DISCUSSION PAPER NO. 467

VALUES OF MARKET WITH A MAJORITY RULE

Ъу

Yair Tauman <u>*</u>/

May 1981

Metadata, citation and similar papers at core.ac.uk

Provided by Researc

CORE

*/ J. L. Kellogg Graduate School of Management Northwestern University Evanston, Illinois 60201

In this paper we extend the space DIFF of non atomic games to a space NADIFF consisting of games with non-additive derivatives. We use the properties of NADIFF to answer questions like when a value on a subspace Q can be extended to a diagonal value on $(Q \circ J) \vee DIFF$ (the minimal space contains Q, DIFF and Q·J where J is the set of all majority games).

. .

·

.

• · ·

In this paper we introduce the space NADIFF of nonatomic games which is an extension of the space DIFF defined by Mertens [M]. NADIFF contains, in addition to DIFF, games with non additive derivatives. For example it contains the market game v = min (μ_1, \dots, μ_n) where $\mu_i \in NA$ (NA is the space of all non atomic bounded measures) and all market games that have an extension i.e. market games in EXT (the space EXT was defined first in [M] and is defined below). The main purpose of this paper is to deal with the existence of a value on the space Q®J, where Q is a supsapce of NADIFF, J is the set of all weighted majority games of the form f ou (0 < α < 1 is the quota and μ is the majority measure) and Q@J, is the minimal linear and symmetric space that contains Q as well as all games of the form v f $_{\alpha}^{0\mu}$ in Q J. If Q is a space of market games which have an extension then the games v f $_{\alpha}^{\circ\mu}$ in Q J are used to describe economies in which taxation and redistribution are performed according to majority rule. Such games play a central rule in Aumann-Kurz [A-K]. In their model the market games μ are differentiable and therefore are in DIFF. In this paper we develop tools that will enable us to deal with nondifferentiable market games on which a majority rule is imposed. To that end we first prove several properties of NADIFF and then provide conditions that guarantee the existence of an extension of a value ϕ on a subspace Q to a (diagonal) value on the space (Q \oplus J) \bigvee DIFF which is the minimal linear space containing QoJ and DIFF. Tauman [T] proved the existence of a value on the space Q^n generated by all n handed glove games, i.e., games of the form $v_n = \min(\mu_1, \dots, \mu_n)$ where μ_i and μ_j , for $i \neq j$, are mutually singular. The results below will enable us to extend this value to a value on the space $(Q^n \bullet J) \vee DIFF$ and moreover to provide a formula for this value. We close the paper by showing the existence of a value on the space generated by all games of the form $v \cdot f_{\alpha} \circ \mu$ where v is any

- 1 -

market game and $f_{\alpha}^{\circ\mu}$ is in J. This value distributes the amount v(I) to the players in the game v·f_ $\alpha^{\circ\mu}$ according to their political power only.

<u>Notations</u> In this paper we shall basically follow the notation of Aumann and Shapley [A-S]. Let (I,C) be a measurable space which is isomorphic to ([0,1],B) where B is the set of all Borel subsets of [0,1]. Let J be the set of all weighted majority games. i.e. J is the set of all games of the form $f_{\alpha}\circ\mu$ where $0 < \alpha < 1$, $\mu \in NA^1$ and where f_{α} is the jump function defined by

$$f_{\alpha}(x) = \begin{cases} 0 & 0 \leq x \leq \alpha \\ 1 & \alpha \leq x \leq 1 \end{cases} \quad \text{or} \quad f_{\alpha}(x) = \begin{cases} 0 & 0 \leq x \leq \alpha \\ 1 & \alpha \leq x \leq 1 \end{cases}$$

From now on whenever we will write f_{α} we will refer to the above definition. Moreover denote $f_{\alpha}(x) = 1$.

Let Q be a set of games. Q@J is the linear and symmetric space generated by Q and by the set Q.J of all games of the for v.f $\circ\mu$ where veQ and $f_{\alpha}\circ\mu\epsilon J$. Any game in Q@J is of the form $\sum v_i \cdot f_{\alpha} \circ \mu_i$ where $v_i \epsilon Q$, i=1 i α_i i $f_{\alpha} \circ \mu_i \epsilon J$, $0 \leq \alpha_i \leq 1$ and $1 \leq i \leq m$. Let Q_1 and Q_2 be two sets of games. Denote by Q_1 Q_2 the minimal linear and symmetric supspace that contains Q_1 and Q_2 . For every veEV define the game v⁺ by

$$v^{+}(S) = \sup \sum_{i} \max \{v(S_{i}) - v(S_{i-1}), 0\}$$

where the sup is taken over all chains of coalitions of the form

 $\emptyset = S_0 \leq S_1 \leq \dots \leq S_n = S$. The game v^- is defined by $v^+ - v$. v^+ and v^- are both non-decreasing and

$$\|v\|_{BV} = v^{+}(I) + v^{-}(I).$$

Let $B_1(I, C)$ be the set of real valued measurable functions on (I, C) with values in [0,1]. Any function w on $B_1(I, C)$ which is of bounded variation can

be represented as $w = w^+ - w^-$ where w^+ and w^- are defined similarly to v^+ and v^- respectively. Moreover we have

$$\|w\|_{TBV} = w^{+}(1) + w^{-}(1),$$

where $\|w\|_{IBV}$ is the variation norm of w over $B_1(I, C)$. Denote;

$$|w| = w^{+} + w^{-}$$
.

Notice that by writing w(t) we consider the argument t as the constant function f(x) = t.

Let DNA (discrete NA topology) be the coarsest topology on the set B(I,C) of bounded real valued measurable functions on (I, C) such that for any $\mu\epsilon$ NA the mapping f $\rightarrow \int f d\mu$ is continuous from B(I, C) to the real line with the discrete topology. Denote by EXT the set of all games v ϵ BV that have a DNA continuous extension v* to B₁(I, C) such that |v*|(t) is continuous at t=0 and t=1.

Any vEEXT can be extended to v* on B(I, C) by

v*(f) = v*([max(0,min(1,f))])

Definition (Mertens). DIFF is the set of all games vEXT s.t. for each continuous function g on [0,1] the limit

$$\lim_{\substack{\tau>0\\\tau\neq0}} \int_0^1 g(t) \cdot \frac{v^*(t+\tau\chi) - v^*(t)}{\tau} dt$$

exists (denote it by $m_v^g(\chi)$) for any $\chi \in B_1(I, C)$ and such that m_v^g is additive in χ . If g=1 we write m_v^1 instead of m_v^g .

The following theorem is due to Mertens [M].

Theorem ([M]) The space DIFF is linear symmetric and closed supspace of BV that contains bv^1NA . A value ϕ_D on DIFF does exist and

(1) $\phi_D v = m_v^1$ (2) $\phi_D v \in NA$.

<u>Definition</u> The set NADIFF is defined as DIFF but without the requirement that the derivative m_V^g is additive. Obviously NADIFF is a linear and summetric subspace of EV that contains DIFF.

<u>Proposition 1</u> Let μ_1, \dots, μ_n be n measures in NA¹. Then the games

 $v_{1} = \min (\mu_{1}, \dots, \mu_{n})$ $v_{2} = \max (\mu_{1}, \dots, \mu_{n})$ $v_{3} = \prod_{i=1}^{n} f_{\alpha} \circ \mu_{i}$

are all in NADIFF and moreover

$$m_{v_1}^g = v_1 \int_0^1 g(t) dt$$
$$m_{v_2}^g = v_2 \int_0^1 g(t) dt$$
$$m_{v_3}^g = v_1 \cdot g(\alpha)$$

(i.e. none of them are in DIFF).

<u>Proof</u> It is easy to check that v_1 , v_2 , and v_3 are in EXT.

$${m_{v_{1}}^{g}}(\chi) = \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \int_{0}^{1} g(t) \frac{t + \tau \min\{\mu_{1}^{*}(\chi), \dots, \mu_{n}^{*}(\chi) - t}{\tau} dt$$

$$= \lim_{\substack{\tau > 0 \\ \tau > 0}} \int_{0}^{1} g(t) v_{1}^{*}(\chi) = v_{1}^{*}(\chi) \cdot \int_{0}^{1} g(t) dt.$$

$$= \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \int_{0}^{1} g(t) v_{1}^{*}(\chi) = v_{1}^{*}(\chi) \cdot \int_{0}^{1} g(t) dt.$$

The second equality follows in the same manner.

$$\underset{v_{3}}{\overset{m_{v_{3}}^{g}}{\underset{\tau > 0}{\overset{\pi}{\underset{\tau > 0}}}} = \lim_{t \to 0} \int_{0}^{1} g(t) \cdot \frac{1}{\tau} \left[\underset{i=1}{\overset{n}{\underset{\tau < \alpha}}} (f_{\alpha} \circ \mu_{i}^{*})(t + \tau_{\chi}) - \underset{i=1}{\overset{n}{\underset{\tau < \alpha}}} (f_{\alpha} \circ \mu_{i}^{*})(t) \right] dt$$

$$= \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{\alpha=\tau \cdot \min(\mu_{1}^{*}(\chi), \dots, \mu_{n}^{*}(\chi))}^{\alpha}$$

Since g is continuous in $(\alpha -\tau \, v_l^\star(\chi), \alpha)$ there exists c(\tau) in this interval such that

$$m_{\mathbf{v}_{3}}^{g}(\chi) = \lim_{\tau > 0} v_{1}^{*}(\chi) \cdot (c(\tau))$$

$$\tau \geq 0$$

$$= g(\alpha) \cdot v_{1}^{*}(\chi) \cdot$$

A game of the form v_3 is called n parlaments majority game.

For convenience let us use from now on the notation m_v^l also as a function on (when identified with the indicator functions) i.e. we will refer to m_v^l sometimes as a function on B(I, C) and sometimes as a function on C. <u>Proposition 2</u> Let vEXT and let f be a continuous function on [0,1]. If for each $\chi \in B(I,C)$ the limit

$$m_{\mathbf{v}}^{\mathbf{f}}(\chi) = \lim_{\substack{\tau > 0 \\ \tau > 0}} \int_{0}^{1} f(t) \cdot \frac{\mathbf{v}^{*}(t + \tau\chi) - \mathbf{v}^{*}(t)}{\tau} dt$$

 $\tau \! \rightarrow \! \upsilon$ exists then for each $a,b \! \epsilon \! E^1$ and for each $\chi \epsilon \, B (\, I,C \,)$

$$m_{v}^{f}(a + b\chi) = a \cdot m_{v}^{f}(1) + b \cdot m_{v}^{f}(\chi).$$

Proof See [M, p. 527]

<u>Proposition 3</u> The same conditions as Proposition 2 imply that for each continuous function g on [0,1]

$$m_{m_v}^g(\chi) = m_v^f \cdot \int_0^1 g(t) dt.$$

In particular if vEEXT and if $m_{\chi}^{l}(\chi)$ is well defined for each χ then,

$$m^{1}_{m^{1}} = m^{1}_{v}$$

Proof Follows immediately from Proposition 2.

- 5 -

Proposition 4 If ve NADIFF is nondecreasing on B(I,C) then m_v^1 is also nondecreasing.

<u>Proof</u> A restatement of Lyapunov's theorem is that C (when identified with the indicator functions) is DNA dense in $B_1(I,C)$. Therefore if vEXT is nondecreasing then v* is nondecreasing. Thus for each χ_1 and χ_2 in B(I,C) with $\chi_1 \ge \chi_2$

$$\frac{v^{*}(t+\tau\chi_{1})-v^{*}(t)}{\tau} \geq \frac{v(t \ t^{2}\tau\chi)-v^{*}(t)}{\tau}$$

for each $\tau > 0$ and $0 \le t \le 1$. Hence $m_v^1(\chi_1) \ge m_v^1(\chi_2)$.

Proposition 5 Let ve NADIFF and assume that for $0 \le \alpha \le 1$ v^{*}(t) is continuous at t= α . Then $m_v^{\chi[\alpha,1]}(1) = v^*(1) - v^*(\alpha)$, where $\chi_{[\alpha,1]}$ is the indicator of $[\alpha,1]$. In particular if $\alpha=0$ then $m_v^1(1) = v(1)$. (In fact we have defined m_v^f only for continuous f but the definition can be

obviously extended to all bounded and measurable functions f).

Proof According to [M, p. 538] the limit

$$\begin{array}{c} \chi_{[\alpha,1]} \\ m_{v} \\ \tau > 0 \\ \tau \neq 0 \end{array} \right\} \quad \frac{v*(t+\tau)-v*(t)}{\tau} dt$$

exists (there, only games in DIFF are considered, however the proof does not make any use of the additivity property of m_v^f for games v in DIFF). Hence:

$$\begin{split} {}^{X}_{\mathbf{v}}[\alpha,1] &(1) = \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \begin{bmatrix} 1+\tau \\ \int \\ \alpha+\tau \\ \alpha+\tau \end{bmatrix} \mathbf{v}^{\star}(t) dt - \frac{1}{\tau} \mathbf{v}^{\star}(t) dt \end{bmatrix} \\ &= \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \begin{bmatrix} 1 \\ \tau \end{bmatrix} \mathbf{v}^{\star}(t) dt - \frac{1}{\tau} \int_{\alpha}^{\alpha+\tau} \mathbf{v}^{\star}(t) dt \end{bmatrix} . \end{split}$$

From the continuity of $v^{*}(t)$ at $t=\alpha$ and t=1 (vEXT)

$$m_{v}^{\chi[\alpha,1]}(1) = v^{*}(1) - v^{*}(\alpha).$$

Proposition 6 For each ve NADIFF

$$\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\mathbf{IBV}} \leq \|\mathbf{v}\|_{\mathbf{BV}}$$

Proof Let

$$\Omega: 0 = \chi_0 \leq \chi_1 \leq \dots \leq \chi_k = 1$$

be a chain of functions from $B_1(I, C)$.

(1)
$$\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\Omega} = \sum_{i=0}^{k-1} |\mathbf{m}_{\mathbf{v}}^{1}(\chi_{i+1}) - \mathbf{m}_{\mathbf{v}}^{1}(\chi_{i})| = \\ = \sum_{i=0}^{k-1} |\lim_{\tau \to 0} \frac{1}{\tau} \int_{0}^{1} [\mathbf{v}^{*}(t+\tau\chi_{i+1}) - \mathbf{v}^{*}(t+\tau\chi_{i})] dt|,$$

 $\text{ using } v = v^+ - v^-$

$$\begin{aligned} & \overset{k-1}{\underset{i=0}{\Sigma}} \left| \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(t+\tau\chi_{i+1}) - v^{*}(t+\tau\chi_{i}) \right] dt \right| \leq \\ & \overset{k-1}{\underset{i=0}{\Sigma}} \left| \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{+}(t+\tau\chi_{i+1}) - (v^{*})^{+}(t+\tau\chi_{i}) \right] dt - \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{-}(t+\tau\chi_{i+1}) - (v^{*})^{-}(t+\tau\chi_{i}) \right] dt \right| \\ & \leq \overset{k-1}{\underset{i=0}{\Sigma}} \left| \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{+}(t+\tau\chi_{i+1}) - (v^{*})^{+}(t+\tau\chi_{i}) \right] dt \right| \\ & + \overset{k-1}{\underset{i=0}{\Sigma}} \left| \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{-}(t+\tau\chi_{i+1}) - (v^{*})^{-}(t+\tau\chi_{i}) \right] dt \right| \end{aligned}$$

 $(v^*)^-$ and $(v^*)^+$ are nondecreasing on $B_1(I,C)$ therefore the above inegrals exist. Moreover, the last sums can be written as

$$\frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{+}(t+\tau) - (v^{*})^{+}(t) \right] dt + \frac{1}{\tau} \int_{0}^{1} \left[(v^{*})^{-}(t+\tau) - (v^{*})^{-}(t) \right] dt.$$

From the continuity of $(v^*)^-(t)$ and $(v^*)^+(t)$ at t=0 and t=1 the last two

summands converge to $(v^*)^+(1)^-(v^*)^+(0)$ and $(v^*)^-(1)^-(v^*)^-(0)$ respectively as $\tau \neq 0$. Hence by (1)

$$\|\mathbf{m}_{\mathbf{v}}^{1}\|_{\Omega} \leq (\mathbf{v}^{*})^{+}(1) - (\mathbf{v}^{*})^{+}(0) + (\mathbf{v}^{*})^{-}(1) - (\mathbf{v}^{*})^{-}(0).$$

Since $(v^*)^{-}(0) = (v^*)^{-}(0) = 0$ and since $(v^*)^{+}(1) = v^{+}(1)$ and $(v^*)^{-}(1) - v^{-}(1)$, $\|m_v^1\|_{\Omega} \leq v^{+}(1) + v^{-}(1) = \|v\|$.

The last inequality holds for each Ω therefore $\|\mathbf{m}_{\mathbf{v}}^{\mathbf{l}}\|_{\mathbf{BV}} \leq \|\mathbf{v}\|_{\mathbf{BV}}$ <u>Proposition 7</u> Let v be in NADIFF. If $|\mathbf{v}^*|(t)$ is continuous for each $0 \leq t \leq 1$ then for each $f_{\alpha}^{\circ\mu} \in J$ the game $w = (f_{\alpha}^{\circ\mu}) \cdot v$ is in NADIFF and

(2)
$$m_{W}^{f}(\chi) = f(\alpha)v^{*}(\alpha) \mu^{*}(\chi) + \lim_{\substack{\tau > 0 \\ t \neq 0}} \int_{\alpha}^{1} f(t) \cdot \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} dt$$

Proof According to [M,p.538] the limit

$$\lim_{\substack{\tau>0\\\tau\neq 0}} \int_0^1 \chi_{[0,\alpha]} \frac{v^*(t+\tau\chi)-v^*(t)}{\tau} dt,$$

exists for each $\chi \in B(I,C)$ and for each ve NADIFF such that |v*|(t) is continuous on [0,1]. The proof of proposition 2 of [M] will remain true if we replace there the interval [0,t] by the function $f \cdot \chi_{[t,1]}$, where f is bounded function which is continuous at each point in [0,1] but for a set of measure 0 with respect to the measure d|v*|(t). Moreover, in that case the limit

$$\lim_{\substack{\tau>0\\\tau\neq 0}} \int_{0}^{1} f_{\alpha}(t) \cdot f(t) \cdot \frac{v^{*}(t+\tau\chi) - v^{*}(t)}{\tau} dt$$

exists for each continuous function f on [0,1] and for each $\chi \in B(I, C)$. (Again, the proof there is for games v in DIFF, however, it does not make any use of the additivity property of m_v^f . Thus it is valid for games v in NADIFF).

Therefore, the right hand side of (2) is well defined and it remains to prove that the equality (2) holds. Denote

$$\beta_{f}(\tau,\chi) = \int_{0}^{1} \left[f(t) \cdot \frac{w^{*}(t+\tau\chi)-w^{*}(t)}{\tau} - v^{*}(\alpha)\cdot f(\alpha)\cdot\mu^{*}(\chi) - f_{\alpha}(t)\cdot f(t) \cdot \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} \right] dt$$

It is sufficient to prove that

$$\lim_{\substack{\tau > 0 \\ \tau \neq 0}} \beta_{f}(\tau, \chi) = 0$$

for any continuous function f on [0,1]. Indeed for each $\tau>0$ if f is continuous from the right then

$$w^{*}(t+\tau\chi) = \begin{cases} v^{*}(t+\tau\chi) & t \ge \alpha - \tau\mu^{*}(\chi) \\ 0 & t < \alpha - \tau\mu^{*}(\chi) \end{cases}$$
$$w^{*}(t) = \begin{cases} v^{*}(t) & t \ge \alpha \\ 0 & t < \alpha \end{cases}$$

Hence

$$\beta_{f}(\tau,\chi) = \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} f(t) \cdot \frac{v^{*}(t+\tau\chi)}{\tau} dt - \int_{0}^{1} f(\alpha)v^{*}(\alpha)\mu^{*}(\chi)dt.$$

This implies

(3)
$$|\beta_{f}(\tau,\chi)| \leq \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} |\frac{v^{*}(t+\tau\chi)-v^{*}(\alpha)}{\tau}| \cdot |f(t)|dt + \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} \frac{v^{*}(\alpha)}{\tau} |f(t)-f(\alpha)|dt.$$

$$\begin{split} |\mathbf{v}^{\star}|(\mathbf{t}) \text{ is continuous at } \mathbf{t}=&\alpha, \text{ therefore for any } \varepsilon > 0 \text{ there is } \delta_1 > 0 \text{ such} \\ \text{that } |\mathbf{v}^{\star}|(\alpha+\delta_1)-|\mathbf{v}^{\star}|(\alpha-\delta_1) < \frac{\varepsilon}{2M}, \text{ where } M = \sup_{\substack{0 \le \mathbf{x} \le 1\\0 \le \mathbf{x} \le 1}} f(\mathbf{x}). \text{ Thus, for each} \\ 0 < \tau < \delta_1 \qquad \left[\alpha-\tau\mu^{\star}(\mathbf{x}) \le \mathbf{t} \le \alpha ==> \alpha-\delta_1 \le \mathbf{t}+\tau\mathbf{x} \le \alpha+\delta_1\right]. \end{split}$$

Therefore,

$$v^{*}(t+\tau_{\chi})-v^{*}(\alpha) = (v^{*})^{+}(t+\tau_{\chi})-(v^{*})^{-}(t+\tau_{\chi})-(v^{*})^{+}(\alpha)+(v^{*})^{-}(\alpha)$$

$$\leq (v^{*})^{+}(\alpha+\delta_{1})-(v^{*})^{-}(\alpha-\delta_{1})-(v^{*})^{+}(\alpha-\delta_{1})+(v^{*})^{-}(\alpha+\delta_{1})$$

=
$$|\mathbf{v}^{\star}|(\alpha+\delta_1)-|\mathbf{v}^{\star}|(\alpha-\delta_1) < \frac{\varepsilon}{2M}$$
.

In the same way one can also derive

$$v^{*}(\alpha)-v^{*}(t+\tau\chi) \leq |v^{*}|(\alpha+\delta_{1})-|v^{*}|(\alpha-\delta_{1}) \leq \frac{\varepsilon}{2M}$$
.

Thus,

(4)
$$|v^*(\alpha) - v^*(t+\tau_{\chi})| < \frac{\varepsilon}{2M}$$
.

Hence if $v^*(\alpha) = 0$ our proof is complete. In case $v^*(\alpha) \neq 0$, from the continuity of f at t= α there exists $\delta_2 > 0$ such that for each $0 < \tau < \delta_2$ and for each t with $\alpha - \tau \mu^*(\chi) \leq t \leq \alpha$ $|f(t) - f(\alpha)| < \frac{\varepsilon}{2|v^*(\alpha)|}$. Together with (3) and (4) we then get for each $0 < \tau < \min(\delta_1, \delta_2)$

$$|\beta_{f}(\tau, \chi)| \leq \frac{1}{\tau} \int_{\alpha-\tau\mu^{*}(\chi)}^{\alpha} \varepsilon dt \leq \varepsilon.$$

The proof for the case where f_2 is continuous from the left is similar. <u>Definition</u> the set DIAG* is the set of all games v in EXT such that the following limit and equality

$$m_{v}^{1}(\chi) = \lim_{\tau > 0} \frac{1}{0} \frac{v^{*}(t + \tau\chi) - v^{*}(t)}{\tau} dt = 0,$$

exists for each $\chi \in B_1(I, C)$. roughly speaking v is in DIAG* if for each $\chi \in B_1(I,)$ the average of the marginal contributions of the ideal coalition χ to the diagnonal $\{f(x) \equiv t \mid 0 \leq x \leq 1\}$ is zero.

DefinitionA value ϕ on a symmetric subspace Q of EXT is called "stronglydiagnonal" if for each vcQ $\cap DIAG^*$ $\phi v = 0$.

The following proposition shows the connection between DIAG and DIAG*. <u>Proposition 8</u> If vcDIAG* has an extension which is DNA continuous then vcDIAG*.

<u>Proof</u> veDIAG implies the existence of a vector $\mu = (\mu_1, \dots, \mu_n)$, of NA¹

measures and $\varepsilon > 0$ such that if $U_{\varepsilon} = \{x \varepsilon E_{+}^{n} | d(x, [\mu(\phi), \mu(I)]) < \varepsilon\}$ then $\mu(S) \varepsilon U_{\varepsilon} \Longrightarrow v(S) = 0$. We shall show that for each $f \varepsilon B_{1}(I, C)$ $\mu^{*}(f) \varepsilon U_{\varepsilon} \Longrightarrow v^{*}(f) = 0$. Let us assume that $f \varepsilon U_{\varepsilon}$ but $v^{*}(f) \neq 0$. W.l.o.g. let us assume that $v^{*}(f) > 0$. Denote $B = \{\chi \varepsilon B_{1}(I,) | v^{*}(\chi) > 0\}$. v^{*} is DNA continuous therefore B is open in the DNA topology and it contains f. Thus there is a neighborhood B_{f} of f of the form

 $B_{f} = \{\chi \in B_{1}(I,) | \nu * (\chi) = \nu * (f)\} \text{ for some vector measure } \nu \text{ of measures in NA}^{1}, \\ \text{which is contained in B. Using Lyapunov's theorem for } (\mu, \nu) \text{ there is SeC} \\ \text{such that } (\mu *, \nu *)(f) = (\mu, \nu)(S). \text{ Hence, } \chi_{S} \in B_{f} \text{ and therefore } \chi_{S} \in B \text{ which} \\ \text{implies that} \nu(S) > 0. \text{ On the other hand } \mu * (f) \in U_{\epsilon} \text{ therefore} \end{cases}$

 $\mu(S) \in U_{\varepsilon}$ and hence v(S) = 0. This contradiction establishes the proof of the proposition.

<u>Remark</u> There are games which are not in DIAG although it is natural to include them there. For example consider the game $v = \max(\mu_1, 2\mu_2)$ where μ_1 and μ_2 are two measures in NA¹ which are mutually singular. For any automorphism Θ which preserves μ_2 but not

 μ_1 (i.e. $\theta * \mu_2 = \mu_2$ but $\theta * \mu_1 \neq \mu_1$) the game $w = v - \Theta * v$ vanishes in a neighborhood of the diagnonal, determined by the vector measure $\mu = (\mu_1, \Theta * \mu_1, \mu_2)$, except for the origin. i.e. there is a neighborhood U of the half open interval ((0,0,0), (1,1,1)] such that for each SeC if $\mu(S) \in U$ then v(S) = 0. Formally $w \notin DIAG$, however it is natural to expect that a diagnonal value ϕ on the linear and symmetric supspace Q(v) that generated by v will vanish on w. It turns out that this is false. With the same technique as in [T] one can prove the existence of a diagonal value γ on Q(v) which satisfies $\gamma v = \frac{2}{3} (\mu_1 + 2 \mu_2)$. This implies $\gamma w = \frac{2}{3} (\mu_1 - \Theta * \mu_1) \neq 0$. On the other hand we DIAG* (since ve NAD IFF and

 m_{tr}^{l} = 0) and therefore each strong diagonal value ϕ on Q(v) will satisfy

 $\phi w = 0$.

<u>Definition</u> A subset B of EXT is <u>invariant</u> if for each ve B $m_V^l \in B$. If B CNADIFF we denote by m_B^l the set of all m_V^l for ve B. <u>Examples</u> the spaces pNA, bv'NA, DIFF and Qⁿ are all invariance spaces. Notice that

 $m_{PNA}^{l} = m_{DIFF}^{l} = m_{DIFF}^{l} = NA$

and all of them contain NA. By proposition 1 and from the linearity of the mapping $m \neq m_v^l$ for any $v \in Q^n$ $m_v^l = v$. <u>Remark</u> It is easy to verify that a value ϕ on a symmetric supspace Q of EXT is a strong diagonal value if and only if $\phi v = \phi m_v^l$. Denote by ϕ_D the value on DIFF. Since $\phi_D \mu = \mu$ for any $\mu \in NA \phi_D$ is a strong diagonal value. <u>Definition</u> For any game v the <u>integral of v</u> is denoted by $\int v$ and is defined

to be the set of all games w in EXT for which m_W^1 is well defined and $v = m_W^1$. In the same way the integral of the set of games B is denoted by $\int B$ and is defined by

 $\int B = \bigcup_{\mathbf{v} \in B} \int \mathbf{v}$

Remarks (1) From the main theorem of [M] we have ∫ NA ⊆ DIFF.
In fact one can show that a strictly inclusion holds.
(2) If Q is a linear and symmetric space of games then fQ is a linear and symmetric space of games in EXT which contains DIAG*
(Notice that f0 = DIAG*).
(3) It might be the case where ∫v = Ø for v∈ NADIFF. Indeed proposition 2 implies m¹_W(t) = t m¹_W(1) for each w∈ NADIF and each 0 ≤ t ≤ 1. Thus m¹_W(t) is continuous at t and hence ∫f_αoµ = Ø for each f_αoµ ∈ J.

- 12 -

- (1) NA⊂ Q.
- (2) For each veQ $|v^*|(t)$ is continuous on [0,1]

(3) For each $0 \le t \le 1$ and for each veQ $m_v^{\chi[\alpha,1]} \in Q$,

then there exists a strong diagonal value of γ on $(Q \bullet J) \bigvee \int Q$ which is an extension of ϕ_D on DIFF and which satisfies for each veQ and $f_{\alpha} \circ \mu \epsilon J$

$$\gamma((f_{\alpha}\circ\mu)\cdot v) = v^{*}(t)\mu + \phi(m_{v}^{(\alpha,1)}).$$

Moreover $\|\gamma\| \leq \|\phi\|$.

Proof Any game w in $(Q \circ J) \bigvee \int Q$ is of the form

$$w = \sum_{i=1}^{n} (f_{t_{i}} \circ \mu_{i}) \cdot v_{i} + v_{i}$$

where $v \in \int Q$, $v_i \in Q$, $0 \le t_i \le 1$, $\mu_i \in NA^1$ and $1 \le i \le m$. Define $\gamma:(Q \bullet J) \bigvee \int Q \to FA$ by

$$\gamma w = \sum_{i=1}^{n} v^{\star}(t) \mu_{i} + \sum_{i=1}^{n} \phi \left(m_{v_{i}}^{\chi[t_{i},l]} \right) + \phi m_{v}^{l}.$$

If γ is well defined then by definition it is linear and symmetric. By proposition 5 $(\phi m_v^1)(I) = m_v^1(I) = v(I)$, and for each $1 \le i \le m$

$$\gamma((f_{t_{i}} \circ \mu_{i}) \cdot v_{i})(I) = v_{i}^{*}(t_{i})\mu_{i}(I) + [\phi m_{v_{i}}^{\chi[t_{i},1]}](I) =$$

$$= v_{i}^{*}(t_{i}) + m_{v_{i}}^{\chi[t_{i},1]}(I) =$$

$$= v_{i}^{*}(t_{i}) + v_{i}^{*}(I) - v_{i}^{*}(t_{i}) = v_{i}^{*}(I) = v_{i}(I)$$

Thus γ is efficient.

By proving that γ is positive we would conclude that γ is well defined. Indeed if w is nondecreasing m_w^l is nondecreasing (Proposition 4), and by Proposition 7,

$$\mathbf{m}_{\mathbf{w}}^{1} = \sum_{i=1}^{n} \mathbf{v}_{i}^{\star}(\mathbf{t}_{i}) \cdot \boldsymbol{\mu}_{i} + \sum_{i=1}^{n} \sum_{v=1}^{\chi[\mathbf{t}_{i},1]} + \mathbf{m}_{v}^{1}$$

Since $m_{v_{i}}^{\chi[t_{i},1]}$ and m_{v}^{l} are in Q and since $NA_{\subseteq}^{l}Q$ $m_{w}^{l}\epsilon Q$. ϕ is a value on Q and m_{w}^{l} is non-decreasing, thus $\phi m_{w}^{l} \ge 0$. Now, since the unique value on NA is the identify functional i.e. $\phi \mu = \mu$ for each $\mu \epsilon NA$ we have

(5)
$$0 \leq \phi m_{w}^{1} = \sum_{i=1}^{n} v^{*}(t_{i}) \mu_{i} + \sum_{i=1}^{n} \phi (m_{v_{i}}^{X}[t_{i},1] + \phi m_{v}^{1} = \gamma w.$$

Thus, γ is positive and hence γ is a value on $(Q \circ J) \bigvee \int Q$. To show that γ is a strong diagonal value denote $u_i = m_{v_i}^{\chi[t_i,1]}$, $1 \leq i \leq m$.

$$\gamma m_{w}^{1} = \sum_{i=1}^{m} v_{i}^{*}(t) \cdot \mu_{i} + \sum_{i=1}^{m} \phi m_{u}^{i} + \phi m_{1}^{1} \cdot \frac{1}{1}$$

Hence by proposition 3 we derive that $\gamma m_w^1 = \gamma w$, which proves that γ is strongly diagonal. γ is an extension of ϕ_D since for each vEDIFF $m_v^1 \in NA$ and $\phi_D v = m_v^1$. On the other hand DIFF $\leq \int NA$ and for each vE $\int NA$ $\gamma v = \phi m_v^1 = m_v^1 = \phi_D v$.

The inequality $\|\gamma\| \le \|\phi\|$ is derived by (5) and by Proposition 6 as follows

 $\|\gamma w\|_{BV} = \|\phi u_w^1\|_{BV} \le \|\phi\| \cdot \|u_w^1\|_{IBV} \le \|\phi\| \cdot \|w\|_{BV} \cdot$ Thus the proof is complete.

Remark Condition (3) of Theorem 9 holds, for example, for the spaces pNA, bv'NA, DIFF and Q^n .

Our purpose now is to apply the above theorem to subspaces Q of NADIFF which consists of games which are homogenous of degree 1. To that end we need first the following proposition.

Proposition 10 If ve NADIFF is homogenous of degree 1 then

(1) $|v^*|$ (t) is continuous for each $0 \le t \le 1$

(2) For each $0 \leq \alpha < 1$ $m^{\chi[\alpha, 1]} = (1-\alpha)m_{\mu}^{1}$.

Proof (1) v is homogenous of degree 1, therefore v^- and v^+ are hom. of

degree 1. Thus for each $0 \le t \le 1$

$$|v^*|(t) = (v^*)^+(t) + (v^*)^-(t) = t[(v^*)^+(1) + (v^*)^-(1)] = t ||v||.$$

Hence $|v^*|(t)$ is continuous on [0,1].

(2) For each $0 \le \alpha \le 1$

$$\alpha \cdot \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(t+\tau_{\chi}) - v^{*}(t) \right] dt = \lim_{\substack{\tau < 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(\alpha t+\alpha t_{\chi}) - v^{*}(\alpha t) \right] dt$$

$$= \lim_{\substack{\tau \neq 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(s+\alpha \tau_{\chi}) - v^{*}(s) \right] ds$$

$$= \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \int_{0}^{1} \left[v^{*}(s+\tau_{\chi}) - v^{*}(s) \right] ds.$$
Hence $\alpha \cdot m_{v}^{1} = m_{v}^{\chi} \begin{bmatrix} 0, \alpha \end{bmatrix} \text{ or } (1-\alpha) m_{v}^{1} = m_{v}^{\chi} \begin{bmatrix} \alpha, 1 \end{bmatrix}.$

Theorem 11 Let ϕ be a value on an invariant space Q of games in NADIFF which are homogenous of degree one. If Q contains NA then there exists a strong diagonal value γ on (QeJ) $\bigvee \int Q$ which is an extension of ϕ_D on DIFF. Moreover

(1) $\gamma((f_{\alpha}\circ\mu)\cdot v) = \alpha v(I)\cdot\mu + (1-\alpha)\phi m_{v}^{1},$ (2) $\|\gamma\| \leq \|\phi\|.$

<u>Proof</u> Follows immediately from theorem 9 and proposition 10. <u>Corollary 12</u> Let $Q = Q^n \lor NA$. Then there exists a strong diagonal value γ on $(Q \bullet J) \lor \int Q$ which coincides with ϕ_D on DIFF and with the unique value ϕ_n on Q^n . Moreover

$$\gamma(v_n \cdot f_\alpha \circ \mu) = \alpha \cdot v(1) \cdot \mu + (1 - \alpha) \cdot \frac{\mu_1 + \cdots + \mu_n}{n}$$

where $v_n = \min(\mu_1, \dots, \mu_n)$ and μ_i and μ_j are mutually singular for $i \neq j$. <u>Proof</u> The space $Q = Q^n \lor NA$ is invariant space that contains NA. Moreover $v = m_v^1$ for each $v \in Q$. By [T] there exists a (unique) value ϕ_n on Q. Hence by Theorem 11 there exists a strong diagonal value which is an extension of ϕ_D

$$\gamma \left((f_{\alpha} \circ \mu) \cdot v \right) = \alpha v (I) \mu + (1 - \alpha) \phi_n m_v^1 \cdot$$
$$= \alpha v (I) \mu + (1 - \alpha) \phi_n v \cdot$$

This together with the fact

$$\phi_n(\min(\mu_1,\ldots,\mu_n)) = \frac{\mu_1,\ldots,\mu_n}{n}$$

completes the proof of the theorem.

<u>Definition</u> A market game is a game in EXT which is supper-additive and homogenous of degree 1. Denote by MA the set of all market games. <u>Proposition 13</u> Any market game is in NADIFF. Moreover for each bounded measurable (Borel) function g on [0,1] and for each veMA

$$\lim_{\substack{\tau>0\\\tau\neq0}} \int_{0}^{1} g(t) \cdot \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau} dt = \int_{0}^{1} g(t)dt \lim_{\substack{\tau>0\\\tau\neq0}} \frac{v^{*}(t+\tau\chi)-v^{*}(t)}{\tau}$$

Proof Follows from [M,p.540].

<u>Definition</u> Let NF be the closure in the BV-norm of the set of all games in NADIFF which are function of finite number of NA measure. Let F be defined in the same way except that the BV-norm is replaced by the sup-norm. <u>Proposition 14</u> NF is invariance subspace of NADIFF and $v - m_v^1$ is in DIAG* \cap NADIFF.

<u>Proof</u> Let veNF. Let $(v_n)_{n=1}^{\infty}$ be a sequence of games in NADIFF of the form $v_n = f_n^{O\mu} u_n$ where μ_n is a vector of finite number of NA measures such that

 $\|\mathbf{v}_{\mathbf{n}} - \mathbf{v}\|_{\mathbf{BV}} \neq 0 \text{ as } \mathbf{n} \neq \infty$.

$$\begin{split} m_{v_n}^{1} & \text{ is a function of } \mu_n \text{ since if } \chi_1, \chi_2 \varepsilon B_1(I, \) \text{ and if } \mu_n^*(\chi_1) = \mu_n^*(\chi_2) \\ v_n^*(t+\tau\chi_1) &= f_n(t\mu_n(I) + \tau\mu_n^*(\chi_1)) = f_n(t\mu_n(I) + \tau\mu_n^*(\chi_2)) = v_n^*(t+\tau\chi_2). \end{split}$$
Therefore $m_{v_n}^1(\chi_1) = m_{v_n}^1(\chi_2)$ and $m_{v_n}^1 \varepsilon F.$ Now, by Proposition 6 $\|m_{v_n}^1 - m_v^1\|_{IBV} = \|m_{v_n}^1 - v\|_{IBV} \leqslant \|v_n - v\|_{BV} \Rightarrow 0 \text{ as } n \Rightarrow \infty. \end{split}$ Since for each we BV $\|w\|_{BV} \ge \|w\|_{sup}$

$$\|\mathbf{m}_{\mathbf{v}_{n}}^{1} - \mathbf{m}_{\mathbf{v}_{sup}}^{1} \neq 0 \text{ as } \mathbf{n} \neq \infty,$$

hence $m_v^1 \varepsilon$ F and m_v^1 is DNA continuous. Let us prove now that $m_v^1 \varepsilon$ EXT. Notice first that $m_v^1 \varepsilon$ BV since $v \varepsilon$ BV and $\|m_v^1\|_{IBV} \leq \|v\|_{BV}$. Now, m_v^1 , is homogenous of degree 1 (Proposition 2) therefore $(m_v^1)^+$ and $(m_v^1)^-$ are homogenous of degree 1. Hence, for each $0 \leq t \leq 1$

$$|\mathbf{m}_{v}^{1}|$$
 (t) = $(\mathbf{m}_{v}^{1})^{+}(t) + (\mathbf{m}_{v}^{1})^{-}(t) = t \|\mathbf{m}_{v}^{1}\|_{IBV}$.

Thus $|m_v^l|(t)$ is continuous in t and $m_v^l \in EXT$. Proposition 2 implies that m_v^l is in NAD IFF and

$$m_{\mathbf{v}}^{1} = m_{\mathbf{v}}^{1} - m_{\mathbf{v}}^{1} = 0.$$

Thus $v - m_v^1 \in DIAG^* \cap NADIFF$.

Theorem 15

(1) The space MA \cap NF is invariant (2) Each vEMA \cap NF is of the form $w + m_v^1$ where wEDIFF \cap DIAG*. Proof Let v be in MA \cap NF. By Proposition 13 MA \subseteq NADIFF and for each $\chi \in B_1(I,C)$ and t>0 $m_v^1(\chi) = \lim_{\tau > 0} \frac{1}{\tau} [v^*(t+\tau\chi) - v^*(t)].$ $\tau + 0$

Together with the super-additivity of v*, for each χ_1, χ_2 in $B_1(I, C)$ such that $\chi_1 + \chi_2 \in B_1(I, C)$

$$\underset{v \neq 0}{\overset{1}{\operatorname{wl}}} (\chi_1 + \chi_2) = \lim_{\tau > 0} \frac{1}{\tau} \left[v*(t+\tau(\chi_1 + \chi_2)) - v*(t) \right] \ge$$

$$\sum_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \left[v^* \left(\frac{t}{2} + \tau \chi_1 \right) - v^* \left(\frac{t}{2} \right) \right] + \\ + \lim_{\substack{\tau > 0 \\ \tau \neq 0}} \frac{1}{\tau} \left[v^* \left(\frac{t}{2} + \tau \chi_2 \right) - v^* \left(\frac{t}{2} \right) \right].$$

Hence

$$\begin{split} m_{v}^{1}(\chi_{1} + \chi_{2}) &\geq m_{v}^{1}(\chi_{1}) + m_{v}^{1}(\chi_{2}), \\ \text{and thus } m_{v}^{1} \text{ is superadditive. } m_{v}^{1} \in \text{NF (Proposition 14) Hence} \\ m_{v}^{1} \in \text{MA} \cap \text{ NF. Now, by Proposition 13 for each continuous function f on [0,1]} \\ m_{v}^{f} - m_{v}^{1} &= m_{v}^{f} - m_{v}^{f} = m_{v}^{f} - m_{v}^{1} \cdot \int_{0}^{1} f(t) dt = m_{v}^{f} - m_{v}^{f} = 0. \end{split}$$

Therefore f_1 is additive and $v - m_v^1 \in DIFF$. $v - m_v$

Theorem 11 can be restated for supspace Q of market games that are spanned by games which are function of finite number of measures as follows. <u>Theorem 16</u> Let ϕ be a value on a supspace Q of MA \cap NF that contains NA. Then there exists a strong diagonal value γ on $(Q \circ J) \bigvee \int Q$ which is an extension of ϕ_D on DIFF. γ obeys

(1)
$$\gamma \left(\left(f_{\alpha}^{\circ} \mu \right) \cdot v \right) = \alpha v (I) \cdot \mu + (1 - \alpha) \phi m_{v}^{1}$$

(2) $\|\gamma\| \leq \|\phi\|$.

The rest of the paper is conceptually connected to the previous discussion however it is completely independent. Denote by H' the set of all games in F which are homogenous of degree one and NA continuous at 1. H'.J is the set of all games of the form $(f_{\alpha}\circ\mu)\cdot\nu$ where $f_{\alpha}\circ\mu\epsilon J$ and $\nu\epsilon$ H'. Let H'J be the minimal linear and symmetric space that contains H'. J. It turns out that the measure $\nu(I)\cdot\mu$ that distributes the amount $\nu(I)$ among the players according to their political power only, defines a value on H'J.

- 18 -

Theorem 17

(1) A value ϕ on H'J does exist. ϕ satisfies $\phi((f_{\alpha}\circ\mu)\cdot v) = v(I)\cdot\mu$. (2) A semi-value $\overline{\phi}$ on H'J does exist. $\overline{\phi}$ satisfies $\overline{\phi}((f_{\alpha}\circ\mu)\cdot v) = \alpha \cdot v(I)\cdot\mu$. Proof Each we H'J is of the form

$$w = \sum_{i=1}^{u} (f_{i} \circ_{\mu}) v_{i}$$

where $v_i \in H'$, $f_t \circ_{\mu_i} \in J$, $l \leq i \leq n$. Let us define ϕ and $\overline{\phi}$ on H'J by $\phi w = \sum_{\substack{i=1 \\ i=1}}^{n} v_i(I) \mu_i$, $\overline{\phi} w = \sum_{\substack{i=1 \\ i=1}}^{n} t_i v_i(I) \mu_i$

By definition if ϕ is well defined then it is linear symmetric and efficient, and if $\overline{\phi}$ is well defined then it is linear and symmetric. Hence in order to complete the proof of theorem 17 it is sufficient to prove that if w is nondecreasing then both $\Sigma v_i(I)\mu_i \ge 0$ and $\Sigma t_i v_i(I) \cdot \mu_i \ge 0$ (providing that we also prove that ϕ and $\overline{\phi}$ are well defined). Denote $N = \{1, 2, ..., n\}$. Let us partition N into sets $N_1, N_2, ..., N_L$ according to the jumps location i.e.

$$\begin{split} N &= \bigcup_{i=1}^{L} N_{i} \quad N_{i} \cap N_{j} = \emptyset \quad \text{for } i \neq j \text{ and} \\ & t_{i} < t_{j} <==> \exists k, \exists l \quad l \leq k < l \leq L \left[i \in N_{k}, j \in N_{l}\right] \end{split}$$

Now for each $1 \le k \le L_{kk}$ between us partition N_k according to the majority measures. i.e. $N_k = \bigcup_{r=1}^{r} N_k^r \cap N_k^s = \emptyset$ for $r \ne s$ and

$$\forall i, j \mu_i = \mu_i \langle == \rangle \exists m, l \leq m \leq \ell_k (i, j \in N_k^{\mu}).$$

For each m, $1 \le m \le l_k$, let us choose a representative i in N_k^m and let us denote $\eta_k^m = \mu_i$. Let $\eta_k = (\eta_k^1, \dots, \eta_k^k)$ and let k, $1 \le k \le L$ be fixed. η_k consists of l_k different NA¹ measures. Therefore there exists a coalition TE C such that $\eta_k^i(T) \ne \eta_k^j(T)$ for each $i \ne j$, $1 \le i$, $j \le l_k$ (for a proof see the proof of Proposition 8.11 of [A-S]). W.l.o.g. let us assume that

$$n_k^1(T) < n_k^2(T) < \cdots < n_k^k(T).$$

For any $\varepsilon > 0$ define g_{ε} in $B_1(I, C)$ by

$$g_{\varepsilon} = \varepsilon \chi_{T} + (1-\varepsilon) \chi_{I}$$

For each $l \leq i \leq j \leq l_k$

$$(n_k^i)^*(g_{\varepsilon}) < (n_k^j)^*(g_{\varepsilon}).$$

Therefore, since $g_{\varepsilon} \longrightarrow 1$ in the NA topology as $\varepsilon \neq 0$

$$|(n_{p}^{q})^{*}(1-g_{\epsilon})| < \min_{\substack{t_{i} \neq t_{j}}} |t_{i} - t_{j}|,$$

for each $l \leq p \leq L$ and $l \leq q \leq l_p$.

Let us fix j_0 , $1 \le j_0 \le l_k$ and let us choose $0 \le \beta_0 \le 1$ such that

$$\eta_k^{j_0}(\beta_0, g_{\varepsilon}) = t_k.$$

Assume that f_{t_i} is continuous from the left on [0,1] for each $1 \le i \le n$. Since we F is nondecreasing w* is nondecreasing on $B_1(I,C)$ and thus for each $\beta > \beta_0$

(6)
$$0 \leq w^*(\beta \cdot g_{\varepsilon}) - w^*(\beta_0 \cdot g_{\varepsilon}) = \sum_{\substack{i \in k = 1 \\ p = 1 }} \left[(f_t \circ \mu_i^*) \cdot v_i^* \right] (\beta \cdot g_{\varepsilon}) + i\varepsilon_{\varepsilon} \int_{p=1}^{k-1} N_p$$

+
$$\sum_{\substack{\ell \\ j = j_0}} \left[(f_t \circ \mu_i^*) \cdot \nu_i^* \right] (\beta \cdot g_{\epsilon}) - \sum_{\substack{\ell \\ i \in \bigcup_{j=1}^k N_k^j}} \left[(f_t \circ \mu_i^*) \right] (\beta_0 \cdot g_{\epsilon})$$

$$= \sum_{\substack{\ell \\ i \in \bigcup_{j=j_0+1}^{\ell} N_k^j}} [(f_t \circ \mu_1^*) \cdot \nu_1^*] (\beta_0 \cdot g_{\epsilon}).$$

For each i, $l \leq i \leq n$, v_i is homogenous of degree l thus if $\beta \neq \beta_0$, $\beta > \beta_0$ we

have

$$\beta_{0} \cdot \Sigma \begin{bmatrix} (f_{t} \circ \mu_{i}^{*}) \cdot v_{i}^{*} \end{bmatrix} (g_{\varepsilon}) \ge 0$$

$$\int_{i \in \mathbb{N}_{k}}^{j} \int_{0}^{j} f_{t} \int_{0}^{j} f_{\varepsilon} \int_{0}^{j} f$$

If $\varepsilon > 0$ is small enough such that $\mu_i(g_{\varepsilon}) > t_i$ for each $l \leq i \leq n$

$$\sum_{\substack{j_0\\i\in N_k}} v_i^*(g_{\varepsilon}) \ge 0.$$

 v_i^{\star} is NA continuous in 1 hence if ϵ tends to zero we have

By the definition of $N_k^{j_0}$

The last inequality holds for each j_0 , $l \leq j_0 \leq l_k$. Therefore

$$\sum_{i \in N_k} v_i (I) \mu_i \ge 0.$$

and

$$\sum_{\substack{m_k \\ i \in N_k}} t_{m_k} v_i(I) \mu_i \ge 0,$$

where $t_{m_i} = t_i$ for each is N_k . The last two inequalitites hold for each k therefore

$$\phi w = \sum_{i=1}^{n} v_i(i) \mu_i \ge 0$$

and

$$\bar{\varphi w} = \sum_{i=1}^{n} t_i v_i(I) \mu_i \ge 0$$

Hence the proof is complete. In case there are i's for which f_{t_i} is continuous from the right on [0,1] we will use (6) twice, once for $\beta > \beta_0$ and

once for $\beta < \beta_0$.

34

References

- [A-K] Aumann, R.J., and M. Kurz "Power and Taxes in a Multi-Commodity Economy," Israel J. Math. 27 (1977), 195-234.
- [A-S] Aumann, R.J. and L.S. Shapley, "Values of Non-Atomic Games", Princeton University Press, 1974.
- [M] Mertens, J.F., "Values and Derivatives" Math of Oper. Res. 4(1980), 521-552.
- [T] Tauman, Y. "Values of Non Differentiable Games", (1979) to appear in the Int. Journal of Game Theory.