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ABSTRACT. It is shiown how bordered liessians, sufficient statistics, and integrability
conditions from utility theory are closely related to the characterization theorems
for mechanisin design. Then, new results are outlined about a theory for implicitly
defined objective functions, about how to incorporate different kinds of information
sets modeling, say, externalities into the theory, and about the actual construction
of economic mechamstus.

Risking frostbite while standing outside on a cold Evanston day during the winter
of 1977, Stan Reiter introduced me to the fascinating arca of mechanism design. He
posed a seemingly straightforward mathematical question about the composition
of mappings. The motivation for his query derived from the now standard Mount-
Reiter diagram ([MTR))
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which succinctly captures the issucs of mechanism design 1ssues introduced by L.
Hurwicz [Hy].

In the diagram, 7 : Q2 C H;’Zl R* — R® represents the objective or per-
formance function (a resource allocation, a choice function, etc.). To illustrate,
suppose x; € % denotes the jth agent’s characteristies; e.g., some of the compo-
nents of x; identi{y the Cobb-Douglas exponents for the utility function while the
remaining componetts specify the initial endowment. In this way X = (x5, ,Xn)
represents an economy and P(X) designates a specified allocation; e.g., the Wal-
rasian allocation. In general the objective mapping P(X) is used to represent a
goal, an objective, or cven a basic philosophy.

This paper was written for a volume honoring Stan Reiter that is being edited by John Ledyard.
I would like to thank Stan Reiter and Leo Hurwicz for introducing me to this area, and the two of
them along with Ken Mount for the many delightful discussions about these issues of mechanism
design. All three, of course, are among the original pioneers of this area. This research was
supported by NSF Grant [RI-8303505 as well as earlier NSI IRI grants .
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After an objective is specified, how is it to be realized? This 1s the problem of
mechanism design. Tle solution is to define an appropriate organizational struc-
ture, or communication network among the agents. Such a construction involves
determining “who should say what to whom.” Namely, the jth agent needs to
convey appropriate information to the other agents about her characteristics x;.
“What” the jth agent tells the other agents is her message; in the MR diagram,
this is represented by the mapping (or correspondence) p;(x;). The restriction that
each agent’s message depends on her characteristics and only indirectly (through
communicated messages) on other agents characteristics 1s the privacy preserving
condition. Using the message space A = {in = (my,...,mg)}, the correspondence
p; often 1s represented implicitly by

(1.2) pi(xj) = {im € M|Gj(m, x;) = (g{(xj,m),...,gij (xj,m)) = 0}

where a; < k; is an integer.

After appropriate information is gathered from the agents, decisions are made
and action taken; this is the mapping /i, If the right kind of organization is defined,
the action realizes the goal; le., h(m) = P(X) and the MR diagram commutes.

As an atypical but illustrative example, consider voting and choice theory. Here,
the jth agent’s characteristics X represent a preference ranking of the n > 2 candi-
dates. In this model. a precise performance function may not be specified; instead
P({X) reflects a specified philosophy: e.g.. the group’s ranking of the candidates
represents the “true wislies of the voters.” Each voter’s message is the way he or
she marks the ballot: the mapping /(1) is the clection ranking resulting from a
tally of the ballots. Whetlier or not the diagram commutes determines whether
or not the process truly captures “the wishes of the voters.”? As such, by using
different objectives for P. the MR diagram forins a convenient encapsulation of the
various themes from voting and chioice theory.

In more typical examples, P(X) 1s explicitly defined; e.g., P(X) may be the
Walrasian allocation. One message system that realizes this P(X) is the usual
price model where the excess demand vector at each price is an agent’s message
and h is the assignment of net trades at equilibrium. Alternatively, one could use
the complete disclosure organization where cach agent completely discloses all of
his defining characteristics and then /i (the central agent?) computes the Walrasian
allocation. In general. if P can be realized by one organization, it can be realized
by many different organizations.

So, for a given P. the idea is to find. or at least to characterize, all possible
associated organizations: i.e, the mechanisim design problem is to start with the

>

: C : n : : o
specified objective function szl %) — R and then characterize all organizations
that correspond to the rest of the MR diagram. This requires finding all ways in
which a given mapping. . can be factored mto a composition

(13) P(X):]"(/ll(xl)-"‘ s,“n(xn))-

A natural issue arises: if inany different organizations can realize P, how does one
select among them? It is not difficult to see that, in a real sense, the dimension of M

L An “impossibility theorem™ is where no mechanism exists for a specified objective P.
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forms a crude but uscful measure of the efficiency of the associated organization.?
After all, a larger dimensional M implies that more kinds of messages need to be
communicated before appropriate action can be taken. For instance, the staggering
informational requircnicnts associated with complete disclosure are manifested by
the large dimension of the associated message space.

We now can explain Reiter’s question to me about composing functions (Egs.
1.1, 1.3) to minimize the dimension of a message space; he was interested in deter-
mining the minimal dinicnsion of a message space [MR] associated with an arbitrary
but specified performance function P. As he posed the problem, it seemed to be
straightforward. As [ quickly learned, one must never confuse the clarity of Stan’s
questions with the potential simplicity of solution. Several months later, joined
in our discussions by Leo Hurwicz, we developed such a theory [HRS]| in terms of
differential geometric tools.

A couple of years later I developed a dual approach ([Sy 2.3 4]) to the HRS the-
ory that, in several ways. provides a conceptually simpler approach to understand
and to resolve certuin hasic 1ssues. For stance, this dual approach casily can be
modified to model other kinds of communication networks [Sy]. Also, with this
approach answers catl be found for certain types of mechanism design questions
such as determining the ~kind of information™ about agents’ characteristics needed
to realize a particular performance function, how to develop a theory for implicitly
defined objective functions (which arise in cconomics through “optimality” con-
siderations), how to adjust the theory when the privacy preserving constraint is
modified to include niodels of externalities or from game theory, ete.

While this dual approach has advantages, it is based on differential ideals and
other mathematical tools not widely used in cconomies. So in this paper these
mathematical idcas are introduced 1n terins of concepts more traditionally used
in economics. In this manuner I relate this dual approach to sufficient statistics,
to the bordered hessian. and to the classical integrability conditions from revealed
preference theory. Then I inotivate some new results; details will appear elsewhere.

2. SUFTFICIENT STATISTIC AND AMECHANISM DESIGN

It 1s instructive to cowpare the problems of mechanism design with the related
issues confronting a statistician charged with the design of an estimator 8 for a
parameter 8 € @. Thoe relevant data is derived from m [ID random variables X =
{Xi}7, governed by a probability distribution based on the unknown 8. The idea
is to use the observations X = (ry,--+ .1, ) € R™ to determine the value of 8; i.e.,
the statisticel objective function F: R — O 1s F(x) = 4.

The associated “statistical mechanisin design problem,” then, is to create an
estimator 6 to realize the goal F(x) = 6. In doing so, certain natural issues arise.
The first is to extract tlie relevant aspects of the observations x. Do we need the
precise value of cachi observation @ along with the order in which it occurred,
or are there more efficienr. compressed. aggregated forms of the data that dismiss
irrelevant aspects of the observations hy retaining only what is needed to accomplish

Among the many other sclection criteria is to determine whether the resulting organization is
incentive compatible. Another cholee 1s to minimize the complexity involved in the computations
of agents’ messages.
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the specified goal? For exawple, in determining the probability that Tails will occur
when a penny spinning ou its edge finally falls, can we find a more precise estimate
of § by using the full listing (T, 7, T, H,...) from 100 spins of the penny, or would
a count of the number of Tails suffice?® As one might expect, this informational
concern was a central iszuc in statistics (Savage [Sav]); the solution is the sufficient
statistic.

Recall that a statistic is a random variable T(X). The level sets of observations,
T-1(t) = {x € R™|T;(x) = t} partition the space of observations R™. A statistic
T is sufficient iff the conditional joint probability distribution of X = (X5,..., X))
given T = t is independent of the value of §; i.e., T is sufficient iff Pr(X = x|T =
t,8) = v(x,t). Notice that this definition looscly requires a T = ¢ partition set to
be in a “f- level set” of the probability distribution.

A given F admits many different sufficient statistics. With the spinning penny
illustration let Ty, T represent, respectively, the number of tails in the first 50 and
next 50 spins; it is casy to show that T = (7. 73) is a sufficient statistic. Another
choice is the total count of tails T3 = T; + 1. Clearly, T3 improves upon 17 e.g., T3
further compactifies the observations. (This is manifested by the larger dimension
of the T3 level sets; larger subscts of data are compressed into the same statistic.)
T' is a minimal sufficient statistic if the data caunot be further compressed without
losing sufficiency. '

Notice the close relationship between the theory of sufficient statistics and the
problem of mechanisn: desien. As above. a first task in mechanism design is to
determine what arc the relevant aspects of the agents’ characteristics to realize a
specified P. In this comparison between the areas, the image values of P replace
the value of 8, and a message m plays the same role as the value T = ¢ in statistics;
i.e., the role of m is to identify relevant partition sets of the agents’ characteristics.
These partition sets, called information sets ([Ss.4]), are given by

tH;0m) = {x; € R¥|g;(x;.m) = 0}.

The statistical partition sets {T71(¢)}, tdentify the type of information needed to
design an estimator; the information sets from mechanism design characterize the
type of information needed to design an organization to realize P.

“Privacy prescrving introduces a complication for mechanism design not ex-
plicitly described in statistics. However. intuition about privacy preserving can be
gained by examining T = (77.7,): both T, and T, satisfy a privacy preserving
condition. (For instance, the outcome of Ty is based only on the entries for the
first 50 spins of the coin.) Oue way to analvze Ty and T; is to divide the space of
observations into the components R1%% = R°% x R0 where the jth component char-
acterizes the outcome of T;. j = 1,2. The T, level sets give the number of Tails on
the jth set of 50 spins of the penny, so neither level set characterizes the sufficient
statistic 7. Instead for cach (Ty.Ty) = (t;.12). the level set of R'%? characterizing
T is the product

{x e R"'T(x) =1} x {x € R Tu(x) =t} € R,

31t is amusing to note that the probability of Tails is 0.72; not the suspected 0.50 which results
from a flipped penny. In the spinning penuny the slightly heavier Head tilts the axis of rotation
providing a prejudice toward Tails.
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Similarly, in mechanisin design, privacy preserving allows only agent j to use the
entry x; € R% | so the “group partition sets” must be constructed from the indi-
vidual information sets. As true for the sufficient statistic example, the individual
information sets need to he designed so that the product

(2.1) HZ,(I-(m) =Ui(m) x - X Up(m)

=1

partitions the space H;zl % like that of a sufficient statistic. The set []i—, U;, the
group information set, 15 tlic product of the individual information sets. However,
because the messages from an individual can use messages from other agents, the
design of the individual information sets is more complicated than for sufficient sta-
tistics. This dependency on other agents’ messages creates a delicate coordination
condition captured by Eq. 2.1. Equation 2.1 is, then, an “anti- Tower of Babble”
condition; it coordinates what each agent says so that the messages contribute
toward the goal of realizing P.

The parallels with the theory of sufficient statistics continue. For the same
reasons that T771(¢) is in a 6 level set, the group information set [[#; must be in
a level set of P.* An objective of statistics is to find a minimal sufficient statistic
(which minimizes the dimension of the space of values T' = t); the parallel objective
for mechanism design is to find information sets that minimize the dimension of the
message space M. A sutficient statistic need not define an estimator for 8; instead
its role is to identify whar kind of information is needed to design an estimator.
Likewise the role of the individual and group information sets is to determine the
kind of information nceeded 1 the design of an organization to realize P. With the
wealth of estimators associated with a sufficient statistic, we need to select among
them by using other criteria: e.g., an estimator is to be unbiased. Likewise, as there
are a large number of different organizations that realize P, we need to use other
criteria, such as incentive compatibility. to select among them.

To see further parallels hetween mechanisni design and sufficient statisties, recall
that the Halmos-Savagc fuctorization theorem asserts that T is a sufficient statistic
iff it admits the factorization Pr(X = x|T = t.8) = v(x)g(t,8). (See, for instance,
Lehmann [L].) For mechanizm design, this factorization assertion is the requirement
that the MR diagram comutes. Additional factorization requirements are given
by the characterization rheorems in Section 4.

3. INFORMATION SETS AND INTEGRABILITY CONDITIONS FOR UTILITY THEORY

An important aspect of the mechauism design problem, then, is to determine
the information sets associated with a specified objective function P. These are the
level sets of the communication network [Sy] defined by (unknown) {G(x;,m)} 7,
so an accompanying goal is to find these & functions. Notice the close parallels
between this problem and the classical issue of integrability from economics. In
utility theory, the problen is to find appropriate conditions so that an agent’s
preferences can be cliaracterized by an utility function. Samuelson cleverly solved

41f not, then one message would correspond to more than one value of £2; this would contradict
the commuting of the diagram.
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this problem in the setting of two goods. His idca uses the facts that each x is the
demand for some price-inconie pair and that the budget line passing through x is a
tangent line to the indifference curve. Thus, by use of his weak axiom of revealed
preference (WARP), Samnuclson [Samy 2] showed that the envelope created by the
budget lines trace out the level sets for an agent’s utility function.

It is reasonable to suspect the WARDP argument to apply for n > 3 goods by
using budget planes to trace out the indifference sets. It does not; the WARP
argument breaks down as noted by several rescarchers (e.g., [Sam.]) and as Gale
[Ga] demonstrated with an example. The deficiencies of WARP were corrected in
a fundamental paper by Houthakker [Ho| with his introduction of the strong axiom
of revealed preferences (SARP). A way to interpret the strings of pairwise compar-
isons required by SARD is that the multiple comparisons are needed to carefully
orient the tangent plaucs (bhudget planes) to force the resulting envelope to define
level surfaces. This interpretation is consistent with what we know about surfaces
in R™. For lines, there are very few restrictions; after all, in a two-dimensional space
little can go wrong with tlic orientation of the tangent lines. (Consequently we only
need the existence theory for ordinary differential equations.) However, for higher
dimensional surfaces in R*. 1 > 3, the more delicate orientation problem requires
more stringent integrability conditions to cnsure that surfaces are defined.®> This
requires a differential theory for surfaces; the Frobenius Theory. (See, for instance,
[Sp].) In fact some of the examples proving the need of these more stringent condi-
tions for surfaces in R”. 1. > 3. can be used to create other “Gale-type” examples
demonstrating the need of SARD over WARDP.

How does all of thix tic into the mechanism design problem? In both cases
indirect information is used to design the level sets. For utility functions, the goal is
to characterize the indifterence sets (via revealed preferences) in a way that satisfies
the integrability conditions. In mechanism design the goal is to characterize the
information sets {via considerations related to sufficient statistics) in a way that
satisfies the integrability couditions. Indeed. in HRS we did this by characterizing
the tangent planes of the information sets.

The dual to the HRS approach is to use the normal vectors for the information
sets rather than the tangent planes. This is analogous to defining a utility function
based on information about tlie supporting price vector at each x, rather than the
budget plane. In utility thicory. the indifference sets are level sets of the (unknown)
U(x), so information abour thie normal vectors describes the direction of VIU. Like-
wise, in mechanism design. the jth agent’s information sets are the x; level sets of
gf, ¢ = 1,...,aj, and information about the normal vectors provides information
about ijglj. By understauding the space of normal vectors for the information

sets, perhaps we can reconstruct the Vi ¢?, and the actual messages. This is an
advantage of the dual approach.

Any such theory must involve integrability conditions for normal vectors. T'll
describe these ideas in terms of utility functions. Suppose information about the

5The division between 1 > 3 and n = 2 is counnon in cconomics. A dramatic illustration is
Arrow’s Impossibility Theorein where nis the winnber of candidates. This numerology 1s not a
mere coincidence; it manifest= the difference between the geometry of a line (n = 2) and a higher
dimensional plane (n > 3). ['lis is discussed in [S5].
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normal vectors is obtaincd that appears to define the gradient of a function; i.e.,
suppose we suspect that v(x) = (v1(x),...,v,(x)) = VU(x) for some function U.
The integrability conditions usc the fact that mixed partial derivatives agree; i.e,

aU(x) __ 9U(x) e
dz;0r; = Or;0z;’ Thus’ if

de,(x) dvi(x
or;, Ox;

(3.1) for all i, j,

then there is reason to helieve that v(x) is a gradient. A standard theorem asserts
that, at least locally, this 1s true.

With differential forms (c.g., sce [F, SP, W]), the differentiability conditions 3.1
become particularly simple. Recall that the differential dx; is an element of length
— an incremental change iu the x; direction. The vector field v(x) can be identified
with an one-form by defining v = .1 vi(x)dr;. In particular, a gradient VU(x)
is identified with the onc-form

- ab(x)dm T AU (x)

2 1L
(3 ) ‘ Ty 0.17,1

dzn,.

Higher dimensional mcasures, such as area, voluine, cte., are obtained via the
wedge product A. Onc can identify this product with an element of area given by
the product of two incremental elements of length in different directions. The main
rule in the wedge product is an orientation whereby each of the two-forms

(3.3) dei Ndrj = —drj Adr;

define a two-dimensional clement of area, but with different orientations. (The ori-
entation is important for, say. Huid fow problems where we need to know which way
the fluid is passing through an element of arca of a surface. A related “fluid flow”
problem arises in the study of strategic behavior [Sg].} A convenient consequence of
this orientation is that dr, Adr; = —dzjAdr; = 0; this reflects the obvious fact that
a two dimensional arca cannot be constructed by incremental lengths both along the
same line — area is not “length times length:™ it is “length times width.” By use of
the wedge product, two-fornis are constructed from two one-forms in a natural way
where wy Awq = (aydry +aydaey +azdag)A(byday +bydra+bydrs) = ayday A(byday +
bydrg + bydas) + asdag A (L day +bodrgy + bydas )+ azdrs A(bydey + badzs + bydas),
or, by the orientation rules.

(34) (Cl2b3 - bQGg)d.Ifg A (].2'3 + ((Igbl — (I]Z);;)(].l';; A (].171 + ((Ilbg — blag)d:r] N dl‘g.

To sce the type of arca this two-form measures, identify wy,ws, respectively with
the vectors Vi = (ay,as.03). Vy = (b1, by, b3). The vectors Vi,V define a paral-
lelogram with area given by the magnitude of the vector

(G [C3) €n
(35) V] X Vg = |t ay  dg | = ((1-_)5);; — [)2(13,(133)] — (llbg,albg — UZbl)
by by by
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where the e; term in the top row of the determinant is the unit vector with unity
in the 7th component. Notice that the coefficients in Eqs. 3.4, 3.5 agree.
In general,

Wi Awy = (Z a;dr;) A (Z bjdzj) =

(3.6a) Z((l,’bj —bja;)dr; ANdx;
i<J

has a determinant interpretation of each coefficient. Let A4; ; be the 2 x 2 determi-
nant using the 7th and jth columns from

ay Ao e Uy,
Z)1 b2 bn '

(3.6b) iy A = Z A jdry Adry.
1<

Then

The integrability condition also involves the exterior derivative. Given a form

w = 0y aj(x)da;, define

n

(3.7) de =Y (dag(x)} A dr,.

j=1

When this derivative is applied to w = dU we obtain

do = 2T = A 25 pdry b a2 A e, =
RS af(fn
(3.8) = [ o°U a lde; Adre; = 0.

i< 0.‘1‘,‘81‘]' - al']'a.l','

In other words, the orientation rule of the wedge product along with the fact that
mixed partial are equal forces all of the terms to cancel, so d? = 0.
The important fact is that the converse is true; if

(3.9) dw = 0.

then, at least locally, w = JI” for some function I". This is the differential version
of the integrability condition Eq. 3.1.

When indirect methods are employed to determine the structure of the level
sets, such when revealed preferences are used. one cannot expect the information
to define a gradient w = U Instcad, the best one might anticipate is the weaker
integrable situation w = L(x)dU" where h(x) # 0 and U are unknown functions.
If so, then the goal is to solve for dU and 7. For instance, if only information
about the unit price vector is known, then all we have is w = |VU(x)|71dU where

h(x) = |VU(x)| L.



SUFFICIENT STATISTICS, UTILITY THEORY., AND MECHANISM DESIGN 9

The new integrability problem, then, is to identify when
(3.10) w = h(x)dU

does or does not occur. To find these conditions, start with the desired situation
Eq. 3.10 and differentiate. According to the product rule,

de = dh ANdU + hd*U = dh A dU.

Unfortunately, dw involves the unknown functions. So, using the assumption w =

h(x)dU, we have that dU = i ~!w, or
dw=h"'dh Aw.

In other words, if

(3.11) de =3 Aw

for some one-form 3, then we should suspect that Eq. 3.10 holds. To identify when
Eq. 3.11 does occur, use the wedge product; after all w Adw =w A (h71dh Aw) =
—h~tdhA(wAw) = 0aswAe = 0. (wAw corresponds to a degenerate parallelogram. )

Tt

The important fact is that the converse holds; if w = >77

=1 a;5(x)dr; satisfies

(3.12) w A dw = 0,

then, at least locally, Eq. 3.10 holds. Namely, there exist functions H(x), U(x), so
that, at least locally, one has tlic integrable problem H(X)w = dU.

Equation 3.12 is a compact representation of the standard integrability con-
ditions. To see this for the special case of 1 = 3 and a vector field p(x) =
(p1(x), p2(x), pa(x)), the associated one-form is w = Ej-:l pjda;. The integrability
conditions from Eq. 2.9 arc are the standard

Ip2  Opiy O O dps  Opa

pg[aIl - O.zgj_r])")[c')._r;;— E]%ﬂn m—a—m] =0

conditions found in, say, [\'. Sain], ete.

SARP is used to ensurc the alignment of the tangent planes defines surfaces;
likewise we must expect related alignment concerns to arise when w represents a
normal vector to these plancs. The differential dw captures the movement of the
normal vector (and the concomitant change in the tangent planes), so the alignment
condition is the integrability requirement w A de = 0.

The above approach suffices for a family of level sets coming from a single func-
tion, but more is needed for mechanism design. After all, each function defines
a message and for many P (c.g.. a Walrasian allocation) it is overly optimistic to
expect an agent’s relevant characteristics to be codified in a single number. There-
fore, we need an integrability theory for a > 1 cquations. To develop insight,
start with an integrable situation and use it to develop criteria (the integrability
conditions) that identify wloen it arises. Again, hecause indirect methods are used



10 DONALD G. SAARI

to characterize the information scts, we cannot cxpect to end up with the desired
gradients of g;, or even with these gradients appearing in the form given by Eq. 3.9;
instead, it is more likely that an integrable situation arises in a scrambled setting
of a one-forms

Cx

(3.13) Wi = Zu,‘j(x)dg]'(x), i=1,...,q,

j=1

where the w;’s are given but the fact they are expressed in terms of the integrable,
but unknown dg;’s is not known. The goal is to identify when Eq 3.13 holds, and
then solve for the dg;’s. (And then the g;’s.)

The conditions which identify when Eq. 3.13 holds are based on a multidimen-
sional version of the argument used to derive Eq. 3.12. If Eq. 3.13 holds, we can
use the a equations and a unknowns to solve for the dyg;’s iff the matrix ((a;;)) is
nonsingular iff the vectors identified with {w;}2, are linearly independent iff these
vectors define a parallelogran with non-zero a-dimensional volume iff

(3.14) o =wp AorAwg # 0

1s a nonzero measure of a-dimcusional volume. Equation 3.14 ensures, then, that
(at least locally) we can solve Eq. 3.13 for

(3.15) dy; = Z (X ), J=1... .
k=1

Following the lead of SARDP and Eq. 3.12, we must expect the desired conditions
to involve dw; = E?:l da;j A dygj. As true in the argument leading to Eq. 3.11,
each term in the sum involves an (unknown) integrable factor dg;. Using Eq. 3.15,
we have that dw; = E?:] dag; A [Zi’:l bin(x)wr] = 22:1 Bi A wyi where i 1s a
one- form involving bji(x). du;j. cte. Mimicking Eq. 3.11, an indicator that the
integrability situation prevails i if cach dw; can be expressed as

(3.16) doi =Y Bk Ak
k=1

Whether Eq. 3.16 occurs cau he determined by exploiting the fact wi Awp = 0.
By using the repeated wedge product of dw; with cach of the wy’s, each term in the
summation disappears. In othier words, if Eq. 3.16 occurs, then it must be that

(3.17) de, nr, =0 r=1....,a.

The critical fact is that the converse is true. If Eqs 3.14, 3.17 hold, then so
does Eq. 3.13. Namely. there are linear combinations (with scalar functions as
cocfficients) of the {wj}?:1 which define integrable functions satisfving the usual
mixed partial conditions.

Next I express these intcgrability conditions in the more modern language used
in Section 4. An ideal I generated by the a one-forms {w;}%, (denoted by I =<
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Wi, . ..,wq >) is the space of all possible one-forms created by linear combinations
of the {w;}%., where the cocfficients are smooth functions. At each point x, the
ideal defines a vector space — it is the space of vectors orthogonal to the desired level
set at X. So, the ideal describes hiow this vector space changes smoothly as x varies.
The ideal has dimension « if at cach x the vector space has a basis of dimension a iff
a basis of the ideal defines tlic nou- vanishing a-dimensional area ro # 0 but all a+1
products are identically zero. An a-dimensional ideal is a differential 1deal if Eqs.
3.14, 3.17 hold. If it is a differential ideal, then Eq. 3.13 holds. This means that
there is a basis for the ideal expressed in terms of « differentials of functions; the
intersection of the level sets of these functions define a n — a dimensional foliation.
These are the Frobenius intcerability conditions described as a differential ideal. In
our application, the a functions will correspond to the communication functions in
the communication networks while the level scts are the information sets.

4. DEsIGN OF MESSAGE SYSTEMS

Armed with integrability couditions, we now turn to the question of mechanism
design. As differentiability conditions are involved, we require P to be a smooth
mapping. Also, to remove obvious redundancies, we impose the following efficiency
assumptions on the communication functions G = (G1,...,Gy): H?:] RN x M —

R2Z 2, Recall, each G mapping cousists of the communication functions {gf}f‘;l
(See Sect. 1.)

Efficiency Assumptions [S]. «. Dim(M) = > a,: i.e., the dimension of M
agrees with the number of {¢/} functions.

b. At (X,m), the Jacobean of G with respect to m is non-singular.

c. At (X,m), the Jacobean of ¢ with respect to X has maximal rank.

To characterize the information sets and the associated message system, a differ-
ential ideal is constructed for cacli agent. The idea is simple; place in each agent’s
ideal the one-forms representing normal vectors for the information sets. These one-
forms are determined by conditions specifying what must and must not happen.
In the current discussion, there are only four considerations: privacy preserving,
sufficient statistic, coordinarion of messages, and integrability.

Privacy preserving requires the Lth agent’s messages to be independent of the
other agents’ characteristics  the other agents’ characteristics are orthogonal to
the kth agent’s information sets.” Thus, if ’l} is a component of another agents’
characteristics, then dz% € I. So, if [dX]g denotes the set of differentials of all
coordinate functions except those of the kth agent, then Iy D< [dX]x > .

The “sufficient statistic” considerations require the information sets to be in
level sets of P: ie., dP = (dP,....,dP,) € Iy. The differential of a coordinate
function, say dPj, is a sum involving the differentials of coordinates for the Ath
agent’s characteristics and a = involving differentials of all other coordinates;

OP] k apl ]
(ipl = O—If‘-dl"l + Z —5—;}-([11-.

e

8Compare this situation with the (77, 7T%) suflicient statistic. T} does not involve any entry
from the second 50 flips of tlie coin. =0 cach of these coordinates is orthogonal to a T level set.
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The second summation is a lincar combination of privacy preserving terms [dX]x
already entered into Ix. So, by vector space operations, this summation can be
eliminated leaving only (” o (]1 with any relevance for Iy. Denote this sum as

di Py, and let di P = (dkPl, e dkPu). We then have that
(4-1) I OD< di P, [dX]k > .

The interaction effects ensure that the kth agent’s message helps the other agents
realize P. As indicated in Scction 2, this interaction is captured by the product
structure of the group information set (Eq. 2.1). As true for the individual infor-
mation sets, the group information sct is characterized by its normal vectors. It
is clear from the form of [], ¢{i{in) that the normal vectors for the product set
come from the normal vectors for cach of the individual information sets. However,
those normal vectors represcuting privacy preserving play no role in the group in-
formation set, so they must he dropped. To sce how to do this, notice that because
the other agents must respect the privacy of the jth agent, their privacy preserving
vectors span R% . Consequently in the intersection of the agents’ space of normal
vectors for R% | only the space of normal vectors for the jth agent survives. Using
the ideal representation, this allows the normal vectors for the group information
sets to be identified with the ideal

(4.2) I=np_ L.

Sofar I D< d\P,...,d, P > .

Now comes the issue of integrability. To define the information sets, we need
that {I;}7_; and I are differentialideals. It is casy to show that if I is a differential
ideal, then so are the idecals [;. Thercfore, the mechanism design problem hinges on
whether I is a differential 1de (11. Just as SARP is not just a technicality, requiring I
to be a differential ideal is not a mere technical detail: it is the crux of the mechanism
design problem. After all. the integrability of I determines whether or not the
agents’ messages can be coordinated to realize P! For instance, the integrability
of I distinguishes between the P's admitting an organization where each agent
responds with messages of a single type (e.g., a bid), and those P requiring more
refined messages reflecting different attributes of the agent’s type (e.g., an excess
demand for each of the n commodities). It turns out that P admits an organization
where each agent’s uses one kind of message it I is a differential ideal with the
entries already placed in I. But. for many choices of P, this is not be the case.
As a simple example, let P = Z;:l x;y; where the first and second agents use,
respectively, the value of x aud y in their messages. With the above, ) =< &1 P =
Zj—:l yidr;idy, dys, dys.dyy >. 1, =< &P = Z;zl ridy;idey dry, dey day >
I =< ijl y;da;; Zj___l ajdy; > . It is straightforward (using Eq. 3.17) to verify
that I, I, are differential icdeals, but that I is not. Consequently it is impossible
to construct information scts for these two agents to realize P where each agent’s
message (“sufficient statistic™) cawn be collapsed into a single number; a refinement
in the messages (information sets) is required.

If the above entries do not make I a differential ideal, then refined information
sets are required. The refined. or lower dimensional information sets are created by
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adding appropriate one-forms (normal vectors) to the ideals to make I a differential
ideal. As I = NI; these one-forms w must first be added to an appropriate I; n
order to gain entry to I. But, to gain entry to I, an one-form w; added to I; must
be a linear combination of the differentials of the coordinates assigned to this agent.
(I indicate in Section 5 how to find the w;’s.) When an independent w; is added
to I;, the information sets beconme lower dimensional; i.c., each w; corresponds to
adding another communication function gf for the jth agent. We now arrive at the
fundamental characterization thcorem for mechanism design.

Privacy Preserving Characterization Theorem [S)].

Let P : H;;l RY — R® D¢ a smooth performance function. The following
are neccssary and sufficient couditions that a privacy preserving message system
satisfying the efficiency asswnptions on G with dim(}M) = Z?:l n; exists which
realizes P in a neighborhood of X € T] Rki |
a. For each j there is a diffcrential ideal I =< djP,wj . ... ,wjs;5 [dX]; > which

is of dimension n; + Z#j k. The wj;’s are simooth one- forms.
b. The set I =N"_,I; is a differential ideal of dimension Z?:1 n;.

This characterization theoremn plays the same role for mnechanism design as the
Halmos-Savage factorization theorem for the sufficient statistic and the SARP for
revealed preference. As true for SARP and the sufficient statistic, 1t does not
describe the information sets. Instead it specifies what conditions characterize
those information sets that can be used to develop an organization to realize the
given objective P,

A generalized characterization theorem holds when the privacy preserving con-
dition is relaxed to permit “common knowledge” or where certain agents’ messages
depend upon other agent’s puraincters. Presumably, with shared information, there
is a reduction in the number of messages needed to realize P. For instance, if
P(z,y) = ry, where z,y arc known respectively by the first and the second agents,
then two messages are necded; c.¢.. the first agent can communicate the value of
z to the second agent who then computes the value of ay. However, if one agent,
say the second, knows both values. then only one message is required — this agent
computes and communicates the value of P. Using the close connection with the
sufficient statistic, this potential savings in commumnications reflects the fact the
level sets of P admits a cruder partition that satisfies the privacy condition; it is
analogous to using T3 rather than (7, 73).

The first step leading to the following more general theorem requires modifying
the “privacy preserving” counditions: i.e., Iz D< {dX]y > . Forecach k =1,...,n,
specify the parameters that are off-limits in the design of the kth agent’s communi-
cation functions; namely list the coordinates of other agents that are not accessible
for the design of the kth agent’s messages. This listing constitutes the “priwvacy
conditions.” Let [[dX]pcli denore the differentials of these coordinates for the kth
agent, and let 3 be the dimcusion of this set. Then I D< di P; [dX]}pc]s > -
For instance, modifying the carlier dot product example to permit both agents to
use z1,y; and the first agent to use yy. then [[dX]pc]i = {dyz,dys}, 81 = 2, while
([dX]pc)z = {dzy,dxs,dry}. 4, = 3.

There are other modifications required by the extension of privacy preserving;
e.g., di P is the truncation of dP hased on the differentials of coordinates accessible



14 DONALD G. SAARI

to the kth agent by the privacy conditions. Likewise, the rank assertions for the
efficiency conditions are based on the larger set of variables. The more general
characterization theorem follows.

Characterization Theorem.

Let P : H?:l R¥* — R® be a simooth performance function with specified privacy
conditions. The following are nccessary and sufficient conditions that a message
system satisfying the privacy conditions and the efficiency assumptions on G with
dimM = 2;21 n; exists which realize P in a neighborhood of X € [] R%:.

a. Foreach j there is a differentialideal I; =< d;P,w; . ... ,w;;; [[dX]pc]j > which
is of dimension nj + 3;. The w; ;s are smooth one-fornis.

b. For each nonempty subset of indices A C {1,2,...,n}, the set I 4 = Njecsljisa
differential ideal.

c. The ideal I = N"_,I; is of dimcnsion E;-;l n;.

Notice that this characterization theorem includes the earlier one. To illus-
trate the new terms with the modified dot product example, we have that I} D<
AP = Zf:lyidlv,- + x1dyy + aydyyidys,dys >, In OD< dayP = Zf:lﬂ"-ifhi +
yi1dry;des,drg,dey >, and I D< d| I, d2 P > .

These characterization theorcnis scem to require P to be given explicitly. This
creates a complication for many cconomic models because, often, the performance
function is defined implicitly (c.g.. first order constraints) while satisfying addi-
tional constraints (e.g., budget constraints). Both complications arise in a two
agent, two commodity exchange cconomy where the Ath agent has a Cobb-Douglas
utility functions Ug(y1,y2) = y}'* yf_,f* with initial endowment (w¥,w%). The space of
characteristics for the kth ageut i O = {xx = (ax, i, ll‘f, 11‘5) € Ri} The perfor-

mance function, P(xy,x3) = (a}.«b:a?, a3) is defined implicitly by the equations

Vli(al,ab)  Vh(d,
VO (alal)]  VUa(al.3)

v k_ k
/) E w; = aj
k

(4.3) Vh  ((wh wh) = (af,a)) - VULeF, ad) =0

;-
models, solving for P may not he fLasible.) However I is nceded only to compute
dy P; these di P terms can be found in a linear fashion by implicitly differentiating
the defining constraint equations aud then solving the linear equations for di P.
Obviously, this 1s a much simpler linear problem. For instance, the last of the

equations in Eq. 4.3 becomes

While we could solve for P (the «''s). this is a messy, nonlinear task. (For some

((dwf,dwé') — (daf,dag)) . (_(IA-((l/f)ak_l, 6k(a§)-3*'_1) =
(4.4)
— (w¥ wky = (a¥ ab)) - antig = D@ T2 dak 3009 = 1)ad)P 2 dal.

The following theorem asserts that this approach holds in general.



SUFFICIENT STATISTICS, UTILITY THEORY, AND MECHANISM DESIGN 15

Characterization Theorem For Implicitly Defined Functions.
Let P: H?=1 R* — R® be a sinooth performance function implicitly defined by
the conditions

(4.5) Hi(Xp,. . %0 . P(X) =0 k=1,....J,

where each Hy is a smooth function. Suppose privacy conditions are specified. The

following are necessary and sufficicnt conditions that a message system satisfying

the privacy conditions and the efficicucy assumptions on G with dim(M) = E?:l 7

exists which realizes P in a neighborhood of X € [ R%.

a. For each j there is a diﬁ"ez"cntial ideal I; =< djP,wj,,...,wj,;[[dX]pcl; >
which is of dimension nj + 3;. The wj;’s are smooth one-forms. The d; P terms
are found from the expressions lincar in dx;,dP

(4.6) dHi(x1,....x,, P(X)) =0 k=1,...,J.

b. For each nonempty subsct of indices A C {1,2,...,n}, the set 4 = Njcaljisa
differential ideal. :
c. The ideal I = N}_,1; is of dimcnsion Z;‘Zl n;.

The proofs of these last two theorems will appear elsewhere.

5. BORDERED HESsIANs. CHEN'S THEOREM, AND THE IDEALS

['ve outlined the characterization theorems, but I haven't indicated how to find
the w; ;’s that often need to be added to the ideals I;. Also, there remains Reiter’s
question to me about the minimal dimmension of a message spaces associated with a
given P. Solutions for both problenis are outlined below. To keep the details from
overwhelming the exposition, I'll concentrate on the privacy preserving, two agent
setting where P : H?:l RY S R

According to the efficiency definition for G and the integrability conditions, the
minimal dimension problem is a geonietric one because dim(Af) = dim(I). But, it
1s not clear how to find the minimal value for dem(I). Important information about
this issue was obtained by P. Chen [(') 2]. Using the approach of [S)] and building
on earlier ideas of L.Hurwicz [H,] and S. Williams [W], Chen found a lower bound
for dem(Af) in terms of the rank of the Bordered Hessian for P(x,y)

92 P(x.y)
(5.1) Ba(P) = | may, ) V<P
(VyP)! 0

where VU is a column vector. Steve Williams showed that if a message system for

P has dim(M) < min(ky, k), then BH(P) does not have full rank. Chen proved

the stronger assertion that

(5.2) dim( M) > rank(BH(P)).
To illustrate Chen’s Theorenn. notice for P =x-y,x.y € R", that
10 0 ... 0
O 1 0 ... 0 ¢
(5.3) BHP)=|... ... ...
0o 0 0 ... 1 wy,
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has rank n + 1; according to Chen's Theorem, dim(AM) > n + 1. One such message
system is “parameter transfer” where the first agent sends all n values of his char-
acteristics to the second agent who. in turn, computes and transmits the value of
the dot product.

To show the connection between the rank of BH(P) and the characterization
theorem, I'll prove that if rank(DH(I’)) = 2, then there 1s a message system where
dim(M) = 2. According to the characterization theorem, this assertion requires
d;PANdyPANd(d.P)=0and d,P nd,PAd(d,P)=0. Using the equality of mixed
partials, we have that —d(d,P) = d(d,P) = > i %dl‘,’ A dy;j, so it suffices to
show that d;P A dyP A d(dyP} = 0. Now, let Ay be any 3 x 3 determinant in
BH(P) that includes elements from the bottom row and the last column. This
determinant involves four indices - rwo choices for the dr; and two for dy;j; let H =
{t,7:s,k}, t < j,s < krepresent the indices, and let [dxAdy|y; = dziAdz;AdysAdys.
A simple expansion argument (sce Eq. 3.6b) shows that

(5.4) d: P AdyP A, L) =Y Ayldz Adyly.
H

In other words, there is an intimate relationship between the properties of BH(P)
and the wedge product integrability conditions. For instance, as rank(BH(P)) =
2, all Ay = 0, so the integrability condition Eq. 3.17 is satisfied; there is an
organization with dim (M) = 2. Chen's theorem asserts that one cannot do better
than dim(M) = 2. Thus we have a simple proof of an earlier observation made by
L. Hurwicz [Hj] for &y = kz = 2. and in general by Chen [C] o]..

Proposition [H;, Cy 2]. Forn = 2 i necessary and sufficient condition for a (local)
communication network to exist witlh &im(M) = 2 is rank(BH(P}) = 2.

To better understand how to obtain more general bounds on dim(Af), we need
the notion of a rank of a two-form

(5.5) & = Z (r,'jdri A dy]'.
]
This renk is the smallest integer 1 so that

k times

(w),:w/\/\w:,éo

but (w)™! = 0. It turns out that r is the rank of the associated matrix ((a;;)).
If rank(w) = r, then there are 2 one-forms ¢, -+, 0,54 1.--- ,¥, where each
¢; 1s a combination of the da;’s. cach v is a combination of the dy;’s, and

(5.6) =) Gi A
=1

The proof is by induction; if ¢; = Z-';Zl aj1dr; and vy = Z;’Zl[alj/a“]dyj, then
w — o1 A ¥y has no dry,dy; ters. Applying this change of variable argument to
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w — ¢1 Ay, the remaining independent one-forms are defined in a similar manner.’

In fact, r is the minimal value for which such an expression (Eq. 5.6) holds.
So, if rank(d(dy P)) = r, we know there is an expression

-

(5.7) w=d{d,P) =" ¢i A
=1

To exploit this representation, express d, P, d, P as

d. P = Z%‘% + bry10

j=1

(5.8) dyP = cjbj+ el

Jj=1

where a, 3 are remainder terms uceded if d, P, dy P ¢ span{{vi, 0i}). To see how to
use this representation, return to the special case where rank(BH(P)) = 2. This
requires rank(d(d,P)) < 2. For r = 2 and using the {¢;}.{¥;}, @, 8 coordinate
system, we have that

1 0 0 b
) {0 1 0 b
(5.9) BHII = | o o o n

¢y co ¢z 0

To keep rank(BH(P)) = 2, we uced that by = ¢3 = 0;bje) = ~byca. These condi-
tions force d, P = bydy + bacde, d, P = f(x,y)[—b2y1 + biw]. In other words, the
rank imposes stringent requircients on the one-forms. If r =1, then b3, c3 don't
exist, and the integrability conditions are that byca = 0. In other words, dim(I)
is determined by the various ways d, P.dyP can be expressed in terms of the basis
representation (Eq. 5.7, 5.8) derived for d(d; P). The rank of BH(P) characterizes
those representations of BEq. 5.8 that sutisfy the integrability of I for different values
of dim(I).

From the above argument, we sce that even if rank(d(d,P) = 2 and ¢ =
d,P,vy = dy P, terms need to be added to either I or I, to make I a differential
ideal. This is because, so far, we have

2
¢1/\¢’1/\ZO:/\L‘1:¢1/\¢‘1/\C)z/\l#’z#o-

1=1

However, if ¢, is added to [y, then we would have that ¢ A vy A Z?zl o Ny = 0.
In general, this observation suggests that once the representation Eq. 5.7 1s found,
we can solve the problems of findiug the minimal value for dim(M) and of finding
what w;’s to add to the ideals. Afrer all, if from the 7th term in this sum either ¢;
is added to I, or ¢ is added to [,. then d(d,P) Arq = 0. (This entry in ro will

TThis row reduction argument can be modified to show why 7 is the rank of ((ai;)).
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annihilate the 7th term in the sum in Eq. 5.7.) Which terms nced to be added to
the ideals is determined by Eq. 5.8: e.g., if d; P = ¢, then it 1s not necessary to
add a term with index two. However, one further problem arises; after the ’s and
¢’s have been added, we need to verify the new integrability conditions of the form

(5.10) diy Arg =0.

Equation 5.10 would be satisfied if we are fortunate enough that the ¢’s and/or
¥’s in an integrable form like Eq. 3.10. This requires still another integrability
condition: when is it true that

k
(5.11) de P =dfo(x) + > g;(x,y)df5(x)?
=1

Whenever such a situation arises, by choosing .u; = df;(x) I becomes a differential
ideal. This solves both problems of determining the choices of u.‘j and the minimal
dimension of M.

Following and using the kinds of arguments used in Section 3, conditions ensuring
that Eq. 5.11 holds can be determined. As above, the idea is to use the multiple
wedge product of d(d, P) with itself to discover when the Frobenius integrability
conditions ensure that Eq. 5.11 holds. The integrability condition is that if

(d(d ., Pt Ad,P=0
(5.12) (d(d, PN ANd P #0,

then Eq. 5.11 is true. As discovered by the discussion about Eq. 3.9, this re-
lationship necessarily is based on how d, P can be expressed relative to the basis
representation for d(d, P).

Theorem. Forn = 2 agents and « pcerformance function
P:R* < R* - R,
let integers ¢ and cp be such that
(d(d:P)* T Ad,P =0, (ddP)* ANd, P #0,
(d(d, P))t ' AdyP =0, (d(d,P))* Ad,P #0.
There exists a (local) organization with dim(M) < 2 + min(ecy, c2).

By comparing this estimate witl: Chen’s Theorem, it follows that very tight
estimates now exist for the dimmension of M. Moreover, the above indicates how
to find the w; ; to be added to the ideals; in turn, how to address the problem of
creating the communication network. To illustrate with the dot product of x,y €
R, recall from Chen’s result that /() > 5. Because —d(d,. P) = 2?21 dr; Ady;,
it follows that (d(d,P))®* Ad,P # 0. and (d(d,P))* A d, P = 0. According to the
above theorem, there is an organization where dim(Af) < 5. One dim(M) = 5
organization is the parameter transfer given above.

As a concluding comment, extensions for n > 2 agents, for different privacy
conditions, and for P : H;:l R — R“. a > 2 are obtained in much the same way.
The main difficulty is an algebruic one: e.g., the difficulty is to keep track of which
¢;'s and ;s are in the span of curries already added to the ideals. Conclusions in
this direction will be reported clsewliere.
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