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"Capacity-Constrained Price Competition when Unit Costs Differ"
by

Raymond Deneckere and Dan Kovenock

Abstract

This paper characterizes the set of Nash equilibria in a price setting
duopoly in which firms have limited capacity, and in which unit costs of
production up to capacity may differ. Assuming concave revenue and
efficient rationing, we show that the case of different unit costs involves
a tractable generalization of the methods used to analyze the case of
identical costs. However, the supports of the two firms' equilibrium price
distributions need no longer be connected and need not coincide. 1In
addition, the supports of the equilibrium price distributions need no longer
be continuous in the underlying parameters of the model.

Two applications of our characterization are pursued. 1In the
Kreps-Scheinkman model of capacity choice followed by price competition we
show that, unlike in the case of identical costs, Cournot equilibrium
capacity levels need not arise as subgame-perfect equilibria. The low-cost
firm has greater incentive to price its rival out of the market than exists
under Cournot behavior. Our second application is to the analysis of the
effects of tariffs and quotas in a model in which a domestic market is
supplied by a price setting duopoly consisting of a domestic and a foreign

firm. We obtain a strong nonequivalence result.









1. Introduction

In recent years there has been a resurgence of interest in the
Bertrand-Edgeworth model of capacity constrained price competition (see
Kreps and Scheinkman (1983), Osborne and Pitchik (1986), and Allen and
Hellwig (1986)). The impetus for this resurgence can be traced back to
three separate sources. First, there is the realization that the Bertrand-
Edgeworth model provides an attractive model of short-run competition. (¢t
models price formation directly, without making use of the (already
overworked) auctioneer. And unlike in the Cournot model, capacity
bottlenecks here do not directly constrain the strategic variables (Krishna,
1988). Second, the Bertrand-Edgeworth model displays some features that
make it attractive for industrial organization purposes. Its (typically)
mixed strategy equilibria capture the observation that many markets display
price fluctuations (Sweeney and Comanor (1989)) and/or persistent price
dispersion (Varian (1980)). In addition, as emphasized by Ghemawat (1988),
unlike models of quantity-based competition, the Bertrand-Edgeworth model
does not force equality of competitors' prices, and hence admits interesting
short-run share-profitability and concentration-profits relationships.
Finally, the Bertrand-Edgeworth model provides an ideal framework for
investigating international trade questions: capacity\constraints are then
interpreted as quotas or VER's (Krishna (1988, 1989)), whereas differences
in production costs may result from the imposition of tariffs.

As the last example illustrates, many applications of the Bertrand-
Edgeworth model are impossible, or do not become interesting, unless
differential efficiencies among players are allowed. Unfortunately, almost

without exception, existing treatments have focused on the case where
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production costs (once capacity is installed) are identical for all
participants.l While it has been known that different unit costs could be
incorporated into these models (Osborne and Pitchik, p. 251) the description
of such equilibria has been deemed sufficiently complex so as to lead
researchers to ignore the theoretical analysis and any applications that
might follow. This paper demonstrates that the analysis is indeed
tractable. We characterize equilibrium profits and strategies for efficient
rationing and a class of aggregate demand functions yielding concave
revenue. This class is slightly more general than in Kreps and Scheinkman
(1983), but avoids the complications that may arise when using the general
demand of Osborne and Pitchik (1986).

The incorporation of different unit costs involves a straightforward
generalization of the methods used to analyze the model with identical costs
of production up to capacity. However, unlike the case of identical costs
under the specified demand, the supports of the two firms' equilibrium price
distributions need not be connected and need not coincide; they may differ
by a single point. Furthermore, the supports of the equilibrium price
distributions need not be continuous in the underlying unit costs and

capacities.

1The one exception of which we are aware is the paper by Gelman and
Salop (1983). In that paper, which deals with the incentive of a
cost-disadvantaged entrant to keep capacity small, a leader-follower
framework is imposed at the price setting stage and the cost-advantaged firm
is assumed to have enough capacity to serve the whole market. Gelman and
Salop assume that it is always the cost disadvantaged firm which is the
leader at the price setting stage. For an analysis of the endogenous
determination of the sequencing of moves in this context see Deneckere and

Kovenock (1988),
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Two applications of our characterization are pursued, indicating how it
provides a richer set of models with which to analvze economic phenomena.

In the Kreps-Scheinkman model of simultaneous capacity choice followed by
simultaneous price setting, we show that, unlike for the case of identical
costs, Cournot equilibrium capacity levels (for a marginal cost equal to the
sum of the marginal capacity cost and the unit cost of production up to
capacity) need not arise as subgame perfect equilibria. Under Cournot, the
low cost firm must assume that price will always adjust to clear all
quantities supplied to the market. In contrast, in the two-stage game, when
deciding on its optimal response to a given capacity of its rival, the low
cost firm need not assume that price will adjust to clear all capacity
available for supply to the market. In fact, the low cost firm often finds
it profitable to choose a high capacity level and price its less efficient
opponent out of the market. As a result, subgame perfection may require
nondegenerate mixed strategies at the capacity setting stage. However, for
the case where the cost of capacity is negligible, we provide a necessary
and sufficient condition for Cournot to hold.

Our second application is to the analysis of effects of tariffs and
quotas in an international trade model in which a domestic market is
supplied by a price-setting duopoly consisting of a domestic and a foreign
firm. A tariff acts to raise the foreign firm's unit costs up to capacity,
and a quota acts to reduce the foreign firm's capacity. A strong
nonequivalence result is derived: If a positive tariff (binding quota) is
levied and the resulting equilibrium is one in which neither firm is driven
entirely from the market, then there exists no binding quota (positive

tariff) that generates the same equilibrium price distribution.



In Section II we present the basic model of price setting duopolists
with different unit costs up to capacity. Section II[I provides the rule for
deriving the equilibrium profits. Section IV characterizes the equilibrium
price distributions, for arbitrary capacities and unit costs. Section V
applies the analysis of the previous two sections to the case where there is

a unique Cournot equilibrium. Section VI concludes with the applications.

ITI. The Model

Consider a market in which two firms produce a homogeneous good.
Aggregate demand for the firms' output as a function of price is
d(p): R_ - R,. We assume that d(p) satisfies the following assumptions:

Al. 3 p0 >0 s.t. d(p) = 0V¥Y p >p,. and d(p) > 0 if p < Py d(p) is twice

0
continuously differentiable and strictly decreasing on (O,po). Furthermore,

pd(p) is strictly concave on [O,pol. with maximizer pm.

Each firm i (i = 1,2) produces the good at a constant unit cost 0 < ci

< po up to a capacity level of ki' Note that, unlike previous treatments,
we do not assume that production costs are the same for both firms. Since
players compete in prices and may not be able to serve the entire market, we
need to specify a rule that allocates demand in terms of the prices.
Following the example of Levitan and Shubik (1972), Kreps and Scheinkman
{(1983), and Osborne and Pitchik (1986), we assume that demand is allocated
efficiently. Thus, if pi < pj and d(pi) > ki' the demand facing firm j is

max (0, d(pj) - ki). In the case of a tie in prices, the low cost firm sells



its capacity first.? Thus, if p;, = pj = p and c; < cy the demand faced by
firm j is max(0, d(p} - ki)‘ For a discussion on the merits of alternative
rationing schemes, see Davidson and Deneckere (1986}.

Under these assumptions the profit to firm i when it sets price p, and

firm j sets price pi is

-
:Li(pi) = (p; - c;) min(k;,d(p,)) if py < py
(2.1)  m(p;.py) = 4T(p;) = (p; - ¢;) min(k;, max(0,d(p,) - I;ij)), if p; = b,

|
{ﬁi(pi) (pi - ci) min(ki. max (0, d(pi) - kj)). if p; >p

i, . s .
where Ih is an indicator that takes on the value 1 if ci > Cj’ or ¢, = C

1 2

and i = 2, and takes on the value 0 if ci < Cj’ or c1 = c2 and i = 1. Here

Li(pi) refers to the profit from being the low priced seller at P Hi(pi)

the profit from being the high priced seller at pi, and Ti(pi) the profit

i
h’

Ti(pi) will coincide with either Li or Hi' The functions Li and Hi are

from tying at pi. Note that depending on the value of 1 the function

illustrated in Figure 1.

Let Si = [ci, pO] denote the pure strategy set of firm i, and Zi the
corresponding set of mixed strategies (cumulative distribution functions on
Si)' Note that we have ruled out strategies for firm i which involve
pricing below its unit cost.3 The domain of firm i's profit function can be

extended in a natural way to Zi X Zj‘ For Fj € Zj define

2To break ties when ¢, = ¢

1 50 We arbitrarily let firm 1 sell its

capacity first.

3Although any such price is weakly dominated by setting c; this

assumption is not completely innocuous. See section 111 for details.



(2.2) ﬂi(p,Fj) = Hi(p)(Fj(p)—aj(p)) + Ti(p)aj(p) + Li(p)(l —Fj(p))

where aj(p) is the size of the masspoint in Fj at p (if one is present).
p
0

Finally let Hi(Fi, Fj) = Ici ﬂi(p.Fj)dFi(p).

For any quadruple (kl,kz,cl,cz) we will now analyze the normal form

game G(kl,kz,c ,C,.) with strategy sets Zi and pavoff functions ni(Fi’ Fj)'

1° 2

I1I. Equilibri . .
1 quilibrium Profits in G(kl' kz, Cl' cz)

In this section we characterize the Nash equilibrium profits of the

game G(kl,kz,cl,cz) for all vectors (kl,kz,c ,C and show that they are

1 2)

uniquely determined. We first appeal to the well-known results of Dasgupta

and Maskin (1986) to guarantee existence.

1,cz) there

Proposition 1: For any vector of capacities and costs (kl,kz,c

exists a mixed-strategy Nash equilibrium.

Proof: It is easily seen that Theorem 5 of Dasgupta and Maskin (henceforth
D-M) applies. The only potentially problematic condition of this theorenm,
the upper semi-continuity of ﬂl(pl,pz) + nz(pl,pz) in (pl,pz), holds because
the sum is continuous at all off-diagonal points and because along the
diagonal our sharing rule minimizes the total cost of providing the good.
Since revenue is continuous, this means that in approaching a point on the

diagonal total profit cannot jump down. #

It is interesting to note that without the sharing rule which allows
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the low-cost firm to sell its capacity first in the event that Py = P,y
neither the Dasgupta and Maskin {1986) existence theorems nor the existence
results of Simon (1987) apply. In particular, with the sharing rule which

divides the market in proportion to capacities when p1 = pa, the sum of the
two firms' profits will generally not satisfy the D-M requirement of upper

semi-continuity in (pl, p2). The expected profit functions of the two firms
will also generally not satisfy Simon's (1987) "complementary discontinuity"

property on 21 X 22.4’5

In Section IV we will show that, despite the fact
that these existence results do not apply to the game with a proportional
sharing rule, for any equilibrium of G there is a payoff equivalent

equilibrium in the game with a proportional sharing rule, and vice versa.

Before proceeding to characterize the equilibria of the game

4To see this suppose that d(p) = max(0,1 - p), k1 3/4 and k2 = 1/4,
3/8 with

probability 1/2. Look at a sequence of price distributions for firm 1 of

1l

Suppose firm 2 sets p = 1/4 with probability 1/2 and p

the following form: For each n, with probability 1/2 firm 1 sets

n
en - 0 as n = infinity. The difference between firm 1's expected profit at

p. =1/4 - €, and with probability 1/2 firm 1 sets p, = 3/8 + €, where

the limit and the limit of its expected profits has the same sign as

Cy - 1/8. The difference between firm 2's expected profit at the limit and
the limit of its expected profits has the same sign as 1/8 - 02. Thus, for
¢, slightly less than 1/8 and C, slightly greater than 1/8 both firms'
profits jump down in the limit. It should be emphasized that while expected

payoffs do satisfy the complementary discontinuity property on S, x S, they

1 2
do not on 21 X 22, as required by Simon.

5D—M's Theorem 5b proves existence using a similar complementary

discontinuity assumption on S, x §_. However, the theorem requires the

1 2
strategy spaces to coincide making it inapplicable in our context.
Enlarging the high cost firm's strategy set to equate it with the low cost's

causes the complementary discontinuity property to be violated.
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G(kl,kz,cl,cz) we need to establish some notation. Let P? be the set of
prices that maximize Li(pi) and P? be the set of prices that maximize
Hi(pi)' Given our assumptions on demand there exists a unique p? € Pg and
Li(pi) is continuous and strictly increasing in Py for pi < pg. Let H; =
Hi(Pi)' If H; is nonzero there is a unique element p? in P?. Furthermore,
Hi(pi) is continuous and strictly increasing in pi for pi < p?. If H? =0
define p? = c.. Let

1

= mi . - H* i =
p. mln{pi. Li(pi) Hi}’ i 1,2.

Note that p. < pﬁ <p

i i , 1 =1,2. In the analysis that follows we shall

1,02) to indicate the

e e

sometimes write p?, p., and Ei as functions of (kl,kz,c
dependence of these prices on unit costs and capacities.
We will often make use of the inverse demand function P(q) defined by:

P(q) = d X(q) for 0 < g < d(0), P(0) = p., and P(q) = O for q > d(0).

0’
Another important expression in the characterization of equilibria is
ri(k) = argmax (P(x + k) - ci)x. This is firm i's Cournot best response
when its rival puts output k on the market and firm i has a constant unit
cost of production of c;- Note that for k 2 d(ci), ri(k) = 0, while for
k < d(ci), ri(k) > 0.

Let (Fl(p),Fz(p)) be a pair of equilibrium price distributions. Let
§i = inf{p: Fi(p) = 1} and ;= sup{p: Fi(p) = 0} be the bounds of the
support of Fi’ i =1,2. From our restriction on the strategy spaces, c; <

<s i =1,2. Without loss of generality suppose c¢, and c, are

<
$i =81 = Py 1 2

such that firm 1 sells its capacity first in the event that both firms set

the same price.



Lemma 1: s, 6 >
Lemma 1 5, 2 Max(ci, P(k1 + kz))

Proof: From the restriction on Si' if P(k1 + k) <€ c, we are finished.

2

Suppose P(k1 + kz) > c,- By naming a price p less than P(k, 6 + kz) firm i

1

obtains (p - Ci)ki' which is increasing on [Ci’ P(kl + kz)]. #

Lemma 2: Suppose §1 =5, = s and each is named with positive probability.

Then one of the following conditions holds:

(a) s, = s, = P(k

1 1

< . , ..
1t kz) and ki < ri(kj)’ i 1,2, j # i

(b) there exists an i € {1,2} such that s = ¢, > Cj' and for every i

such that s = ¢, 2 c,, s 2 P(k,).
1 J J

Proof: Suppose the hypothesis of the lemma holds and that s > P(k1 + kz).

Then there exists a firm, say j, which sells less than its capacity with
certainty when it sets price s. There are two cases to be examined. If s >
max(cl,cz) then j can improve payoffs by reducing price slightly and

avoiding the positive probability of a tie at s. Thus, for s > max(c.,c

1 ) ’

o

s must equal P(k, + k,) which, together with Lemma 1, implies that s, = s, =

1 i

P(k1 + k Suppose that the condition ki < r.(kj), i=1,2, j+# i, did not

2)' i

hold in this case: say, k1 > rl(kz). By naming a price higher than P(k1 +

k firm 1 would obtain a return of (D(p) - kz)(p - Cl) or, letting x =

o)

D(p) - kz. a return of x(P(x + kz) - Cl)' This expression is maximized at x

= rl(kz), so if rl(kz) < k1 setting P(rl(kz) + ka) would dominate setting

P(k1 + kz). This contradicts equilibrium.

If s < max(c,,c,) then s = max(c,,c,) from the restriction on the
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strategy sets. Suppose that the second condition in (b) does not hold.

Then there exists an i for which c; = max(c. ,c,.) = s and P(kj) > s. But

1’72
then firm i, which is making zero profit by charging s, can strictly
increase profit by raising price a small amount above s, since for prices
between s and P(kj) i has positive demand, even when it is undercut. #

Lemma 2 implies that if §1 = s s and each firm names s with positive

probability then either Hi(Fl, F = L,(s) =T,(s) = H.(s) = H;, i=1,2 or

2) 1 1
there exists a firm i such that “1(F1'Fz) = H; = 0. This allows us to make
a first step in determining the equilibrium payoffs:

> H¥. i = s = s -
) H*, i 1,2. If s, > Sj then ni(Fl'Fz) H,(s,)

27 T i 1 i1
H;. If 51 = §2 = s then there exists a firm i such that
= s = H*
ni(F1’F2) Hi(si) Hl

R i < < <
Proof: Since 0 < Hi(p) < Hi(p,Fj) < ni(Fl'Fz) for all p € Si we know

> H*, i = s .. i (s.) = 1, I.(s., =
ni(Fi’Fj) > Hi, i 1,2. Suppose $4 > sJ Since FJ(sJ) 1 l'Il(sl Fj)

- < ux -
H'(Si) < Hi' But Hi(si’ F

= > *® i % :
i ) ni(Fi’Fj) > Hi since (Fl'Fz) is a pair of

J

. . . » - - - x® - - - -
equilibrium strategies. Thus ni(Fi'Fj) Hi(si) Hi' Suppose 3 S,

s. From Lemma 2 if both firms have mass points at s then there exists a

firm i such that ni(Fl'Fz) = Hi(gi) = H;. So, suppose there is at least one

firm, say firm j, with no mass point at s. Since j has no mass point at s,

]
=2
—
w
A
jau}
*
o)
=
-+
-+
-
(4]
el
3y
(4]
<
[N
(@]
=
w
Y}
3
g
[¢]
]
-+
=)
q
Y
[N
=
[
=]
el
i
[y
(1]
w
~+
-
[sY
-+

Hi(si, Fj)

< = * = s = *
Hi(si, Fj) Hi(Fl,FZ) > Hi' so that ni(Fl'FZ) Hi(s) Hi' #

In equilibrium at least one of the firms, say firm i, must earn a
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profit equal to HE. The other firm, firm j, earns at least H*. In order to
determine the equilibrium payoffs and distributions we will now pin down the

identity of a firm making HY (both may do so in equilibrium). Let

1
=
*

Lemma 4: Suppose Ei = p. Then Hi(Fl'Fz)

Proof: By Lemma 3 we know that Hi(F ,Fz) > H;. Suppose a strict inequality

1
holds. Then from Lemma 3, Hj(Fl'Fz) = H;. Since Li(p) is strictly

-~

. . . L L . .
increasing and continuous on [ci,pi) and pi > pi, there exists a price pi >

= - *
Py such that Hi(Fl,Fz) Li(pi) > Li(gi) Hi and such that

Li(p) < Hi(Fl,Fz) for all p < D, Firm i's equilibrium strategy must put no
mass below P, - But p, =P implies Qj < p; < D, Since Lj(p) is strictly

increasing on [cj,pg) and p? > Ej' there exists an € > 0 such that
L.(p. + €) > L.(p.) = H%* and such that p, + € < A.. But then H* cannot be
J(QJ ) J(EJ) J EJ Py J

firm j's equilibrium payoff, in contradiction to the hypothesis. #

Lemma 5: Suppose *
Lemma S pp Ej < p;- Then nj(Fl’Fz) > Hj’

) . - . . R N
Proof: Since p; p, Lemma 4 implies that ni(Fl’Fz) Hi‘ Thus, S; 2 P;-

But then 2 & > O ch that F,(p. + d) = 0 and [I.(p. + &, F.) = L.(p, + &) >
su a 1(23 ) J(QJ 1) J(QJ )
x . . ey . . ’ > HE.
HJ Thus, since (Fl’Fz) is an equilibrium pair I'IJ(F1 F2) HJ #

Lemmas 4 and 5 indicate the starting point in determining equilibrium

profits and distributions. In the remainder of this section we divide the
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analysis into two cases, depending on the value of H; for the set of firms
for which p, = p. Lemma 6 deals with the case where for some such firm

H; = 0. Lemmas 7 through 10 treat the case where H? > 0 for any such firm.

Lemma 6: Suppose Ei = p and H? = 0. Then ni(Fl’Fz) = 0 and nj(Fl’FZ)

L, . Furthermore, s, = s, = argmax L, .
] J(p) =] J EMA%pelc.,c. ] J(p)

max elc..c
p 3%

Proof: Since H* = ) € c, )
Proof 1 i =0 P(kJ) ¢, Py

|
c

c, and, from Lemma 4, ni(Fl'Fz)
But this implies that Fj(ci) = 1 and Cj < c;- Since firm i's strategy set

is [ci,po], firm j must place all mass on argmax Lj(p). #

pE[cj,ci]

Lemma 7: Suppose Ei p and H; >0 for i = 1,2. Then s, = §j = p and if

H - = H
< < =
p; < pj then Sj <s; p;-

Proof: From Lemma 4 we know Hi(Fl,F2)=H;, i =1,2. Thus, it must be the

. - H
case that §i >p, i =1,2. From Lemma 3 there exists an i such that s; = P

(since H; > 0 implies that there is a unique maximizer of H,, i=1,2). We

claim that p? = minQ pg. For suppose not. Then §i = p? > p?, which

- H H .
. . * . - <
implies that nj(Fl’Fz) > Hj’ a contradiction. Thus, S5 p;, < pj. It is

also clear that §j < §i for, otherwise, Hi(§i,Fj) > H;. To complete the

proof we need to show that s, = §j = p. Suppose there exists an & for which
H H H © s
§Q > p. We know that §i’§j < p; < pj. If p, = p we have a contradiction.

If P? > p, then firm k, k # &, can set a price slightly above p and earn

ﬂk(p,FQ) > H*, also a contradiction. Thus, s; = §j = p. #

Lemma 8: If H; > 0 and Ei > p., s, = p? and gj < p..
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Proof: From Lemmas 4 and 5, [I. = H* *
Proot l(F Fz) Hi and nj(Fl'Fz) > Hj‘ From Lemma

1’
3 it immediately follows that §i >s,.. If a strict inequality holds, then
again from Lemma 3, H.(s.) = H*, so s, = pg. If s, = s., then since
i't7Ti i i i i
- - H
. > > *.y i . » = 1 : - I
I'IJ(F1 Fz) HJ it must be that I'Il(F1 F2) H (Sl) so s, p; #
Lemma 9: If H¥ > 0 and p., > p, then s, = s. = p
i i = =i =j =i

Proof: Since H; > 0, P(kj) > c;- For p 2 P(kj), Hi(p) = 0, which implies

that p? < P(kj). Furthermore, pg > P(kj) since Lj(p) is increasing on

[cj,P(kj)] if the interval is nondegenerate, and the inequality clearly

holds otherwise. Thus, p? < p? which, together with the fact that p, < p?

and the assumption that P, > Ej’ implies that Lj(p) is strictly increasing

on [Qj,p?]. Clearly, sS4 2 B since any price named below p, earns a profit

for i that is strictly less than H?. Also, §j < R, for if the inequality

did not hold, firm i could set a price p between Ei and S, and earn

Li(p) > H;. Finally, §j > S.» for otherwise there would exist a price p
between s, and s, such that I1.(p,F.) = L. > L.(s.,) = TII.(F,,F.).
S5 S, HJ(p i) J(p) J(_J) HJ( 1 F5)

Combining these inequalities gives us the claim. #
Lemma 10: If H¥* . > p. . = L.(p,;).
i > 0 and p; R, then HJ(Fl’Fz) LJ(gl)

. = - 3 <
Proof: From Lemma 9, s S. p;- Since Lj(gi) >0, Hj(Fl’Fz) < Lj(gi).

Suppose that a strict inequality holds. Then since Lj(p) is continuous on

H .
. . , < . > . < > . y y
[gJ,pl] and EJ P, there exists an € 0 such that LJ(Q1 €) I'IJ(F1 Fz)

a contradiction to equilibrium. Thus, Hj(Fl,Fz) = Lj(gi). #
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We have now established how to determine the equilibrium profits of the

two firms. First, we calculate p_ and P, 1f p, = Lemma 4 tells us

1 By = By

wat 1, = H*, i = . . ., . =
tha Hl(Fl,Fz) Hl, i 1,2 If p; > 93 Lemma 4 tells us that Hl(Fl'FZ)

* s * 2 - . x -

Hi and, if Hi > 0, Lemma 10 tells us that Hj(Pl,Fz) Lj(gi), if Hi 0,

t . = . i + -
then Lemma 6 tells us tha HJ(FI'FZ) MaxpSCi Lj(p) This also establishes

that equilibrium profits are unique. WNote, however, that when Ei > Ej and
H? = 0, our restriction that Zi include only prices at or above ci is

essential in pinning down Hj(Fl,Fz). If firm i could set prices below c,,

and the conditions P(kj) < ci and P(kj) < pg hold, there would exist a
continuum of equilibria in which firm j receives an equilibrium profit less

than Max L. . An rice p, of firm j between max(P(k.), p.) and
psc, J(p) v p Py J (P( J) QJ)

min(pg,ci) could be supported as a pure strategy equilibrium price for firm
j if i put enough mass at, or in every neighborhood above, pj.6 Since i

plays a weakly dominated strategy in these equilibria we rule them out.

IV. Equilibrium Distributions

We are now ready to characterize the equilibrium strategies in G.

Proposition 2: A pure strategy equilibrium exists if and only if one of the

following two conditions holds:

(a) ki

iA

ri(kj) i=1,2.

(b) cj

tv

P(ki) and cj > p. for some i, j # 1i.

61n an earlier draft of this paper, Deneckere and Kovenock (1987), we
explicitly calculate the implied bounds on equilibrium profits for the case

of linear demand.
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In case (a) the equilibrium is unique and p; = pj = p(k1+k2) with
probability one. In case (b), if p% < cj then firm i sets p? with
probability one and firm j uses any strategy placing all mass at or above
Cj‘ If p? > cj firm i sets p; ~ cj and firm j sets any strategy which

deters firm i from raising price; one such strategy is pj = cj with

probability 1.

Proof: The "if" part of the theorem, uniqueness in case {(a) and the
characterization in case (b) are straightforward. To prove the "only if"
part we consider two cases. First, suppose a pure strategy equilibrium
exists with P, < pj. This implies that H} = 0. For, if H} > 0 then, since

L.(p) must be maximal at P, and Hj(p) maximal at p,, we would have

i

P(ki) < p? < p?, a contradiction. So suppose H; = 0. If pj > cj then

p? < cj, for otherwise firm j would make a positive profit by undercutting
p? slightly. 1If pj = Cj then p? < cj by assumption. Combining these
results, P(ki) < p% < cj, and since Bi < p?, By < cj. We conclude that
condition (b) holds. Furthermore, it is easily seen that whenever (b) holds
and p? < cj, a pure strategy equilibrium with p; < pj exists.

Now suppose that a pure strategy equilibrium with p; = pj exists. Then

§1 =5, = s and Lemma 2 applies. If Lemma 2(a) holds, we are done. If

Lemma 2{(b) holds, then it is easily seen that p; = pj = cj and that immunity

to deviations by firm i requires Bi < cj and p? 2 cj. #

Proposition 2 delineates the situations in which pure strategy

equilibria arise. In case (a) there exists a firm j such that pg = Bj 2p

and H; > 0. (These conditions guarantee that P, = p?). In case (b) there

i



exists a firm j such that pg B 2Py and H? = 0. The situations which

remain to be covered are when pg > Ej whenever p. 2 D, ji=1,2, 1i=#]j.

Equilibria then involve nondegenerate mixed strategies (the uniqueness of

which will be proven in Appendix C).

First, we will examine the case where p, > p.. Lemmas 8 and 9 tell us
2; D
that s, = s, = p,, S, = p., and s, < pi. Thus, both firms' equilibrium
-1 =] =J J J 1 J

price distributions have supports contained in [Ej,p?]. Unlike the case

where c, = c2, we will demonstrate that when c1 # C, the equilibrium price

distributions, F1 and Fz, need not have the same support. They may differ

by one point, an atom at p?. The equilibrium supports need also not be

connected, and both firms may have atoms in their equilibrium distributions

(though each firm has at most one). We provide some examples in Appendix A.
From Lemma 10, Hi(Fl,Fz) = Li(gj). Let

where [Tf is the equilibrium profit of firm i. For p € [gj,p?], QJ(D:HE) is
well-defined and nonnegative. This follows from the fact that the stated
assumptions give us ci < Ei < Ej < p? < P(ki) < p?, which means that over
the nondegenerate interval [gj,p?], Li(p) > Hi(p) and Li(p) > Li(gj) = H:.
For every price p, Hi(p,Fj) is given by (2.2). PFor all p in the support of
Fi except possibly a set of Fi - measure zero, Ni’ we have Hi(p’Fj) = ﬂ;.

Thus, if p is not a mass point of Fj’ then p € (supp Fi)\Ni implies that

Fj(p) = Qj(p; H}). For p € (supp Fi)\Ni, Fj(p) > Qj(p; H}). Setting
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a
| 0 p <p,
I J
F.(p) = { Q,(p; IT*) p, <p < ph
J ‘ J ! 1 =} - J
11 pzpﬂ
L J

would yield an equilibrium strategy for firm j if, given firm i's
equilibrium strategy, it received an expected profit of Hg at all points in

the interval [gj, ﬁ?], and if Qj(p; ﬂ?) were nondecreasing in p.

Similarly, Fi(p) defined in an analogous fashion would yield an equilibrium
strategy for firm i if it received an expected profit of H; at all points in

[Qj, p?) given firm j's equilibrium strategy, and if Qi(p; H}) were

nondecreasing in p. Unfortunately, while it is easily shown that Qi(p; H})

must be increasing on [p pg], with Qi(g.;ng) = 0 and Qi(p?;nﬁ) =1, it is

J' T3 J

not always the case that Qj(p; ﬂ?) is nondecreasing. In Appendix A we

provide an example where Qj(p; ﬂ?) decreases on a subinterval of [gj,p?].

The following Lemma provides some characteristics of Qi and Qj that will be
useful in constructing a pair of equilibrium strategies. In this lemma, we

fix ni = H; and nj = ﬂ? and view Qi and Qj as functions of p only.

Lemma 11: Suppose p? > Ej > Py and H} > 0. Then Qi(p) satisfies the

following properties:
(a) Q.(p;) =0, Q. (p1 =1
it®j ! itTj :
(b) Qi is differentiable at every point in (gj, p?), except at P(kj),

H
when P(k.) € ,D.).
( J) (EJ pJ)

{c) Qi is strictly increasing on [gj, p?).

(d) Qi is concave on the interval [gj, p?] and is twice continuously

differentiable except at P(kj), when P(kj) € (EJ,p?). In that
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case, 1i in/dp > lim

mpTP(kj) piP(k,) dQ,/dp.

The function Qj(p) satisfies the following properties:
H
e . .) = 0, . L) < 1.
(e) QJ(QJ) QJ(pJ)
(f) Qj is differentiable at every point in (gj,p?), except at P(kj)

when P(kj) € (Ej,p?). In that case, li

lmpLP(kj) de/dp > 0 and

1 de/dp < lim de/dp.

im
pTP(kj) plP(kj)
(g) Qj is strictly increasing on the interval [gj,p?] except possibly
on a single subinterval of the form {a,b] where a > . and
b = min[P(kj),p?]. 1f P(kj) < Bj’ Qj is increasing everywhere on
H
[gj,pj]-
(h) Qj is locally concave where it is nondecreasing and
differentiable.
(i) A necessary but not sufficient condition for Qj to decrease in the

interval is that cj < ci'
Proof: See Appendix B. #

Given Lemma 11 it is now easy to construct a pair of equilibrium

strategies. Following Osborne and Pitchik (1986), let
I . M = .
QJ(p,Hg) maX_ . Q, (x;IT¥)
be the nondecreasing cover of Qj_on [Bj,p?]. Note that from Lemma 11,

IQj equals Qj except possibly on some interval contained in (gj, p?]. Then

the strategy
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-
Y P <Bp,
| j
F.(p) = { I1Q.(p; IM*) p. £p < pl?
j | J i =Jj j
H
|1 p 2P,
L j

is an equilibrium strategy for firm j. To understand why Fj(p) is an
equilibrium strategy note first that Fj(p) is nondecreasing, nonnegative,
right-continuous, and is less than or equal to one for all p. t is

therefore a strategy. When firm i sets a price p € [gj, p?] for which

Qj(p; H;) = IQj(p; H;) it earns its equilibrium profit. If firm i sets a
price p € [Ej, p?] for which Qj(p; H;) < IQj(p; ﬂ?) it earns strictly less
than its equilibrium profit. Thus, no such price will be set by firm i.
From Lemma 11 we already know that Qi(p; H;) is increasing over [gj,p?].
Given Fj’ if firm i were indifferent between all prices in the interval, Qi
would be an equilibrium strategy, since it makes j indifferent between all
prices in the interval, and earn a strictly lower profit elsewhere.

However, since Fj(p) may be strictly greater than QJ(D; H;) for p € [gj, p?]
firm i may not be indifferent; it will attach zero measure to the set of
prices for which a strict inequality holds. Since firm j also attaches zero
probability to intervals where the strict inequality holds (except at p?,

which has a mass point) we know that Fi(p) > Q. (p; HF) over these intervals.

i
Since firm i must set Fi(p) = Qi(p; Hﬁ) at points in the support of Fj(p),
in order to remain an admissible strategy Fi(p) must place a mass point at
the start of any interval for which Fj(p) > Qj(p; H?), the size of which
equals the increase in Qi(p; H}) over that interval. Formally, let I be the
left hand closure of the subinterval of [gj, p?) on which IQj(p; H;) >

Qj(D; H;) and define A = [p., p?]\l. Then

J
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.
b o p <p,
| -J
! Qi(p:ﬂ’g) peAl

Fi(p) = A
3 TR

: 1nfx>p,xeﬂ Qi(x,ﬂj) p €1
b1 o> pq
L J

is an equilibrium strategy for firm i.

The last case to be examined is when p? > pj = p, and H¥ > 0 for some

j, 1 # j. Without loss of generality, we may assume that H; > 0, since if

H? = 0 we have Ei = p? and the problem falls under the analysis of case (b)

of Proposition 2. But H; > 0 implies that p? > Bi’ for otherwise Ei = p? =
P(k1 + k2) and we would have Ej = p? = P(k1 + k2) as well. From Lemma 4 we
H H H
= x* - = i
know that Uk(Fl, Fz) Hk, k 1,2. Let p = mln(pl, pz). Suppose that

pH. From Lemma 7 we know that

firm i is a firm for which p?

S, =s. =p. = p. and s. < s,

, pg. Thus the two firms' supports are
-i =] =i =] J i i

contained in [gi, p?]. To derive the equilibrium strategies note that for
k =1,2, Hk(p) and Lk(p) are increasing over this interval, which implies
that Qk(p) is then increasing as well. If for firm i, p? = pH then Qj(pH) =
1, j#1i. If p? > pH then Qi(pH) < 1, so i must have a mass point at pH.
The characterization of the equilibrium proceeds as in the previous case
with Qi and Qj determining the equilibrium pair of strategies. Since both
of these functions are increasing, there are no "gaps" in the supports of
the equilibrium strategies.

This completes our characterization of the equilibrium distributions.

In Proposition 2 and Appendix C we demonstrate that uniqueness obtains,

except possibly for the case where pi > Ej and H{ = 0 for some i, j # 1.
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One consequence of the above analysis is that when Ei = Ej then §i =
§j = pH. Coupled with our derived rule for determining the equilibrium
price distributions this implies that the supports of the equilibrium price
distributions need not be continuous in the underlying parameters

H

(kl,kz,cl,c ). For suppose that p? > p; = pH. A small change in any one of

2
these parameters making Qj > P; (say, for instance a slight increase in Cj)
would lead firm j to not only place mass in some neighborhood above p? but,
also, to place a mass point (albeit a small one) at p?. Thus, there is a
discrete jump in the upper bound of the support of firm j's distribution.
In concluding our characterization of the Nash equilibria of the game
G(kl,kz,cl,cz) it is important to note that equilibrium payoffs are
invariant with respect to the choice of a sharing rule in the event that
p1 = pz. Equilibrium strategies are also invariant except at values of
(kl,kz,cl,cz) for which the game is as in case (b) of Proposition 2 and

satisfies the added restriction that pL >c

i= "5

Let us compare the equilibria with our sharing rule (SR1) to the
equilibria with some alternative sharing rule (SR2).7 First, we claim that
for every equilibrium derived under SR1 there is a corresponding payoff
equivalent equilibrium using SR2. To see this, suppose (Fl’Fz) is an
equilibrium with SR1. If the sets of jump-points of the two distributiouns,
J(Fi), i = 1,2, have an empty intersection, then the same strategies yield
the same expected payoffs under SR2. Furthermore, any firm i could improve
its payoff only by deviating to a masspoint in the distribution of its

opponent. Let p* be such a point. Suppose H?Rz(p*,Fj) > H?RI(FI,FZ).

Then, except for the case when p¥* = c;, we can define a sequence P, 1 p¥*,

Teor example, T,(p,) = (p, - ¢,) min(k,, k,d(p)/(k  +k))).
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. R1 R2 R1
Y that 1 X LBy 2 1T, * R, .
p, €S,, such tha lmpnTp* H? (p, FJ) > H? (p J) > H? (F,,Fy); for
p* = cy H?Rz(p*,Fj) = n?Rl(p*,Fj) = 0. Thus, Fi was not a best response to
Fj under SR1, contradicting equilibrium.

Now suppose that the equilibrium strategies under SR1 do have common

masspoints. As we saw in the construction above, if p € J(F 1 J(F,), then

1) 2

p = P(k, +k

1 2) ). In the first case it is clear that a

or p = max(cl,c2
change in the sharing rule has no effect on the equilibrium strategy since

it has no effect on the payoffs at p. 1In the second case, switching from

SR1 to SR2 alters the set of equilibrium strategies if for some j and i # j,

Cj < c, since under SR2 it is not generally the case that Lj(p) = Tj(p) at

i 1’F2) = 0 so that there

p=c, > Cj' Observe, however, that under SR1, II. (F
exists a continuum of payoff-equivalent equilibria in which firm i
distributes all of its mass in the half-open interval above c; in such a way
as to yield pj =c;a best response. These equilibria obviously remain
equilibria under SR2. We conclude that changing the sharing rule leaves
equilibrium profits invariant, and alters equilibrium strategies only in the
case where SR1 yields a zero profit to the high cost firm.

While we shall not prove a converse to this proposition it is clear
that the equilibrium construction here and in section III could be repeated
for any other sharing rule. Except for Lemma 2 part (b) and Proposition 2

part (b), which deal with pure strategy equilibria arising when one firm

prices at its unit cost, the analysis would be similar. Hence we obtain:

Proposition 3: For every sharing rule when p1 = pz, G(kl’kz’cl’cz) has an
equilibrium in mixed strategies. Equilibrium payoffs are uniquely

determined and coincide for all sharing rules. Equilibrium strategies are
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unique and are the same for all sharing rules except possibly in the case

where one firm earns zero profit.

V. The Ranking of the pi
As shown in Sections 111 and 1V, the equilibrium profits and
distributions depend crucially on the ranking of the Ei' The
characterization of this ranking is greatly simplified when the quantity
setting game with constant marginal costs of production cy (i =1,2), has a
unique Cournot equilibrium. Since A.1 is insufficient to guarantee this, we

will henceforth slightly strengthen the concavity of revenue pd(p):8
A.2: The function d'(p) + pd"(p) is strictly negative on (O,po).

Proposition 4 below characterizes the regions in (kl’kz) space for

which P, > p, and for which p, > p,. Before stating the result, we need to

. : = . < <
introduce some notation. Let A {(k1'k2)‘ k1 < rl(kz) and k2 < rz(kl)}.

Also let Bi(kj) = maxpesi {(p - ci)(d(p) - kj)} and let bi(kj) denote the

corresponding maximizer.

Proposition 4: Suppose (A.1) and (A.2) hold, and suppose c, > cy- Then:

(i) If rl(O) < d(cz), there exists a continuous function

8: [0,0) - [O,d(cl)] such that p >

>
Py ¢ 9(k1) and

91 whenever k2 <

(kl’kz) € A. Furthermore, the function @ satisfies 6(k1) = rz(kl)

8Alternative assumptions that ensure uniqueness of the Cournot
equilibrium (such as strict concavity of the function g - gP(q)) would do

equally well here.
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for k, € [0.%/1, r (k) < 8(k;) <k, for k € (k;,d(c,)], and

e(kl) = ¢(cl,c ) for k1 € [d(cz),m). Here ¢(cl,c ) denotes the

2 2

solution (in kz) to the equation: (c,. - cl)d(cz) = Bl(k2).

2

(ii) If rl(O) > d(cz), then P, > p, whenever (kl'kz) g€ A,

1

Furthermore, in each case, (kl'kz) € A implies Py = By-

Proof: See Appendix D.

Figure 2 illustrates the case where rl(otcl) < d(cz). For (kl'kz) € A,

P

Py = 92 and Proposition 2 guarantees a pure strategy solution with prices

equal to P(k1 + k,). The pair of "Cournot" capacities for constant unit

2

costs (cl,cz) is given by Ec. The function 9(k1) emanating from EC and

taking on the constant value ¢(cl,c ) for k1 > d(cz) divides the remainder

2
of the capacity space into two regions: for k2 < 8(k1) the low cost firm
determines the lower bound of the supports of the equilibrium distributions,
and for k2 > e(kl) the high cost firm determines the bound. Observe that
since 8(k1) < kl' the high cost firm always determines the lower end of the
supports when k2 > kl'
From the arguments in Section III, it follows that Hi = Bi(kj) and

Hj = (p; - Cj)kj whenever p, > Py (j # 1). The equilibrium distributions
are in nondegenerate mixed strategies, except in the northeast corner
bounded below by k1 = d(cz) and to the left by k2 = ¢(c1,c2). In this last
range, firm 1 always plays a pure strategy in equilibrium, while firm 2's
equilibrium strategy may be pure or mixed. The functions wi(kj,ci),

i = 1,2, indicated in the figure are defined by wi(kj,ci) = maxq

_ _ < . .. ‘1 trained
{[{P(q) ci]q Bi(kj)}' For ki < wi(kj,ci) firm i is capacity constraine



25

when it sets Ei and thereby undercuts its rival. In order to facilitate
comparison, it is worth noting that in the case of identical unit costs up
to capacity, C, =¢, = ¢ the curves Wl(kz,c) and wz(kl.c) intersect along
the diagonal, as do the curves rl(kzlc) and rz(kllc). The curve e(kl) then
coincides with the diagonal for k1 € [ki.d(c)], and ¢(c,c) coincides with
the vertical line k2 = d(c).

Similar analysis can be carried out for the case where
rl(Olcl) > d(cz). For costs in this range, the Cournot best reply functions
do not intersect in the positive quadrant (see figure 3). This greatly

facilitates the analysis since then 92 > p, for all (kl’kz) € A.

1

Equilibrium strategies can be derived using the methods of Section 1IV.

When p, > p,, the discussion in Section IV and part (i) of Lemma 11

2
guarantees that Qi(p:ﬂg) is nondecreasing for i = 1,2, so that the

equilibrium strategy of firm i coincides with Qi over the interval [gz,pg).
Thus, closed-form expressions are easily derived. When k1 > kz, in certain
cases where P, > By Q1 may be decreasing over some subinterval of (gl,p?],

as indicated in Lemma 11. The derivation of equilibrium strategies is thus

somewhat more complex, but is easily done on a case-by-case basis.

VI. Applications

a. Capacity Choice
Kreps and Scheinkman (1983) study the game in which firms first
simultaneously choose capacities and then simultaneously select prices.

Assuming that firms have identical unit cost of production (up to capacity),
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that inverse demand is concave,9 and that the cost of capacity is increasing
and convex, they show that the unique subgame perfect equilibrium outcome of
the game10 coincides with the Cournot outcome (where both production and
capacity costs are taken into account). In this section, we analyze the
two-stage game, but relax the assumption of identical unit production costs.
Throughout, we also relax the demand assumptions to A.1 and A.2. These
assumptions guarantee the existence of a unique Cournot equilibrium in the
quantity setting game where capacity costs are taken into account. For
simplicity, we assume that the capacity cost is constant per unit; we denote
this constant by r > 0.

The requirement of subgame perfection allows us to reduce our study of
equilibria of the two-stage game to those of a single-stage game, where the
payoffs accruing to firms after simultaneous capacity choices correspond to
the ones in G, minus capacity costs. We will refer to this game and its
associated payoff functions as F(cl,c

r) and Hi(kl,kz,c rj,

21 1102’

respectively. The existence of a Nash equilibrium (in mixed strategies) to
' is immediate from the continuity of Hi = Li (max (91,22)) and Glicksberg's
{(1952) theorem. Unlike in the case of identical unit production costs, the
Nash equilibria of I' need not coincide with Cournot. 1In fact, as the
following example demonstrates, there may be no equilibrium in which firms

choose determinate capacities.

9Osborne and Pitchik (1986) analyze this game under more general
assumptions on demand, but still with identical production and capacity

costs (implying existence, but not uniqueness of Cournot).

10Kreps and Scheinkman actually show that the game has a unique Nash

equilibrium. We will not consider imperfect equilibria in this paper.
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Suppose that d(p)=max(0,1 - p) and let c,=0, c, =.3, and r = o+,11
Figure 4 illustrates the best response functions for this case. As can be
seen in the figure, when the high cost firm's capacity is not too large, the
low cost firm's best response coincides with the Cournot best response
function for unit cost c, +r= 0+. When the high cost firm's capacity

reaches a critical level, k; (which depends on c,.c and r), the low cost

2
firm's best response jumps to k1 =1 - Cy- Firm 1 finds it most profitable
to respond to a capacity greater than k; by choosing a capacity level that
would allow it to accommodate all demand when setting Py = Cye This enables
it to price its rival out of the market in the price setting subgame. In
the example here, k; is strictly less than kg, the Cournot output level for

firm 2. When this occurs, no equilibrium of F(cl,c ,r) Wwill coincide with

2
the Cournot equilibrium. Moreover, since the best response functions do not
intersect, no pure strategy equilibrium exists.

A complete characterization of the equilibria of the two-stage game
when Cournot does not result is beyond the scope of this paper. In the
remainder of this section we deal with the problem of determining when the
Cournot outcome obtains. The next two propositions analyze the case where
the cost of capacity is negligible, r = o'. Proposition 5 provides a
necessary and sufficient condition for Cournot to arise as an equilibrium in
the game F(cl,cz,0+). With some additional restrictions on demand,
Proposition 6 provides a partition of the cost space (cl,cz) into regions

where Cournot does and does not hold. We conclude our analysis with a

discussion of the case where r is not negligible. We continue to assume

c,c C C .
that c, < Cys (kl'kz) and (Hl,nz) denote the Cournot outputs and profits.

1lBy 0+ we mean an infinitesimally small positive number.
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Proposition 5: A necessary and sufficient condition for (ki,kg) to be an

c.,0") is that:

equilibrium of the game I'(c,, 5

1

c c c
(a) For every k1 > kl’ El(kl'kz) > Ez(kl’kz)

c c c
(b) For every k2 > kz, Qz(kl,kz) > El(kl,kz).

Proof: We will prove that firm 1 has no incentive to deviate from (kg,kg)
if and only if (a) holds. The proof for firm 2 is analogous.

(Sufficiency) Suppose that (a) holds. Then, by Lemma 4, for every

k1 > kg, Hl(kl,kg) = H;. But H; = Hi, since HT is invariant with respect to
k1 above ki.

(Necessity) Suppose Ql(kl,kg) < Ez(kl,kg) for some k1 > ki. Then by
Lemma 5, nl(kl'k;) > HT = H;. #

In the analysis that follows, we restrict our attention to cost pairs for
which rl(O) < d(cz). If the reverse inequality holds, firm 1 may price at
its monopoly level and undercut firm 2's unit cost. Therefore, in the game

F(cl,c ,0+), firm 1 sets its capacity equal to its monopoly output and firm

2
2 chooses a capacity of zero. This outcome coincides with the Cournot
equilibrium when unit costs are (cl,cz).

Suppose now that rl(O) < d(cz). Part (i) of Proposition 4 then implies

[

c c
that Qz(kl,kz) > Ql(kl,kz) for all k2 > k2'

so that firm 2 never has an

incentive to deviate from kg. It can also be seen from Figure 2 that when

kg > ¢(cl,cz), condition (a) of Proposition 5 will necessarily be violated

at k1 = d(c and hence Cournot will not arise as a subgame perfect

2)’

equilibrium of the two-stage game. Referring back to the definition of ¢,
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this will happen whenever (C2 - cl)d(cz) > HI(kg): by choosing a capacity

of d(c2) and charging a price of c¢, firm 1 can credibly threaten to drive

2

firm 2 out of the market, and thereby increase its profits above the Cournot

level.

As should be clear from Figure 2, it is possible that Cournot does not

arise even when (c2 - Cl)d(cz) < H;(kg). Nevertheless, as is shown in

Proposition 6, there exists a restricted (but still interesting) class of

demand functions for which Cournot does obtain when (c2 - Cl)d(cz) < HT(kz);

Proposition 6: Suppose that d" £ 0 and d''" 2 0, and suppose that

rl(o) < d(cz). A necessary and sufficient condition for Cournot to be an
C e oL £/LC B
equilibrium of the game F(cl,cz,o ) is then that Hl(kz) > (c2 cl)d(cz).

Proof: See Appendix E,

Figure 5 shows the cost pairs (cl,cz) for which Cournot is not an
equilibrium outcome of F(cl,c2,0+) when d(p) = max(0,1 - p). While
Proposition 6 analyzes only the case in which r = 0+, it is easily shown
that for a range of capacity costs above zero there will still be unit cost
pairs (cl,cz) for which the Cournot result does not hold. For these cost
pairs, there will be no subgame perfect equilibrium in which the two firms
use pure strategies in setting capacities. As the cost of capacity becomes
larger, the range of unit costs up to capacity for which Cournot does not

hold gets smaller. Computations carried out for the linear example show

that when r 2 .075 all equilibria involve Cournot capacities.
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b. Tariffs vs. Quotas

Our model provides a natural framework for examining the effects of
tariffs and quotas in a duopolistic setting.12 Suppose firm 1 is a domestic
firm and firm 2 a foreign firm, each producing for the domestic market only.
Let demand be given as in section II. We assume that the firms are
capacity-constrained price setters with given capacities and unit costs of
production up to capacity. In the absence of intervention in the market

through a tariff or quota, the firms play the game G(kl‘kz’c ,C. ).

1" 72

The imposition of a tariff at a fixed level t is assumed to raise the
unit cost of the foreign firm in providing the good to the domestic market

to c; = c2 + t. Thus, when a tariff is levied the firms play the
t

cz).

game G(kl,kz,c The imposition of a quota at a level strictly less

19
than the foreign firm's capacity restricts that capacity to the level of the

quota. We shall refer to such a quota as a "binding quota."13 The

quota-constrained capacity level of the foreign firm will be denoted kg.
Thus, if a binding quota is levied on the foreign firm, firms play the game
G(k, k9

( 1°K5:€y,C5)

While there are many intriguing questions which arise in the context of

this model, one topic which has received widespread attention in the

12For a treatment of some of these issues in the context of a capacity

constrained price game with differentiated products see Krishna (1988,
1989). Hwang and Mai (1988) examined the equivalence of tariffs and quotas

in a conjectural variations model.

13This terminology has been used elsewhere to refer to a quota which

strictly reduces the quantity sold in the market by the foreign firm at
given prices. In our model, since firms may not sell all of their capacity

in equilibrium, this need not be the case.
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literature is whether tariffs and quotas are in any sense equivalent. The
following proposition provides what we believe to be a very strong

nonequivalence result:

suppose a

Proposition 7: Starting from an initial position (kl’kz’cl’cz)'

positive tariff (binding quota) is levied such that in the resulting
equilibrium neither firm is driven entirely from the market. Then there
exists no binding quota (positive tariff) which generates the same

equilibrium price distributions.

Proof: We prove the statement for a tariff levied. The converse will then
follow immediately. A tariff transforms the game to G(kl,kz,cl,cZ) where

cy > Cye Let gi(t), p?(t), i = 1,2, be the critical prices of the two firms

in the transformed game. 1In equilibrium, one of the following must hold:

(1) py(t) > py(t), (i1) py(t) > p,(t), or (iii) p,(t) = p, (t).

=1

We look first at case (i). Since, by assumption, neither firm is

*
driven from the market, we know Hl > 0. With gl(t) > gz(t),

H - H
= = < = =
gl(t) < pl(t), and by Lemmas 8 and 9, N S, pl(t) and s, £ 8y pl(t)

H(k

1 (k

2 2)'

1 By Lemma 11, firm 1 has a masspoint at p?(t),

¢y) =b
o (py(t)) > 0.

Given any binding quota kq, the resulting price distribution will be
identical to that under the tariff only if these same conditions hold. Let
gi(d) and p?(q), i = 1,2, be the critical prices under the quota. Then we
can obtain an identical distribution only if gl(q) = max(gl(q), p,(q)) and

al(p?(Q)) > 0 for, otherwise, from the uniqueness of the equilibrium

distribution and the characterization of equilibrium in section IV, we could
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not obtain a nondegenerate mixed strategy equilibrium in which, for some

price p, Sz < S, =P and al(p) > 0. However, since p?(q) > p?(t) the
resulting equilibrium distributions are not identical.14
Case (ii) follows by a similar argument applied to Qz(t) and pg(t).
With Ez(t) > Ql(t) and H; > 0, Eg(t) < pg(t), and by Lemmas 8 and 9
H H t

_ - t
§1 =8, = Ez(t) and Sy < S, = pz(t) = pz(kl,cz) = b, (k,,c

o (Ky 2). By Lemma 11,

firm 2 has a masspoint az(pg(t)) > 0. If a quota is to duplicate this
distribution it too must yield a nondegenerate mixed strategy distribution
in which pg(t) is the upper bound of the union of the firms' supports and

firm 2 has a masspoint at this price. This can only happen if

Qz(q) = max(gl,(q),gz(q)) and pg(q) > Qz(q). But if this holds then pg(q) <
H . . H _
pz(t), since the former price equals pz(kl,cz) = bz(kl,cz).
Suppose now that case (iii) holds, Ql(t) = Qz(t) = p(t). Then from
Lemma 7, s = s, = p(t). We consider two subcases.

1 -2

(a) Suppose p(t) = P(k1 + kz). Then we are in a pure strategy region

and a binding quota must have p = P(k1 + kg) > P(k1 + k_ ). (Note that this

2

is the only part the proposition where a nonbinding quota will duplicate a
tariff. See Footnote 14.)

(b) Suppose p(t) > P(k1 + k. ). If p?(t) < p?(t), from the analysis of

2

section IV, §i = Sj = p?(t) and firm i has a masspoint at p?(t). If i =1

then the result follows from an argument similar to that of case (i) (the

case of a nonbinding quota is covered by an argument similar to that in

14In this case a nonbinding quota will also not duplicate the

equilibrium distributions under a tariff since it can be shown that, with
H 0 t

p,(t) > p,(t) > p,(t), Q1(p'Lz(91(t))) < Q1(p’Lz(91(t)))' Vp

€ (Ql(t),pl(t)), where the superscripts 0 and t denote the function Q1

calculated for the pair (kz,cz) and (k ,c;), respectively.

2
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footnote 14). If i = 2, then the result follows from an argument similar to

that in case (ii). Finally, suppose p?(t) = pg(t) = pH(t). Then neither

firm has a masspoint at the upper bound of the equilibrium supports,
s, =s, =p (t). In order to duplicate the equilibrium distributions the

critical prices under a quota must satisfy Ql(q) = QZ(Q) = p(t) and p?(q) =

pg(q) = pH(t) {otherwise, there would exist a masspoint). But p?(t) < p?(q)

implies that this cannot hold. #

It should be noted that in Proposition 7 the one case where the
restriction of levying only binding quotas is of importance in establishing

nonequivalence is the case where G(kl.kz.c ,c;) is such that kl < rl(k

1 2'C4)

, N .
and k2 <r. (k,,c When capacities are below the Cournot best response

21 2)'

functions given the tariff levied, the equilibrium price distributions under

the tariff are pure strategies, with each firm charging p = P(k, + k In

1 2)'

this case a nonbinding quota will yield the same price, but a binding quota
will not. However, although the price distributions are the same under the
tariff and nonbinding quota, the government obtains revenue under the tariff
but does not under the quota.

It should also be noted that there are cases of nonequivalence in other

ranges of the parameter space (kl,kz,c ). Suppose, for instance, that we

1'%

start from an initial position in which ¢, > ¢, > 0 and kl’kz > d(c

1 2 2)'

Since the capacity constraints will never be binding in equilibrium, this is
very much like the classical Bertrand model. Now suppose a tariff is levied

at a positive level t, so that cy < Cy + t < p%. In the equilibrium of the

game G(kl,kz,c ,C, + t), firm 1 drives firm 2 out of the market and charges

1772

the price Py = C, * t < pi. This result cannot be obtained with a quota.

2
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Since 02 < Cl' for firm 2 to be driven out under a quota the gquota must be
set at zero (kg = 0). But in this case firm 1 charges pg.

The question of the nonequivalence of tariffs and quotas is just one of
many applications of our model in the trade context outlined. One
interesting application, which appears immediate from our treatment of the
game of capacity choice, is to compare the effects of tariffs and guotas on
investment in capacity by foreign and domestic firms. Another application

would involve embedding the one shot model in a supergame model of collusion

allowing one to examine the effect of levying tariffs and quotas on the

sustainability of collusion.® vyet another application would integrate the

analysis of this paper with the price leadership model of Deneckere and
Kovenock (1988), to analyze the effects of tariffs and quotas on the
16

endogenous determination of a price leader. These are among the topics

that are the focus of our ongoing research.

15See Davidson (1984) and Rotemberg and Saloner (1986).

16For an intriguing discussion of the trade literature utilizing price

leadership see Krishna (1988).
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Appendix A

In this appendix we provide an example where Qj may decrease when

Ej > P, and H? > 0. Suppose demand is of the form d(p) = max(O0,
c1 = .3, c2 =0, k1 = .1, and k2 = .55. Then
L1 = (p - .3)min(.2, 1 - p)
(A.1) Hl = (p - .38)min(.1, max(0, .45 - p))
L2 = p min(.55, 1 - p)
Hz = p min(.55, max(0, .9 - p)).
. . o H H
it is easily verified that p, = .3175, P, = .45, P, = .35625 and
- * - H¥% = * = =
P, .3681818. Thus, H2 Hz .2025 and Hl Ll(gz) .0068181.

H . .
[Bz,pa] the function Q2 is given by

Ll(p) - H; .1p - .0368181

Q. = =
® L) - H(p) p° -

.65p + .105

Differentiating with respect to p

2

.1(p~ - .65p + .105) - (.1p - .0368181)(2p - .65)

sz/dp = 5

{p~ - .65p + .105)2

which implies that sgn(sz/dp) = sgn[—.lp2 + .0736362p - .0134317].

a quadratic with roots .3329675 and .4033946.

derivative is positive.

Between these two values,

Since [Qz,pg] = [.3681818, .45] and P(kz) =1-k

1 -p),

Over

This is
the

2

= .45, in the interval (.4033946, .45) the derivative of 02 is negative.
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Consequently, Fz(p) = Qz(p) on [92,.4033946], is flat on [.4033946, 1) and
has a masspoint at pg, It is also easily verified that Ql(p) is increasing
everywhere on [gz,pg], so that supp F1 = [92, .4033946], with a masspoint at
the upper end of this interval.

It is easy to modify this example to obtain a case where firms have

identical, but disconnected supports. Let c,,c,. and k1 be as above, and let

1’72
. . H H
k2 = .6. Some calculations vyield p1 = .35, p2 = .45, By = .325 and 92 =
.3375. Thus, ﬂ; = H; = .2025 and H; =

L,(p,) = .00375. Since P(k,) - .4 €

(gz,pg), Qz(p) takes on two different functional forms. On [gz,P(kz)),

H
2}'

[.1p - .03375]/[.1p - .03]. It can be verified

Hl(p) > 0 so that Qz(p) [.1p - .03375]/[p2 - .6p + .09]. On [P(kz),P

it

Hl(p) = 0 so that Qz(p)
that Qz(p) is increasing on [92’ .375), decreasing on (.375, .4), and
increasing again over (.4,pg]. Also, Qz(.375) = Qz(.4125), so that supp Fl
= supp F2 = [22,.375] U [.4125,pg]. The construction of Section IV now

shows that F1 has a masspoint at .375, and that F2 has a masspoint at pg.
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Appendix B

Proof of Lemma 11: By definition, Q,(p) = (Lj(p) - H;)/(Lj(p) - Hilp)).
(a) is immediate from the definritions of gj and p? and from Lemma 4. (b)
follows immediately from the fact that, throughout the interval, Hj(p) is
differentiable, Lj(p) is differentiable at every point except P(kj), and

Lj(p) > Hj(p). (c) follows from the fact that, from (b),

(Lj(p)(H§ - Hy(p)) + Hi(p)(L,(p) - Hﬁ)}.

(B.1) in/dP = >
L, - H.

( J(p) J(p))

With H? > Hj(p) on [gj,p?) from Lemma 4, Lj(p) > ﬂ} from the fact that Lj(p)
is strictly increasing on [C.,pp) and I7* = L.(p.), and both L' and H'

J ] J J =] J J
positive on [gj,p?) where they exist, we know that (B.1) is positive where
these derivatives exist. At P(kj) the function Qi is continuous and, for
P(k,) € (py.p ), Li
j BjPy)

in/dp > lim in/dp.

"o1P (k) pIP (k)
The last inequality follows from the fact that for p > P(kj), Lj(p) =

(p - cj)d'(p) + d(p), while for p < P(kj), Lj(p) = kj and the fact that

Li(p) appears in (B.1) with a positive coefficient. To prove the rest of

(d), note that Lj and Hj are twice continuously differentiable except for Lj

at the point P(kj). Furthermore,

5.2) sz /dpz i [(Lj(rr:]s - HJ.) + H}(LJ. - rr;))(LJ. - HJ.) - 2(L3 - H&)(Lg(n; - HJ.) + Hj(Lj - an)) \
i U

S

3

It is easily verified that for p # P(kj), L5 > 0, H5 > 0, Lj - Hj > 0,

L; < 0 and H3 < 0. With H§ - Hj > 0 and Lj ~ Hj > 0 in the open interval,
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the numerator in (B.2) is negative and the denominator is positive. Thus,
except for p = P(kj), szi/dp2 is negative and continuous. This, together
with the limit result at P(kj) tells us that Qi is concave.

We now check the properties of Qj' By definition, Qj(p) =
(Li(p)) - H;)/(Li(p) - Hi(p)). The claim in (e) is immediate from Lemma 10
and Lemma 5. (f) follows from the fact that, throughout the interval, Li(p)
= (pi -~ Ci)ki is differentiable, Hi(p) is differentiable at every point

except P(kj), and Li(p) > Hi(p). With

_ ' - 1 —- - 2

all the terms in this expression are continuous on the interval except Hi(p)

at P(k.), which satisfies lim H! = (P(k,) - c,)d'(P{k, < 0, and
(k) precicy) H(P) = (Pl - ed' (PO

limplP(kj) Hi(p) = 0 as long as P(kj) € (gj,pj). Substituting this into

(B.3) and noting that the coefficient of Hi(p) in (B.4) is positive, we

obtain llmplP(kj) de/dp > llmpTP(kj)

expression that can be negative in (B.3), we see that lim

de/dp, Since Hi is the only
dQ./dp > O,
plP(kj) QJ/ P
proving (f).
To prove (g), note that Li = ki > 0 and L; = 0. Also note that for

1 > "o 1]
p < P(kj), Hi = d(p) - kj + {p - ci)d (p) 0 and HY = 2d (p) +

{(p - Ci)d (p) < 0; for p > P(kj), Hi = Hi 0. When P(kj) > Ej’ for

Py < P(kj), (B.3) cannot be signed since Hi may be negative. However, at
= = *

p Ej’ Li(gj) Hi from Lemma 10, so

(B.4)  (dQy/dp)(p,) = [Lj(p,) (T - #,(p,))1/[L (p,) - H;(p)]" > 0.
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Since de/dp is continuous except at P(kj), (B.4) implies that there is some
neighborhood above Qj in which Qj is increasing. For p > P(kj), de/dp >0
since H; = 0. Therefore, to prove the claim we need only to show that if Qj
turns down in the interval then it does not turn up again unless it hits

P(kj). To show this note that

{(Li(”{ - Hy) By TR (L - Hy) - 2(Ly - H) (L0 - By) « B0y - T)
3 H

(8.5) dij/dpz -

The sign of this expression is equal to the sign of the numerator. Suppose

de/dp = 0. Then L;(HT - Hi) + H'i(Li - H?) 0, which implies that
sgn(szj/dpz) = sgn(H;(Li - H;)(Li - Hi)) < 0. (Here we make use of the
fact that L; = 0). Thus, at a critical point of Qj (other than P(kj)), the
function is locally concave: once Qj turns down it cannot turn up again
until it hits P(kj). This proves (g). To prove (h) note, more generally,
that since Li - Hi = ki + kj - d(p) - (p - ci)d'(p) > 0, from (B.5) we see
that sgn(szj/dpz) < 0 whenever sgn(de/dp) > 0. Thus, whenever Qj is
locally nondecreasing (except at P(kj)) it is locally concave. Finally, to
show (i), note that from (g), Qj can be decreasing only on a subinterval of
(gj, min(P(kj),p?)). For this range of prices it is easily verified that Qj
= {(ki/kj)(p ~ cj)/(p - Ci)]Qi’ which implies that

&zi(cjgci)(}-*-i(p_cj)d()i
d  k (p-c)? * ky (p - cy) dp

Since the second summand is positive, if Cj > cyo Qj is increasing. Thus, a

necessary condition for Qj to decrease is that c. < c; - #
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Appendix C

In this Appendix, we will demonstrate the unigueness of the mixed
strategy equilibrium for the case where p > P(k1 + k2) and H? > 0 whenever
H

P, = P- Lemmas 7, 8 and 9 then imply that $; = §j = p and s < Ej = p},

where j € {%: pQ = p}. The first lemma, which is due to Osborne and Pitchik

(1983, p.18), demonstrates that--except possibly for the single point p?~*

the supports of the equilibrium strategies coincide.

Lenma C.1: Supp F, = supp F, U {p}}.
Proof: Suppose p € (E,p?) and p € supp Fi‘ Then, since Lj and Hj are
increasing at p, so is Hj(p,Fi). Hence p € supp Fj'

Next, suppose p € (g,p?) and p € supp Fj‘ Let x = max{([p,p) N supp Fj}
and y = min{(p,p?] N supp Fj}' Observe that Fj(x) < 1 and that for s €
(x,vy): Hi(s,Fj) = (1 - Fj(x))Li(s) + Fj(x)Hi(s). Observe also that since L,
is linear on [Q,p?] and since Hi is strictly concave on [Q,P(kj)] and
identically zero on [P(kj),po], Hi(s’Fj) is increasing and/or strictly
concave on [Q,P(kj)] and increasing on [P(kj),pg]. We conclude that if
p € supp Fi’ then p maximizes Hi(p.Fj) on (x,y) and p € J(Fi). Now clearly
X £ J(Fi) (this is obvious if x € J(Fj); if x ¢ J(Fj) then
ni(X’Fj) < Hi(p,Fj) by the maximization property of p). But then nj(Fj’Fi)
= Hj( ’Fi) = Fi(x)Hj(x) + (1 - Fi(x))Hj(x). We then obtain an immediate

contradiction to equilibrium, since on {x,p) both Lj and Hj are increasing

and since i puts no mass on {x,p). #
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Qur next lemma shows that gaps in i's support can occur only on the set

: Q. (p:I* IQ.(p:IT*)}.
{p 5 (p:Il7) < QJ(p )}
Lemma C.2: Let p € (g,p?) with p € supp F, - Then Qj(p;ﬂg) < IQj(D;HT).

Proof: First, we deal with the case where Fi(p) = 1. Then Ei <p < p?, and
so F.(s.) = lim F.(s). Also s. ¢ J(F.), since L. and H. are increasing
65 BCREL & J(F)) ] ; g

_ H H - —
i ApL,F.) = [T*. > .(s,)F.(s;
on {si,pj] and sinte HJ(pJ, 1) HJ We conclude that Hl(sl)FJ(sl) +

_ ) - ) - e _ _ _ - ) -
hence that Fj(éi) = Qj(gi) < 1. Observe now that Qj(gi) = 0. Indeed, if
Q&(Ei) < 0, then there would exist s < §i such that Qj(s) > Fj(s) and if

Qj(éi) > 0, then there would exist s > §{ such that Qj(s) > Fj(s) = Fj(gi).

In both cases, by playing s, firm i would net Fj(s)Hi(s) + (1 - Fj(s))Li(s)

> Qj(s)Hi(s) + (1 - Qj(s))Li(s) = H;, a contradiction to equilibrium.
Observe also that Qj(s) < Fj(gi) for all s € (§i,p?), for otherwise there
would exist s € (Ei.p?) such that Qj(s) > Fj(s), yielding the same

contradiction. From Lemma 11, we conclude that Qj(s) < IQj(s) for all

- H
s € (si,pj)-

Next, let us suppose that Fi(p) < 1. Let x = max{[p,p) N supp Fi} and
y = min{(p,p?] N supp Fi}. Since nj(°’Fi) is increasing on {x,y), it must

be that limS Fj(s) = Fj(x). Next we claim that y ¢ J(Fj). Otherwise

1y

y £ J(Fi) and since y € supp Fi we would have HY = Hi(y,FJ) = Hi(y)Fj(y) +

Li(y)(l - Fj(y)). This contradicts the fact that for all s € [x,y):

"

H; > Hi(s,Fj) Hi(s)Fj(x) + Li(s)(l - Fj(x)). Suppose then that y ¢£ J(Fj).

Then Hi(y,Fj) H; and so Fj(x) = F_ (y) = Q.(y;ﬂ?).

J J

Next, observe that X € J(Fi). For if not, then since by Lemma C.1,
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X € supp Fj. HE = Hj(x,Fi). This would contradict equilibrium, as Hj(s’Fi)
is increasing on (x,y). Now Xx € J(Fi) implies Fj(x) = Qj(x;H;) and so
. - - - LTT ; ase of F =
Qj(x,ﬂz) Fj(x) Fj(y) Qj(y'ni)' As in the case of Ei(p) 1, we
conclude that Qj(x) = 0 and that Qj(s) < Fj(x) for all s € (x,y). Hence,

Qj(s) < IQj(s) for all s € (x,y), proving the desired result. #

The next two lemmas allow us to completely pin down the supports of the

distributions.
Lemma C.3: Suppose Qj(p) < IQj(p;ﬂ;). Then p € supp EF..

Proof: Suppose to the contrary that p € supp Fi' By Lemma C.1, p €

supp Fj‘ Furthermore, Fj(p) > IQj(p;ﬂ;) > Qj(p). Now p ¢ J(Fi), since
otherwise p ¢ J(Fj) and so H; = Hi(p)Fj(p) + Li(p)(l - Fj(p)), implying
Fj(p) = Qj(p;ﬂ?). For the same reason, Fi is not right increasing at p. We

conclude that Fi is left increasing at p, and so there exists

: - - T
{pn} C supp Fi’ P, t p such that Hi(pn,fj) ﬂ?. Hence, Fj(pn) Qj(pn,ﬂi).

However, for large n, Qj(pn;ﬂ?) < IQj(pn;H;), yielding the contradiction

= ;TI*) < . ;[1¥) < F, . #
Fj(pn) Qj(pn ) IQJ(pn Iry) FJ(pn)
. H H H
Lemma C.4: Suppose pj € supp Fi' Then 3 € > 0 such that V p € (pj - e,pj).
TRy = .
Q;(p3M1E) = 1Q,(piIT}).
Proof: Suppose not. Then from Lemma 11 3 € > 0 such that
Vpe (p? - e,p?), Qj(p) < IQj(p). From Lemma C.3, far every p in this

interval p & supp Fi' Furthermore, p? cannot be a masspoint of firm i since
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then lim F.(p)H.(p) + (1 - F.(p))L.(p) > H.(pg) = H*. Thus, pg ¢
ptp? 1 J i J J J J
supp Fi' J#

. H
X - . R ety LTT* - . LTTX
Let a = inf{p: Qj(p,Hi) < IQj(p,Hi)) and b = sup{p < Py Qj(p,Hi) <
IQj(p;Hy)). Combining Lemmas C.1-C.4 we have:

supp Fj = [g,p?]\(a,b) and supp Fi = cl(supp Fj\pg),

where cl denotes closure. Finally, it is easy to argue that masspoints in
the distributions can occur for i only at a and for j only at p? (otherwise,
there would have to be additional gaps in the support). This completely

pins down the distribution functions, since if p € supp Fk and p ¢ J(FQ)

(for & # k), ﬂk(p,FQ) = ﬂ; and so Fg(p) = QQ(D;H;).
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Appendix D

Proof of Proposition 4: First, observe that ki < ri(k,) implies Py ~ p? =
it = i

P(k1 + kz), and that ki > ri(kj) implies P(k1 + kz) < R; < P, = bi(kj)'

Consequently, p, = P, = P(k

1 + kz) for (kl’kz) € A, and Ei = P(k1 + kz) < p

Cte

for (kl’kz) g€ A with ki < ri(kj). We are left with the ranking of the P, in

the region where k1 > rl(kz) and k2 > r,. (k,).

21

It is important to first establish the locus of points where firm i is

exactly capacity constrained at Ei’ i.e., d(gi) = k,. Observe that since

k. 2 r.(k.,), H¥(k.) = B,(k.) and hence that k, must satisfy
i i'j i] itj i

[P(ki) - Ci]ki = Bi(kj)' Our assumptions on d(e) imply that the function

q - [P(q) - ci]q is strictly quasiconcave, so that for each kj > 0, there
are exactly two solutions in [O,d(ci)] to this equation. The smallest of
these solutions necessarily satisfies ki < ri(kj) and hence is inadmissible.
Hence, for each kj > 0 there is a ki = wi(kj) = max{q: [P(q) -~ ci]q =

Bi(kj)} such that d(gi) = ki' Furthermare, since Bi(kj) is decreasing in

kj’ wi is increasing in kj’ The functions wi are illustrated in Figure 2.

Next, we claim that k2 > wz(kl) and k1 > 0 implies P, > p Indeed, if

=1

Wz(kl) <k, < d(cl) and 91 z2p

H
2 then d(pl) < d(gl) < d(gz) < k2 so that

2 »
*
Hl(kz)

icti > = <
0, contradicting k2 < d(cl). If k2 2 d(cl), then Py ¢y < c, <

p2. A similar argument establishes that wl(kz) <k

1 < d(cz) and k2 >0

implies 91 > P, -

Let us now investigate the region where k1 > d(cz), so that P, = C,-

First, consider the case where rl(O) < d(cz). Then 91 satisfies the

i = > = =
equation Ll(gl) B1(k2)' For k2 > d(cl), Ry ¢y <€, = Py and for

k, =0, p, = bl(O) >c, =p

2 Py 2 Since p, is strictly decreasing in k2 on

5"
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[O,d(cl)] there exists, for each kl, a unique value of k2 such that 9] = cC

- ' > d - st satisfy:
p,. Since k, 2 L(Cz), k, 8(kl) must satisfy:

Ly(e,) = (e, - ¢ )d(c,) = B, (k,)

for all k1 > d(cz). Now consider the case where rl(O) > d(cz). For

d(02) < kg g rl(kz), we already showed that p, > p, {(except at k1 = d(cz)

and k2 ~ 0, where equality holds). A similar argument to the case rl(O) <

d(cz) then establishes that P, > By for all k1 > d(cz).

We are left with the region where rl(kz) < k1 < min{d(cz),wl(kz)} and

rz(kl) < k,

2 < Wz(kl). We will refer to this region as Q (observe that Q may

be empty when rl(O) > d(cz)). Observe that on Q each firm i is capacity

constrained at p;,, so that p; = ¢ + Bi(kj)/ki' Let & = (92 - ;_)l)klk2 be

viewed as a function of k2. Then:

o ~ CplKiky F KB,k ) - kyB)(K,)

@I

(c, - e)ky + [b(k,) = ¢, 1k, - r,(k,)]

@' = ~{2r (ky) - k, - kzri(kz)}/d'(bl(kz))

1]

For each k1 for which there exists k2 such that (kl'kz) € Q let §(k1) =
mln(kzz (kl’kz) € O} and 8(k1) = max(kz: (kl’kz) € Q}. We wish to study the

behavior of & on [§,3]. Observe that for k2 > k2 = rl(kz), $' is positive.

-~

Observe also that for kz s k,, ®" > 0. We conclude that either &'(k,) > 0
at k, = §(k,) so that ¢' > 0 on [§(kl),3(k1)], or else there exists a
uniquely defined k, = u(k,) € (&(k;) k,) such that &' < 0 on [&(k,),u(k,))

and &' > 0 on (u(kl),S(kl)].
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First, suppose k > kf. Then ®(8(k,)) < 0, so that &(k,) < O on

[6(k1).u(k,)], and &' > 0 on (y(kl),§(k1)J. Hence there exists at most one

value of k2 € (y(kl),g(kl)] such that @(kz) = 0. In fact, since
@(3(k1)) > 0, the existence of such a solution is guaranteed. Denote this

solution by k2 = e(kl).

Lk,

. c
R® 211 < | > = =
Finally, let k1 < k. Observe that @(kz) > 0 at k2 §(k1) ry 1

1

with strict inequality for k1 < ki. We now claim that @‘(kz) > 0 at k2 =

$(k,), so that & > 0 on (§(k1),6(k1)]. Define w(k,) = @‘(kz)!klzrl(kz)-

Then:

w(kz) = (c2 -~ cl)rl(kz) + [b1(k2) - cl][k2 - rl(kz)]

kz) - cl]k2 - [bl(kz) - cz]rl(kz).

i < >

Now if rl(o) > d(cz)’ then 4 < bl(kz) < bl(O) <c,, s0 that w > 0 at
-1 e c, _

k2 =ry (kl)' If rl(O) < d(cz), then w(kz) = 0. Observe also that

U'(kz) = bi(kz)[k2 -r, (k,)} + [bl(kz) - cC

112 - [by(ky) - c,dri(k,). Now if

1 ]

- - I
= < t

k2 < k2 rl(kz), then k2 < rl(kz) and so & (k2) > 0 on [kz,kz]. For

H

k2 > kz, direct inspection of the expression for w(kz) reveals that

w(kz) > 0. Consequently, w(kz) > 0 on (kg,ril(O)], establishing the claim.

We conclude that B, > p

C -1
< =
Py for k1 < k1 and k2 > &(k,) r, (kl) (except at

-1
c . cC .
(kl'kz)’ where equality holds). #
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Appendix E

Proof of Proposition 6: We need only show that if Hf(kg) > (02 - Cl)d(CZ)
then firm 1 has no incentive to deviate from kl = ki. First, observe that

[ * (o] 3 * _
ﬂl(kl,kz) < Hl(kz) for all k1 > d(cz). Indeed, if k1 > d(cz) then Hz(kl) =

0 and so P, = C,- If p, < ¢

c
5 p, < then n](kl,kz) = (c

c
- *
o 2 cl)d(cz) < Hl(kz)' if

= c - X c : . .
El > 02 92, then nl(kl,kz) H1(k2)’ and so firm 1 has no incentive to

deviate to k1 > d(cz),

Suppose now that ki < k1 < d(cz). Then c,, < P(kl) < P(kg). The

2

remainder of the proof is broken up in two cases, depending upon the

relationship between P, and P(kl)' First, if Ry > P(kl), then Hz(gl) =0

and so pg <p

L . <
P, - This implies P, <

Cy _ o iC
Py and so nl(kl,kz) = Hl(kz)'

Suppose now that Py < P(k We now claim that Py < P(kg). Indeed, if

1)‘

c c H . . _
P, > P(kz), then P, > P(kz) > P(kl) > ¢, and so Hz(pz) = 0 implying P, = C

2 2’

a contradiction. Hence:

C
= *
P c, + Hl(kz)/k1

C
- *
p c, + Hz(k1)/k2'

_ B - c _ Cox/uCy _

Let W(kl) klkz(g1 92) klkz(c1 cz) + kzﬂl(kz) RIHZ(kl). Then
c, _  wCruxCy _ _

W(kl) = 0 and w(d(cz)) kz{Hl(kz) (02 cl)d(cz)} > 0. We may now

calculate:

v(k) = -(c, - cl)kg v by (k) - e, )k, - ry(k)]

k) = bk ) (kg - ry(k) ]+ [by(ky) = c,][1 = ry(k)].
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Now, the f.o.c. £ b i ies : - - ' L
ow e 0.cC or Z(kl) implies that bz(kl) c2 rz(kl)/d (b2(k1))'

Also, since d(bz(kl)) = k, + r_ (k,), we have d'(bz(kl))bé(k

1 5 =1+ ' (k).

1 1) 21

Thus, we obtain:
0" (ky) = ~{er, (k) - k(1 + ry(kg))}/d  (by(k,)).

Also observe that the sign of ¢" is equal to the sign of ~d'(b2(k1))¢"(k1),

and that the latter expression has derivative r!(k

2 1) -1 - klrz(kl). Qur

assumptions on demand can be shown to imply that ré > 0, so that the above

derivative is negative. Also note that w'(ki) = —[bz(ki) - cl]k2 +

c c )
{bz(kl) - Cz]kl' From the f.o.c. for bz(kl) and bl(kz) we see that

bz(ki) -c, - -rz(ki)/d'(bz(kf)) and bl(kf) - e, - —rl(kg)/d'(bl(kg)).

Substituting this into the expression for w'(kf), and noting that
(kS) = b, (kS) then yields w'(kS) = 0
o (kg 1 (kg en yields 1) = 0.

There are now two cases to consider. First, assume that w"(k;) < 0.

Then w”(kl) < 0 on (ki,d(cz)], and hence w'(kl) < 0 on (ki,d(cz)]. The

latter statement contradicts w(ki) = 0 and w(d(cz)) > 0. Thus it must be

that W"(ki) > 0. Since w"(d(cz)) < 0, we know that ¥' is increasing on

(ki,kl), where k1 is the unigue solution to w"(kl) = 0 in (k:,d(cz)), and

decreasing thereafter. Since w(ki) 0 and ¢(d(02)) 2 0, this proves w(kl)

> 0 on {ki,d(cz)] so that nl(kl,kg) = H;(kg). We conclude that firm 1 has
no incentive to deviate to k1 € (ki,d(cz)] either.

. c c, _ c, _
Finally, for k1 € [0,k1), nl(kl,kz) = kl[P(k1 + kz) clj, an
c

expression that is maximized as k1 = kl' #
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Figure 1 : The functions L{i and Hi with the critical prices.
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Figure 3 : The ranking of p, and p, when HHAO_OHV > aﬁowv.
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Figure 4 : Best Response functions for the game Hlev.wvo+v when d(p) = max (0,1-p).






