child’s prior
mean M0a is sufficiently dispersed in the population, then our model predicts that twins
raised together will be less similar than twins raised apart. Appendix A.2.4 provides simple
conditions under which this is the case, under the assumption that the parent’s mean Z0

is also the result of Bayesian updating.30

It should also be emphasized that our conclusions rely on the fact that γt ∈ (0, 1) in
the optimal parenting policy. If the parent adopted the “Boot Camp” policy γBC

1 = − p0

pX

(or a similar policy), then the above difference would be strictly positive. If the parent
adopted the “letting go” policy γt = 0, then the difference would be exactly zero.

The intuition for the mechanism that generates this conclusion in our model is sim-
ple. Each twin raised by adoptive parents is likely to be less similar to her parent than
if she was raised by her biological parent. On average, this will lead adoptive parents to
provide more sheltering. This is consistent with evidence from a variety of sources. For
instance, Hoopes [44] finds that “adoptive mothers are more protective and careful with
the children... adoptive mothers and fathers reported that they fostered more dependency
than the biological fathers and mothers. The latter group admitted to greater feelings
of irritability regarding their children, and the fathers tended to force independence, sup-
press affection, and accelerate development (p.23).” Furthermore, these more protective
attitudes of adoptive parents “may have their effect on the children, who, at 5 years of
age, were rated as a little less confident and less willing and attentive in task completion
(p.27).” Warren [71] shows that “adoption significantly increases the likelihood of referral
for psychiatric treatment, even after controlling for the fact that adoptees are significantly
more likely to be referred when they display few problems.”

But this means that non-shared environmental influences will have fewer opportunities
to affect the twins’ posterior, which, as a result, will be more similar to their prior, and
hence more similar to one another on average. Conversely, twins raised by their biological
parents will be subject to less sheltering, because their priors are positively correlated with
their parents’. Hence, their non-shared experiences will have a greater role, and they will
end up being less similar to one another.

We believe that this key effect does not rely on the specifics of our model. For instance,
we could obtain similar effects if we assumed that intervention by parents is solely driven

30This “extreme” prediction depends, among other factors, on the assumption (maintained thoughout

this section) that the observations X1i made by twins reared together are just as correlated as those made

by twins reared apart; in particular, they are conditionally independent. If instead twins reared together

were exposed to more similar (i.e. correlated) observations, this would tend to offset the effect described

above; the resulting predicted covariances would thus be more in line with the empirical findings of these

studies, even if the population means are widely dispersed.
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by a desire to have their children be similar to them.31 Under this assumption, because the
biological parents are more similar to their children than the adoptive parents, the latter
intervene more intensely, thus generating similar effects to those discussed above.

The observation that adoptive parents provide more sheltering has a further empirical
implication in our model: the ability of adopted children to perform the task under consid-
eration is more dispersed—that is, the variance of the posterior mean is larger for adopted
children. This is because adopted children are less exposed to non-shared experiences, and
hence don’t learn the correct way to perform the task at hand as fast as children reared
by their biological parents.

This can be seen from Eq. (14); also refer to the variance decomposition in Eq. (13),
which applies here, too, with the obvious notational changes. For a child reared by adop-
tive parents, Cov [M0i, Z0i] = 0, due to lack of genetic relatedness;32 on the other hand,
Cov [M0i, Z0i] > 0 for a child reared by her biological parents. Finally, this covariance is
multiplied by a negative constant because γ1 ∈ (0, 1); this delivers the required conclusion.

However, it is important to point out that this is a statement about the variance of
posterior means, not their population average. In fact, Eq. (14) implies that the average
posterior mean will be the same for adopted and biological children. This is a consequence
of the linearity of the parent’s optimal policy.

3.4 Genetic Cascade

Another way to investigate the interplay of genetic factors and parenting is to compare
the correlations between personality traits of pairs of children that differ in the fraction
of genes they share. For example, one may compare the correlations for monozygotic
twins (who share 100% of the genes), dizygotic twins and full siblings (who share 50% of
the genes), half siblings (who share one parent, and hence only 25% of the genes), and
biologically unrelated children. The collection of these correlations, ordered in terms of
genetic relatedness, is called a genetic cascade (Reiss et al. [54], p. 48).

In our model, we can compute the correlation between the posterior means of two
children raised by the same parents. As noted above, different degrees of genetic relatedness
correspond to different correlations between the children’s prior means. The mapping from
prior to posterior correlations plays the role of a “genetic cascade.”

For i = a, b, M0i denotes child i’s prior, and M1i is child i’s posterior; similarly, X1i

31Bisin and Verdier [13, 14] make such an assumption in a model of cultural transmission.
32And, if Z0i is interpreted as a Bayesian update as well, also due to the assumed independence of an

individual’s prior mean with the observations Xt.
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denotes i’s observation (non-shared experience) at time 1. Then, from Theorem 3.1,

M1i =
p0 + γ1pX

p1
M0i +

(
pX

p1

)
[X1i − γ1Z0].

Therefore, the correlation between the two children’s posteriors is

Cov [M1a,M1b] =
(

p0 + γ1pX

p1

)2

Cov [M0a,M0b] +
(

pXγ1

p1

)2

Var [Z0] (18)

− p0 + γ1pX

p1

pXγ1

p1
(Cov [M0a, Z0] + Cov [M0b, Z0]) .

The resulting genetic cascade typically conforms to what one obtains in studies of
relatively highly heritable traits. First, the difference between the posterior covariance for
monozygotic twins and for dizygotic twins or full siblings is proportional to the difference
between the respective prior covariances (which reflect their genetic relatedness): the terms
involving Z0 are common and hence cancel out. Since monozygotic twins share 100% of
the genes, whereas dizygotic twins and full sibs only share 50% of the genes, it follows that
monozygotic twins have more similar posteriors than do dizygotic twins and full sibs.

The difference between the posterior covariances for full sibs (or dizygotic twins) and,
say, genetically unrelated siblings is typically also positive; however, the analysis is more
subtle. To clarify, consider a parent with three children i = a, b, c; a and b are biological
children (hence full siblings), and c is adoptive. Then

Cov [M1a,M1b]− Cov [M1a,M1c] =
(

p0 + γ1pX

p1

)2

Cov [M0a,M0b] (19)

− p0 + γ1pX

p1

pXγ1

p1
Cov [M0b, Z0] .

Thus, as long as the variance of the parent’s prior Z0 is small relative to the variance of
M0i (as would be expected if Z0 actually reflects the parent’s past experiences), the above
difference is positive.

It is worth emphasizing that the second term in the right-hand side of Eq. (19) reflects a
“non-shared” aspect of parental intervention—the fact that the parent responds differently
to child b’s and child c’s prior. However, notice that this means that the parent is responding
to genetic features of her children. This is consistent with recent, intriguing findings
in behavioral genetics: even non-shared environmental influences are actually genetically
mediated. For instance, this is the central finding reported by Reiss et al. [54] in their
influential study of parental influences on adolescent development.

On the other hand, the cascade reflects environmental effects as well, as should be
expected in a model of parenting. In particular, the posteriors of blended siblings are
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correlated—a measure of the effects of shared environmental influences. However, it should
be noted that, since γt ∈ (0, 1) in the optimal policy, this covariance is likely to be quite
small. Again, this is consistent with most findings in behavioral genetics, which report
only modest effects of the shared environment.

4 Extensions

4.1 Costly Parental Intervention

So far we have assumed that the parent’s payoff per period coincides with that of the child
for any given realization of uncertainty Xt and any choice of actions āt and b̄t. In particular,
this implies that the only “cost” of parental intervention is via the induced distortion of
the child’s beliefs.

We now extend our basic model and introduce an explicit cost of parental intervention.
For analytical tractability, we assume that this additional cost is quadratic in the parent’s
action āt. Specifically, the parent’s loss at time t, given Xt, āt and b̄t, is now

(Xt + āt − b̄t)2 + Cā2
t (20)

where C ≥ 0. Our main result, Theorem 2.1, admits a straightforward generalization to
this environment.

Theorem 4.1 Under costly parenting, the optimal parenting policy a = (a1, . . . , aT ) ∈ A
is at = γt(Ma

t−1 −M), where

γt =
1− δBt+1

pX
pt

pt−1

pt

1 + C + δBt+1

(
pX
pt

)2 , BT+1 =
L−T∑
τ=1

δτ−1

(
pT

pT+τ−1

)2

, Bt =
δBt+1

1 + δBt+1

(
pX
pt

)2 .

(21)
Furthermore, γt ∈ (0, 1).

Notice that the optimal parenting policy has exactly the same features as in the costless
case; the only difference is the denominator of the intensity of intervention γt, which now
includes the cost parameter C. Thus, it is still the case that partial sheltering occurs at
the optimum, so our interpretation of the evidence from behavioral genetics (Sec. 3 is
preserved under costly parenting.

4.2 Simultaneous learning in the Gaussian framework

Another interesting extension is simultaneous learning. Children typically engage in mul-
tiple simultaneous learning processes; furthermore, experimental evidence points to com-
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plementarities between different aspects of cognitive development.33 It is then natural
to ask how a supervisor might take advantage of these complementarities to resolve the
sheltering/learning trade-off, and more generally aid in the development process.

The Gaussian framework can be readily extended to handle learning of multiple tasks.
As we shall presently demonstrate, the main technical finding is that the parent’s inter-
vention in any given task is, in general, a linear function of the child’s bias in all tasks.
Preliminary numerical exploration suggests than the parent may take advantage of this in
interesting and somewhat unexpected ways; this invites further investigation.

We continue to assume that the child lives for L > 1 periods, and that teaching termi-
nates at time T ∈ {1, . . . , L− 1} (i.e. there is at least one teaching period).

The child must now learn how to perform n tasks. Extending the notation of Section
2.1, let M ∈ Rn denote the vector describing the correct way to perform each task on
average and; for every t = 1, . . . , T , let Xt denote the n-dimensional random vector that
describes the correct way to perform each task at time t.

The parent knows the value of M ; the child has a multinormal prior over its possible
values, with precision matrix p0 and mean vector M0. The parent and child both believe
that, conditional upon M , each Xt is a multinormal vector with mean M and precision
matrix pX . Thus,

Xt|M ∼ N
(
M,p−1

X

)
and M ∼ N

(
M0, p

−1
0

)
. (22)

The parent’s and child’s actions at time t, denoted by āt and b̄t respectively, are also
n-dimensional real vectors. The child’s loss at time t is given by

(Xt + āt − b̄t)′(Xt + āt − b̄t).

We can also incorporate a quadratic cost-of-parenting term, extending the model in Sec.
4.1. Thus, the parent’s loss at time t is

(Xt + āt − b̄t)′(Xt + āt − b̄t) + ā′tCāt,

where C is an n× n symmetric matrix.
By analogy with the single-task case, a parenting policy is a tuple (a1, . . . , aT ) such that

at : Rn × Rn·(t−1) → Rn for each t. That is, the parent’s intervention at time t depends
upon the value of the vector M and the realizations of the random vectors X1, . . . , Xt−1.
Similarly, a policy for the child is a tuple (b1, . . . , bL) such that, for every t, bt : Rn·(t−1) →

33For instance, Gopnick and Meltzoff [38] report that children who use more names are more likely to

exhaustively sort objects into different categories (see also Waxman [69]).
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Rn. We continue to denote the set of policies for the parent and the child by A and B
respectively.

Finally, in accordance with the assumptions discussed in Sec. 2.1.3, given a parenting
policy (a1, . . . , aT ) ∈ A, the child’s beliefs about M at the end of each time period t =
0, 1, . . . , L are characterized by the precision matrix pt ≡ p0 + tpX and the mean vector

Ma
t =

{
p−1

t

[
p0M0 + pX

∑t
s=1[Xs + as(M,X1, . . . , Xs−1)]

]
t ≤ T

p−1
t

[
p0M0 + pX

∑T
s=1[Xs + as(M,X1, . . . , Xs−1)] + pX

∑t
s=T+1 Xs

]
t > T

Also, the optimal policy ba = (ba
1, . . . , b

a
L) ∈ B for the child, given the parent’s policy

a = (a1, . . . , aT ) ∈ A, satisfies ba
t = Ma

t−1 for all t = 1, . . . , L. Again, these are immediate
extensions of the corresponding results for the single-task case.

The parent still minimizes her discounted expected loss. Theorem 2.1 can then be
generalized as follows.

Theorem 4.2 For t = 1, . . . , T , the optimal parenting policy a = (a1, . . . , aT ) ∈ A satisfies

at = Γt · (Ma
t−1 −M), where Γt is inductively defined as follows:

BT+1 =
L−T∑
τ=1

δτ−1ptp
−1
t+τ−1p

−1
t+τ−1pt,

Γt = [I + C + δpXp−1
t Bt+1p

−1
t pX ]−1[I − δpXp−1

t Bt+1p
−1
t pt−1],

Bt = (I − Γt)′(I − Γt) + δ(pt−1 + pXΓt)′p−1
t Bt+1p

−1
t (pt−1 + pXΓt).

4.3 “Textbook” Equilibrium analysis

With regards to equilibrium analysis of the “Hand-Holding” models, three main findings
can be mentioned; we focus on the single-task environment for simplicity.

First, if parental intervention is intrinsically costless (as in our main model), then for
any choice of the parameters, the following profile of strategies is a (perfect Bayesian)
equilibrium: the parent chooses at = M0 − M for t = 1, . . . , T ; the child guesses M0

in the first T periods, disregarding the realization of Xt + at, and then proceeds as in
the unsupervised case from time T + 1 onwards. In this equilibrium the parent opts for
a fully sheltering strategy, which however prevents learning in the first T periods: the
child is aware that he is essentially observing draws from a normal distribution with mean
M + at = M0 in each period, regardless of the realized value of M , and hence he simply
discards these observations. Thus, in this equilibrium, the child does not learn anything
while being supervised by the parent. However, it is easy to see that this particular
equilibrium disappears as soon as costs are introduced.
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Second, under natural assumptions on parameters, there exists a partially sheltering
equilibrium in which the parent’s strategy is linear in the child’s bias, as in Theorem 2.1.
In particular, it is characterized by a system of equations similar to Eq. (11), except that
the quantities pt and Bt are replaced by functions of all the equilibrium values of γ1 . . . γT .

Third, simple two-period examples demonstrate that the child’s welfare can be lower or
higher in equilibrium than under the assumptions about beliefs stated above. Intuitively,
the child can make better use of the information he receives (because he can partially filter
out the parent’s intervention); on the other hand, this induces the parent to shelter more
than she would under the original assumptions about beliefs.

To illustrate these points, we solve a two-period, equilibrium version of the basic model
in Sec. 2.1 (this can be extended to arbitrarily many periods). Since a policy for the parent
consists of a single function of the true mean M , we drop time indices and denote it simply
by a : R → R. Equilibrium quantities will be denoted by the subscript “e”.

Begin by conjecturing a linear equilibrium: that is, a Bayesian Nash equilibrium where
the parent’s equilibrium policy is linear in the child’s initial bias: ae(M) = γe(M0 −M),
where γe ∈ R is the equilibrium intensity of intervention (again dropping the time index).
Then, in equilibrium, the child knows that her time-1 observation is a realization of X1 +
a(M) = X1 + γe(M0 −M), and not just X1; thus, she updates accordingly. The following
Lemma provides the details.

Lemma 4.3 For all γ ∈ R,

E [M |X1 + γ(M0 −M) = x] =
p0 − pXγ(1− γ)
p0 + pX(1− γ)2

M0 +
pX(1− γ)

p0 + pX(1− γ)2
x.

In a linear equilibrium with intensity of intervention γe, the child’s policy be = (be
1, b

e
2)

must then satisfy

be
1 = M0,

34 be
2(x) = E[M |X1 + γe(M0 −M) = x] ∀x ∈ R.

Consequently, a necessary and sufficient condition for the existence of such an equilibrium
is that, for every M ∈ R,

γe(M0 −M) ∈ arg max
ā∈R

E
[
(X1 + ā−M0)2 + (23)

+ δ

(
X2 −

p0 − pXγe(1− γe)
p0 + pX(1− γe)2

M0 −
pX(1− γe)

p0 + pX(1− γe)2
(X1 + ā)

)2 ∣∣∣∣M]
34In any equilibrium, the child’s guess at time 1 only influences her loss at time 1, because the parent

must choose an action a(M) without observing be
1. Thus, in particular, in a linear equilibrium the child’s

optimal choice is be
1 = E [X1 + γe(M0 −M)] = M0.
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The following Proposition and Corollary characterize the linear equilibria of this game.

Proposition 4.4 For all parameter values, there is a linear equilibrium with γe = 1.

Furthermore, if δpX > p0, there is a linear equilibrium with

γe = γ̂ ≡ 1−

√√
δp0pX − p0

pX
∈ (0, 1).

Corollary 4.5 If there is a linear equilibrium with γe = γ̂, then there is also a payoff-

equivalent linear equilibrium with γe = 2− γ̂; there are no other linear equilibria. Further-

more, if γe ∈ {γ̂, 2 − γ̂, 1} is the intensity of intervention in a linear equilibrium, then for

every k ∈ R there is a payoff-equivalent equilibrium with a(M) = k + γe(M0 −M).

Thus, as noted above, under the condition δpX > p0, one equilibrium exhibits the
essential features of the solution we consider in Sec. 2: the parent’s policy is linear in
the child’s bias, and in particular the intensity coefficient lies between zero and one. This
coefficient is also decreasing in δ, as in Proposition 2.4. Such an equilibrium exists, provided
the child is not too slow to learn relative to the complexity of the task: otherwise, the parent
fully shelters (γe = 1) in any linear equilibrium.

Also, adding a constant k to the parent’s action a leads to a formally distinct but
payoff-equivalent equilibrium: the child merely adjusts her guesses b0 and b1 so as to offset
the constant k. Finally, it turns out that, if there is an equilibrium with γe ∈ (0, 1) as in
Prop. 4.4, then there is another linear equilibrium with intensity coefficient equal to 2−γe:
intuitively, this is the “mirror image” of the original linear equilibrium; the child can also
adjust her learning rule accordingly, and again one obtains a payoff-equivalent equilibrium.
The above Corollary summarizes these facts.

Table 2 below shows that, depending on parameter values, the child’s welfare, as per-
ceived by the informed parent, may be either higher or lower under textbook equilibrium
behavior. The figures in Table 2 suggest that, if the child’s initial bias is large, then for
relatively low values of pX the child’s expected loss is higher in a linear equilibrium than
under the assumption that the child is unaware of the parent’s intervention, whereas the
opposite is true for relatively high values of pX . However, this ranking is reversed if the
child’s bias is small. Additional numerical experimentation seems to confirm this pattern.
Finally, the expected loss in a linear equilibrium with γe ∈ (0, 1) may be either higher
or lower than in the full-sheltering equilibrium with γe = 1; as one might expect, the
full-sheltering equilibrium is superior for if the child’s initial bias is small.
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δ p0 pX M0 −M γ Loss γe Eqm Loss Eqm loss (γe = 1)
0.9 1 2 2 0.5714 3.7214 0.5867 3.8041 4.55
0.9 1 5 2 0.5385 2.7204 0.5264 2.3013 3.98
0.9 1 2 0.5 0.5714 1.3107 0.5867 1.2885 1.175
0.9 1 5 0.5 0.5385 0.6435 0.5264 0.7103 0.605

Table 2: Textbook Equilibrium and Child Welfare

5 Discussion

5.1 Additional Related Literature

Influencing other agents’ beliefs is a recurring theme in information economics and game
theory. The main contrast between our model and most contributions on communication
in models of asymmetric information is the following. In these models, the presence of
conflicting incentives either makes it impossible to credibly communicate all the information
or introduces the necessity of distorting actions in order to make communication credible.
In our model on the other hand, although incentives are aligned, information cannot be
directly communicated but must be transmitted through a (possibly costly) manipulation
of the learning process. The informed agent in our models faces very different incentives
from those in standard models of asymmetric information.

A “teaching” metaphor is sometimes employed to describe strategies in the literature
on learning in games: cf. e.g. Kalai and Lehrer [46], Section 2.4. However, this seems
mainly an expository device to clarify features of certain strategies; players do not have
any private information to convey (besides their future dispositions to play). In the absence
of the “teacher,” the “learner” would have nothing to learn, which is definitely not the case
in supervised learning models.

The literature on social learning is also related. In particular, Smith and Sorensen [63]
analyze optimal experimentation and its interaction with informational herding. Although
teaching is not the focus of their paper, these authors provide a two-period example featur-
ing a “professor” who takes the more informative of two possible actions so as to maximize
the “student’s” expected payoff. This intriguing example may point in the direction of
a full-blown model of imitative learning, or “teaching by doing” on the parent’s part; by
comparison, our concern in this paper is “learning by doing” on the child’s part, under the
supervision of the parent.

Benabou and Tirole [10] consider the interplay between the provision of incentives and
the self-confidence of an agent: provision of explicit incentives by an informed principal
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(e.g. a parent) may be a negative signal of the ability of an agent (the child). They show
that in some circumstances, explicit incentives can be counterproductive. Other authors
(e.g., Rubinstein [59]) and Brunnemeier and Parker [22]) have investigated how beliefs may
be optimally chosen by a ‘principal’ to maximize the payoffs of an ‘agent’. In these settings,
optimistic beliefs may be advantageous.

Ettinger and Jehiel [34] propose a model of deception in which “manipulative” agents
influence the beliefs of less sophisticated, “deceived” agents. In particular, less sophisti-
cated agents make inferences on the basis of coarser information about their opponent than
is available in the game—an assumption consistent with the so-called “fundamental attri-
bution error.” This bounded-rationality assumption leads to the possibility of deception.
It should be noted, however, that no deception is possible if both agents are fully rational;
by way of contrast, as we show in Sec. 4.3, the main qualitative features of our analysis
are consistent with textbook-equilibrium analysis.

Finally, the transmission and adoption of cultural traits had been developed by, among
others, Cavalli Sforza-Feldman [25], and Boyd-Richerson [20]. In most of these literature,
the transmission is independent of any of the choices of the parents. Bisin and Verdier [13],
[14], and Bisin, Topa, and Verdier [15] develop models in which cultural transmission occurs
as the result of the socialization effort endogenously chosen by the parent. However, the
effectiveness of socialization is modeled as a reduced-form function of some effort measure.

5.2 Applications

The approach outlined in this paper may be useful to address broader issues pertaining
to learning in a multi-person environment. First, at an abstract level, schooling may
be viewed as supervising more than one simultaneous learning process, with only limited
opportunities to target interventions to individual learners. For instance, in the setting of
§2.1, assume that there n ‘students’ with different priors about M , and one ‘instructor’.
At every time t, each student must guess the realization of the r.v. Xt; the instructor
must choose the same level of intervention at for all students. If bt,i is student i’s guess
at time t, his payoff is −(Xt + at − bt,i)2. If students do not observe each other’s actions,
the model is an n-fold repetition of the model in Section 2.1, except that the instructor’s
choice of at must be the same in every “copy” of the problem. We can then analyze the
impact of different objective functions for the instructor on (i) the distribution of ability
in the population of students, and (ii) the ability of a single student, given the distribution
of other students’ abilities.

A more interesting model of peer effects may plausibly be obtained by allowing stu-
dents to observe each other’s guesses. This would likely be beneficial for “low-ability”
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students; however, it might be the case that high-ability students are better off than they
would be if actions are unobservable. Intuitively, in a very heterogeneous class, the instruc-
tor’s choice of at is likely to be significantly different from the choice she would make if
she was interacting with a single high-ability student; but, as low-ability students improve
due to the presence of high-ability peers, the

class becomes less heterogeneous, and as a consequence even high-ability students may
benefit.

6 Concluding Remarks

We have presented a model of supervised learning that focuses on the tradeoff between
sheltering a child and letting him learn by allowing him to make mistakes. Clearly, the
model is not suitable to deal with all aspects of parent-child interactions, or even of super-
vised learning. By changing the nature of the child’s learning process, different effects can
be explored.

For instance, the model we analyze in this paper features a rather fine-grained form of
parental intervention. As an alternative, suppose that, in each time period, the parent can
either allow the child to perform a task, or intervene and perform the task on the child’s
behalf. If the parent intervenes, she can minimize per-period loss due to her superior
information; however, the child does not observe the realization of the uncertainty in the
current period.35 Thus, the parent acts as a gatekeeper, but cannot directly influence
the child’s posterior, even on average. While this model presents a number of technical
hurdles to overcome, preliminary analysis suggests that it may capture different aspects of
supervised learning.

Also, we have restricted attention to a particularly simple learning problem for the
child. The data that the child observes is independent of his actions (except, indirectly via
the parent’s choice) and therefore, so is his learning. This has kept our analysis relatively
tractable because the child’s choice problem is essentially a static one. Another important
dimension learning and therefore another potential role for parental supervision emerges
when the child’s learning task involves experimentation. It is well known that in these
circumstances, an agent may suffer incomplete learning (see Easley and Kiefer [33] and
Brezzi and Lai [21]), and has positive probability of choosing the incorrect action. In pre-
liminary work (Lizzeri and Siniscalchi, in progress) we provide several alternative models in
which the child faces a multi armed bandit choice problem. A number of novel phenomena
emerge in this environment. For instance, we show that, if the parent supervises the child

35In keeping with the assumptions discussed in section 2.1.3, the child does not make inferences from the

fact that the parent intervenes: he simply “misses one observation.”
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sufficiently long, the probability that the child chooses the wrong action goes to zero. In-
terestingly, however, for this to hold, the child must come to hold posterior beliefs that are
incorrect. In particular, parental intervention tends to make the child overconfident about
the right action.36 This comes about because the parent optimally censors the learning
process of the child in a way that ends up exaggerating how bad the wrong actions are
and how good the right action is. In another experimentation problem, we show that the
parent may have the incentive to give the child the false impression that an environment
is safe so as to induce the child to engage in experimentation.

A Appendix

A.1 Proof of Theorems 2.1, 4.1 and 4.2

Note: except for the statement that γt ∈ (0, 1), Theorems 2.1 and 4.1 are special cases of Theorem
4.2. So, we shall prove the latter first, and then show that γt ∈ (0, 1).

For ease of reference, we reproduce the definition of the key vector quantity Ma
t , representing

the mean of the child’s posterior at the end of time t, given the parent’s policy a ∈ A:

Ma
t =

 p−1
t

[
p0M0 + pX

∑t
s=1[Xs + as(M,X1, . . . , Xs−1)]

]
t ≤ T

p−1
t

[
p0M0 + pX

∑T
s=1[Xs + as(M,X1, . . . , Xs−1)] + pX

∑t
s=T+1 Xs

]
t > T

(24)

Proof. Henceforth, we let a = (a1, . . . , aT ) ∈ A denote the parent’s optimal policy; also, to
simplify the notation, we write Ma

t−1 simply as Mt−1. Thus, by the arguments given in the text,
at each time t, the child’s optimal action is bt = Mt−1.

Begin by analyzing the non-teaching periods. To this end, observe first that, from Eq. (24), for
all t ≥ T and τ ≥ 0,

Mt+τ = p−1
t+τ

(
ptMt + pX

t+τ∑
s=t+1

Xs

)
, (25)

where, as is customary, for τ = 0, the empty summation is assumed to equal zero. Hence, for t ≥ T

and τ ≥ 1,

Xt+τ −Mt+τ−1 = Xt+τ − p−1
t+τ−1ptMt − p−1

t+τ−1pX

t+τ−1∑
s=t+1

Xs = (26)

= (Xt+τ −M)− p−1
t+τ−1pt(Mt −M)− p−1

t+τ−1pX

t+τ−1∑
s=t+1

(Xs −M);

36There is evidence that agents are overconfident. See e.g. Fischoff, Slovic, and Lichtenstein [35], and

Weinstein [70]. Recent papers explore the way in which overconfidence can be adaptive. See e.g. Compte

and Postlewaite [29], Benabou and Tirole [9] and Koszegi [47].
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the last line uses the fact that ptM + pX

∑t+τ−1
s=t+1 M = ptM + pX(τ − 1)M = pt+τ−1M . It now

follows that, at any time t ≥ T , and for all τ ≥ 1, from the point of view of the parent, i.e.
conditional upon the realization of M , the expected loss at time t + τ given the observed value of
Mt is

E[(Xt+τ −Mt+τ−1)′(Xt+τ −Mt+τ−1)|M,Mt] =

= p−1
X + (τ − 1)pXp−1

t+τ−1p
−1
X p−1

t+τ−1pX + (Mt −M)′ptp
−1
t+τ−1p

−1
t+τ−1pt(Mt −M);

this follows from the assumption that X1, . . . , XL are i.i.d. normal with mean M and precision
pX conditional on M ,37 which in turn implies that all of the cross-terms, which are of the form
(Xt+τ −M)′(Mt−M), (Xt+τ −M)′(Xs−M) and (Mt−M)′(Xs−M) for s ∈ {t+1, . . . , t+ τ −1},
and (Xs−M)′(Xσ−M) for s, σ distinct in {t+1, . . . , t+τ−1}, all have zero conditional expectation.

It follows that, for every non-teaching period t + 1 ∈ {T + 1, . . . , L}, conditional upon M and
Mt, the expected time-(t + 1) continuation value of the child’s optimal policy is Vt+1(Mt,M) =
At+1 + (Mt −M)′Bt+1(Mt −M), where38

At+1 =
L−t∑
τ=1

δτ−1
[
p−1

X + (τ − 1)pXp−1
t+τ−1p

−1
X p−1

t+τ−1pX

]
, (27)

Bt+1 =
L−t∑
τ=1

δτ−1ptp
−1
t+τ−1p

−1
t+τ−1pt. (28)

Turn now to teaching periods t ∈ {1, . . . , T}. From the argument just given, VT+1(MT ,M) =
AT +(MT −M)′BT+1(MT −M). We now show inductively that, for t = T, . . . , 1, if Vt+1(Mt,M) =
At+1+(Mt−M)′Bt+1(Mt−M), then the equations for at and Γt in Thm. 4.2 hold, and furthermore
Vt(Mt−1,M) = At + (Mt−1 −M)′Bt(Mt−1 −M), where Bt is again as in Thm. 4.2.

Notice that, again from Eq. (24), for every t ≤ T ,

Mt = p−1
t p0M0 + p−1

t pX

t∑
s=1

(
Xs + as(M,X1, . . . , Xs−1)

)
= (29)

= p−1
t pt−1Mt−1 + p−1

t pX

(
Xt + at(M,X1, . . . , Xt−1)

)
.

After substituting for Mt in the expression for Vt+1 in the inductive hypothesis, conditional on
the information It ≡ {M,X1, . . . , Xt−1}, the action at(M,X1, . . . , Xt−1) must solve the Bellman
equation

37Strictly speaking, since the parent knows M , in her view this is the actual unconditional distribution

of the Xs’s; for the child, M is a r.v., so the above statement describes the conditional distribution of the

Xs’s given M . However, we use a more explicit terminology and notation to remind the reader that M can

be treated as a constant in the above expectations.
38For the purposes of solving for the optimal policy, we only need an expression for VT+1. However, the

expression for Bt, t = T + 1, . . . , L is used below to show that γt ∈ (0, 1) in the scalar case.
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Vt(Mt−1, M) = min
ā

E
ˆ
ā′Cā + (Xt + ā − Mt−1)′(Xt + ā − Mt−1)|It

˜
+ (30)

+δE

»
At+1 +

“
p−1

t pt−1Mt−1 + p−1
t pX(Xt + ā) − M

”′
Bt+1

“
p−1

t pt−1Mt−1 + p−1
t pX(Xt + ā) − M

”
|It

–
.

Differentiating with respect to ā, taking expectations, and dividing by 2 yields the FOC

0 = ā′C + ā′ − (Mt−1 −M)′ +

+δ
(
p−1

t pt−1Mt−1 + p−1
t pX(M + a)−M

)′
Bt+1p

−1
t pX

(recall that C is symmetric) and therefore

at(M,X1, . . . , Xt−1) = [C + I + δpXp−1
t Bt+1p

−1
t pX ]−1[I − δpXp−1

t Bt+1p
−1
t pt−1] · (Mt−1 −M)

≡ Γt(Mt−1 −M). (31)

We now show that Vt can be expressed as a quadratic form in (Mt−1 −M). First, to simplify
the quadratic form in the first line of Eq. (30), observe that

Xt + Γt(Mt−1 −M)−Mt−1 = (Xt −M)− (I − Γt)(Mt−1 −M);

as for the quadratic form in the second line of Eq. (30),

p−1
t pt−1Mt−1 + p−1

t pX(Xt + Γt(Mt−1 −M))−M =

= p−1
t pt−1(Mt−1 −M) + p−1

t pX(Xt −M + Γt(Mt−1 −M)) =

= p−1
t (pt−1 + pXΓt) (Mt−1 −M) + p−1

t pX(Xt −M).

Now Vt can be rewritten as follows:

Vt(Mt−1,M) = At + (Mt−1 −M)′Γ′
tCΓt(Mt−1 −M)+

+ (Mt−1 −M)′(I − Γt)′(I − Γt)(Mt−1 −M)+

δ(Mt−1 −M)′(pt−1 + pXΓt)′p−1
t Bt+1p

−1
t (pt−1 + pXΓt)(MT−1 −M) =

≡ At + (Mt−1 −M)′Bt(Mt−1 −M),

where At is a suitable constant, and the coefficient Bt in the last line are as in Thm. 4.2:

Bt = Γ′
tCΓt + (1− Γt)′(1− Γt) + δ(pt−1 + pXΓt)′p−1

t Bt+1p
−1
t (pt−1 + pXΓt). (32)

Next, we derive certain useful expressions. First, notice that

I − Γt = [C + I + δpXp−1
t Bt+1p

−1
t pX ]−1 · (33)

[C + I + δpXp−1
t Bt+1p

−1
t pX − I + δpXp−1

t Bt+1p
−1
t pt−1] =

= [C + I + δpXp−1
t Bt+1p

−1
t pX ]−1[C + δpXp−1

t Bt+1].
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Similarly, in the scalar case,

pt−1 + γtpX

pt
=

1
pt

pt−1(1 + C) + pt−1δBt+1

(
pX

pt

)2

+ pX − pXδBt+1
pXpt−1

p2
t

1 + C + δBt+1

(
pX

pt

)2 =

=
1
pt

pt−1(1 + C) + pX

1 + C + δBt+1

(
pX

pt

)2 = (34)

=
1

1 + C + δBt+1

(
pX

pt

)2

(
1 + C

pt−1

pt

)
.

Finally, again in the scalar case with C = 0, we can write Bt in the following useful form (for
t = 1, . . . , T ):

Bt =

 δBt+1
pX

pt

1 + δBt+1

(
pX

pt

)2


2

+

 1

1 + δBt+1

(
pX

pt

)2


2

δBt+1 = (35)

=

 1

1 + δBt+1

(
pX

pt

)2


2

δBt+1

(
δBt+1

(
pX

pt

)2

+ 1

)
=

=
δBt+1

1 + δBt+1

(
pX

pt

)2

which is the expression given in Thm. 2.1. For future reference, note also that

Bt = (1− γt)
pt

pX
. (36)

Finally, we show that γt ∈ (0, 1) for t = 1, . . . , T in the univariate case, as claimed in Thm. 2.1.
It is clear that γt < 1, so we must only verify that γt > 0. Furthermore, notice that, if γt is positive
for C = 0, then it is positive for all C ≥ 0, and is decreasing in C. Thus, it is sufficient to prove
the claim for C = 0.
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Notice first that, even in the multivariate case, from Eq. (28), for t = T + 1, . . . , L− 1,

Bt =
L−(t−1)∑

τ=1

δτ−1pt−1p
−1
t+τ−2p

−1
t+τ−2pt−1 =

= pt−1p
−1
t−1p

−1
t−1pt−1 +

L−(t−1)∑
τ=2

δτ−1pt−1p
−1
t+τ−2p

−1
t+τ−2pt−1 =

= I + δ

L−t∑
τ=1

δτ−1pt−1p
−1
t+τ−1p

−1
t+τ−1pt−1 =

= I + δpt−1p
−1
t

(
L−t∑
τ=1

δτ−1ptp
−1
t+τ−1p

−1
t+τ−1pt

)
p−1

t pt−1

= I + δpt−1p
−1
t Bt+1p

−1
t pt−1;

also, BL = I. Furthermore, in the univariate case, we claim that Bt+1
pX

pt

pt−1
pt

< 1 for all t < L. The
claim is true for t = L−1, because BL = 1 and pt = pX+pt−1 for all t ≥ 1. Now consider an arbitrary
t ∈ {T + 1, . . . , L} and assume the claim is true for t + 1, . . . , L. Now Bt

pX

pt−1

pt−2
pt−1

= pX

pt−1

pt−2
pt−1

+

δBt+1

(
pt−1
pt

)2
pX

pt−1

pt−2
pt−1

= pX

pt−1

pt−2
pt−1

+ δBt+1
pX

pt

pt−1
pt

· pt−1
pt−1

pt−2
pt−1

≤ pX

pt−1
+ δBt+1

pX

pt

pt−1
pt

· pt−2
pt−1

< 1.

Hence, in particular, δBT+1
pX

pT

pT−1
pT

< 1, and so γT ∈ (0, 1). If T = 1, we are done. Otherwise,
argue by induction; consider t ∈ {1, . . . , T} and assume that the claim is true for t + 1. By Eq.
(36), Bt+1 = (1− γt+1)

pt+1
pX

, so Bt+1
pX

pt

pt−1
pt

= (1− γt+1)
pt+1
pX

pX

pt

pt−1
pt

= (1− γt+1)
(pt+pX)(pt−pX)

p2
t

=

(1−γt+1)
p2

t−p2
X

p2
t

= (1−γt+1)
(
1− p2

X

p2
t

)
< (1−γt+1), because pt = p0 + tpX ≥ p0 +pX for t ≥ 1. By

the induction hypothesis, 1−γt+1 ∈ (0, 1), so Bt+1
pX

pt

pt−1
pt

< 1 and therefore γt ∈ (0, 1), as claimed.

A.2 Other Results

A.2.1 Proof of Proposition 2.2

We have

γt =
1− δBt+1

pX

pt

pt−1
pt

1 + δBt+1

(
pX

pt

)2 =

=
1 + δBt+1

(
pX

pt

)2 (
−pt−1

pt

)
1 + δBt+1

(
pX

pt

)2 =

= µtγ
IM
t + (1− µt)γTL

t ,

where the last equality follows from Eq. (11).
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A.2.2 Proof of Proposition 2.3

For the first claim, recall that µt = 1

1+δBt+1( pX
pt

)2 and

Bt+1

(
pX

pt

)2

=
(

pt+1

pt

)2
δ

1 + δBt+2

(
pX

pt+1

)2 Bt+2

(
pX

pt+1

)2

;

Clearly, if δ <
(

pT0
pT0+1

)2

, then BT0+1

(
pX

pT0

)2

< BT0+2

(
pX

pT0+1

)2

and so µT0 < µT0+1; since pt

pt+1
is

increasing in t, we have µt > µt+1 for all t = T0, . . . , T , as required.
For the second claim, recall from Eq. (32) that

Bt+1 = (1− γt+1)2 + δBt+2

(
pt + γt+1pX

pt+1

)2

.

Multiplying both sides by
(

pX

pt

)2

and expanding the square in the second term in the rhs yields

Bt+1

(
pX

pt

)2

= (1−γt+1)2
(

pX

pt

)2

+δBt+2

(
pX

pt+1

)2

+δBt+2

(
pX

pt

)2
[(

γt+1pX

pt+1

)2

+
(

2ptγt+1pX

pt+1

)]
.

Now observe that, by Eq. (11), γt+1 ∈ (0, 1) also for δ = 1. Hence, the above equation shows that,

for δ = 1, Bt+1

(
pX

pt

)2

> Bt+2

(
pX

pt+1

)2

, and hence also µt < µt+1. Since both sides of the latter
equation are continuous in δ, there is δt ∈ [0, 1) such that δ > δt implies µt < µt+1. Now take
δ(T0) = min{δT0 , δT0+1, . . . , δT } to obtain a cutoff with the required properties.

A.2.3 Proof of Proposition 2.5

Since µt = 1

1+δBt+1( pX
pt

)2 , it is enough to show that Bt+1

(
pX

pt

)2

is decreasing in p0. For t = T ,

from Eq. (11) we have

BT+1

(
pX

pT

)2

= p2
X

L−T∑
τ=1

δτ−1 1
p2

T+τ−1

which is clearly decreasing in p0. Now, assuming the claim is true for t+1 ≤ T , rewrite the equation
used in the proof of the first claim in Prop. 2.3 as

Bt+1

(
pX

pt

)2

=
(

pt+1

pt

)2 δBt+2

(
pX

pt+1

)2

1 + δBt+2

(
pX

pt+1

)2 .

Now pt+1
pt

= p0+(t+1)pX

p0+tpX
is strictly positive and decreasing in p0;39 furthermore, the fraction x

1+x is

increasing in x, and by the induction hypothesis δBt+2

(
pX

pt+1

)2

is decreasing in p0: thus, the second
fraction in the rhs above is also strictly positive and decreasing in p0. This completes the proof of
the inductive step.

39The derivative of this fraction w.r.to p0 is p−2
t [pt − pt+1] = −pXp−2

t < 0.
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A.2.4 Twin Experiment

To elaborate on the discussion in §3.3, we now describe an environment in which the parent and
the child are ex-ante symmetric: just like the child, the parent is born (at time −1) with a prior
Z−1, drawn from the same distribution as M0a; also, as we assume is the case for the child, before
receiving additional information, the parent’s prior over M is normal,with mean Z−1 and precision
p0. To reflect the fact that a child shares approximately 50% of a parent’s genes, we assume that
Corr [Z−1,M0a] = 1

2 .40 As in Assumption 1, Cov [Z−1, X0] = 0. At time 0, before the child is born,
the parent observes X0.

Thus, Z0 is now formally the parent’s time-0 posterior mean, determined by her prior Z−1 and
the observation of X0. Under these assumptions, Z0 = p0Z−1+pXX0

p0+pX
. This implies that

Cov(M0a, Z0) =
p0

p0 + pX
Cov(M0a, Z−1) =

=
p0

p0 + pX

1
2
VarM0a

because Corr [M0a, Z−1] = 1
2 and M0a has the same distribution (hence, the same variance) as Z−1;

similarly, since Z−1 is uncorrelated with X0,

VarZ0 =
(

p0

p0 + pX

)2

VarM0a +
(

pX

p0 + pX

)2

VarX.

Therefore, the difference between the posterior covariances of twins raised together and twins raised
apart, given by Eq. (17), can be rewritten as:[(

p0

p0 + pX

)2
pXγ1

p0 + pX
− p0 + γ1pX

p0 + pX

p0

p0 + pX

]
VarM0a +

pXγ1

p0 + pX

(
pX

p0 + pX

)2

VarX.

The factor multiplying VarM0a can be simplified as

p0

p0 + pX

[
p0

p0 + pX

pXγ1

p0 + pX
− p0 + γ1pX

p0 + pX

]
=

p0

p0 + pX

p0pXγ1 − p2
0 − p0pX − p0pXγ1 − γ1p

2
X

(p0 + pX)2
=

=
p0

p0 + pX

−p2
0 − p0pX − γ1p

2
X

(p0 + pX)2

Therefore, recalling that VarX = p−1
X , and canceling common terms, Eq. (17) has the same sign as

−p0[p2
0 + p0pX + p2

Xγ1]Var M0a + p2
Xγ1.

In particular, it is negative if and only if

VarM0a >
1
p0
· p2

Xγ1

p2
0 + p0pX + p2

Xγ1
.

A sufficient condition is thus Var [M0a] ≥ 1
p0

.

40Strictly speaking, this incorporates the assumption that the effects of genetic endowment on an indi-

vidual’s ability to perform the task are linear. But this is consistent with similar assumptions that are

prevalent in the behavioral-genetics literature.
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A.2.5 Proof of Lemma 4.3

By Bayes’ Rule, fM |X1+γ(M0−M)(m|x) ∝ fX1+γ(M0−M)|M (x|m)fM (m), where the f ’s denote the
relevant conditional and prior densities and “∝” is the proportionality symbol (i.e. the l.h.s. equals
the r.h.s. times a normalizing factor that does not depend on m). Recall that M ∼ N(M0,

1
p0

), and
note that

X1 + γ(M0 −M)|M ∼ N
(

γM0 + (1− γ)M,
1

pX

)
;

therefore, fX1+γ(M0−M)|M (x|m)fM (m) ∝ e−
1
2 Q(x,m), where

Q(x,m) = pX [x− γM0 − (1− γ)m]2 + p0(m−M0)2 =

= pX [(x−M0)− (1− γ)(m−M0)]2 + p0(m−M0)2 =

= pX(1− γ)2
[
x−M0

1− γ
− (m−M0)

]2
+ p0(m−M0)2 =

= pX(1− γ)2
(

x−M0

1− γ

)2

+ [p0 + pX(1− γ)2](m−M0)2 −

−2pX(1− γ)2
x−M0

1− γ
(m−M0) =

= [p0 + pX(1− γ)2]
[

pX(1− γ)2

p0 + pX(1− γ)2
x−M0

1− γ
− (m−M0)

]2
+ K(x) =

= [p0 + pX(1− γ)2]
[
M0 +

pX(1− γ)
p0 + pX(1− γ)2

(x−M0)−m

]2
+ K(x) =

= [p0 + pX(1− γ)2]
[
p0 − pXγ(1− γ)
p0 + pX(1− γ)2

M0 +
pX(1− γ)

p0 + pX(1− γ)2
x−m

]2
+ K(x),

where K(x) = pX(1− γ)2
(

x−M0
1−γ

)2

− p2
X(1−γ)4

p0+pX(1−γ)2

(
x−M0
1−γ

)2

is the constant required to “complete
the square.” By inspecting Q(x,m) − K(x), it follows that fM |X1+γ(M0−M) must be a normal
density with mean

p0 − pXγ(1− γ)
p0 + pX(1− γ)2

M0 +
pX(1− γ)

p0 + pX(1− γ)2
[X1 + γ(M0 −M)]

and precision p0 + pX(1− γ)2.

A.2.6 Proof of Proposition 4.4 and Corollary 4.5.

Begin by writing the parent’s objective function in Eq. (23) in a way that is consistent with both
the model of Sec. 2.1 and Sec. 4.3. In both cases, the child’s guess at time 2 takes the form
w(X1 + ā) + (1 − w)M0: if the child is unaware of the parent’s action, then w = pX

p0+pX
, whereas,

under the textbook equilibrium assumption, Lemma 4.3 implies that w = pX(1−γe)
p0+pX(1−γe)2 . We get

E
[
(X1 + ā−M0)2 + δ[X2 − (1− w)M0 − w(X1 + ā)]2|M

]
. (37)
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It is also convenient to calculate the expectation: adding and subtracting M inside the two squared-
loss terms, we get

E
[
(X1 + ā−M) + (M −M0)]2+ (38)

+δ[(X2 −M) + (1− w)(M −M0) + w(M −X1 − ā)]2|M
]

=

=ā2 +
1

pX
+ (M0 −M)2 + 2ā(M −M0)+

+δ

{
1

pX
+ (1− w)2(M0 −M)2 + w2

(
1

pX
+ ā2

)
+ 2w(1− w)(M0 −M)ā

}
=

=(1 + δw2)ā2 − 2[1− δw(1− w)](M0 −M)ā+ (39)

+δ

{
(1− w)2(M0 −M)2 + w2 1

pX

}
+

1 + δ

pX
+ (M0 −M)2.

Differentiating with respect to ā and rearranging terms yields

ā =
1− δ(1− w)w

1 + δw2
(M0 −M), (40)

and it is also immediate to verify that the second derivative of Eq. (39) is strictly positive.
For w = pX

p0+pX
, we obtain the optimal intensity γT = γ1 in Eq. (11) of Thm. 2.1 (where

BT+1 = BL = B2 = 1).
In the textbook-equilibrium case, Eq. (40) instead implies that a necessary and sufficient

condition for a linear equilibrium with intensity γe is γe = 1−δ(1−w)w
1+δw2 . This can be rewritten as

follows: notice that [p0 + pX(1− γe)2]2w(1−w) = pX(1− γe)[p0− pXγe(1− γe)]; then the required
condition is

γe =
[p0 + pX(1− γe)2]2 − δpX(1− γe)[p0 − pXγe(1− γe)]

[p0 + pX(1− γe)2]2 + δp2
X(1− γe)2

.

Multiplying by the denominator, which is strictly positive, and rearranging yields

[p0 + pX(1− γe)2]2(1− γe)− δpX(1− γe)[p0 − pXγe(1− γe) + γepX(1− γe)] = 0

which can be rewritten as

(1− γe)
{

[p0 + pX(1− γe)2]2 − δp0pX

}
= 0.

Therefore, one solution is always γe = 1. To find other solutions, assume γe 6= 1, divide by 1− γe

and rearrange:
pX(1− γe)2 =

√
δp0pX − p0.

Since p0 > 0, the rhs is positive provided δpX > p0. If this condition holds, then the above holds if
and only if

1− γe = ±

√√
δp0pX − p0

pX
.
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Note also that, if δpX > p0, then
√

δp0pX − p0 < δpX − p0 < pX , which implies that the argument
of the outer root is strictly between 0 and 1.

Choosing the positive sign in the above equation yields the expression for γe in Prop. 4.4,
henceforth denoted γ+; by the argument just given, γ+ ∈ (0, 1); Choosing the negative sign instead
yields γ− ≡ 2− γ+.

To complete the proof of Cor. 4.5, it is convenient to express the minimized value of the parent’s
objective function by substituting for ā in Eq. (39) using Eq. (40); we get

[1− δ(1− w)w]2

1 + δw2
(M0 −M)2 − 2

[1− δw(1− w)]2

1 + δw2
(M0 −M)2+

+δ

{
(1− w)2(M0 −M)2 + w2 1

pX

}
+

1 + δ

pX
+ (M0 −M)2 =

=
−[1− δw(1− w)]2 + δ(1− w)2 + δ2(1− w)2w2 + 1 + δw2

1 + δw2
(M0 −M)2 +

1 + δ(1 + w2)
pX

=

=
2δw(1− w) + δ(1− w)2 + δw2

1 + δw2
(M0 −M)2 +

1 + δ(1 + w2)
pX

=

=
δ(1− w)[2w + 1− w] + δw2

1 + δw2
(M0 −M)2 +

1 + δ(1 + w2)
pX

=

=
δ

1 + δw2
(M0 −M)2 +

1 + δ(1 + w2)
pX

; (41)

since w2 = p2
X(1−γe)2

[p0+pX(1−γe)2]2 and (1− γ−)2 = (γ+ − 1)2 = (1− γ+)2, it follows that the payoff to the
parent in the two equilibria with intensity coefficients γ+ and γ− is the same.

Finally, suppose that ā = γe(M0 − M) is an equlibrium parental intervention, with b1 = M0

and b2 as in Lemma 4.3, and fix k ∈ R. Then let ā′ = ā + k, b′1 = b1 + k and b′2 = b2; clearly,
(a, b) constitutes an equilibrium in which the child “filters out” the additive constant k both in
her time-1 guess and in her updating rule. It is immediate to verify that this new equilibrium is
payoff-equivalent to the original one.

References

[1] Apesteguia, Jose, Steffen, and Oechssler, Jrg(2006): “Imitation: theory and experimental
evidence” Journal of Economic Theory, forthcoming.

[2] Altmann (1980) Baboon Mothers and Infants The University of Chicago Press.

[3] Bandura A. (1977): Social Learning Theory, Prentice-Hall.

[4] Bandura A. and R.H. Walters (1963): Social Learning and Personality Development, New
York: Holt, Rinehart & Winston.

[5] Baumrind, D. (1967): “Child care practices anteceding three patterns of preschool behavior,”
Genetic Psychology Monographs, 75, 43-88.

43



[6] Baydar, N. and Brooks-Gunn, J. (1991): “Effects of maternal employment and childcare
arrangements on preschoolers cognitive and behavioral outcomes: evidence from the Children
of the NLSY.” Developmental Psychology, vol. 27, 932-45.

[7] Becker, G. S. (1981): A Treatise on the Family. Harvard University Press, Cambridge, Mas-
sachusetts.

[8] Belsky, J. and Eggebeen, D. (1991): “Early and extensive maternal employment and young
children’s socioemotional development: Children of the National Longitudinal Survey of
Youth.” Journal of Marriage and the Family, vol. 53, 1083-1110.

[9] Benabou, Roland and Jean Tirole (2002) “Self-Confidence and Personal Motivation” Quarterly
Journal of Economics, 117(3), 871-915.

[10] Benabou, Roland and Jean Tirole (2003) “Intrinsic and Extrinsic Motivation” Review of Eco-
nomic Studies, 70(3) (2003), 489-520.

[11] Berardo, J., and Smith, A. (2000): Bayesian Theory, 2nd ed., John Wiley and Sons, New
York.

[12] Bernal, Raquel (2004): “Employment and Child Care Decisions of Mother’s and the Well-being
of their Children,” manuscript, Northwestern University.

[13] Bisin, A. and T. Verdier (2000): “Beyond the Melting Pot: Cultural Transmission, Marriage,
and the Evolution of Ethnic and Religious Traits,” Quarterly Journal of Economics, CXV(3),
955-988.

[14] Bisin, A. and T. Verdier (2001): “Cultural Transmission, Socialization, and the Dynamics of
Preferences,” Journal of Economic Theory, 97(1), 298-319.

[15] Bisin, A., G. Topa and T. Verdier (2004): “Religious Intermarriage and Socialization in the
U.S.”, Journal of Political Economy, 112-3, 615-64.

[16] Bjorklund, Anders, Lindahl, Michael and Erik Plug (2006): “The Origins of Intergenerational
Associations: Lessons from Swedish Adoption Data,” Quarterly Journal of Economics, vol.
CXXI n. 3, pp. 999-1029.

[17] Black, Sandra, Devereux, Paul, and Salvanes, Kjell (2005): “The More the Merrier? The Effect
of Family Size and Birth Order on Childrens Education,” Quarterly Journal of Economics,
Vol. 120, N. 2 669-700.

[18] Blurton-Jones, Nicholas: “The lives of hunter - gatherer children” in Juvenile primates : life
history, development, and behavior edited by Michael E. Pereira, Lynn A. Fairbanks; New
York : Oxford University Press, 1993.

[19] Bouchard, T.J. Jr., Lykken, D.T., McGue, M., Segal, N.L., and Tellegen, A. (1990): “Sources
of Human Psychological Differences: The Minnesota Study of Twins Reared apart,” Science,
250, 223-338.

44



[20] Boyd, R. and P. Richerson (1985): Culture and the Evolutionary Process, Chicago, University
of Chicago Press.

[21] Brezzi, M. and Lai, T.L. (2000): “Incomplete Learning from Endogenous Data in Dynamic
Allocation,” Econometrica vol. 68 n. 6, 1511-1516.

[22] Brunnermeier, Markus and Jonathan Parker (2004). “Optimal Expectations,” Manuscript,
Princeton University.

[23] Camerer, Colin F. (2003): Behavioral Game Theory: Experiments in Strategic Interaction;
Princeton University Press.

[24] Carneiro, Pedro, Heckman, James J. and Dimitriy V. Masterov (2002): “Labor Market Dis-
crimination and Racial Differences in Premarket Factors,” manuscript, University of Chicago.

[25] Cavalli-Sforza, L. and M. Feldman (1981): Cultural Transmission and Evolution: A Quanti-
tative Approach, Princeton NJ, Princeton University Press.

[26] Chisholm, K. “A Three Year Follow-up of Attachment and Indiscriminate Friendliness in
Children Adopted from Romanian Families.” Child Developmen 69(4): 1092-1106.

[27] Clutton-Brock, T. H. (1991): The evolution of parental care Princeton, N.J. : Princeton
University Press.

[28] Collins, W.A., Maccoby, E., Steinberg, L., Hetherington, E.M., and Bornstein, M.H. (2000):
“Contemporary research on parenting: the case for nature and nurture,” American Psycholo-
gist, 55 (2), 218-232.

[29] Compte, Olivier and Andrew Postlewaite: “Confidence-Enhanced Performance,” American
Economic Review, forthcoming.

[30] Crawford, Vincent and Joel Sobel (1982): “Strategic Information Transmission,” Economet-
rica, 50 n. 6, pp. 1431-1451.

[31] Demo, D. H., and Cox, M. J. (2000): “Families with young children: A review of research in
the 1990s,” Journal of Marriage and the Family, 62, 867-895.

[32] Desai, S., Chase-Lansdale, P. L. and Michael, R. T. (1989): “Mother or market? effects of
maternal employment on the intellectual ability of 4-year old children.” Demography, vol. 26,
545-61.

[33] Easley, David and Nicholas Kiefer “Controlling a Stochastic Process with Unknown Parame-
ters;” Econometrica, 1988.

[34] Ettinger, David and Philippe Jehiel (2006): “Towards a Theory of Deception,” manuscript,
PSE and University College London.

[35] Fischoff, B., Slovic, P., and Lichtenstein, S. (1977): “Knowing with Certainty: The Appropri-
ateness of Extreme Confidence,” Journal of Experimental Psychology: Human Perception and
Performance, 3(4), 552-564.

45



[36] Fudenberg Drew and David K. Levine (1998): Theory of Learning in Games; MIT Press.

[37] Gilboa, I., and D. Schmeidler, ”Case-Based Decision Theory”, The Quarterly Journal of Eco-
nomics, 110 (1995) 605-639

[38] Gopnick, A., and Meltzoff, A. (1992): “Categorization and naming: basic-level sorting in
eighteen-month-olds and its relationship to language,” Child Development, 63, 1091-1103.

[39] Griffin, Gary A. and Harry F. Harlow (1966) “Effects of Three Months of Total Social Depri-
vation on Social Adjustment and Learning in the Rhesus Monkey,” Child Development, Vol.
37, No. 3. pp. 533-547.

[40] Harlow, H. F., and Zimmerman, R. (1959). “Affectional responses in the infant monkey.”
Science, 130, 421-432.

[41] Harbaugh, W., K. Krause, and T. Berry (2001) “AGARP for Kids: On the Development of
Rational Choice Behavior,” American Economic Review, 91 #5, Dec., 1539-1545.

[42] Harris, Judith Rich (1995): “Where Is the Child’s Environment? A Group Socialization
Theory of Development,” Psychological Review, Vol. 102, N. 3, 458-489.

[43] Harris, Judith Rich (1998): The Nurture Assumption. The Free Press.

[44] Hoopes, Janet L. (1982): Prediction in Child Development: A Longitudinal Study of Adoptive
and Non-Adoptive Families. The Delaware Family Study. Child Welfare Leagues of America,
New York, NY.

[45] Harsanyi, J. (1967-68): “Games of Incomplete Information Played by Bayesian Players. Parts
I, II, III,” Management Science, 14, 159-182, 320-334, 486-502.

[46] Kalai, E., and Lehrer, E. (1993): “Rational learning leads to Nash equilibrium,” Econometrica
61 (5), 1019-1045.

[47] Koszegi, Botond (2000) “Ego Utility, Overconfidence, and Task Choice,” manuscript, Univer-
sity of California, Berkeley.

[48] Lamport-Commons, M., and Miller, P. (1992): “Emotional learning in infants: a cross-cultural
examination,”Developmental Psychology, 28 n.4.

[49] Lancaster Jane B., and Chet S. Lancaster (1987): “The Watershed: Change in Parental-
Investment and Family Formation Strategies in the Course of Human Evolution.” in Parenting
Across the Lifespan edited by Jane B. Lancaster, Jeanne Altmann, Alice S. Rossi, And Lonnie
Sherrod; Aldyne de Gruyter, Hawthorne, NY.

[50] OECD Publishing (2006): “Education at a Glance: OECD Indicators - 2005 Edition.”

[51] Pinker, S. (2002): The Blank Slate: The Modern Denial of Human Nature, Viking-Penguin.

[52] Plomin, R. and Daniels, D. (1987): “Why are children in the same family so different from
each other?” The Behavioral and Brain Sciences, 10, 1-16.

46



[53] Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001): Behavioral Genetics.
(4th Edition). New York: Worth Publishers.

[54] Reiss David, Neiderheiser Jenae M., Hetherington Mavis E. and Plomin Robert (2000): The
Relationship Code. Harvard University Press.

[55] Richman, A.L., LeVine, R., Stables, R., Howrigan, G., Welles-Nystrom, B., and LeVine,
S. (1988): “Maternal behavior to infants in five cultures,”in Parental Behavior in Diverse
Societies, LeVine, R., Miller, P., and West, M. (eds.), Jossey-Bass Inc., San Francisco

[56] Ridley, Matt, (2003): Nature Via Nurture : Genes, Experience, and What Makes Us Human,
Harper Collins.

[57] Robson, Arthur, Kaplan, Hillard, Lancaster, Jane (2006): “Embodied Capital and the Evolu-
tionary Economics Of the Human Lifespan,” Population and Development Review, forthcom-
ing.

[58] Rogoff, B. (1997): “Cognition as a collaborative process,” in Handbook of Child Psychology,
Vol. 2, Damon, W. (ed.), fifth edition, John Wiley and Sons, New York.

[59] Rubinstein, Ariel (1989) “Optimal Flexibility of Rules: The Tale of the Wise Principal and
the Naive Agent,” European Journal of Political Economy 5 219-227.

[60] Sacerdote, Bruce (2002): “The Nature and Nurture of Economic Outcomes,” American Eco-
nomic Review Papers and Proceedings, vol. XCII p. 344–348.

[61] Sacerdote, Bruce (2006): “How Large are the Effects from Changes in the Family Environ-
ment? A Study of Korean-American Adoptees,” Quarterly Journal of Economics, forthcoming.

[62] Shonkoff, Jack, and Deborah Phillips, eds. 2000. From Neurons to Neighborhoods: The Science
of Early Childhood Development. Washington, D.C.: National Academy Press.

[63] Smith, Lones and Peter Sorensen (2006): “Informational Herding and Optimal Experimenta-
tion,” manuscript, University of Michigan.

[64] Schlag, Karl H. (1998) “Why Imitate, and If So, How?, : A Boundedly Rational Approach to
Multi-armed Bandits” Journal of Economic Theory, Volume 78, Issue 1, Pages 130-156

[65] Todd, Petra E., Kenneth I. Wolpin, (2004). “The Production of Cognitive Achievement in
Children: Home, School and Racial Test Score Gaps” manuscript, University of Pennsylvania.

[66] Turkheimer, Eric, Haley, Andreanna, Waldron, Mary, D’Onofrio, Brian, and Gottesman, Irv-
ing I. (2003): “Socioeconomic Status Modifies Heritability of IQ in Young Children,” Psyco-
logical Science XIV 623-628

[67] Vandell D.L. and J. Ramanan (1992) “Effects of Early and Recent Maternal Employment on
Children from Low Income Families.” Child Development 63: 938-949.

[68] Vygotsky L.S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.

47



[69] Waxman, S. (in press): “Links between object categorization and naming: Origins and emer-
gence in human infants,” In D. K. Rakison & L. M. Oakes (Eds.), Early category and concept
development: Making sense of the blooming, buzzing confusion. New York: Oxford University
Press.

[70] Weinstein, N . D . (1980): “Unrealistic Optimism About Future Life Events,” Journal of
Personality and Social Psychology, 39(5), 806—820.

[71] Warren, S. (1992): “Lower threshold for referral for psychiatric treatment for adopted adoles-
cents.” Journal of the American Academy of Child and Adolescent Psychiatry 31 n. 3.

[72] Wood, D., Bruner, J.S., and Ross, G. (1976): “The role of tutoring in problem-solving,”
Journal of Child Psychology and Psychiatry, 17, 89-100.

[73] Wood, D., and Middleton, D. (1975): “A study of assisted problem-solving,” British Journal
of Psychology, 66, 181-191.

[74] Wood, D., Wood, H., and Middleton, D. (1978): “An experimental evaluation of four face-to-
face teaching strategies,” International Journal of Behavioral Development, 2, 131-147.

[75] Zentall, Thomas R. and Bennet G. Galef JR. (1988) Social Learning: Psychological and Bio-
logical Perspectives. Lawrence Erlbaum Associates, Publishers.

48



B Online Appendix

B.0.7 Proof of Theorem 3.1 (sketch)

The claim essentially follows from the Certainty Equivalence Principle. For completeness,
we briefly sketch how to modify the proof of Theorem 4.2 given above for the case in which
the parent’s information set at the beginning of time t is It = {X1, . . . , Xt−1} (notice that
this yields a multivariate generalization of Theorem 3.1 that also includes a cost term).
Loosely speaking, the basic idea is to replace each occurrence of M at time t with the
parent’s posterior mean, Zt = p−1

Zt [pZ0Z0 + pX
∑t−1

s=1 Xs], where pZt = pZ0 + tpX .
First, analogously to Eq. (26), for t ≥ T and τ ≥ 1 we can write

Xt+τ −Mt+τ−1 = (Xt+τ − Zt)− p−1
t+τ−1pt(Mt − Zt)− p−1

t+τ−1pX

t+τ−1∑
s=t+1

(Xs − Zt) :

this follows directly from the decomposition in Eq. (25). In turn, this implies that

E[(Xt+τ −Mt+τ−1)′(Xt+τ −Mt+τ−1)|It+1] =

= const. + (Mt − Zt)′ptp
−1
t+τ−1p

−1
t+τ−1pt(Mt − Zt);

note that the constant term is different here, because the conditional variance of Xs, for
s > t, given Zt is not pX , and the Xs’s are no longer independent conditional upon Zt.
However, it is still the case that the only non-zero term involving Mt is the quadratic form
in (Mt−Zt): for s = t+1, . . . , t+ τ , E[(Xs−Zt)′(Mt−Zt)|It+1] = E[Xs−Zt|It+1]′(Mt−
Zt) = 0, because Zt is the parent’s estimate of the mean of Xs at the beginning of time
t + 1. As above, for every non-teaching period t + 1 ∈ {T + 1, . . . , L}, we can then write
Vt+1(Mt, Zt) = At+1 + (Mt−Zt)′Bt+1(Mt−Zt), where At+1 is suitable constant and Bt+1

is exactly as in Theorem 4.1.
Turn now to teaching periods t ∈ {1, . . . , T}. Again, VT+1(MT ,M) = AT + (MT −

M)′BT+1(MT − M). The proof of the inductive step is as in Theorem 2.1; the optimal
action at(X1, . . . , Xt−1) must now solve the Bellman equation

Vt(Mt−1, Zt−1) = min
ā

E
ˆ
ā′Cā + (Xt + ā − Mt−1)′(Xt + ā − Mt−1)|It

˜
+ (42)

+δE

»
At+1 +

“
p−1

t pt−1Mt−1 + p−1
t pX(Xt + ā) − Zt

”′
Bt+1

“
p−1

t pt−1Mt−1 + p−1
t pX(Xt + ā) − Zt

”
|It

–
.

Differentiating with respect to ā, taking expectations, and dividing by 2 yields the FOC

0 = ā′C + ā′ − (Mt−1 − Zt−1)′ +

+δ
(
p−1

t pt−1Mt−1 + p−1
t pX(Zt−1 + ā)− Zt−1

)′
Bt+1p

−1
t pX ,
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where we use the fact that E[Xt+1|It] = E[Zt|It] = Zt−1. Therefore,

at(X1, . . . , Xt−1) = [C + I + δpXp−1
t Bt+1p

−1
t pX ]−1[I − δpXp−1

t Bt+1p
−1
t pt−1] · (Mt−1 − Zt−1)

= Γt(Mt−1 − Zt−1), (43)

where Γt is as in Theorem 4.1. To show that Vt has the required quadratic form, we note
that Xt +Γt(Mt−1−Zt−1)−Mt−1 = (Xt−Zt−1)− (I−Γt)(Mt−1−Zt−1), as in the original
proof; furthermore,

p−1
t pt−1Mt−1 + p−1

t pX(Xt + Γt(Mt−1 − Zt−1))− Zt =

= p−1
t pt−1Mt−1 + p−1

t pX(Xt + Γt(Mt−1 − Zt−1))− Zt−1 + (Zt−1 − Zt) =

= p−1
t pt−1(Mt−1 − Zt−1) + p−1

t pX(Xt − Zt−1 + Γt(Mt−1 − Zt−1)) + (Zt−1 − Zt) =

= p−1
t (pt−1 + pXΓt) (Mt−1 − Zt−1) + p−1

t pX(Xt − Zt−1) + (Zt−1 − Zt).

The key observation is now that the expectation of the quadratic form in the second line
of Eq. (42) reduces to a constant plus

(Mt−1 − Zt−1)′(pt−1 + pXΓt)′p−1
t Bt+1p

−1
t (pt−1 + pXΓt)(Mt−1 − Zt−1),

which implies that Vt(Mt−1, Zt−1) = At + (Mt−1 − Zt−1)′Bt(Mt−1 − Zt−1), with Bt as in
Thm. 4.1 (the constant At however is different). Again, the key observation is that all
other cross-terms involving Mt−1 have zero expectation conditional on It.
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