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Abstract

We study the optimal design of the rules of trade in a two-period market
given that agents arrive at different times and may only trade with agents present
contemporaneously. First period agents face a fixed cost of trading across periods.
and their decisions of whether or not to trade in the second period result in
externalities relative to the agents arriving in the second period. Given the non-
convexities associated with the fixed cost. competitive trading rules can result
in inefficiencies in such a market and. in fact. anonymity must be sacrificed to
achieve efficiency. Efficient trading rules have a market maker (i.e.. an agent
who is given some market power and the right to trade across periods) who faces
some competition within period trading, but not across periods. The efficient
choice of who should be market maker can be made by auctioning rights to
this position. If there is uncertainty across periods. then efficient mechanisms
may involve multiple market makers. and the optimal number of market makers
depends on the cost of trading, level of risk aversion, and presence of asymmetric

information.
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1 Introduction

\Many organized markets. such as the major world security exchanges. limit the number
of agents who may execute trades. We take a normative perspective on the design of a
market and study the structure of the rules of trade that result in efficient allocations
in a simple two-period model. We find that the efficient rules of trade exhibit specific
roles for market makers.

We examine a market where agents arrive at different points in time. and introduce
a constraint that is normally assumed away in a competitive analysis: agents can
only trade with other agents who are present in the market contemporaneously. This
constraint. coupled with a fixed cost for a first period agent to be present in the
second period market. introduces externalities and potential inefficiencies.! First period
agents” decisions have an impact on the prospects of trade for agents who arrive later.

We begin by showing that if the second period market is competitive relative to the
agents who show up in the second period. then the externality may result in Pareto
inefficient allocations. When deciding whether to incur a cost and come to the second
period market, first period agents consider only their own gains from trade and not the
gains from trade of the future agents.? If one moves away from a competitive market,
and for instance, gives one of the first period agents some limited market power. then
the inefficiency can be eliminated. This sets the stage for the analysis of the optimal
design of a market. We examine trading mechanisms which efficiently fill the role of
the market maker, provide the market maker with correct incentives. and implement
efficient allocations.

Although our analysis fits into a large literature on market microstructure. it differs
from the theoretical work in this literature in important ways. The previous study of
market microstructure has been predominantly of a positive type. A number of authors
have explored the outcome of some market game to be played between traders and

market makers for a given set of trading rules. Such rules are modeled to resemble

IThe fixed cost introduces non-convexities relative to the usual Arrow-Debreu world. which can
lead to non-existence of a competitive equilibrium of the overall economy. The fixed cost can be
viewed as a non-convex production technology for transforming first period goods into second period

goods.
a9 3 . . . . . .
2Jackson and Palfrey (1996) examine a decentralized market where a similar externality exists. as

agents are repeatedly matched to bargain until they decide to consummate a trade. An important
contrast between these works is that Jackson and Palfrey show that in the search setting the externality
results in inefficiency regardless of the design of trading rules, while here in a more centralized setting

the problem can be overcome by careful market design.



the trading practices followed by the major security exchanges.? Our approach studies
¥

the market microstructure from a more normative perspective.! We are interested
in characterizing the allocations in an intertemporal asset market (where there are
costs to being present in the market) that maximize socictal welfare and structures
of trading rules that achieve those allocations. We bring ideas and techniques from
the mechanism design and implementation literatures to bear on this market design
problem. In addressing these normative issues. our results tie back to the positive
literature. since market makers turn out to play central roles in the optimal mechanisms
we identify.

Our starting point is a setting with no uncertainty. We examine a simple two
period world in which there are new agents born in each period with heterogenous
preferences and endowments. so that there are potential gains from trade within and
across periods. Agents born in the first period choose either to consume their goods
or to wait to trade with agents born in the second period. When they decide to wait
and trade in the second period, they pay a fixed cost for participating to the market.
The problem of optimally designing trading rules is to manage the incentives of agents
to guarantee efficiency. Given the lack of previous study of the efficiency of market
making. this simple starting point allows us to outline a basic need for market making
across periods.” We study how trading rules have to be structured to choose a market
maker and give that agent the incentives to correctly choose when and how much to
trade across periods. The first half of the paper is devoted to this complete information
analysis.

Once the foundation for market making is built. we introduce uncertainty across
periods and analyze how this can change the structure of the efficient allocations and
optimal trading rules. We discuss several reasons for having multiple market makers
as part of a Pareto efficient trading structure in the face of uncertainty across periods.

The results we obtain are summarized as follows:

e Competitive {or even simply anonymous) trading rules relative to the second

3\ few representative references are Bernhardt and Hughson (1996), Glosten and Milgrom (1985).
and Kyle (1989).

4There arc papers that have explicitly compared various trading institutions. A few examples
are: Demsetz (1968). Madhavan (1992). Gehrig (1993). Gehrig and Jackson (1994). Pagano and Roell
(1996) and Bernhardt and Hughson (1996). These papers however. compare specific institutions.
rather than setting efficiency as a goal and deriving the trading rules which realize efficiency. as we
do here.

5The model can also be interpreted as an analysis of trade across different market locations.



period may result in Pareto inefficient allocations. even in large economies.

e The gain in efficiency of a market making mechanism over a competitive mecha-

nism can be significant. and may increase as the economy becomes larger.

o In designing efficient trading rules one needs to identify a market maker. and the
role of market maker can be efficiently filled through an auction. The market
maker’s monopoly power must be limited so that she can expropriate the gains
from trade across periods but cannot expropriate gains from trade within periods.
This can be done by providing other agents with the ability to opt for refusing

the services of the market maker trading in a static competitive market.

e Any mechanism that limits the market maker to only offering nonlinear pric-
ing schedules (or more generally any anonymous schedule) can result in Pareto

inefficiency.

e If there is uncertainty across (or within) periods. Pareto efficiency may involve
multiple market makers. the number of which depends on the discount factor. the

level of risk aversion. and the presence of asymmetric information within periods.

The rest of the paper is organized as follows. Section 2 introduces the basic model.
and section 3 provides examples that illustrate the problems arising with competitive
markets and the role plaved by market making in overcoming such problems. The
analysis is then generalized in the following sections. Section 4 shows that markets
that are competitive within each period (or. even simply ones that satisfy a weak
anonyvmity condition) produce inefficient outcomes for some economies. and section 5
shows that by properly assigning market making rights. and putting some checks on
the monopoly power of the market maker. efficiency can be attained. In section 6 we
examine how uncertainty modifies the analysis. Concluding remarks are in section 7.

and proofs are collected in the appendix.

2 The Two Period Model

Timing
There are two periods. t € {1.2}. N, agents are born in period ¢. and the notation
N, denotes both the set of agents born at time ¢ and the cardinality of that set. An

agent born in the first period can trade in the cardinality of that set. We use M C A



to denote the set of first period agents who choose to be present in the second period
market (at a cost described below). Agentsin Ny may trade with other agents belonging
to Ny in period 1. Agents in Ny U M may trade with other agents belonging to Ny UM
in period 2. No other trade may occur.

As will become clear. the model is easily extended to overlapping generations with-

out affecting the results.

Cost of trading

There is a cost of being present in the market. This may be the opportunity cost
of time. the resources needed to physically visit a market or any other cost associated
with participation in the market. The cost is represented by having an agent ¢ € .\
pay a fixed cost ¢; > 0if € M. Thus. first period agents who choose to be present in

the second period market pay a cost ¢;. independent of any trades they make.®

Preferences
There are two goods which are labeled x and m. where . is the good to be traded
and m is a numerdire. Each agent i's preferences for consumption of (x.m) € Ry x IR

are represented by a quasilinear utility function *
Vi(e) + m — cila(2).

where V; is strictly increasing. strictly concave. continuously differentiable at @ > 0.
satisfies V3(0) = 0. and Iy;(i) is the indicator function of M ([y(2) = 1 for i € M
and Iy(7) = 0 for i & M). We assume that for any p € I, there exists v > 0
such that V/(2) = p. (This ensures that there will not exist prices for which demand
is infinite. and also implies that lim,_o VY (2) = +oc.) Preferences satisfy the von

Neumann-Morgenstern axioms.

Endowments
Agent i is endowed with ¢; units of good r: where ¢; > 0 for some . We treat

endowments of the m good as 0 for all agents. as these endowments are irrelevant in

5We could add a fixed cost for any agent to be present in any period. This would complicate
the analysis without changing the fundamental externality and efficiency issues we are examining.
This may be a worthwhile issue for future research, however, as it could raise questions concerning
endogenous choice of when to trade.

TAt times. agents may be offered trades which set their consumption of r to be less than 0. We
assume that an agent prefers any (2. m) for which r > 0 to any (2'.m') for which r’ < (. This could

be modeled by extending 1; to have as range the extended reals and setting Vi(x') = —x for ' < 0.



the quasi-linear model. We permit unlimited short sales of either good in the first

period by agents who wait to trade in the second period.

Economies
Given Ny and Ny, an economy is a list {(Vi. e ¢i)ien,- (Viv€i)ien, } which specifies
1 2 . €.V €.V2
preferences and an endowment for each agent and a cost of trading across periods for

first period agents. The set of all economies (satisfying our assumptions) is denoted E.

Allocations

Given any positive integer V. let

N N
T‘V = {[ = (tr.fm) e RAZA\Y | Zl““. — 0 alld Zf,nl' = 0} .

=1 =1

An allocation is a specification of the agents in N} who wait to consume until
t = 2 as well as trades for agents present in each period. Thus it is a specification
MotV 12 such that M C V. 1t € TN and t2 € TN+ (where M denotes a set and

its cardinality). The set of allocations is denoted A. and the notations (1.1} ) and

mi

(12,.12,) denote the trades that / gets under t and ¢2. respectively.

Pareto Efficiency

In this quasilinear setting. (constrained) Pareto efficiency implies a unique alloca-
tion of the @ good. The allocation of the m good. however. is not tied down by Pareto
efficiency and any allocation of the m good that respects the trading constraints can
be part of a (constrained) Pareto efficient allocation. Thus. in characterizing Pareto
efficient allocations we need only characterize the distribution of the x good and the
set of agents who trade across periods. M.

Given an economy. we refer to a (constrained) Pareto efficient allocation as an
efficient allocation. An allocation is efficient if there is no other allocation in which
every agent has at least as high a utility and some agent has a higher utility. In this

setting the efficient allocation is characterized as the solution to:

max Z Vile: + z‘l_l- + 1‘7;2-) + Z Vile; + ff,i) — Z ;.
(the2.M)€d {EN] ‘ t€N7 €M
where t2. =01f i ¢ M U\,
It is clear that an efficient allocation has at most 1 agent in the set M. since having

several agents just results in additional fixed costs paid without increasing the trade



that can occur.® (We re-examine this in the face of uncertainty in Section 6.)

Lemma 1 If an allocation is efficient, then M has at most one element. and the

allocation satisfies:

Ve +18) = Ve, + t3;) foralli,j € Ny \ M.
Ve +t2) = Vile; + iij) foralli.j € Ny, and
Vier+11) = V(e + e + 20 = Ve, +125) if ke Mo e Ny \N M and j € Ny,

and if i € M then ¢; < ¢ for all j € V.

Trading Rules and Mechanisms

We model trading rules as a mechanism. which is a specification of:

e a finite length extensive game form for period 1 with Ny as the set of players
and with terminal nodes that list net trades for cach agent and agents who wait
until period 2 to consume: i.c.. a terminal node lists (t'. M) where t' € T and

M C Ny and

e for each terminal node of the first period game form. a specification of a finite
length extensive game form for period 2 with .V; U Al as the set of players and

with terminal nodes that list trades t2. where t2 € T2V

Given an economy. a mechanism induces an extensive form game. To be precise.
fixing an economy replace period 1 terminal nodes with the period two extensive game
form. Pavoffs to plavers at a terminal node of this overall game as a function of the

(t'.t% M) associated with the play path are then:
Vile; + t1) +t1, for i € Ny/M.
Vile; +tl + 2+ tL  + 1%, — ¢ for i € M. and
Vile; +t2) 412, for i € Ny
For the following definitions fix V; and V.

An equilibrium relative to a given economy is a specification of behavioral strategies

which form a subgame perfect equilibrium of the induced extensive form game.?

8This depends on an agent waiting across periods being able to shortsell in the first period. (It is
P g g I g I
possible that e; + ¢!, < 0 for i € AM.) If there are limits on shortselling. then efficiency may require

more agents trading across periods.
“This definition allows agents to randomize as part of an equilibrium. For the mechanisms in our

proofs. there exist only pure strategy equilibria.

-1



An allocation rule is a specification of an allocation as a function of the economy

(i.e.. a function from E to A4).

A mechanism implements an allocation rule if for each economy in £ there is a
unique equilibrium outcome relative to the economy of the mechanism which is the

specified allocation for the economy.

3 Motivating Examples
We now illustrate the externality and show that it is present even in large economies.

Example 1. Agent i = 1 is born in period 1 with ¢; = | unit of the » good. Agent
; = 2 is born in the second period with e, = 0 units of the « good. The agents have
the same preferences represented by Vi = ¥, = V. where 17(0) = 0. Agent | can either
consume her endowment in the first period or wait until the second period. trade with
agent 2 and then consume.

C'onsider the structure of the trading rules at time 2. Suppose first that. after a
quick reading of a micro theory text. the market designer decides that trading rules
should be designed so that trade results in competitive allocations.' If agent 1 decides
to wait and trade in the second period. then at time 2 the agents will trade one-half
unit of good & at the competitive price of p = \’(%) (where the price is in units of the

m good for the & good). Thus. by waiting and trading in period 2. agent 1 expects a

/1 ]
V(3) e

If, instead. agent 1 does not wait and consumes in period 1 then she obtains a utility of

utility of

V/(1). Therefore. in the face of a competitive set of trading rules in the second period.

()o@ nzvn

Depending on ¢;. this can result in autarchy (agent 1 consuming in the first period).

agent 1 will wait only if:

It is important to note that this market organization can result in a Pareto inferior

outcome. Given the transferability of the m good. Pareto efficiency requires agent 1 to

19Gee the discussion following Proposition 1 for a description of the trading rules that would imple-

ment the competitive allocations between 2 agents.



wait and trade if. and only if.

1 .
2V (;) —c; 2> V(1)
Thus. if ¢; is in the range

21 G) V() s>V (%) + %V’ G) ~ V().

then a competitive market at time ¢ = 2 results in an inefficiency. Notice that this
interval is not empty since the strict concavity of V' implies that \(%) > %"(%)
Furthermore. strict concavity implies that V(1) < V' (%) + %\." <%> so that the interval

1s a subset of .

How could the inefficiency be avoided? A simple way is to designate agent 1 a ‘mar-
ket maker” at period 2, by giving her monopoly power. In that case. she appropriates
the full surplus in the second period and internalizes the externality. This results in

an eflicient outcome.

The presence of a “fixed cost of trading’ introduces a non-convexity which accounts
for the inefficiency of competitive markets. The main problem is that an agent : € Ny
who decides to trade in period 2 generates a positive externality for period 2 agents.
who see their trading possibilities enhanced. The social return for market participation
in period 2 of i € N is therefore greater than the private return to agent ¢ considering
the fixed cost of trading ¢;. However. agent ¢ only consider private returns when she
decides whether or not market participation is worth paving the fixed cost ¢;. This
results in a level of market participation in period 2 which is less than optimal.

To see where the non-existence of an overall competitive equilibrium occurs. con-
sider the choice of p. It must be that p = V/(1/2) in a competitive equilibrium.
However. for some ¢; (as in Example 1) this results in agent 1 not trading across pe-
riods. and so p does not clear the second period market. The competitive price in the
second period would have to be p = oc to clear the second period market if agent 1
does not trade across periods: however. at p = oc. agent 1 would like to trade across
periods.

The inefficiency could be avoided if agent ¢ was able to contract the second period
agents to compensate her for the fixed cost before the fixed cost is incurred (a ‘(‘oase

theorem’ type of logic).!' Such a contract is impossible. since agents in .\, are not

LiThe contracting literature on the “hold up’ problem has considered similar problems based on

9



present when the cost is incurred. Thus. ¢; is a sunk cost at the first time agent ! can
interact with second period agents. This leaves agent : € M with no bargaining power

to recover ¢;.

To further explore conditions under which having a market maker offers improve-
ments over having competitive markets within each period. let us examine a slightly
generalized version of the Example 1. The following example illustrates the inefficiency
of competitive markets when the size of the economy is large.

Example 2

N} agents are born at time 1 with ¢; = 1 and N, agents are born at time 2 with
¢; = 0. Utility functions are identical ¥; = V. and 1(0) = 0. Let ¢@ = minen, {e:}.

C'onsider a situation where a single agent with ¢; = ¢™ waits between periods. as this
is the only agent who trade across periods in an efficient allocation. Also. this is the
relevant benchmark to determine if no agents waiting across periods is an equilibrium
outcome.

Given one agent waiting across periods. let 2™ be the efficient consumption per
agent in both periods (so @™ = N1/(Ny + Ny)). For it to be efficient for the agent to

trade across periods it must be that:

(N1 4+ V)V (%) = ¢ > N V(L). (1)

An efficient allocation could be achieved with a market making mechanism (Proposition
3. below) and this is the inequality the market maker evaluates in making the decision
of whether or not to trade across periods.

Given that (1) depends on r~. we provide a sufficient condition for (1) relating V.

N, and ¢

Lemma 2 If \7”(‘\;“) > V(1) 4 ¢ then it is efficient to have an agent trade across

periods.

The intuition is that agents in period 2 have large marginal utility from obtaining
small amounts of the & good. and for any fixed cost ¢™. if there are enough second

period agents. then it is efficient for a first period agent to trade across periods.

a variety of contracting imperfections. Here the opportunity to contract is only present after the
relevant cost has been incurred (by the very nature of the cost) and so the contracts that agents can
sign ex post will not solve the problem. Our focus is instead on how to design rules for trade (i.e.. the

market) to efficiently align preceding incentives.

10



Now let us consider the incentive that an agent has to wait across periods if that
agent expects the allocation to be efficient, and expects the allocations to be as if
they were obtained by trading at the competitive price in each period. That is. the

allocation is as if all trade occurred at V/(a*). The agent would wish to wait only if:
(V™) + N V(™)) — (Ve + D™ = DV (@7) = ¢ > V().

This simplifies to
Ve™) + (1 —a))V'(27) = ¢ > V(1). (2)

Notice that the left hand side of inequality (2) is precisely what the agent who
waits earns only from trading her own endowment! That is, she is not getting any
reward for any of the other trade that she is carrving across periods. since allocations
are competitive at each time. This can result in an inefficient decision. since she is not
accounting for the substantial gains from trade that are realized by other agents.

To obtain a better understanding of when a first period agent’s choice to wait is
efficient. we consider the cases %J; - oc % — 0 and % = 1.

First. consider the case where N, becomes large relative to V. In this case 2™ tends
to 0 (simply from budget balance) and (2) tends to V/(0) —¢* > V(1). which will hold
since lim,_o V'(r) = 4oc. Thus. as N, becomes large relative to .Vy. a first period
agent would (efficiently) choose to wait.

Next. consider the case where N; becomes large relative to \,. In this case 2~
tends to 1 and (2) tends to V(1) — ¢ > V(1). which cannot be satisfied. Thus. in
cases where Ny is large relative to Ny. a first period agent anticipating competitive
allocations would choose not to wait, which is an inefficient choice for a sufficiently
large .V, by Lemma 2.

Finally. consider a large economy where N = Ny, In this case v = 1 and from (1)
intertemporal trade is efficient if:

Y <2\~' (%) _ \f(l)) > o (3)

Notice that the strict concavity of V" implies 21/ (%) — V(1) > 0. so that inequality (3)
is always satisfied for large enough N;. On the other hand. inequality (2) implies that

a first period agent will not wait if:

@b

Whenever this inequality is satisfied. the competitive mechanism will be unable to

implement the efficient allocation for large enough ;.

11



To understand the inefficiency. notice that a mechanism which has competitive
equilibria relative to the agents present in each period gives any agent precisely the
gains from trade provided by his or her own endowment. but not any surplus from
additional trading that they provide. With a large economy. the intertemporal gains
from trade become substantial and intertemporal trade is efficient. and vet a first period
agent only compares his or her own gains from trade with the cost they must incur to
trade across periods. Thus. the cost can be very small relative to the total gains from
trade and still impede efficient trading.

The efficiency or inefficiency of a mechanism that is competitive within each period
in this example depends on the direction of the trade imbalance across periods. Even
with large numbers of agents in each period. such a mechanism may be very inefficient.
In fact. the only case in this example where the competitive mechanism always leads
to efficiency is the case where the size of the second period market is much larger than
the first. so that any single first period agent’s own endowment becomes so valuable
that they have an incentive to trade across periods without even worrying about the

gains from trade available from other first period agents.

4 The Inefficiency of Competitive or Anonymous
Trading

The inefficiency illustrated in Examples 1 and 2 occurs more generally. That is. for a
large class of trading rules and any Ny and N, there exist economies such that the
competitive mechanism yvields inefficient equilibria.

Before proceeding further, we first show that the competitive allocations in the
second period are implementable. Otherwise, the discussion of the inefficiency of com-
petitive allocations is only a hypothetical. The following proposition will also be useful
later. as our ‘efficient mechanism’ will use such a ‘competitive mechanisin’ as a com-

ponent.

4.1 A Competitive Mechanism

Given a static economy of size N, the competitive allocation is the unique ¢ € 7
such that V/(e; +t,) = \/"J-'(f:‘,' +t,;) for all 7 and j in N. and £,; = —p ty where
p=Viler+ 1),



A static mechanism'? implements the competitive allocation rule if for each economy
there is a unique equilibrium outcome to the mechanism which is the competitive

allocation for the economy.

Proposition 1 Consider a static setting with N > 3. There cxists a static mechanism

that implements the competitive allocation rule.

The ideas underlving the mechanism are simple. Agent 1 announces a price for
trade. If this is the competitive price, (as in equilibrium) the other agents will then
select their competitive trades at this price. If this is not the competitive price. then
there exists a Pareto improving trade between some agent i > 1 and agent 1. relative

13 Agent / can suggest this price and trade

to the optimal trade at that price for 1.
instead of a trade at 1's price. If some agent / suggests an improving trade. then agent
1 is fined (through an endogenous payment to an agent j # ) regardless of any further
choices. Agent 1 can then either accept or reject this suggested improving trade. If it
is rejected then ¢ is also fined. which keeps agent ¢ honest in suggesting improvements.

The proposition is stated only for N > 3. If .\ = 2. then balance may be difficult
to satisfv out of equilibrium. as there is no third party to whom fines can be paid.'
For N = 2. the utilitv functions V; need to be bounded. so that a fine could be
imposed which is exogenous. In the mechanism we employ for .\\' > 3. the fines are
set endogenously and so utility functions can be unbounded and the mechanism is still

balanced in and out of equilibrium.

Outside of its relation to the rest of this paper, this proposition contributes to the
study of the implementation of Walrasian allocations (e.g.. Hurwicz (1979). Schmei-
dler (1980), and Hurwicz. Maskin. and Postlewaite (1984)). The standard theorems
of subgame perfect implementation (for instance Moore and Repullo (1983)) do not

apply here since both endowments and preferences vary across economies. Hong (1995)

124 gstatic mechanism is any finite length extensive game form with N as the set of players and
\ g A\
outcomes t € T as terminal nodes. (iiven an economy this static mechanism induces an extensive
form game (evaluating utilities of outcomes at terminal nodes), and an equilibriuni is a subgame
perfect equilibrium of the extensive form game.
B0therwise. V7 = 17 for all 7 at the suggested trades which characterizes the competitive trades.
i g
v

4The mechanism can be constructed to be feasible, i.e., such that the constraint y_;_, ¢, < 0 is

always satisfied. The mechanism for the case N > 3 satisfies the stronger constraint Zz\:l i =0 for
all possible strategy profiles. It is an open question whether this is possible for N = 2, although a

reasonable conjecture seems that it is impossible.

13



provides a mechanism for Nash implementation of competitive allocations when both
endowments and preferences vary. Our use of subgame perfect implementation provides
a simpler mechanism than the mechanisms in the Nash implementation literature. Our
mechanism has features not found in the Nash mechanisms: it is balanced in and out of
equilibrium. it does not involve any integer or modulo games'®. and it delivers the cor-
rect outcome even when mixed strategy equilibria are taken into account.'® Of course.
our analysis is limited to a quasilinear setting. but the ideas behind this mechanism

are extendable to more general environments.

4.2 An Inefficiency Result

Although competitive allocations are implementable. we know from Examples 1 and 2
that it is not alwavs desirable to employ a mechanism that implements competitive al-
locations. Actually. the root of the problem in Examples 1 and 2 is not the competitive
nature of the allocation in the second period. but merely the fact that it is anonymous.
This prohibits an agent who waits between periods from realizing the full value of the
welfare gain due to the waiting. thereby resulting in an inefficient allocation in some
cases. This is true more generally. as captured in the following proposition.

A mechanism has anonvmous equilibrium outcomes in the second period if given
anv second period extensive game form (corresponding to a first period terminal node
with some M U 1V, as the set of plavers) the set of subgame perfect equilibrium out-
comes of this second period extensive game form depends only on the preferences and
endowments of the agents, not on their labels. That is, for any permutation of agents’
endowment and preference pairs. the set of equilibrium allocations correspondingly

permute.

13Gee Jackson (1992) for an argument against the use of integer and modulo games. Our mechanism
also satisfies a condition of Maniquet (1996). which states that from any combination of strategies
there must exist a finite sequence of changes to alternative strategies for which each change 1s weakly
improving for the agent taking it. with the last element of the sequence being an equilibrium of the

mechanism.
15Ty the context of Nash implementation, several papers have explored the issues of what types of

strategy spaces are necessary to implement correspondences such as the Walrasian one. Examples
include Dutta. Sen. and Vohra (1995). Saijo, Tatamitani. and Yamato (1995). and Sjostrom (1995).
Although we do not pursue those same issues here, the mechanism that we propose uses sequential
announcements and revisions of prices, quantities, and acceptance or rejection of trades. This distin-
guishes it from the canonical mechanisms in the literature which involve announcements of preferences

(or states) and other information.

14



A mechanism is individually rational if for every economy and equilibrium outcome.

no agent prefers her endownient to her equilibrium allocation.

Proposition 2 Fir any Ny and N,. For any individually rational mechanism which
has anonymous cquilibrium outcomes in the second period. there exist economies for

which some equilibria of the mechanism result in inefficient allocations.

Since competitive allocations are anonymous and unique (in this setting). the fol-

lowing is also true.

Corollary 1 Fir any Ny and No. For any individually rational mechanism which
results in competitive equilibria relative to the agents present in the second period.
there crist cconomies such that all equilibria of the mechanism result in inefficient

allocations.

Actually. for this result the order of the quantifiers can be switched so that the
same economy results in inefficient allocations for any mechanism that is competitive
in the second period.

In the next section we show that efficient allocations are implementable if we sacri-
fice anonvmity. In particular. the appointment of a market maker is a crucial ingredient

of a market structure that delivers efficient outcomes.

5 The Efficiency of Market Making

It follows from Lemma 1 that a mechanism that implements an efficient allocation rule
will have at most one agent trade across periods. Therefore. a mechanism implementing
an efficient allocation rule must be able to identify situations where it is efficient to
have an agent trade across periods. identify the correct agent in those cases. and give

the agent the proper incentives to trade across periods.

Proposition 3 There exists an individually rational mechanism which implements a
Pareto efficient allocation rule. For the case where Ny = 3 and Ny > 3, the imple-
mented allocation rule is also individually rational relative to the competitive allocations

within each period.

The formal proof appears in the appendix. but we outline the structure of the

mechanism here for the case where N7 > 3 and N, > 3.
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e Part 1: Market making rights are auctioned among first period agents via a

sequential auction. and a market maker is identified.

e Part 2: The market maker from Part 1 offers a list of trades to the other first
period agents. and then in sequence the other first period agents either approve

or veto the offer of the market maker.

o Part 3: If approved by all first period agents other than the market maker. the
trades are executed and then the market maker decides either to consume or
to wait. If vetoed by anv agent. the competitive mechanism (Proposition 1) is
operated among the first period agents and the market maker must consume in

the first period.

o Part 4: If the market maker consumed in the first period. then the competitive
mechanism is operated among the second period agents. If the market maker
waited, then the market maker offers a list of trades to the second period agents

and pays them each -\1—2 of the bid from the auction.

e Part 5: In sequence. the second period agents either approve or veto the offer of
the market maker. If approved by all second period agent. then the trades are
executed. If vetoed by any agent. the competitive mechanism is operated among

the second period agents (and the market maker is excluded).

The idea behind having agents bid for the right to be market maker is that agents
will be bidding based on the surplus utility they can generate from trading across
periods. and the most efficient agent will be able to bid the most. The fine points
of setting up the bidding are delicate since one has to set up the auction so that all
of its equilibria have the efficient agent winning with probability 1. One cannot use
a standard auction to achieve this. For instance. if there is only one efficient agent.
then it can be the case that in any equilibrium of a sealed bid first price auction an
inefficient agent may win with some probability. A second price auction has multiple
equilibria - some of which do not result in the efficient agent winning. Details of how
we design the auction are presented in the appendix.

A mechanism that implements efficient allocations also has to handle another sub-
tlety. There must exist checks on the surplus that the market making agent can extract
by waiting until the second period. If the market maker could simply make unchal-

lenged take it or leave it offers in the second period. then the market maker would be

16



able to extract not only the gains from trade across periods. but also the gains from
trade within the second period. This would induce the market making agent to wait in
situations where it would not be socially efficient to do so. The mechanism limits the
market maker’s power by allowing the second agents an option of ignoring the market
maker and trading on their own. Thus. the market maker can only extract the gains
from trade from the benefit of having trade across periods. Since agents can veto the
market maker’s offers and operate a competitive mechanism within any given period.
each agent is guaranteed a utility level at least as high as the one corresponding to the
competitive allocation within the period.

Let us remark on the role of subgame perfection in Proposition 3. Given the
two period timing. it is important to impose sequential rationality to obtain efficient
outcomes. Otherwise. if first period agents anticipated that second period agents will
choose not to trade whenever a first period agent waits to trade across periods, then
first period agents would not wait to trade across periods regardless of the potential
gains from trade. Such incredible beliefs are possible if Nash equilibrium is considered.
but not with subgame pertect equilibrium.

Subgame perfect equilibrium plays an even deeper role in our results. In some
cases to ensure that the efficient choice of trading across periods is made by first pe-
riod agents. such agents need to extract at least a certain portion of the resulting gains
from trade in the second period. These gains from trade may differ across economies
that have similar efficient allocations of the v good. If Nash equilibrium is the so-
lution concept used in the second period. sufficient gains from trade are not always
extractable. A sequential structure plays an important role in making sure that agents
trading across periods are sufficiently rewarded for the cost that they have sunk. and

thus subgame perfection is important:

Proposition 4 Consider a mechanism for which the second period game forms have
no proper subgames and depend only on the (t'. M) realized from the first period game
form. Such a mechanism cannot implement an individually rational and cfficient allo-

cation rule (or correspondence).

If the second period game forms have no proper subgames. then subgame perfection
can have no bite bevond Nash equilibrium in the second period. The additional condi-
tion that the second period game forms depend only on the (t'. M) realized from the
first period game formi. implies that agents trading across periods cannot "announce
(irrevocably) their second period moves in the first period. Since there are proper sub-

games when considered across periods. such an inter-period dependence would allow
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subgame perfection to have implications (bevond Nash equilibrium) relative to second
period trading. The idea of the proposition is that multiple equilibria caunot be ruled
out when Nash equilibrium is used as the solution concept. and some of the Nash equi-
libria do not result in sufficient gains from trade to a potential market maker to induce
the market maker to make an efficient choice. When subgame perfection is applied. a
mechanism can be constructed (following Proposition 3) for which all equilibria offer
sufficient gains from trade to a potential market maker to induce the market maker to

make an efficient choice.

We can also say something about the way in which the second period mechanism
must be structured. One has to be careful in how one limits the market maker’s power.
In order to obtain an efficient allocation. the market maker has to have the correct
incentives to wait across periods and this can require that the market maker price
discriminate among agents. If such perfect price discrimination is eliminated. then the
market maker cannot extract the full gains from trade across periods and inefficiency

may result.

Proposition 5 If Ny > 2 and the markct maker from period | is constrained to an-
nounce a price schedule (not necessarily linear) in the second period and each agent
present in the second period then can choose a trade and price in the offered set, then

there exists an economy for which all equilibrium outcomes are inefficient.

Any set of anonymous offers that a market maker could make n our setting 1s
equivalent to offering some non-linear price schedule. Inefficiency from such a schedule
results from incentive compatibility constraints associated with agents choices from the
schedule.

Thus. there are two important breaks from symmetry in the efficient mechanisim.
First. as we knew from Proposition 2, the market maker must be treated asymmet-
rically (non-anonymously) from other agents. Second. Proposition 5 points out that
the market maker must be able to make different offers to agents who have different

characteristics.

6 Uncertainty and Multiple Market Makers

The efficiency of having a single market maker across periods was due to the market
maker’s ability to correctly forecast how much of the good should be carried across

periods. In the presence of uncertainty. efficiency may require several market makers.
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Uncertainty Across Periods

Consider economies where in the first period there is uncertainty about second
period endowments. A period 1 agent is able to see second period endowments once that
agent arrives at the second period market. i.e.. if she pays the fixed cost of participating
in the second period market. Alternatively. she can trade and consume in period 1.
In such situations. the allocation of anyv first period agent who does not wait to trade
in the second period must be fixed before the uncertainty is resolved. This introduces
a benefit to having several agents wait to trade in the second period. as it permits

additional reallocation of goods. This is illustrated in the following example.

Example 3.

Let N} = 2 and .\, = 1. Both agents in the first period have ¢; = ¢; = | and
¢, = ¢ = ¢. The second period agent (agent 3) has a probability of 1/2 that ¢; = 0
and a probability of 1/2 that e; = 1. Agents 1 and 2 can trade in the first period. and
decide on whether to wait before knowing agent 3’s endowment.

Consider the efficient allocation rule in this example. If both agents 1 and 2 con-
sume, then total expected utility is 2V (1). If both agents 1 and 2 wait. then total
expected utility 1s 3(%\"(1) + %\(%)) — 2¢. If one agent waits and takes r from the

other agent then total expected utility is

. St L. /24w
‘"“"”“(5"( ) )+§"< 2 >>_C‘

Let us show that for low enough c. the unique efficient allocation is to have two agents

wait across periods. It is better to have both agents wait than neither whenever

3. 3../2\ . 5o,

which can be written as:

oy (%) V(1) > 2

The left hand side is strictly positive by strict concavity of V. so that the inequality

4

holds for low enough c. It is better to have both agents wait than just one when

v (G)sva-asy () +v (FE5) +c

4 <

It is clear that the right hand side is less than the left hand side at ¢ = 0, since in that
case the left hand side is the optimal allocation and the right hand side is the optimal

allocation subject to the additional constraint that the consumption of one agent is the
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same in both states. Furthermore. the optimal level of @ does not depend on ¢. Thus.

when ¢ is raised from zero to ¢. the inequality still holds.

The efficient allocation in this example has no agent waiting for high values of c.
one agent waiting for middle values of ¢. and two agents waiting for low values of c.
This pattern is true more generally. as we now explore.

We begin by characterizing the number of first period agents who should trade
across periods (referred to as ‘market makers’) for each ¢ in the special case where
1o =V and ¢; = ¢ for each i. In this case all agents are ex antc identical. which allows
us to concentrate on the optimal number of market makers. disregarding the issue of

who should be market maker.

Proposition 6 Consider an economy where all agents have Vi = V. ¢ = c. and
where the total second period cndowment of the x good is a random variable with finite
expectation and positive variance. For all but a finite number of values of c. efficient
allocations have a unique number of agents trading across periods.™ This number of

agents is non-increasing in c. taking on all values between Ny and 0 as ¢ increases.

The proof (in the appendix) shows that total welfare is a concave function of the
number of market makers. M. It also shows that total welfare is continuous and
decreasing in ¢. These facts. coupled with observations tying down the optimal .M/
near the extremes of ¢ = 0 and ¢ — oo establish the proposition. The intuition behind
the proposition is that there is a benefit of having larger M since one can smooth
second period consumption among a larger group of agents. The trade-off comes from
the cost of market participation. The intuition behind the concavity of total welfare
in M is that the marginal benefits from smoothing across agents in the second period

are decreasing with the number of agents already present.

For the more general case. where agents have heterogeneous preferences and cost.
the monotonicity of Proposition 6 may fail. Nevertheless. we can still identify the
efficient market makers and implement an efficient and individually rational allocation

rule via a mechanism that is a variation on the mechanism used to prove Proposition

3.

Proposition 7 Let the total second period endowment of the x good be a random

variable with finite expectation and positive variance. There exists a mechanism that

I"There are N critical levels of ¢ where is indifference between having M or M + 1 agents wait.
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implements'™ an efficient and individually rational allocation rule. If Ny > 3 and
N, > 3. then the implemented dlocation rule is also individually rational relative to

the compelitive allocations within each period.

The idea behind the mechanisim described in the proof of Proposition T is to have a
single agent who has market making rights, say agent 1. who can then offer allocations
to other agents. The agent’s offers to other first period agents can specify that the
other agent wait across periods. That is. the market maker not only offers trades in
the first period. but also offers other agents payments for trading across periods. As
with the mechanism behind Proposition 3. agents other than the market maker can

refuse the market maker’s offer in which case the static mechanism is run.

7 Concluding Remarks

With uncertainty across periods. we have seen that there is a reason why efficiency
may require several market makers: Having additional first period agents postpone
consumption to the second period allows for more consumption smoothing across agents
after the uncertainty is resolved.

There are (at least) two other factors that may contribute to having additional
market makers.

First. if agents are risk averse across periods. then they may choose to hold an
inadequate inventory across periods from the social perspective. With risk aversion.
a market maker cares not only about the expected gains from trade in the second
period, but also about their distribution across states. Given an individual rationality
constraint for second period agents. a market maker will have rewards from trading
across periods that vary across states. For a risk averse agent. this variance decreases
an individual's incentives to carry extra goods across periods with the hope of trading
them. Additional market makers can share such risks.

Second. if there is asymmetric information between first and second period agents.
then incentive compatibility constraints may reduce the market maker’s incentives to
trade across periods. A market maker cannot expect as high a return from serving as

an intermediary across periods. as she will not be able to extract as high a price in

3 mplementation, efficiency, and individual rationality. are defined subject to the constraints im-
posed by the uncertainty (first period consumption choices cannot depend on the state realized in the

second period), but otherwise hold in each state.



all states as in the symmetric information. The constraints introduced by asymmetric
information will tend to reduce the benefit of having a fixed number of market makers
trade across periods.

The overall impact on the efficient number of market makers of risk aversion or
asvmmetric information: however. is ambiguous. By reducing the benefit of having a
given number of market makers wait across periods. it may be that the efficient number
of market makers either increases or decreases relative to the risk neutral. symmetric
information case. The issues of risk aversion and asymmetric information suggest areas
for further research.

As a last remark. our analysis has been in the context of a simple two-good. quasi-
linear model. This has made the analysis as transparent as possible (and has kept
the mechanisms relatively simple). without playing a critical role in the results. Tt is
clear that the negative results concerning the inefficiency of anonymous or competitive
markets is not limited to this setting. as the counter-examples behind these results are
easily generalized. Also, the structure behind the competitive and efficient mechanisms
(Propositions 1 and 3) are based on straightforward intuitions and are generalizable -
with the main complications coming in the bidding stages (that endogenize the fines

or the role of the market maker). but with little in terms of other changes.

8]
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Appendix

Proof of Lemma 1: The equalities of the derivatives follows from the first order
necessary conditions for the program characterizing efficient allocations. We show that
M has no more than one member by contradiction. Suppose that 3/ has more that
one element. Pick any /= € M such that ¢;» = mingeyy {c;}. and define a new allocation

by
o M ={i"}

o L=t ifie N\ M

RS T o)

=t +t

re

2 0fie M\

Il

t1 1 2
O loiw = e = it 3

[ ] if‘i' = tf.z’t + ZJ'EA\[\I" ifl

[ ] ZTZ_ = l‘fl 11 Z E .\v-z.

I

This allocation is feasible and is clearly improving: cach agent is consuming the
same quantity as in the original allocation. but agents belonging to M \ = are strictly

better off because theyv don't pay the cost of trading in period 2. i

Proof of Lemma 2: Note that having each agent consume ¢~ results in at least as
high a utility as setting @' = 1 and allocating 1 unit of « among the agents present in

period 2:

«n«wwmzu&wwnﬂ&+m(V+J.
P

. s ot vl . PR 7 1 1 ! 1 . .
By the strict concavity of V. | <l\'2+1> > <A\,2+1). so that

uﬁxmmw>mr%wm+w<v+0'

Therefore. if:
1

AV
L) > V() 4 el

(M—UHH+V( >>Nwm+f )

then (1) is satisfied. (1) simplifies to V" (.\'2+1

Proof of Proposition 1: Let I > ¥, Vi(2™") — Vi(¢;) where 2% is the competitive

1

allocation of the = good. and choose any ¢ > 0. First. we show that for such an [ the
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following mechanism fully implements the competitive allocation. After establishing
this. we augment the mechanism so that in the unique equilibrium outcome. F'is
revealed in a first stage and then the mechanism is played.

Let j(i) =i+ 1ifi<Nand j(N)= N — L
Stage 1. Agent 1 announces p; € IR, .
Stage / > 1. Agent i either announces {; € IR or a pair p; # p1. t; #0.

o If each / > 1 announces a {;, then each i trades {; units of the r good for —p;t,

units of the m good. 1 balances these trades and the mechanism ends.

e Otherwise. consider the lowest indexed i who announced p; # pi.t; # 0. and

proceed to T'y(pi. ;).
Ti(pito):
Substage 1. Agent | sayvs "Yes or "No'.
Substage & > 1. Agent k says {y.
o Each k> 1. k # (. trades f for —piy.
o If agent 1 said "Yes'. then ¢ trades {; for —pit;. and 1 pays 2F to j(i).

o If agent 1 said "No'. then ¢ trades t; for —pyf;. 1 pays 2F to j(7). and i pays e > 0

to J(2).

Lemma 3 Fir an economy. If py = p™™P in stage 1. then whencver Ty is reached. 1 is
strictly worse off in any subgame perfect equilibrium continuation than if they instead

announced t; = " (and t; =t if some U'j were reached).

Proof: If the equilibrium continuation in I'; has agent 1 say "No.” then agent ¢ will

pav ¢ > 0 and has a unique most preferred trade of #; = ¢;”"". This leaves ¢ strictly

worse off than trading ¢/ and not paying e. 1f the equilibrium continuation in I';
has agent 1 say "Yes,” then since all agents (including ) will say L = 77" in the

equilibrium continuation after *No™ - agent ¢ must be offering agent 1 a trade p;. t; that
provides 1 with a utility of at least agent 1's competitive utility to have induced 1 to
sav "Yes". (Note that all agents k # ¢ will say #x = ;""" in the equilibrium continuation
after *Yes™.) However. since p; cannot be equal to p®”?. then this must make ¢ worse

off than the competitive allocation.



comp

Lemma 4 Fir an cconomy. If in stage 1 py = p then there exists a subgame

perfect equilibrium continuation and on the equilibrium path of the conlinuation agents
comyp
l' .

say t

Proof:  This follows from Lemma 3. To be careful in verifying that there 1s a
subgame perfect equilibrium continuation. one has to check that there is an equilibrium
continuation in each proper subgame, including those off the equilibrium path. This

follows from the uniqueness of the optimal trade at any price. and the discrete choice
of *Yes or "No'. |

Lemma 5 Fir an economy. If py # p™P. then in any subgame perfect equilibrium
continuation (and at least one exists) agent | is worsc off than at the competitive

allocation.

Proof: Given that agents other than | can always ask for 0 trades. the trades (not
including fine revenues to any j(7)) in any equilibrium continuation must provide each
agent with at least the utility of their endowment. This means that 1's continuation

comp

utility is at most >, Vi(:7"") = Vi(e,) less any fines that are paid. since the competitive
equilibrium maximizes the total gains from trade. Given that ¢ pays 2F in fines if any
[, is reached. in that case agent 1 is worse off than at the competitive allocation. We
show that every equilibrium continuation must have some ['; reached. Suppose the
contrary and let us show that there is some 7 who strictly gains by triggering I';. For
each & # ¢ let 1 be the utility maximizing trade given the price p;. There exists i and
pi.ti which strictly improves both i and 1 compared to the optimal trade for i at p;.
anticipating announcements of ¢, by & # . This follows since p; is not the competitive
price. and so there exists i such that VY(e; 4+ t;) # V/(e1 + t1). where t; is 1's optimal
trade at p; and #; is agent 1's trade to balance all other agents” optimal trades at p;.
Any such ¢ can strictly benefit by deviating and announcing such p;. t; (triggering T;).
given the anticipated announcements of {; by &k # ¢.

To complete the proof of the lemma. we need to verify that there exists an equi-
librium continuation given that p; # p®™”. Given the existence of an optimal trade
for any agent at any given price. and the discrete choice of *Yes™ or "No'. we need only
check that for each agent there is an optimal p;.{;. should they choose to announce
one. Let agent 1 say "Yes  whenever indifferent given the anticipated announcements
of t by each k. Thus. 7 is faced with choosing a trade to maximize 's utility. subject

to the constraint of offering 1 a utility of at least that from balancing all of the trades

o
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(including i's) {x at p; and to the additional constraint of announcing p; # py. If we
ignore this last constraint it is clear that. given the convexity of preferences. this has a
solution. If the solution has p; # p;. then we are fine. If the solution has p; = p1. then
there is an equilibrium continuation where ¢ does not trigger I';. but instead simply
announces an optimal ¢; in response to p;. This is the best that ¢ could have hoped for

under any continuation where I'; would be triggered. given that the optimal p; = p;. 1

Next. let us examine the augmented mechanism that in equilibrium reveals the fine
F > S V(@) = Vi(e,). Consider the following game to be played before Stage 1

i

listed above:

Bidding (Stage 0):
Substage 1. Agent 1 announces any F > 0.

Substage 2. Agent 2 either announces some F > I and the game proceeds to substage

3. or "ok” and the game proceeds to Stage 1 (of the previously described mechanism).

Substage 3. Agent 1 announces either "ves' or "no’.

o If | announces "ves'. then agent 1 makes take it or leave it offers to the other
agents who sequentially respond ves or no. All yes trades are completed and

agent 1 pays F' to agent 2 and ¢ to agent 3. The game ends.

e If 1 announces ‘no’. then there is no trade and agent 2 pays F' to agent 3 and

agent 1 pays € to agent 3. The game ends.

It is easily checked that in any equilibrium of this augmented game. in the first
Lcomp
l.

comp

?

stage agent | announces ' > >, V(a ) — V'(¢;). and agent 2 says "ok’ in substage

2. If agent 1 announces F' < 3, V(a ) — V(e;). then every equilibrium continuation

JComp )

has agent 2 announcing F = 3, V(] — V(e;) in substage 2. and agent 1 saying

‘ves' in substage 3.1

Proof of Proposition 2. Consider economies where the first N} — 1 first period
agents have endowment e; = 1. the first N; — 1 second period agents have ¢; = 1.
and Vi = V for all ¢ € Ny U\, Also. assume that all agents have identical costs of
trading in second period. ¢. The remaining two agents have endowments 0 and 2. For
convenience. refer to the agent with ¢ = 2 as agent 2. and the agent with e = 0 as

agent 0. C'onsider two economies

[N
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Economy A - agent 2 is born in the first period and 0 in the second.

Economy B - agent 0 is born in the first period and 2 in the second.

Let
¢ ) o N -1 I |
S = (N] 4+ Vo)V (1) =\ ¥ ( X >—A\2\ < N )
Al AP
and V41 v !
Sy = (N) + NV (1) = NV < < ) ~ ¥ ( T ) .
AN ~¥2

Suppose that all equilibria of the given mechanism relative to both of these economies
(for each specification of ¢ and V) are efficient.

C'onsider economy A and any ¢ where it is efficient to have trade across periods.
Given trade across periods. the efficient v amount is 1 for all agents. Consider any
equilibrium in the second period and the amount of m transferred from 0 to 2. Let
[, be anv equilibrium utility for agent 2 if no trade occurs across periods. In order to

have an efficient choice by agent 2 for any c. it must be that m is precisely

m=25,—V(l)+ .
Using similar reasoning for economy B and agent 0

—m =Sy — V(1) + (.
(‘ombining these equations:

(1) = So+ S 4 Lo + 0o
Thus. given individual rationality
2V (1) > So + 52+ V(0) + V(2).

or

2V°(1) = (V(0) 4+ V/(2)) 2 So + 5.

The left hand side is the surplus that would be generated from trade across periods if
agents 0 and 2 were the only agents. The right hand side has the total surplus from
trade across periods from both economies we have considered. If V" is approximately
V(z) = min(1l. r) (adjusted to be strictly concave). then approximately 217(1)—(17(0)+
1(2)) = 1. Sy = 1. and S, = 1. This implies that the inequality cannot be satisfied.

which is a contradiction. 1



Proof of Proposition 3. The following mechanism results in a Pareto efficient and

individually rational allocation for every complete information economy.

Bidding Stage.
e Substage 1. Agent 1 submits a bid by € IR. Go to substage 2.

e Substage i. with N} >/ > 1. Agent i either submits a bid b; € IR or announces a
pair (]5) with j < i and b > b;. If i announces a bid, then go to substage 1 + L.

If i announces (j.b). then go to game G(b.j.1).

e Substage N;. Agent \} either submits a bid by, € IR or announces a pair (] ?})
with j < N7 and b > b;. If i announces a bid. then define i as the agents who
announced the highest bid. breaking ties in favor of the highest index. and go to

game [}y, (7). Otherwise. go to game G(b.j. \y).

Game G/(b.j.1). Agent j is offered a choice between obtaining market making rights
and paving b and going to game [y (and then no agent can wait across periods).

In the first case. each agent pays b to agent i and the game goes to INVIVIND
Game I'};,,(:"). Without loss of generality. reorder the agents # " from | to Ny —1.

o Substage 0. Agent i~ suggests (' € T

e Substage i. Agent i/ chooses from {ves. no}. If "ves’ go to substage : + 1 or. if

i =N, — 1, stop. If 'no” go to game I' 4.

If all agents i # i said "ves™. then they consume their after-trade allocation (e; +
t'. 1L ). and agent i* can either consume her after-trade allocation or carry it to period

2. In that case. run Game 1'3,,,(:*) in period 2. Otherwise. run static mechanism I's

in period 2.

Game ['3;,,(7). Let {1..... \,} be an enumeration of agents in V.

o Substage 0. Agent i~ suggests {2 € T 2+,

o Substage i. Agent i chooses from {yes. no}. If "ves’ go to substage : +1 or, if

i = Ny. implement the trade ? suggested at substage 0. If "'no” go to game I'p.
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Game T ;4:

If N, = 1. then it is autarchy.

If N, = 2. then agent | makes a take it or leave it offer of a trade to agent 2. and
then agent 2 can accept or reject.

If \, > 3. then run the competitive mechanism described in Proposition 1.

Game I'p
This is the same as ' 4. replacing Ny for N, and excluding the market maker if she

is present.

Let us show that this mechanism implements an efficient allocation.

It is clear that once an agent i~ has obtained market making rights the only outcome
in the two periods is the one that extracts from the other agents as much surplus as
possible under the constraint that each agent obtains at least as much as in the static
equilibrium of the corresponding I'* or ['B.and that this results in an efficient allocation
subject to i~ being the only agent who can trade across periods. The only problem 1s
to show that the right agent obtains market making rights at the bidding stage.

Let S; be the maximal surplus that agent 7 can extract if she gets MM rights. That
is. S is the difference between the total welfare of the efficient allocation subject to
onlv having i able to trade across periods. and the allocation found by running ' in
the first period and I'P in the second period. with no trade across periods. At the
bidding stage every agent ¢ < N} bids exactly 5. If this were not so. then agent 1 + 1
could find b such that at game G(b,i.i + 1) agent ¢ chooses market making rights and
! + | obtains a larger payoff.

This implies that if the agent with the highest S; has index less than V this agent ob-
tains market making rights. If Sy is the highest. then agent .\ will announce max;zx 5;

and will obtain market making rights.'” |l

Proof of Proposition 4. We offer the proof for the case where N} = Ny = 1. Agent
| is the first period agent. and agent 2 is the second period agent. This easily extends
to more agents.

Suppose that there exists a mechanism satisfying the conditions of the Proposition
which does implement an individually rational and efficient allocation correspondence.
Consider economies where: ¢; = 1 and ¢, = 0. ¢y is either | or 2. agent 1 has preferences

V1. and agent 2 has either preferences 15 or V.

19\e are using the tie-breaking rule assigning the right to the highest index in case of identical bids.
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Let \1’(%) = \2’(%) = ‘_;(%) so that % is the & allocation for each agent whenever

trade across periods is efficient. Also. let
1 = /1 — X
Ve (5) —Vela) > T <;> C V() for any £

2

o=

(5)+ua(s) > vz (6)

2

Finally. let

and | |

V() +2> 1 (;)Jrﬁ <;>>Vl(l)+1. (7)
The inequalities imply that intertemporal trade is always efficient when agent 2’s pref-
erences are described by V5. When preferences are described by 17, then intertemporal
trade is efficient if ¢; = 1 and inefficient if ¢; = 2.

Consider the economy with ¢; = | and 17, and an equilibrium which results in an
individually rational and efficient allocation. The allocation for agent 2 must be of the
form (% —m). where 0 <m < ‘_(%)

Next. consider the economy with ¢; = 2 and V5. Here. since the equilibrium al-
location is efficient. agent | must wait to trade across periods. C'onsider the second
period game form given that agent | has waited. There cannot exist an equilibrium
with an allocation for agent 2 of (% —m). since otherwise agent 1 would not have
chosen to wait since V(1) + 2 > 1 (%) + m. Thus, given that there are no proper
subgames. agent 2 must have an improving deviation (since only agent 2s preferences
have changed relative to the other economy) which results in some allocation (xr.m)
for agent 2, where

. e
Vo) +m >V, <;) —m.
but. since this is an equilibrium allocation for the economy with V', and ¢, =1 (and
the second period mechanism is the same by the condition of the independence of the

second period mechanism of information other than t'. M ):

— — (1
‘2(1) +m S "”-2 <;> —m.

The last two inequalities combined imply that

1 —

Vole) — Vz(;) > Tz(l') = Va(s).

| —

which contradicts the assumptions on V; and V5. (For an example of functions V;
and V75 satisfving (5) (6). (7). and V;(3) = \_IZ(%) pick ¥(2) = 205 + 0 and Vy(r) =

vt (54 D)l



Proof of Proposition 5. There is one period 1 agent endowed with 5 units of good
r. There are two period 2 agents. endowed with 1 unit of . and 0 units, respectively.
Each has V: = V7. We name traders by their initial endowment. so that 5 is the agent
born in the first period and 0 and 1 are the agents in the second.
Let
Vi(5) =3V (2) — 2V

j—¢c—c

| —

where ¢ > 0. so that it is efficient to trade across periods.

The efficient trades in the second period are to have agent 0 buy 2 units of the x
good. and agent 1 buy | unit. Let p* be the price quoted for 2 units of the x good.
and p' be the price quoted for 1 unit of the & good.

For agent 0 to choose to buy 2 units of & rather than 1. it must be that
V) =pP >V -

This implies that
pt < pt+V(2) = V().

Individual rationality for agent | implies that
ph<V(2) = V().

Thus.
pt < 2(V(2) = V(1))

For agent 3 to make the efficient choice to trade across periods. it must be that
V)4 pt+pt — e > V(5).
Substituting from the inequalities for p! and p®. it must be that
1V(2) =3V (1) —c = V().

Thus.

This implies that

For any strictly concave V. V(2) - V(1) <2 (\(l) — \(%)) Thus. we can find V7 and

a small enough ¢ such that agent 5 does not make the efficient choice.
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Proof of Proposition 6. Let H(M.c) denote the total expected utility when an
efficient allocation is chosen. subject to the constraint that 1/ < .\, agents wait across

periods. That is.

1 v A 22
W(M.e) = (N = MV (@) + (Ny + M)E [\( ¢ = (N = Mo e )] _ e

Ny + M

where o+

is chosen to maximize the above expression, ¢! = Yy €. and €2 =)y, ¢
(and €? is a random variable with finite expectation and positive variance).

Under our assumptions on V. W (Al.¢) is continuous in ¢ by the theorem of the
maximum. We show that the following are also true: W/(M + l.¢) — W(M.c) is
decreasing in M and decreasing in ¢. These facts. coupled with the observations that for
large enough ¢ we have 17(0.¢) > W(M.¢) for any M > 0: and H'(N,.0) > H(1.0)
for anv M < Ni. establish the proposition.*’

We first show that WA + 1.¢) — W(M.c) is decreasing in M. We show that for
any M < Ny —2

WM +2.¢) = WM+ L)< WM+ 1.0) = W(M.c)

This can be rewritten as

1 1
WM+ 1l.c)> SH"(;\] +2.¢) + ;U"(AU. ) (3)
Let
5= :\vl -V M \1 — M2 AT+
208 =M = 1) 208 — A =1)

We show that
e — (N =M -1)T+
No+ W+

(A\'l_Au—1)&-*(7)+(.\;+A\1+1)E{V( )}_(A\1+1)(-> (9)

I 1
SW(AL 4 2.¢) + SIW(M.c).

which implies (8) since the left hand side evaluated at T is no more than when evaluated

at oM+ by the definition of #*1. First. by strict concavity and the definition of ¥

Ny =M Mz M2 ",,(I),H)}

(N =M —=1)V(T) > (VM —M-1) [2«\3 - l)V(«z + N A1)

p— - ; L .

20%When ¢ is larger than the maximal total surplus of the economy it is clear that having any agent

wait results 10 a loss of welfare. When ¢ = 0 there i1s no loss in waiting. and having agents wait allows
g gag

for additional smoothing of consumption across states in the second period.
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which simplifies to
_ I ] I , .
(N1 = M = DV(T) > (N = ANY (™M) + SLATEERUE NV (M. (10)

For anv M. let y* denote the random variable

{‘\[ _ Cl — (j\vl - A\[).l“‘[ + (;2
Y N+ M '

Define 3 by
el — (N, = M — 1)T + ¢

N+ M 41
M

3_/:

Note that by the definition of 7. 7. and y

Np+ My Nt M A2y,

Y=o+ Tav, v+

Then. by the strict concavity of 1 we have that for each realization of €2 we have:

L N4 M Ny b M A2 o
V(@) > 5N, TR N (" () + 2(;\%-2 T ("2 (7))

Taking expectation and multiplying by (.N; + .3/ 4 1) on both sides we obtain:

| —

(N + M+ DEN @) > %(Xz +ANEN (v +

(N, + M+ DEM M) (1)

)

t

Combining (10) and (11). we obtain (9).
Finally. we show that W (M 4 1.¢) — W (M. ¢) is decreasing in ¢. Notice that

OW (M. )
- = - D
- Y, (12)

and so 5
T (M4 1e) =W (M) =1
de

proving the claim.ll

Proof of Proposition 7: We briefly describe the implementing mechanism. It is
a simple variation of the mechanism in the proof of Proposition 3. The proof of
implementation is then a simple variation on the proof in Proposition 3.

Designate agent 1 € N) to be market maker. Run I'y;,(1) as described in the proof
of Proposition 3. with the following changes. In stage 1, agent 1 announces therT™

and M C N,. For agents i # 1. € M, saying "ves™ in stage ¢ commits the agent to the
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trade prescribed by t' and waiting to trade again in the second period. and if 1 € M
then 1 is committed to trading in the second period.?! In the event that M # 0 agents
wail across periods. run mechanism I'}; (") as described in the proof of Proposition
3. where i is the lowest indexed agent in M. trades t* announced in T'3;y(27) are in
T2V and where substages are added for agents i # i*. i € M. to say "ves’ or ‘no. If
any agent i € Ny U M\ {i"} says ‘no" in the second period. then the mechanism I'p 1s
run only among .V, and the other agents consume their current holdings.

The only difference from the proof of proposition 3 is that agents ¢ € M correctly
anticipate their expected utilities under the equilibrium continuation. and make deci-
sions in period 1 based on whether these arc at least what they would get from I's.
(The agents in M know that in the second period agent /= will extract any surplus

1 .
i

above their current holdings (¢; +¢1,.¢% ). Thus. in effect. agent 1 pays them "up front’
for waiting until the second period.) The market maker again will appropriate the full
surplus over the running of mechanisms I'y and I'p. Thus. she has the incentives to
choose the correct M. The rest of the proof is then identical to that in proposition 3.

except that we do not need to worry about the selection of a market maker. 1l

21 This choice is binding relative to agents present in period 1 - this has not. however. placed any
constraints on agents born in period 2. Agents will only trade t! if all agents say yes in all substages

i of Uy (1). M would then wait across periods.
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