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"Optimal Motion Towards a Stochastic Destination”

Abstract

We consider a vehicle (ship, tank, helicopter, airship, automobile, etc.)
moving on a Euclidean plane towards a stochastic final destination, to be
chosen from a discrete set after a decision period. The decision period
itself may be deterministic or stochastic. We assume the vehicle can move at
variable speed associated with a monotone nondecreasing variable cost, and it
can also stop and wait anywhere. There is a fixed cost per time unit
"carried” by the vehicle as well. The vehicle's optimal trajectory in the
X-Y-Speed space during the decision period is investigated. The applications
of the problem include shipping and desert warfare problems, and by using non-
Euclidean norms (such as rectilinear or graph distances), it can be extended

to the operation of emergency service vehicles.



1. Introduction

Tramp ships, and even line freight ships, may sometimes change their
destination port en route. Sometimes, the next port of éall is known to be
tentative in nature even when it is officially entered into the log book (the
fact that it is tentative is not likely to be logged, though). We may say
then, that the ship is actually headed towards a stochastic destination. A
similar situation where the final destination may even be distributed
continuously (with or without mass points), can possibly be encountered in
naval and desert warfare. Another instance is emergency services: take a
helicopter on its way to base after a rescue mission, but with enough fuel for
another mission. The pilot can be diverted to a new emergency before reaching
base, so his base is only a tentativé destination! If we use the appropriate
distance norm, we have a similar problem for regular (wheeled) emergency
vehicles.

If the decision period is deterministic, the problem can be reduced to a
regular plant location problem or the Weber problem, and the version we choose
to discuss in detail is the Euclidean plant location problem, also known as
the Fermat problem. See Kuhn [4] for some historical background, and Francis
and Cabot [2] where an extensive reference list is supplied. If the decision
period is stochastic, the problem of identifying the optimal trajectory in
terms of location--i.e., in the X-Y-Speed space--is a dynamic location problem
which can be solved by dynamic programming (or DP), or other calculus of
variations or numerical methods.

In section 2 we formulate and solve the deterministic decision time
case. Section 3 is devoted to the stochastic decision period version. We

also present some results of a computer program written in 1977 for a special



case where the decision period is distributed exponentially. The lack of
memory associated with this distribution made possible the application of a
relatively simple dynamic programming model for this case [6]. In Section 4
we discuss the potential gain associated with applying our model. Finally, we
conclude with a brief discussion of the possible extensions of the model,

including an ermergency vehicle example.

2. Motion Towards a Stochastic Destination with a Deterministic Decision

Period.
The Problem: On a Euclidean plane let N be a set of n points (x;,y;);
i =1,...n (also referred to by index alone); let n probabilities p;;
i =1,...,n be given such that Zp; = 1l; let a starting point, point (xq,yq)

(or point 0) also be given; let f(S); S > 0 be a function such that

(L) £(0) = 0,
(2) £(S) > 0; ¥ s> 0,
(3) f(S +e) > £(S); ¥ S,e > O,

and such thatbexcept for S = 0, £(S) is (not necessarily strictly) convex and
represents the cost of motion at speed S; let F > 0 be given (the fixed time
value); and finally let T > 0 be given (the decision period). It is required
to minimize the following function by choosing t = (x.,y,) and S (i.e., choose
a point t, to be at, T time units from now, and a speed S with which to
proceed afterwards, so that the expected total expense will be minimized):

n

(4) z(t,S) = FT + £(d(0,t)/T)d(0,t) + (£(S) + F/S) ¥ p,d(t,1i),
i=1



where d(i,j) is the Euclidean distance between points i and j. We denote the
. * s s * * * % .
optimal S by S, and similarly we have t and Z~ = Z(t",S ). Note that FT is
a constant, so we can actually neglect it; the second term is the cost of
getting to t during T time units, i.e., at a speed of d(0,t)/T. Now, clearly
the problem of finding S* can be solved separately, and indeed we start by

solving it.

The Speed Choice Problem

If we look at the list of stipulations for f£(S), (1) just means that we
can stop and wait at zero marginal cost (which is why regular airplanes are
not listed among the vehicles of interest here), (2) is evident, and (3) is
redundant, given (1), since if f is not monotone for S > 0, then it has a
global minimum for that region at some S, say Snins Where the function assumes
the value f ;. < £(S); ¥ S > 0. Now suppose we wish to move at a speed of
Ksmin; A € (0,1], during T time units, thus covering a distance of ATSypins
then who is to prevent us from waiting (1 = A)T time units, and then go at

Smin during the remaining AT time units, at a variable cost of fmin

per
distance unit? As for the convexity requirement, which we actually need from
Smin and up only, this is not a restriction at all! Not only do all the
vehicles we mentioned behave this way in practice generally, but even if they
did not (e.g., some speeds cause vibrations, etc.), we could use the convex
support function of f as our "real” f, by a policy, similar to the one
discussed above? of moving part time at a low speed and part time at a higher
one at a cost which is a linear convex combination of the respective f's.
Figure 1 "sums” our treatment of an ill-behaved function (in dotted lines

where never used). We will also assume that f is continuously differentiable,

but see [9] or [7] as to why this is not restrictive in practice. Hence, our



only real assumption is that we can stop and wait at zero cost, i.e., (1). We

assign this result to memeory in "cell” Lemma I.

Lemma-1l: Let f(S); S > 0 be any positive cost function associated with moving
at speed S continuously and let (1) hold, then by allowing mixed speed
strategies, we can obtain a function £(S); S > 0 such that f is positive,

monotone nondecreasing and convex, and reflects the real variable costs.

Figure 1



Now, since each time unit costs F, and we can go S distance units during
it, each distance unit's "fair share” is F/S. To this add £(S), to obtain the
cbst of a distance unit at a speed of S when we know where we are going, and
require our fixed costs to be covered. (On the other hand, not knowing what
we want to do means that we may have to lose the F money, or part of it.)

Denote the total cost as above by TC(S), or
(5) TC(S) = £(S) + F/S.

But, F/S is strictly convex in S, and f(8) is convex too, so TC(S) is

strictly convex. Further, lim TC(g) = =, so TC(S) has a unique minimum,

e>0
S*. Since we practically assume differentiability, then

(6) s¥ = arg{f'(S) = F/SZ},

%
and we can obtain it numerically. (S 1is also depicted in Figure 1, where a

ray from the origin supports f.)

Choosing t Optimally

Our problem is to find the point t, or the "decision point,” where we
elect to be at the end of the decision ﬁeriod. Then, we will know with
certainty what we have to do, so we will proceed at S* to whichever point i
chosen, at a cost of TC(S*)d(t,i). Denoting TC(S*) = TC*, we may rewrite (4)

as follows:

. n
() Z(t) = FT + £(d(0,)/T)d(0,t) + TC ) p d(t,1).
i=1

TheoremA13 Z(t) is strictly convex in t.



Proof: Clearly FT is a constant, so it is convex. Let h(w) = f(w/T)w, hence
our second term, f(d(0,t)/T)d(0,t) is h(d(0,t)). By differentiation we can
show that h(w) is strictly convex, monotone increasing and nonnegative.
d(0,t) is convex (being a norm), and it follows that h(d(O,t)) is strictly
convex as well (see Theorem 5.1 in [5], for instance). As for the third term

it is clearly convex (since {pi} are nonnegative probabilities), and

i=l,...n

our result follows for the sum. 0

It follows that a unique minimum, Z* exists for Z, within the convex hull
of the n + 1 points 0,1,...,n. In order to find this minimum we look for a
point such that the gradient VZ is zero. However, it may happen that t*
merges with a point of N, or with the starting point, 0. In such a case we
follow [2], and define the gradient to be zero there (it would include 0/0
undefined elements). What we propose to do is to check all the given points
Nu {O}, and see if the optimum is one of them. If not, we can forget this
issue. (Except that it is not advisable to stop at a fixed point during a
search algorithm, so upon the rare occurrence that a search procedure takes us
to a nonminimal fixed point, we simply move slightly aside, and continue.) We

now examine the two components of VZ, by x. and y,.

X - X n X - X
872 _ 't 0, ' * -
(8) TR TORD) (£(S) + Sf (S)) + TC _2_ A TCRV
t i=1
y. —y ' n v, = Y,
82 _ 't 0, * t i
(9) by, = 10,0 (£(S) + SE (S)) + 1IC 121 P TG

where

(10) S = d4(0,t)/T.



The "length” of the gradient L. is
1/2
(11) L = [(5z/dxt) + (82/6y ) 2

It remains to discuss the check we propose for the fixed points. To that

end we define

(£(S) + SE (S))/TC™; s
(12) Py 2 |

*
fmin/TC ; S =0 (K=t =0),

H
o

and with py we define L; (replacing L at i 0,1,...,n) as follows:

X._X

j 1/2 _
j d(1,J) *+ ( 2 pJ d(1,J) ) ] 1)

J#l j#i

(13) L, & ¢ (1¢ Z P.

Li is positive if the n points j = 0,,..,i-1, i + 1,...,n "pull™ stronger than
* *
i, and it indicates that t # i. If L; < 0, t =i. (Formally, if L; < 0 we

say that VZ(i) = 0.) As for Pg» the weight we assign to the starting point,

~

1
note the following: (i) if S < S_: implying f (S) = 0, then Po =

min? /TC ’

mll'l

i.e., the same as for § = 0; (ii) since 2?=1 p; = 1, then clearly

n * C ie s
zi=0 p; > L+ £ in/TC > 1; (iii) even if inf(£(S))

f(0+), pp is well
defined when we set f_., = £(0") (however, in reality, this is not likely to
happen).

We can gain some more insight into the problem if we consider two

limiting cases: (i) T » =; and (ii) T » O.

(i) The T » » Case: Here we assume Sain > 0 (and not O+). Under this

assumption, at a cost of fmin per distance unit, we can arrive anywhere we

*
want during the decision time. Hence we have pgy = fmin/TC , and our problem

is solved as in the static plant location. As usual, denote the solution



point by t*, and clearly for T large enough we are not going to move during

%
the whole decision period, but rather only during T time units of it, where

(14) T = d(0,t™) /Sy,
Hence the same solution is obtained for any T > T,

It may be advisable to try solving under the assumption that T > T*, and
then chéck the assumption. This way, even if f'(s) jumps at S ;,, we will not
have any problems with it. If T > T*, we are through, and else we know that
S > Shine

(ii) The T » 0¥ Case: Recall that by (5), with s* as per (6) we have

T¢* = f(S*) + F/S*, and from (6) we easily obtain

(15) F/s* = s¥¢'(sM).

Now substitute (15) to TC*, and we have

(16) c* = £(s™) + s¥F ' (s™).

Also recall that W(S) as defined below

(17) W) 2 £es) + st'(s),

was the relative weight of the starting point O in (8) and (9) and the
numerator in (12). We observe that W(S) is a monotone increasing function
(since £, f' and £ ' > 0), and that W(S*) =Tc*. But at t* (8) and (9) are

zero, hence



* *
X, — X n X — X
0 t * t i
(18) —~——g W(S) = TC ) P; TR
d(0,t ) i=1 d(t ,i)
*
Yo — ¥ £ 0 Y. T Y.
(19) H%B—ESE'W(S) = TC 2 pi ~£~;——£.
i i=1 d(t ,1i)

Squaring (18) and (19), adding them and taking the square root again, we

obtain
* *
n X, - X, n Ve — Vs
(20) ws) = 11 ] b, S+ (] p, SphHHE
i=1 d(t ,i) i=1 d(t ,1i) '

Clearly W(S) < TC* (the magnitude of a vector sum 1is less than the sum of the
magnitudes), with equality only in the special case where all the points,
including the starting point are colinear, and both 0 and t are to the same
side of all the rest (in which case we can behave as if we know where we are
going, since we have to reach the first point at least, and we know the
decision will be made by the time we get there). But W(S) is monotone, hence

if W(S) < TC* then S < S*, and

* *
(21) d(0,t ) < TS .

2

Following (20) we define G(t) for any t € {E° - N} (i.e., any point on the

plane and 0, but not i € N)

X 7 x1)2

e ~ y1)2]1/2
i d(t,i) )

n 1
(22) c(t) =1¢ (T p + (Y p, :
12 421 1 d(t,i)

For t = t*, and S chosen optimally (20) plus (22) yield



_10_
*
(23) G(t ) = W(s).
Now (for the first time) we use the data T+ 0, and by (21) we have

*
(24) 1im+ d(0,t ) = 0.
T>0

I.e., we only have to determine in which direction and at what speed to
proceed, but we will not get very far. The direction we choose is that of

* . * .
-VZ(t"), as we always have to; but now we can take 0 instead of t , using
(24), so we do not have to search for this value. As for the speed, we choose

sV (the "gradient” speed), such that
v A
(25) sV = arg{w(s) = G(0)},

*
since by (23) this is the value for t = 0.
Since the speed is one of the parameters we are interested in, we present

a theorem which will also hold for the stochastic decision period case.

Theorem 2: The gradient.speed Sv as defined at any point, is an upper bound

*
for the optimal speed at that point, and S is an upper bound for SV.

*
Proof: By Theorem 1, Z(t) is strictly convex, hence along the segment 0,t it

*
is also strictly convex, and since Z(t") € Z(t); ¥ t, it is monotone

decreasing along the segment. Let g(t) be the absolute value of the directed

%
derivative along O,t . Clearly g(t) is monotone decreasing for A when
*
t=xe0+ @ -Mt Geee, x =rxg + (L~ MXpws ¥ = Ayg + (1 = Myesr O
being an index and not a number here). For A = 0 the slope g(0) is bounded

from above by G(0), since G(0) reflects the steepest descent (in the direction
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* * , ,
of VZ). At t , the direction of 0,t 1is the steepest descent direction

itself, by (20). Summing these assertions we have
* *
(26) G(0) 2 g(0) > g(t™) =G(t); 0 # ¢t

It follows that the gradient speed sV is an upper bound on the speed for any

movement from O, and we can designate any point as 0. TI.e.,
(27) s<s <s*.

So SV, which is rather easy to compute, is an upper bound on our speed
anywhere, and it would be very easy to extend the proof to the stochastic
decision period case, using the basic attributes of the expectation. (We will

omit that formal extension, however.)

The Stopping Line and the Waiting Region

For T > T*, we obtained S = Spin» and by (17) it follows that

W(s) = £ . Using (23) we have

min

(27) 6(t™) = £ 4.

Now, starting at different points, but such that G(0) > frig @0d T > T*

n

as defined for them we should stop at different decision points respectively

*
(unless we start from colinear points, on o,t ), each satisfying (27)).
Actually there is a locus of pdints satisfying (27), which we call D as

follows

(28) D ={te E2|G(t) =£ .}
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We call D the stopping line (although it may happen to be a point). Now

denote the area within D, inclusive, as C, or

2
29 = < .
(29) c ={t e EG(r) £ i)
C is also called the waiting area, since being there during the decision
period would imply waiting. Clearly C < D, with C =D for the special case
where one of the points N U O is the only solution for a large T. In case

C # D, however, we have a nonempty set E as follows
(30) E=C-D (or C/D).

Specifically, there is a point in C, and in E if E # @, for which G = 0 (if
C = D, we have to define G as O there, since it includes 0/0 terms); we denote
this point by t

min® 1+€e,

(31) G(t

Clearly, in order to identify t ;,, we do not need any information about the
starting point or any of the costs we carry, but just the information on N and
{pi}. thin is actually the point minimizing the expected distance to i, and
locating it is an instance of the (real) single static plant location.

Similar to the procedure described above (for the problem including the
starting point), we can check all the nodes in N first by applying (13), but
with the summation running from 1 to n instead of 0 to n, to obtain values

which we will denote by L; (instead of L; as in (13), to differentiate between
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them); now, if L; is negative, the solution is there, since
(32) Li <0 = tpi, = 1.

Usually, LI = 0 could be included except if all the points are colinear and
they are also divisible into two sets, each to one side, each "weighting" 1/2,
in which case two points and any convex combination of them could serve as
thin> SO tpin = 1 does not necessarily imply L; < 0. Still, it is true that
(33) tpin = 1 = Lj < 0.

(Note that Tc* is a positive constant and we can delete it.)

It turns out that for the positive L{ valued points (and if n > 2, or
even n = 2, p; # 1/2, we have some such positive values), we can tell very
easily if they belong to the waiting area C or to E, and in the former case
also if they belong to the stopping line D, or to E. This is due to the fact
that L; is G(i) in the descent direction from i to tp;,, while LE + 2TC*pi is
G(i) in the opposite direction. Denote these by G(i) and G(i)+,

respectively, and we have the following possibilities:

(34) L, = G(i) > £ in => i € C;
- s .
(35) G(i) ¢« fmin’ G(i) » fmin => i € D(c C);
, .
(36) G(i) <f ., =>1i €E.
min

Also it can be shown, and is intuitively clear, that
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’ %
37 R + . = .= 1,
(37) Ps > fmln/TC )/2 = toin i
We are now ready to discuss the stochastic decision period case. In that
connection, note that some of our results so far, such as Theorem 1, the
stopping line, etc., are not dependent upon T, hence they can serve us for the

stochastic decision period case as well.

3. The Stochastic Decision Period Case

Our problem is exactly as before, except that T is a random variable (RV)
now. Conceivably the p; values could be influenced by information such as

"the decision has not yet been made,” but we do not consider this case in
detail (i.e., we assume statistical independence between T and the choice).
Our RV may be discrete (contact with management is at predetermined times),
continuous or mixed. We discuss the discrete case in detail, and show how to
accommodate the continuous case by the discrete one. We assume that the

distribution of T is given. (Bayesians will find no fault with that

assumption, hopefully. Others will have to take it at face value.) Let
(38) P(T=hj)=qj;jEJ={1,2,...},

where qj > 0; ¥ j and they sum to one, of course; J may be finite or not, the
index 0 is maintained for the start as before, and we may assume ho =4qg = 0

%
for it. Our problem is to find the best set of decision points tj (or tj when

optimality is assumed), such that as long as the decision is not yet made by

* *
to ti4) (starting at tg = tg). Let v: be the

%
T = h; we proceed from t: 3

J ]

conditional probability of decision at h:, given it has not been made yet,

i.e.,
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(39) vy = P(T - hle >hy ) = a; /Qa - zk IEF
and, following (7) we define Z(tj_l,tj):

40 Z.(t, ,,t.,) = F(h, - h, + f£f(d(t, ,.,t, h, - h, aft, ., .t.
(40) J( -1 J) (J J_1) (a( -1 J)/(J J—l)) (J—l J)

).

n
%
+v,TC d(e,,i) + (1 - v.)Z. t
3 ) pd( j’ ) T3+ 1{ J+1

i=1
This formulation lends itself to dynamic programming very naturally, and

assuming optimality we define Z;(tj_l)i

* ' *
(41) Z.(t,_ ) =min{Z (t._,,t.)} =Z (t,_,,t.).
il t { 337177 } AN Rl R
J
Before proceeding further with the general solution, two limiting cases

will help us to confine our search to a manageable area. These are analogs of

cases we discussed above; and here is the payoff for the effort there.

The P(T < T*) » 0 Case: This is the analog of the T 2 T* case, so we proceed

at Spi, to the correct. spot along the stopping line. We refer to the solution

as the "slow” trajectory.

The P(T <€) » 1; ¥ > 0 Case: This case to which we refer as the “gradient”

case, is analog to the T ~» ot case, since it stipulates that with probability
approaching 1 this is indeed anticipated. Therefore we move at a speed of sV
in the -VZ(t) direction. Now, under the stipulation, the probability that we
will go far before the decision is negligible, but this does not deter us from

defining the steepeset descent, or (minus) gradient trajectory all the way
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until the stopping line. The "gradient” speed we use is a function of t,

which may be obtained by
(42) sV(t) = arg{£sV (e + sV(e)E sV () - a(r) = o},

which is a direct extension of (25).

Since by Theorem 2 (which extends almost directly to the stochastic
decision period case) sV(t) is an upper bound on S. We also refer to this as
the fast trajectory. It is interesting (although intuitively clear) to note

that ' is decreasing along the fast trajectory.

Lemma 2: When moving along the gradient trajectory, which we denote by X(t),

in the -VZ(t) direction, Sv(t) is monotone nonincreasing.
Proof: Let z(t) be the expected distance to the final destination from t
given a decision (recall, a decision is due immediately), i.e.,
£ D
(43) z(X(t)) =TC ) p;d(t,1)
i=1
Then G(t) as per (22), is z's directional derivative along X(t), i.e.,

(44) () = |2 x(eN|

We want to show that G(t) is monotone nonincreasing (which wil imply our lemma
by (42) and the montonicity of W(S)). We know that G(t) decreases from G(0)
to f ;, without changing signs along X(t), so it will suffice to show that
z"(X(t)) > 0. But X(t) is a trajectory in the steepest descent direction,

hence if we differentiate it by t, twice, we get
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(45) X(t) = ¥z(X(t)),
(46) 2°(e) = V22 (X(t)) X(t) = vz (X(t)Wz(X(t)).
We continue and differentiate z(X(t)), twice again, to obtain

(47) 2 (x(£)) = 92xeNT %(e),

(48) 2 (xt)) = 2(6)T 922 x(e)) X(t) + vzx(enT 2°(e).

Finally, by substituting (46) in (48) we have

(49) 2 (X)) = (R(e) + v2XOONT 722 &) X(E) + v2(X(£))),

which is a bilinear form (YTVZZY). Now, z is clearly a convex function, hence

2

V“z is positive semidefinite (at least), and our result follows. 1}

Figure 2 depicts the results of a program run for an exponentially
distributed decision period, for seven expectations 6, and for seven randomly
chosen points of randomly chosen weights (probabilities) [6]. For large 8's,
the trajectories were virtually the same as the slow trajectory. For small
B8's, a similar behavior was observed relative to the fast trajectory.
Interestingly, though all the trajectories were within the convex hull of the
area between these two trajectories, one of them actually intersected the
fast trajectory. The speed choice obeyed Theorem 2. In general one might say
that the faster is the decision due, the faster we should move, and the longer

our total trajectory may be—-—since we do not expect to stick to it for a long
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6 = 3000 ,30000
8 = 300

Figure 2

while; the slower is the decision due, the more we tend to go slowly and along
a "mildly curving" trajectory (if not exactly straight). In any case, as far
as the physical location of the trajectory is concerned, we should not find
ourselves out of the area defined by the convex hull of the extreme case
trajectories, minus E (which we should never entef even if it is in that
convex hull), If we do, we can always find a better trajectory for immediate

or delayed advantage, within this area. We denote this result in Theorem 3.

Theorem 3: One should never leave the convex hull of the slow and fast

trajectories, minus E.
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Proof: By negation, as described above. 0

Incidentally, the results in Figure 2 even show that the convex hull of a
"medium” speed trajectory and the slow one contains all the "slower” speed
trajectories. However, this may not be extendable to more general
distributions, where the relative "speeds™ may not be uniquely implied. Note,
however, that if we do not use exaggerated vertical scale, all trajactories
seem rather straight! Practically there is no doubt that locationwise we
should pick some straight trajectory, even the slow one, and just optimize the
speed choice.  This would yield most of the potential gain, with the
additional benefit of a less complex navigational problem.

If we return now to (40) or (41), we can see that the stopping line and
the search area are what we need practically to obtain a working dynamic
programming model. We may start by assuming the slow trajectorey, which would
make our decision variable univariate, and we can fold back satisfactorily by

kth step will bring us to the stopping'line. It may

assuming that the, say,
happen, that we overshoot the starting point, but it should not be difficult
to adjust. However, we do not suggest using this method here, since it does
not seem to justify the programming effort, and we can simply use a
multivariable library search method instead. A problem might be if local

minima existed besides the global minimum; the next theorem removes this

obstacle.

' *
Theorem 4: The problem of locating the decision points tj so as to minimize

Zf(to), is convex.

Proof: By iterative application of Theorem 1. I}
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The Continuous RV Decision Period Case

There is no conceptual problem in discretizing a continuous RV, and we
can even do it in such a manner that the q; values are equal, if we are so
inclined. If we want to avoid the need to use too many discrete points for
computational comfort, it might help if we would make the steps of the
discrete variable cumulative distribution function straddle on both sides of
the continuous curve. Figure 3 illustrates a very simple possibility, and

explains itself.

®
|
i

Figure 3

We may similarly gain if we do not take the resulting step function speed
trajectory as is, but smooth it. This can be done very efficiently by
connecting the centers of these steps by a natural cubic spline function
which, in turn, can be done in linear time relative to the number of the steps
(see [1] or [7]). A piecewise 1inéar speed trajectory may be considered good

enough, though. For the planar trajectory similar smoothing can be performed,
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but practically we can certainly do with a straight (and not even piecewise

linear) trajectory, as discussed above.

4, On the Expected Gain by the Model

Our model is based on the fact that the decision period is going to be
completely wasted, unless we utilize it. This places an obvious upper bound

on our expected gain, V, namley
(50) V < FT.

In the stochastic case, similarly
(51) V < FE(T).

Cleafly, the only way we can approach this upper bound is if G(t)
approaches Tc* along the trajectory, throughout the decision period; for
instance, if the points are close to each other and far from the start. In
this case we behave as if the destination is known. However, in both the
deterministic and the stochastic decision period case, if T is large, we
cannot do anything at least part of the time. It is obvious that in the
deterministic case the gain cannot exceed FT*, which makes us rewrite (t), and
similarly (51).

(52) VKF min{T,T*},

(53) VKF min{E(T),T*}.

* *
But, suppose now that T > T , can we really expect to gain even FT ? The

answer of course is no. In this case G(t) is rather low, at least towards the



- 22 -

stopping line where it reaches fmin' We may easily compute V for this case by
the following formula

x I . x %
(54) V=TC()] p,dae0,i) - a(t,i))) ~ £ . d(0,t ),

jop 1 min

where the gross gain is the improvement in the expected "future"™ total costs
to reach the final destination, but we have to subtract the "present” variable
costs, in this case f ; d(O,t*). By substituting f(d(O,t*)/T)d(O,t*) for

these costs, we obtain the expected gain in the deterministic case.

n 0
(55) Vo= Te (] p,(a0,0) - a(e”,1))) - £(a0,tM)/T)d(0,t").
i=1

In the stochastic case, similarly, we have the following result.

(56) V = FE(T) + TC*( rzl pid(O,i)) - ZT(O).

i=0
A similar result can be obtained at any stage, given that we reached it
without decision, but we omit it. Note however that this expected gain is
monotone nonincreasing. For instance, once we reach the stopping line it
drops to zero, since there is nothing useful we can do any more. Note that if
we start anywhere in C, all the formulas above, including the bounds (52) and

(53) yield V = 0 (e.g., T* = 0 in this case).

5. Conclusions and Extensions

Not surprisingly, our model of dynamic location is quite similar to its
static plant location parent. Even the stochastic (discrete) case may be
viewed as a multiplant location problem with interconnections between plants

(which rule out decomposition), discussed in [2]. However, we have to use the
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speed costs function wisely, as implied by Lemma 1 to ensure the convexity of
our version.

Although the model was developed mainly with shipping in mind, it has
Euclidean distances, rather than spheric ones. An obvious extension would be
to Introduce such distances. If we do, then practically we can make do with
large circle trajectories, analog to straight lines, since we see that this is
attractive even in the Euclidean case.

Other distances we should extend to are rectilinear and graph
distances. It stands to reason to assume that the strong analogy with the
static plant location problem we observed will hold for these cases as well
[3]. We discuss a rectilinear city application below.

We may want to improve the model by incorporating constraints into it.

In shipping for instance, it has been known for quite a while that ships need
(deep enough) water in order to propel their way. This type of constraint is
conceptually easy to introduce to the model (although it actually makes it a
hybrid-distance model, since some distances would be graph-like, and others
regular). A tougher constraint may be if we have a fuel constraint and if the
total consumption en route to t* plus the worst case would violate it. 1In
such a case we may want to weight the distant point unproportionally. Note,

however, that generally the model tends to save fuel.

An Example: An emergency vehicle, equipped with radio and attentive
operators, is on its way from concluded service (or whatever) to base, in a
rectilinear city. Assume the base is located at thin and also assume
symmetry. (That is what we would like, to minimize the expected service

time. Although minmax is considered superior by some ([3], with symmetry these
coincide.) Now if you ask the operator, “quo vadis?”, knowledgé of Latin

alone will not suffice her/him to answer you, since she/he does not know where
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she/he is going! 1If a call comes when the vehicle is en route, it will be
diverted towards it; else it will stop at the base. Figure 4 illustrates some
possible trajectories the vehicle could take, depending on the cost of

turning. Two points are clear by direct extension of our results:

Figure 4

(i) due to the symmetry, a situation where the x (or y) distance is greater
than the y (or x) distance calls for moving in the x (or y) direction until
the opposite occurs; (ii) the farfher the vehicle is from base, and the more
likely and sooner a call is to come, the faster it should move. (Moral: stop
for cigarettes near base, and not out yonder——if you cannot give them up

completely.)
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