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Abstract

We propose a method to test a prediction of the distribution of a stochastic process.

In a non-Bayesian non-parametric setting, a predicted distribution is tested using a

realization of the stochastic process. A test associates a set of realizations for each

predicted distribution, on which the prediction passes. So that there are no type I

errors, a prediction assigns probability 1 to its test set. Nevertheless, these sets are

�small�, in the sense that �most�distributions assign it probability 0, and hence there

are �few� type II errors. It is also shown that there exists such a test that cannot

be manipulated, in the sense that an uninformed predictor who is pretending to know

the true distribution is guaranteed to fail on an uncountable number of realizations,

no matter what randomized prediction he employs. The notion of a small set we use

is category I, described in more detail in the paper. JEL Classi�cation: K9

1 Introduction

We consider the problem of testing a prediction in an uncertain environment. A decision

maker named Alice is trying to decide whether a given distribution determines an observed

realization. For example, Alice may want to know if a predicted stochastic process that

governs key economic indicators is correct, and furthermore, if the prediction was provided

by a self-proclaimed expert, Bob, then Alice may want to evaluate whether Bob is indeed
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an expert economist, one who would know the distribution. We assume that Alice herself

is non-Bayesian, in the sense that she does not have a prior distribution over the possible

distributions that govern the stochastic process. Moreover, if the distribution was provided

by Bob she also does not assign a prior probability to his expertise. The question is to what

extent, in this non-Bayesian and non-parametric setting, Alice can �test�a given distribution

using a single realization, e.g. one sample path of the stochastic process.

Such a test considers the input �a given distribution �and uses the information available

to the tester � the single realization � to provide a grade, either pass or fail. Hence,

a test maps every possible stochastic prediction to a set of a realizations on which the

prediction passes. Ideally, we would like the test to pass a predicted distribution whenever it

corresponds to the stochastic process and to fail a prediction that did not yield the realization.

Such an ideal test (with no Type I or Type II errors) does not exist as we explain below.

But our �rst positive result, in Proposition 1 of section 2, provides a class of tests that satisfy

the following two properties:

1. No type I errors: if the true distribution is the one being predicted, then with proba-

bility 1, with respect to this true distribution, the test is passed.

2. Few type II errors: if the wrong distribution is being predicted, then for all but a

�small� set of true distributions, the test is failed with probability 1 with respect to

the true distribution.

Note that the di¤erence between a test satisfying these properties and an ideal test is

the �small�set of true distributions, for a particular prediction, where Type II errors may

occur. We formalize this notion of smallness in section 2 below where we present this result.

To obtain such a result a distribution must be tested according to features as unique as

possible to that distribution. Thus, on the one hand, we want those features to be realized

for sure by that distribution, i.e., the features determine an event that has probability 1

according to this distribution. On the other hand, the event has to be unique enough so as

to have 0 probability according to all but a �small�set of alternative distributions.

Our motivation is twofold. We think it is of interest to explore the abstract question

regarding to what extent one can evaluate a stochastic theory. Obviously deterministic

theories can be tested easily� either what they predict comes to pass or it does not. If

the �truth�is stochastic, how close can one get to testing a prediction? The most obvious

scenario where this question arrises is the testing of non-deterministic scienti�c theories

where an outsider who has no ability to create incentives for the scientist wonders whether

the theory can be tested (at least, so to speak, in theory).

Economists typically adopt a Bayesian and game theoretic perspective where Alice and

Bob have beliefs over the world, and Alice constructs incentives to get Bob to tell the truth.
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In addressing the above issue it is important to see whether one can evaluate the validity of

a stochastic theory and theorist when no incentives are provided.

Our second motivation is the negative results on non-Bayesian testing of experts in the

�calibration�literature. Beginning with a result by Foster and Vohra (1998) this literature

considered a variety of classes of tests that seem reasonable, yet all turn out to be susceptible

to manipulation in the following sense. For each of these tests it was shown that if Bob can

choose a predicted distribution randomly then he can pass the test with probability 1 (with

respect to his randomized strategy), regardless of the realization.

How does this strong conclusion relate to our result in section 2? That result is con-

cerned with testing a prediction, not a manipulator. It does immediately imply that our

tests cannot be manipulated by a pure strategy. However, as noted, calibration tests are

manipulated by mixed strategies� random predictions� and our �rst result does not apply

to those. Nevertheless, it turns out that our approach helps avoid manipulation by mixed

strategies as well. Speci�cally, our second positive result, Proposition 2 of section 3, shows

that there exists a subclass of the tests constructed in Proposition 1 that cannot be manip-

ulated even with random predictions. Furthermore, for any pure or randomized prediction,

Bob is guaranteed to fail the test on a set of realization which is not �small�.

We present, in section 4, �nite approximations to both positive results for the case of

stochastic processes that are realized over time. Section 5 contains a discussion of related

literature, in particular the literature on calibration tests.1

2 Good tests

Consider a set of possible realizations, 
; throughout we focus on the case2 
 = f0; 1g@0. Let
�(
) denote the set of probability measures over 
, when 
 is endowed with the topology

generated by the �nite cylinders and with the resulting Borel �-�eld, and endow �(
)

with the weak� topology. The true distribution determining the realization is denoted by

q 2 �(
). A test is a function t : �(
) �! 2
 where a predicted distribution p passes the

test t if and only if the realization ! 2 
 satis�es ! 2 t(P ). Note that we consider testing a
prediction p with a single realization. Although ! is a sequence, it is just one observation in

a single experiment of a stochastic theory and should not be confused with testing a theory

with repeated independent experiments.

As discussed, there are two desiderata for an ideal test.

1See Dawid (1982, 1985), Foster and Vohra (1998), Kalai, Lehrer and Smorodinsky (1999), Fudenberg
and Levine (1999), Lehrer (2001), Sandroni, Smorodinsky and Vohra (2003) and Sandroni (2003).

2As can be seen from the proofs, and as we discuss in section 5 below, the positive results in this and the
following section hold for a broader class of environments, including for instance the case where 
 = [0; 1].
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� An ideal test makes no type I errors, that is it must pass a correct prediction with
probability 1, i.e.,

q(t(q)) = 1 for every q 2 �(
). (1)

� An ideal test makes no type II errors, that is, it passes predictions other than the truth
with probability 0, i.e.,

q (t (p)) = 0 for every q 6= p, both in �(
) : (2)

An ideal test must �nd an identifying feature of the predicted distribution via a set of

realizations that will occur if the prediction is correct, and that is su¢ ciently unique to that

distribution, i.e., it corresponds to a su¢ ciently small set, so that it is not realized with

positive probability for any other distribution.

However, an ideal test does not exist. Consider a non-atomic prediction p and any

! 2 t (p). For q = �!, the measure assigning probability 1 to !, we have q (t (p)) = 1, even

though q 6= p. One way to alleviate this problem would be to consider an environment with

a restricted subset of possible true distributions. For example, assume that the only possible

measures are the i.i.d. distributions in �(
) with parameter �, denoted by fp� : � 2 [0; 1]g.
Then setting t (pa) equal to the set of realizations (sequences) whose proportion of 1�s con-

verges to � has neither type I nor type II errors and hence is ideal (in the sense above)

when con�ned to this class of feasible measures. This leads to a natural question: how far

can such results be extended by considering other restricted subsets of measures. This is a

di¤erent approach from what we explore here, as it presumes some a priori knowledge about

the feasible set of distributions which is not the goal of this paper.

Instead, we consider all possible distributions and we propose a good, albeit not ideal,

test where we weaken the second requirement to hold for �most�q 6= p. That is, given any

prediction p, we ask that all but a �small�set of true distributions assign the test t (p) zero

probability.3 This amounts to asking, given any prediction p, for a set t (p) of realizations

that would be surprising, i.e., unlikely to occur, given all but a �small�subset of q 6= p.

We obtain a good test in two steps. First, we observe that any distribution has a �small�

set of realizations that occur with probability 1. Then we show that given any �small�set

of realizations, the set of measures that assign it non-zero probability is itself �small�. That

is, the �rst step looks for a �small� set in 
, while the second step says that this yields a

�small�set in �(
).

3One might alternatively ask that given any true distribution q, �most�predictions fail the test, so that
q (t (p)) = 0 for all q and most p. However, this allows for a prediction p that passes the test for every
q. Thus the test would be useless when faced with such a prediction, which con�icts with our objective.
Moreover, such a test would be manipulable using a pure strategy. (Precise de�nitions of manipulability are
in the next section.)
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The notion of �small�that we use here is topological: a category I set, which is a countable

union of nowhere dense sets (sets whose closure has an empty interior).4 That is, instead

of (2) we ask that

q (t (p)) = 0 for all p and all but a category I set of q�s. (3)

Proposition 1 1. There exists a test t : � (
) ! 2
 s.t. for every p 2 �(
) the set
t (p) is category I and p (t (p)) = 1.

2. For any category I set � � 
, we have fq : q (�) > 0g is category I.

The proof is in the appendix. The �rst part follows closely from Oxtoby (1980). The

second part is possibly of independent interest as it con�rms that the category I notion of

smallness carries over in a natural way from sets to distributions over sets.

This result directly provides a class of good tests. The �rst part of the proposition

guarantees for every p the existence of a category I set that has p-probability 1, and hence

has no type I errors, i.e., it satis�es equation (1). The second part of the proposition above

implies that any such set has type II errors only on a small set of q�s, that is it satis�es

equation (3).

For a constructive example of such a category I set, consider the i.i.d. distributions

described earlier where the probability of 1 at each period is given by 0 < � < 1. As we

show in the appendix, the set of sequences with proportion � of 1�s is a category I set that

occurs with probability 1 (according to the i.i.d. process with parameter �).

Proposition 1 implies that the class of good tests which assign a category I set to each

prediction can be used to test a stochastic theory about a stochastic environment. While it

cannot de�nitively say that the theory is correct when it passes the test, it does say that only

a �small�set of alternative distributions are plausible. However, when faced with a potential

expert whose objective is to pass the test, rather than to convince one of a particular theory,

we need to be concerned with strategic randomization of the predictions. That is, while the

above results indicates that these tests cannot be manipulated by a pure strategy, they can

potentially be manipulated by choosing a mixed strategy over predictions. The next section

addresses this issue.

3 Good unmanipulable tests

Following our development of good tests, as described in the preceding section, Olzsewski and

Sandroni (2005) argued that there exists a good test that can be manipulated by a random

4In section 5 we discuss this notion of size.
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prediction, in the sense that with probability 1 (according to the randomized strategy) the

test is always passed. This follows a long literature where it is shown that a large class

of intuitively appealing calibration tests can be manipulated in this way; we discuss this

literature in section 5 below. Thus, while the tests developed in the preceding section

are good (in the sense de�ned) at evaluating deterministic predictions they are potentially

manipulable by randomized predictions.

Here we develop the �rst example of tests with no type I errors that cannot be manip-

ulated. We show that any of our category tests can be modi�ed in a way that rules out

manipulation. As they remain category tests they retain both properties 1 and 2 required

of a good test.

Formally, a test t can be manipulated if the following condition holds.

There exists � 2 �(�(
)) such that, for every ! 2 
; � (fpj! 2 t(p)g) = 1.

That is, an uninformed predictor has a randomized strategy for choosing predictions such

that for every realization he passes the test with probability 1 (with respect to the randomized

strategy). So, a test t cannot be manipulated if for every � 2 �(�(
)) there exists an ! 2 
;
such that � (fpj! 2 t(p)g) < 1. We strengthen this in two directions. We ask for the

guaranteed failure of a non-expert at some realizations, and that the failure occurs on an

uncountable set of points. Formally, a test t cannot be manipulated on an uncountable set

of points if the following holds:

For every � 2 �(�(
)) there exists an uncountable set S � 
 (4)

such that for every ! 2 S we have � (fpj! 2 t(p)g) = 0:

In other words, no matter what randomized prediction is made, there is an uncountable set

of realizations such that on each of these realizations the randomized prediction will fail with

probability 1 (with respect to the randomized prediction).

Proposition 2 Assume the continuum hypothesis. There exists a good test (i.e., satisfying

(1) and (3)) that cannot be manipulated on an uncountable set of points.

The proof is in the appendix. It proceeds by modifying (any) good test from the preceding

section, and therefore derives a class of tests. The proposition establishes the existence of

a test which assures that no matter what randomized prediction a predictor employs, he is

guaranteed to fail on an uncountable set of points, while the test still passes with probability

1 an expert who predicts the true distribution.
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4 Finite approximations

There is naturally an interest in �nite approximations when the realization is revealed over

time. One would like to be able to determine the outcome of the test without waiting for the

whole realization to unfold. A �nitely determined test can require that rejection will always

occur in �nite time, that passing will always occur in �nite time, or both. If a test passes

(respectively fails) a prediction p in �nite time n for a realization ! = (!1; !2; :::) then the

test passes (respectively fails) on every realization with the same �rst n coordinates as !.

Formally, the test is determined (passes, fails or both) in �nite time on ! if for some n it

treats all the realizations in the open cylinder Cn(!) = f!0j!0i = !i; i = 1; :::; ng in the same
way (i.e., passes p on all or no elements of this cylinder).

This implies that a good test cannot pass distributions in �nite time since passing p on

an open set such as Cn(!) would imply that an open set of predictions in �(
) also pass

with positive probability on this set. Thus, if we want to avoid type II errors for all but

a �small� set of distributions, we cannot pass the test in �nite time.5 Hence we focus on

rejection in �nite time. This is consistent with much of the statistics literature where the

perspective is that one can reject, but not pass, a hypothesis with a limited data set.

While accepting in �nite time does not yield itself to a good test, rejection in �nite time

does as long as we allow for a small probability of a type I error. To better understand

�nite-time rejection, consider for example the prediction p = �!, the Dirac measure at a

given realization !. Consider testing this prediction using t(p) = f!g, i.e., passing the
deterministic prediction of ! if and only if ! does occur. This guarantees rejection of p

in �nite time since for every !0 6= ! there exists an n such that (!1; :::; !n) 6= (!01; :::; !
0
n).

Obviously, this test does not pass p at ! in �nite time.

In this spirit, the following result states that we can approximate good tests with "-good

tests that provide rejection in �nite time, where an "-good test allows for type I error with

probability of no more than " > 0, and type II errors continue to occur on at most a small

set of distributions.

Proposition 3 There exists a test t" such that:

1. For every distribution q 2 �(
) the type I error is at most ", i.e., q(t"(q)) > 1�", and

2. For every prediction p, t"(p) is a closed set with empty interior in 
.

5If one also requires that the test passes and rejects in �nite time then� since the test needs to be
determined either way for every !� we have that it must be determined in a uniformly bounded time by
the compactness of 
. This amounts to requiring that a limited amount of data provide a clear distinction
among all possible predictions in �(
)� a hefty burden that Olszweski and Sandroni (2005) show is not
feasible.
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We have that t" rejects p in �nite time since for every !0 =2 t"(p) there is an open neighborhood
of !0 not in t"(p) and therefore an n such that Cn(!0) � 
 n t"(p). The test t" satis�es our
second desideratum since t" (p) is a closed nowhere dense, hence a category I set.

The test is constructed from the category tests developed above. Speci�cally, for every p

we know that there is a category I set t (p) that is assigned p-probability one. Hence, for the

given " > 0, there is a �nite (sub-)union of closed sets with empty interior that are assigned

p-probability higher than 1 � ". Let t"(p) be this �nite union which is therefore itself a

closed set with an empty interior. We have thus shown that any good test t constructed

above can be restricted to an "-good test t", that rejects in �nite time, with t"(p) � t(p).

To illustrate such a restriction consider once again a prediction p� denoting the i.i.d.

distribution with a parameter 0 < � < 1. As noted above, the test t(p�) = f! =

(!1; !2; :::)j 1n
Pn

i=1 !i �!n!1 �g is shown in the appendix to be a category I set such that
p�(t(p�)) = 1. For " > 0, we can obtain an "-good test for p� as follows. Fix a sequence

 j &
j�!1

0 and consider the test

t"(p�) = f! = (!1; !2; :::) j for all j = 1; 2; :::; for all nj � m < nj+1;

�����
mX
i=1

1

m
!i � �

����� <  jg

(5)

where (nj)
1
j=1 is some increasing sequence of indices in N. That is, given the prediction

p�, the test t" asks whether the average occurrences of 1�s is within  1 of � beginning in

period n1, then when period n2 > n1 is realized it asks whether the average is within a

tighter bound,  2, of �, and so on. Clearly, since  j & 0, t"(p�) � t(p�) and in particular

t"(p�) is nowhere dense. The set t"(p�) is closed since it is the intersection of the cylinders

Gj =
�
!j for all m s.t. nj � m < nj+1, j

Pm
i=1 !i=m� �j <  j

	
. Lastly, in the appendix

we show that for every positive decreasing sequence of  j there is a selection of periods nj
such that p�(t"(p�)) > 1� ".

Since any good test can be restricted to an "-good test with �nitely determined rejection,

we can �nd an "-good test with �nitely determined rejection that cannot be manipulated.

Proposition 4 Assume the continuum hypothesis. There exists an "-good test t" that is

�nitely determined and cannot be manipulated. Formally,

� For all q 2 �(
), q (t" (q)) = 1� ",

� For all p 2 �(
), q (t" (p)) = 0 for all but a category I set of q 2 �(
),

� t" (p) is a closed (nowhere dense) set in 
, hence it has �nitely determined rejection,

� For every � 2 �(�(
)) there exists an uncountable set S such that for every ! 2 S

we have � (fpj! 2 t"(p)g) = 0.
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The proof of this proposition appears in the Appendix. The proof again generates a class of

tests, since any given unmanipulable good test t can be restricted to provide unmanipulable

"-good tests that are rejected in �nite time for arbitrary " > 0.

5 Discussion

5.1 Modeling and interpretation

5.1.1 �Small�sets

Category I and alternative notions We call category I sets �small.�For the space of

measures one can consider various notions for size other than category I. For instance, one

could think that dense sets are large. As pointed out in footnote 11 in the appendix our

category I sets in �(
) are dense. In fact, for any �xed ! 2 
 the set of probability

measures assigning positive probability to ! is dense. Thus saying that a set is large just

if it is dense seems unreasonable in this context. In economics often open and dense sets

are considered large. The opposite is of course a closed nowhere dense set, of which we

permit only countable unions. Hence this still seems small in the uncountable space of

�(
).6 We have not explored other notions of small sets in such a space, such as shyness

(see Christensen (1972), Hunt, Sauer, and Yorke (1992), and Anderson and Zame (2001)).

The aforementioned notions are all topological and of course our results depend on the

choice of topology for �(
) and �-�eld for 
. The product topology and resulting Borel

�eld as the �-�eld for 
 seem natural given the intent to consider also �nitely determined

tests. The weak� topology on �(
) is the weakest topology preserving the continuity of

integration over continuous functions. For this reason it is commonly used to study decision

making, as then expected payo¤s are continuous in expectations (assuming continuous utility

functions); but this does not provide any additional support for this topology in our non-

Bayesian environment. One feature we �nd appealing in our approach, is the consistency

of our notion of �small�both in 
 and in �(
), but this is appealing for aesthetic, and not

any more fundamental, reasons.

An alternative would be to replace the topological approach and use the notion of measure

in 
. This is di¢ cult because we do not know what the true measure is, and would then like

to use some �full support�measure, which does not exist on �(
). (However, the notion of

shyness provides an alternative construction requiring that a small set must stay measurably

small under linear transformation. See Christensen (1972).) In any case, there is a duality

between null-sets (Lebesgue measure zero) and category I sets. Sierpinski (1934) showed

that under the continuum hypothesis there is a one to one mapping, f , of the interval onto

6We are grateful to a referee for comments on the relation between our category I sets and dense sets.

9



itself such that f(E) is a Lesbeque measure 0 set if and only if E is a �rst category set.7

This establishes the following result.

Theorem 5 (Theorem 19:4 from Oxtoby (1980)) Consider any proposition involving
notions of measure zero, category I, and notions of pure set theory. Under the contin-

uum hypothesis, the proposition holds if and only if the proposition obtained by interchanging

the terms �measure zero�and �category I�holds.

This duality principle suggests that if we cannot use the notion of �measure zero�by using

the concept of �category I�we preserve the same set theoretic deductions. Thus, while we

cannot claim that category I is an unequivocally correct notion of smallness for our purpose,

it does seem to provide a �good� (albeit far from ideal) non-Bayesian test for stochastic

predictions.

Is the set on which manipulation fails �big�? The preceding discussion naturally

leads one to ask, in terms of the non-manipulation result, how large is the set S on which

random predictions are guaranteed to fail. We prove that it is uncountable, and in fact our

proof shows that it is not category I, so it is not small in this sense.

A related question is how large is the set of true distributions q on which a random

prediction � fails. Recall that we showed that for any pure strategy prediction, p, we have

q (t (p)) = 0 for all but a category I set of q. How large is the set of measures that assign

strictly positive probability to the set on which � fails, fqjq (f!j� fp : ! 2 t" (p) = 0gg) > 0g?
While we do not have an answer to this, for any nonatomic q, the set S on which � is

guaranteed to fail is null.8 While at �rst sight this might seem quite negative, note that

the convex combination of any distribution with atoms with a non-atomic distribution does

have atoms. So the non-atomic distributions are small in this sense. Relatedly, this set is

known to be shy (see Stinchcombe (2001)).

In any case, a very nice strengthening of our result has been obtained by Olzsewski and

Sandroni (2005). Their result does not require the continuum hypothesis and is constructive,

and shows that the set on which random predictions fail is the complement of a category

I set. Hence, to the extent that our notion of category I sets is compelling as a notion of

small, they identify a good test that assures failure of random predictions on a large set.

Are the predictions tight? The �strength�of our test is clearly limited. That is, the

category I set of distributions that cannot be ruled out may still be larger than we would

like. After all, the set of all possible distributions on �(
) is very big, so even sets that

7Erdös (1943) generalized this result showing that there is such a mapping f that also satis�es f = f�1.
8We thank Gil Reilla for this point.
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are relatively small may appear large on their own. Moreover, the tests do not distinguish

between coarser and �ner predictions. The prediction that the distribution is i.i.d. with

probability 0:5 will pass even if the predictor knows a more precise prediction, such as, that

the actual sequence alternates each period between 0 and 1. This indicates a natural way

to create more re�ned tests. It is immediate that for any test t that is more restrictive

than another test �t, in the sense that for all p we have t(p) � �t(p), if �t is unmanipulable and
satis�es property 2, the same holds for t. This does not enable comparing experts by having

them choose the more restrictive successful prediction, since for most measures p there is

no minimal category I set that is assigned p-probability 1. However, as is clear from the

example of the alternating sequence, this does enable some ranking of predictions.

5.1.2 Generalizing 
.

While we have focused on the case where the space of realizations is the space of sequences,

we have done so mainly because the existing literature, discussed next, has focused on

calibration with respect to a sequence� a realization that is unveiled over time. A closer

look at our proofs shows that the result holds for more general spaces 
.

This fact does make us view our results with some concern. It suggests that using a

single data point (out of a su¢ ciently large set), one can, to some extent, assess the validity

of a prediction regarding the distribution that determines that point. We �nd this a very

strong and surprising result, perhaps too strong.

This is why we think there is good reason to explore further the case mentioned earlier,

where the set of possible distributions is restricted. As noted, this enables obtaining tests

with no type I or type II errors, and hence that are non-manipulable. We believe that

studying this question will help us understand what it means to test a stochastic prediction.

5.2 The literature on calibration

The existing literature focused on calibration tests (Dawid (1982, 1985)). A typical calibra-

tion test asks, as a sequence ! = (w1; w2; :::) 2 f0; 1g@0 is realized, for sequential forecasts for
some (�nite number of) future periods. For example, such a test considers at each period

n the forecasted probability that wn+1 = 1 conditional on (w1; :::; wn) (the coordinates of

! that were revealed up to that period). The test compares these forecasted probabilities

to the empirical distribution following such forecasts. For example, one could look at all

periods were the conditional probability estimated for the next period was (about) 0:2 and

see whether the proportion of 1�s in periods immediately following that prediction converges

to (about) 0:2.

Although these tests were de�ned for sequential forecasts along each sequence, they can
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be mapped into our framework. The main di¤erence is that the calibration literature con-

siders forecasts for future periods along a realized path, and we ask for ex ante predictions.

However, if the expert making these forecasts is simply asked to provide the forecast con-

ditional on any �nite sequence of future realizations to which he assigns strictly positive

probability, then this generates a prediction p 2 �(
). Similarly, any p 2 �(
) generates
along any sequence (w1; w2; :::) a sequence of conditional forecasts. Therefore, given a cali-

bration test we can construct a test tc : � (
)! 2
 by setting tc(p) equal to the set of states

! such that the sequential conditional probabilities generated from p given ! will pass the

given calibration test along !.9

Calibration tests are mostly constructed to have no type I error (see, e.g., Lehrer (2001)

who comments about type I errors). However, Foster and Vohra (1998) showed that a

calibration test can be manipulated (and as just discussed such manipulation translates

into the de�nition used herein).10 This surprising result has been extensively generalized

to richer classes of calibration tests, including dependencies on histories or conditioning on

future properties of the realized sequence as well as randomized tests; see Kalai, Lehrer

and Smorodinsky (1999), Fudenberg and Levine (1999), Lehrer (2001), Sandroni, Smorodin-

sky and Vohra (2003) and Sandroni (2003). This collection of negative results provided

increasing classes of tests for which no type I error implies manipulability.

The manipulability of calibration tests is largely due to their continuity as functions of

realizations and predictions. To see the intuition, consider the game where nature chooses

a realization and the predictor chooses a prediction and either passes or fails based on the

test. Since the test (calibration, as well as good tests) requires no type I error, we have

that for every mixed strategy of nature p� the true distribution governing the realizations�

there is a pure strategy by the predictor that assures passing, namely predicting the true

distribution p. The MinMax for the predictor must therefore be �pass�. If the test employed

is su¢ ciently continuous, the predictor has a mixed strategy guaranteeing �pass�no matter

what the true distribution chosen by nature is, including Dirac measures, hence for every

realization. By contrast, we search for a test that identi�es su¢ ciently unique properties for

9Similarly, a randomized sequence of forecasts can be mapped into an ex ante random prediction (using
Kolmogorov�s theorem), an element in �(� (
)), and conversely (see Lehrer (2001, Remark1)). That is,
the manipulation result in the literature is often proven and stated for a behavioral strategy sequence of
forecasts, and we refer to it in this dissussion as holding for a mixed-strategy prediction.
10Due to its focus on manipulation the calibration literature has not studied the extent to which type II

errors occur. We have also not worked on that question. However, as an example, consider the simplest
calibration test applied to a prediction that the distribution is p�, an i.i.d. distribution with parameter �.
The test checks if the proportion of 1�s until period T converges to within " > 0 of � as T �! 1. For
any " > 0 the set of distributions q other than p� that will satisfy this condition with probability of at least
1� " is an open set. However, one could �nd a metric for which these open sets are small (and get smaller
as " goes to 0). This might suggest an interesting alternative approach to weakening the no type II error
property.
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each distribution, and we �nd a test which, even though the MinMax is �pass�, cannot be

manipulated as it guarantees failure on an uncountable set of pure strategies (realizations).

It is the ever varying and unique properties of each prediction that render the MinMax

theorem inapplicable.

On the other hand, calibration tests have an advantage: we ask for the prediction up

front and select the set of realizations for passing a test accordingly, whereas the calibration

literature makes the test depend on the realized sequence. While calibration tests can be

casted as our ex-ante tests, we generally cannot go in the other direction. In that sense

our test is suitable for testing a random theory of the world, but not for the case where

someone �feels in their bones�what the weather will be each subsequent day, i.e. learns

future probabilities sequentially as a realization unfolds. The latter person cannot provide

an ex-ante prediction, because they don�t have a theory of the stochastic nature of the

weather, and hence such a person cannot be tested using our approach. By asking for the

prediction up front we are able to construct a test suitable for the unique features of the

predicted theory.

6 Appendix

Proof of Proposition 1. From Theorem 16.5 in Oxtoby (1980) we have that for every

non-atomic measure p 2 �(
) one can divide 
 into a set of category I and a p-measure
zero G� set, i.e. a countable intersection of p-measure zero open sets. This follows from 


being a metric space with a countable base and since p is a �nite measure. We can set t(p)

as the category I set for a non-atomic measure p. If p has atoms then we can add the (at

most) countable set of atoms to the �rst category set associated with the non-atomic part

of p and obtain a �rst category set t(p) with p-measure one.

The second part of the proposition deals with a notion of smallness for the space �(
).

We consider the weak� topology on the space of probability measures �(
). The weak�

topology is the weakest topology that assures the continuity of measures as operators, i.e.

when integrating over continuous functions of 
 there is convergence of the value of the

integration for continuous functions, i.e. the topology where pi �! p if and only if for every

continuous function f we have
R
fdpi �!

R
fdp.

Let S � 
 be any category I set and consider the set of measuresMS = fp 2 �(
)jp(S) >
0g. We need to show that MS is a category I set in �(
) under the weak� topology. We

can write S =
1[
i=1

Si where int( �Si) = ;. Let Sn =
n[
i=1

�Si. Hence fSng1n=1 is an increasing

sequence of closed sets with empty interior and S �
1[
n=1

Sn. It su¢ ces to show that the set
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of measures which assign positive probability to
1[
n=1

Sn is a set of category I in �(
). We

de�ne the sets Mn
S � �(
) by

Mn
S = fp 2 �(
)jp(Sn) �

1

n
g: (6)

If � 2 MS then �(S) > 0 which implies that there exists " > 0 such that p(
1[
n=1

Sn) �

p(S) > " and hence there is an m such that p(Sm) = p(

m[
n=1

Sn) > "=2. Choosing k >

Maxfm; 2
"
g we have that p 2 Mk

S . We conclude that MS �
1[
n=1

Mn
S . Hence it su¢ ces to

show that each set Mn
S is a category I set for their countable union to be a category I set.

We will actually show that Mn
S is a closed nowhere dense set.

11

Consider Mn
S for a given n. Let pi 2 Mn

S i = 1; 2; ::. be a sequence of probability

measures converging to a probability measure p 2 �(
) in the weak� topology. Since Sn is
a closed set we have

lim sup
i!1

pi(S
n) � p(Sn); (7)

and in fact convergence is equivalent to (7) holding for all closed sets. In particular we �nd

that p 2 Mn
S . We conclude that Mn

S is closed in the weak
� topology. Finally we need to

show that int(Mn
S ) = ;. Let p 2Mn

S we will show that for every open set G that contains p

we can �nd a measure in G nMn
S . From the de�nition of the weak� topology the following

sets are a subbase for the topology:

G";f (u) = fv 2 �(
) j

������
Z



f(!)dv(!)�
Z



f(!)du(!)

������ < "g (8)

for every continuous (and bounded in our case) function f , every " > 0 and measure u. Hence,

�nite intersections of such sets are a base and in particular every open set G with p 2 G

contains a non-empty �nite intersection of sets G"1;f1(p); G"2;f2(p); :::; G"k;fk(p). Since the set

of probability measures is compact in the weak� topology (cf. Theorem 6:4 in Parthasarathy

(1967)) we can apply the Krein�Milman Theorem (cf. Theorem 3:23 in Rudin (1991)). Hence

there exists a �nitely supported measure q = �li=1�i�!i (a convex combination of the extreme

points �Dirac measures �of �(
)) such that q 2
Tk
j=1G"2;f2(p). Since S

n is a closed set

11The main property we exploit is that for any strictly positive " the set of probability measures that
assign at least " probability to a closed subset of S is nowhere dense. Note that for any non-empty set T
(not only category 1 sets) the sets of measures that assign positive probability to T is dense in �(
).
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with empty interior we can �nd sequences of realizations f!rig
1
r=1 =2 Sn such that !ri �! !i

for all i. In particular, qr = �li=1�i�!ri is a sequence of measures all assigning probability 0

to the set Sn and converging to q 2
Tk
j=1G"2;f2(p) � G which implies that there exists an �r

with q�r 2 G and q�r(Sn) = 0, i.e. q�r 2 G nMn
S and the proof is complete.

We now prove the claim, made in presenting the i.i.d. example, that the set of sequences

with proportion � of 1�s is category I and has probability 1 with respect to the i.i.d. distri-

bution with parameter �. Let

S =

(
! = (!1; !2; :::) 2 
 j lim

n!1

nX
i=1

1

n
!i = �

)
: (9)

Claim 6 S is a category I set that occurs with probability 1.

Proof. From the strong law of large numbers for Bernoulli trials we have that the

probability of the event S according to the i.i.d. process equals 1. We de�ne for every " > 0

and every n the following set:

F";n =

(
! 2 
 j for all m � n,

�����
mX
i=1

1

m
wi � �

����� < "

)
: (10)

If ! =2 F";n then there exists an m � n such that

�����
mX
i=1

1
m
wi � �

����� � ". Consider the

set G! = f�! 2 
 j �wi = wi i = 1; :::mg, G! is an open set in the product topology

and for all �! 2 G! we have

�����
mX
i=1

1
m
�wi � �

����� � ", hence G! � 
 n F";n. Since we have

found such an open set for every ! =2 F";n we conclude that F";n is a closed set. Assume

" < �=2. For every ! = (w1; w2; :::) 2 F";n consider the sequence of points
�
!k
	1
k=1

such

that !k = (w1; :::; wk; 0; 0; :::). We have that for all k that !k =2 F";n but !k ! !, hence F";n

is nowhere dense. Since S �
1[
n=1

F";n for every " > 0 we have shown that S is included in a

countable union of closed nowhere dense sets and is therefore a category I set.

We also made the following claim in the text.

Claim 7 For every positive decreasing sequence  j &
j�!1

0 and any given " > 0 we can �nd

a sequence of periods n1 < n2 < ::: such that the set

G = f! = j for all j = 1; 2; ::: for all nj � m < nj+1;

�����
mX
i=1

1

m
wi � �

����� <  jg
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has p� measure of at least 1� ".

Proof. By the law of large numbers we have that for every  j > 0 there exists an nj
such that the sets

Gj = f! j for all nj � m

�����
mX
i=1

1

m
!i � �

����� <  jg

satisfy p�(Gj) > 1� "
2j
. This follows from observing that for every ! with limn!1

Xn

i=1

1
n
wi =

� there is an n(!) with
���Xm

i=1

1
m
!i � �

��� <  j for all m � n(!). Since G =
\1

j=1
Gj we

have

p�(G) = p�(
\1

j=1
Gj) � 1�

X1

j=1
(1� p�(Gj)) > 1�

X1

j=1

"

2j
= 1� "

as required.

Before we prove Proposition 2 we establish some preliminary results. First we note that

any subset of a category I set is also a category I since any subset of a nowhere dense set

is nowhere dense. In addition, any countable union of category I sets is a category I set. A

set is called a category II set if it is not a category I set. Note, that the complement of any

category I set in 
 is a category II set, but the complement of a category II set can be larger

than a category I set.

A set L is called Lusin set if L is an uncountable set such that every uncountable subset

of L is of category II. The existence of a Lusin set in [0; 1] was shown by Lusin (1914) under

the continuum hypothesis. In fact, every category II set contains a Lusin set (see Proposition

20:1 in Oxtoby (1980)). After proving the no-manipulation result below we show that there

exists a Lusin set L in the space 
 = f0; 1g@0.
Given a randomized prediction � 2 �(�(
)) we de�ne the measure �� 2 �(
) as:

��(E) =

Z
�(
)

p(E)d�(p) (11)

for every measurable set E. This measure is sometimes refereed to as the �center of gravity�

of the measure �. Note that since 
 is a compact metric space so is �(
) in the weak�

topology (cf. Theorem 6:4 in Parthasarathy (1967)). By the de�nition of the weak� topology

we have that for every continuous function f 2 C(
) the functional f(P ) =
R


f(!)dp(!) is

a continuous functional on �(
). In particular the continuous functionals on �(
) separate

points. From the convexity and compactness of �(
) in the weak� topology we have that

the generalized integral
R
�(
)

pd�(p) exists in the sense that for every linear functional � on

�(
) we have

�(��) =

Z
�(
)

(�(p))d�(p) (12)

and �� is a probability measure. See Theorems 3:27 and 3:28 in Rudin (1991). Since the
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measure �� must satisfy Z



f(!)d�� =

Z
�(
)

(

Z



f(!)dp)d�(p) (13)

for every continuous function f we have that regularity implies that (11) is well de�ned.12

To see this, consider �rst a closed set E, we have that �(E) = inff
R
fd�jf � �Eg where

�E is the characteristic function of E. In particular, this holds for � = �� as well. By

regularity �(G) = supf�(E)jE is closed, E � Gg for every measurable set G. Hence we have
measurability of p(E) for measurable sets E and

R
�(
)

p(E)d�(p) is de�ned and coincides

with �� as required.

Proof of Proposition 2. Fix an arbitrary good test �t as in Proposition 1 and a Lusin

set L � 
. We de�ne the test t as follows:

t(p) = (�t(p) n L) [ f! 2 Ljp(f!g) > 0g: (14)

The test t maps a probability measure p to a set that only contains points from L if these

are atoms of the distribution p. We need to show that t as de�ned in (14) is indeed a good

test and that t cannot be manipulated on a set of category II points.

First note that �t(p) n L is a category I set since it is a subset of the category I set �t(p).
Since p has at most a countable number of atoms the set f! 2 Ljp(f!g) > 0g is countable
and a union of a category I set with a countable (hence category I) set is also a category I

set. We conclude that t(p) is a category I set.

Since �t(p) \ L is a category I set included in the Lusin set L we have that �t(p) \ L is
a countable set. Hence the set �t(p) n L = �t(p) n (�t(p) \ L) is measurable since it is the set
di¤erence of a measurable set and a countable set. We have

p(�t(p)) = p(�t(p) n L) + p(�t(p) \ L) = p(�t(p) n L) +
X

f!2�t(p)\Ljp(f!g)>0g

p(f!g) (15)

since �t(p) \ L is countable. Since �t is a category test we have p(�t(p)) = 1 and so p has no
atoms outside �t(p) which together with (15) implies

p(t(p)) = p(�t(p) n L) +
X

f!2Ljp(f!g)>0g

p(f!g) = p(�t(p)) = 1: (16)

We have shown that for all p the set t(p) is a category I set and p(t(p)) = 1 hence t is a good

test.

Consider any randomized prediction � 2 �(�(
)) where we consider�(
) as the measur-
12Since 
 is a separable metric space so is �(
) and the Borel probability measures in �(
) and �(�(
))

are regular (see Parthasarathy (1967)).
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able space generated by the Borel �-�eld induced by the weak� topology. Fix � 2 �(�(
)),
we now show that there is a category II set of realizations S such that for all ! 2 S we

have �(fpj! 2 t(p)g) = 0. Let ! 2 L be a point in the Lusin set. We �rst note that the

set fpj! 2 t(p)g � �(
) is measurable. Since ! 2 L we have that ! 2 t(p) if and only if

p(f!g) > 0 by the de�nition in (14). Hence for every ! 2 L

fpj! 2 t(p)g = fpjp(f!g) > 0g (17)

so fpj! 2 t(p)g is exactly the set of all measures with an atom at ! since ! is in the Lusin

set. This set of measures is measurable in �(
) since it is the countable union of the sets

fpjp(f!g) � 1=ng, n = 1; 2; 3::: and each set fpjp(f!g) � 1=ng is a closed set in the weak�

topology since if pi �!
i!1

p for fpig1i=1 � fpjp(f!g) � 1=ng then pi = �i�! + (1 � �i)qi is

a convex combination of a probability measure and the Dirac measure at ! with �i � 1=n
for all i. Taking a converging subsequence of both the �i�s and the qi�s (the latter has a

converging subsequence by the compactness of �(
) in the weak� topology) we �nd a limit

with an atom of at least size 1=n at �!.

The randomized prediction � will pass the test t when the realization is ! 2 L with

positive probability if and only if �(fpj! 2 t(p)g) > 0. From (17) we have

�(fpj! 2 t(p)g) = �(fpjp(f!g) > 0g) (18)

so the randomized prediction will pass the test t at ! 2 L with positive probability only if

�(fpjp(f!g) > 0g) > 0. From the de�nition of �� in (11) we have that

�(fpjp(f!g) > 0g) > 0 implies ��(f!g) > 0: (19)

The set of realizations ! such that ��(!) > 0 is countable hence the set S = Lnf!j��(!) > 0g
is a category II set and for every ! 2 S we have ��(!) = 0 which implies that �(fpj! 2
t(p)g) = 0. We have shown that for every � 2 �(�(
)) there is a category II set satisfying
(4) as required.

Proof that there exists a Lusin set in 
. The proof follows by viewing points in


 = f0; 1g@0 as the dyadic (binary) expansion of points in [0; 1]. We observe that the set of
dyadic expansions of the points in a Lusin set L � [0; 1] must be a Lusin set in 
 = f0; 1g@0.
The dyadic expansion is unique for all but a countable set of points in [0; 1]. Assume

by contradiction that the set of dyadic expansions of members of L, which we denote by
�L � f0; 1g@0, is not a Lusin set in 
. Then we could �nd an uncountable category I subset of
�L in 2@0. It su¢ ces to show that the inverse of the dyadic expansion maps a closed nowhere

dense set in 
 to a closed nowhere dense set in [0; 1] (hence a countable union of such sets
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will be mapped to at most a countable union of such sets). This will show that a category I

set is mapped to a category I set and the proof is obtained by contradicting L being a Lusin

set since the dyadic expansion and its inverse map uncountable sets to uncountable sets.

Consider a closed set S � 
. Since S is closed under the product topology its map

under the inverse of the dyadic expansion is closed; this is because convergence of the dyadic

expansion implies convergence in [0; 1]. We need to show that if S is nowhere dense in 
 its

preimage is nowhere dense in the interval. Consider any point in the interval and any open

neighborhood of that point. Since the dyadic open intervals generate the same topology

generated by open intervals we can �nd a dyadic interval in the open neighborhood which

contains the point. The dyadic interval is open in 
 and hence contains points outside the

nowhere dense set S. Hence these points are mapped by the inverse of the dyadic expansion

to points in the dyadic interval. We conclude that every point in [0; 1] has points from

outside the preimage of S in any open neighborhood and the image of S is therefore nowhere

dense as required.

Proof of Proposition 4. Let t be as in Proposition 2, that is, an unmanipulable good

test. Let t"(p) be a closed set with empty interior such that t"(p) � t(P ) and p(t"(p)) > 1�",
i.e. the "-good test as constructed in proposition 3. For every ! and p we have that ! 2 t"(p)
implies ! 2 t(p). Hence for every ! we �nd

fp 2 �(
)j! 2 t"(p)g � fp 2 �(
)j! 2 t(p)g: (20)

Applying (20) for every ! 2 S where S is the category II set where � fails as in Proposition
2, we have

�(fp 2 �(
)j! 2 t"(p)g) � (21)

�(fp 2 �(
)j! 2 t(p)g) = 0:

Here the �nal equality follows from Proposition 2.
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